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Abstract

Temporal precision of spiking response in cortical neurons has been a subject

of intense debate. Using a canonical model of spike generation, we explore the

conditions for precise and reliable spike timing in the presence of Gaussian white

noise. In agreement with previous results we find that constant stimuli lead to im-

precise timing, while aperiodic stimuli yield precise spike timing. Under constant

stimulus the neuron is a noise perturbed oscillator, the spike times follow renewal

statistics and are imprecise. Under an aperiodic stimulus sequence, the neuron

acts as a threshold element; the firing times are precisely determined by the dy-

namics of the stimulus. We further study the dependence of spike-time precision

on the input stimulus frequency and find a non-linear tuning whose width can be

related to the locking modes of the neuron. We conclude that viewing the neuron

as a non-linear oscillator is the key for understanding spike-time precision.
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Introduction

How neurons encode sensory stimuli has been a long standing and central question of

systems neuroscience. Earliest theories of neural encoding considered the mean fi ring

rate as the relevant quantity (for example see Adrian and Zotterman, 1926; Barlow,

1994). However it has been long recognized that sensory information may also be en-

coded by the temporal pattern of the neural activity (MacKay and McCulloch, 1952).

In fact, a number of recent experimental and theoretical results have suggested that

coding by simple fi ring rate alone, as classically considered (e.g Barlow, 1994; see

also Bugmann et al., 1997; Shadlen and Newsome, 1998; Tov´ee et al., 1993), may be

at odds with observed data. Experimental studies, primarily performed in the visual

system, have found a signifi cant role for precise timing of individual spikes in coding

as well as precisely reproducible spike time patterns or “relational codes” (see for in-

stance Bair and Koch, 1996; Engel et al., 1992; Krüger and Becker, 1991; McClurkin

et al., 1991; Panzeri et al., 2001; Reinagel and Reid, 2000; Thorpe, 1996). This “tem-

poral coding” hypothesis states that the precise timing of spikes, in addition to the

fi ring rate, carries information (e.g. Bialek et al., 1992; Gray, 1994; Prut et al., 1998;

Theunissen and Miller, 1995; for a comprehensive overview see de Charms and Zador,

2000).

A pre-requisite for the spike-time code to work is that spikes must be evoked pre-

cisely and reliably by a given stimulus. Over the past years, several converging lines of

research have found that spike generation in cortical neurons can be indeed precise and

reliable, depending on the nature of the inputs. In one of the fi rst experimental studies

aimed at investigating mode locking and spike timing precision, Bryant and Segundo

(1976) elegantly demonstrated that repeated injections of white noise in Aplysia neu-

rons led to a remarkable invariance in the fi ring times accompanied by a high degree

of reliability in the response. In vivo recordings have shown that the neural responses

were robust and reproducible when the stimulus leads to fast fluctuations in the fi ring

rates (e.g. in monkey MT: Britten, 1993; in the LGN: Reinagel and Reid, 2000) and

under stimuli with statistics of natural scenes (e.g. for motion-sensitive H1 neurons in

the fly’s visual system: de Ruyter van Steveninck et al., 1997). In vitro experimental

work has examined more closely the conditions for precise spike-timing (e.g Calvin

and Stevens, 1968; Hunter et al., 1998; Mainen and Sejnowski, 1995; Nowak, 1997;

Tang, 1997). The main fi nding of these studies is that spike-timing is rather imprecise

for constant (as in Mainen and Sejnowski, 1995) and low frequency (as in Nowak et

al., 1997) driving currents, but relatively precise for stimuli with pronounced temporal

structure.

Precision of spike-timing has also received considerable attention in the compu-

tational literature, using a variety of modeling approaches (e.g. see Howeling et al.,

2001; Needleman et al., 2001; Kretzberg et al., 2001; Van Rossum, 2001) and ana-

lytical methods (e.g. Brunel et al., 2001). In this paper we explore this issue through

simulation and analysis of the stochastic θ-neuron (Gutkin and Ermentrout, 1998).

While numerous models of neurons can be used for this study (e.g see Van Rossum,
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2001), our choice is motivated by the fact that the θ-neuron is a reduced model of

cortical neurons which captures the dynamics of neural excitability and allows for a

clear distinction between the excitable and the oscillating regimes. Our main focus

is to study the precision of spiking activity under noisy current inputs that reproduce

in a heuristic way experimental conditions. We suggest that the experimental results

(e.g Mainen and Sejnowski, 1995; Nowak et al., 1998) can be succinctly explained

using the theoretical framework of non-linear oscillators, of which the θ-neuron is an

example.

Methods

The Model. The model is a formal mathematical reduction from a wide class of more

complicated neural models. In what follows, we briefly review its derivation. A more

mathematical treatment is given in Ermentrout and Kopell (1984, 1986), Hoppensteadt

and Izhikevitch (1997), Gutkin and Ermentrout (1998).

The starting point for the reduction is that the dynamical behavior of conductance

based neural models is of Type I excitability (see Rinzel and Ermentrout, 1999; Hansel

et al., 1995). This classifi cation of membrane excitability was originally noted by

Hodgkin in squid giant axons (Hodgkin, 1948) and is based on several characteristic

properties of the neural responses to current injections. Type I neural membranes

exhibit the following salient characteristics:

� All-or-none action potentials, i.e. the shape of the action potential is largely

invariant with respect to the frequency of fi ring. In general, the amplitude and

the duration of the action potential in real neurons may change slightly with the

changing response frequency, but the spike remains a special and stereotyped

solitary event that is well separated from the subthreshold responses. Spikes

are not a continuous increase in the amplitude of subthreshold oscillations, as it

would be the case for Type II membranes.
� Repetitive fi ring appears with arbitrarily low frequencies when the neuron is

depolarized with a prolonged current step. Although this is rather diffi cult to

observe in experiments, neural models that are parameterized to include cross-

membrane conductances underlying spike generation in, for example, cortical

pyramidal neurons clearly show this effect. The important notion is that the

neuron is capable of responding with a wide range of fi ring frequencies.
� The frequency-response (f-i) curve for the Type I neuron in vitro, where noise

levels are relatively low, can be readily fi tted with a square root (for the instan-

taneous f-i, or the f-i for a neuron with weak spike frequency adaptation) or

a linear function (the steady state f-i for a strongly adapting neuron), e.g. see

Connors et al. (1990), McCormick et al. (1985), Stafstrom et al. (1984).

A majority of biophysical models for cortical neurons fall into Type I excitability.

Such biophysical models have a specifi c underlying mathematical structure by which
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the above characteristics appear, namely the saddle-node bifurcation. When analyzed

in the phase space in the excitable regime (below the bifurcation) these models have at

least three critical points: the attracting node that is the rest, a saddle point that is the

threshold and an unstable point (repellor) that determines the shape of the action po-

tential (see Fig.1A, left). In other words, the repellor ensures that the limit cycle traced

out by the full model remains topologically invariant. The repellor persists beyond

the bifurcation (see Fig.1A, right) and, thus, the action potential shape remains largely

constant but the speed with which the model traverses the limit cycle changes depend-

ing on the input bias and, thus, the time between the action potentials that changes. The

above characteristics of response are directly related to the structure of the bifurcation,

particularly to the fact that the bifurcation occurs when the steady state (the node)

comes together with the threshold (saddle point) as the injected current is increased to

the critical value. As the neuron passes through the bifurcation, a single real leading

eigenvalue changes its sign from negative to positive. In topological terms, right at

the bifurcation there exists a single critical point and a homoclinic orbit that joins this

point to itself. By defi nition, this orbit has infi nite period (hence the arbitrarily low

onset frequency) as it winds around a repellor that survives the bifurcation. Above the

bifurcation the period of the oscillation is fi nite and the spike shape remains invariant

due to the persistent repellor.

For this type of bifurcation there exists a simple canonical equation that captures

the generic behavior of all models that fall within this dynamical class (see e.g. Er-

mentrout and Kopell, 1986 for proof):

dθ
dt

� ✁
1 ✂ cosθ ✄✆☎ ✁

1 ☎ cosθ ✄ ✁ β ☎ I
✁
t ✄✆☎ σWt ✄✞✝ (1)

where θ is a phase that gives the position of the neural membrane in its fi ring cycle.

The motion of the phase is nonuniform: it is relatively slow near the rest, “speeds up”

as the neural membrane traverses the spike (near θ � π), and “slows down” during the

re-polarization phase. This is the key to this model’s ability to reproduce the behavior

of a neural membrane, such as changes in the effective membrane time constant during

spiking. The original dynamics is reduced to two phase variables due to the invariance

in the shape of the limit cycle. Heuristically, since the repellor in the full model persists

on both sides of the bifurcation and the limit cycle shape does not change, the fi ring

behavior can be described by the phase around the limit cycle. Thus the repellor point

is implicit in the phase description.

The input term
✁
β ☎ I

✁
t ✄✟☎ σWt ✄ is multiplied by

✁
1 ☎ cosθ ✄ , as determined by the

mathematical reduction procedure and reflecting the relative and absolute refractory

periods during and after the spike. In general, the time dependent input can be of

arbitrary form, with the exception of β, which is the constant bias and the major control

parameter determining whether the model is below or above the bifurcation. With β
below zero, the neuron is excitable and shows threshold behavior (Fig.1B, left). When

the bias is positive, the neuron is in the oscillating regime producing periodic action
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potentials (Fig.1B, right).

The term I
✁
t ✄ denotes a deterministic and, in general, time varying stimulus, e.g.

a constant current with amplitude α (which normally can be subsumed in the bias

term), an aperiodic current or “frozen noise” (obtained from a sampled random pro-

cess, or a sinusoid superimposed on a DC-offset equal to the amplitude, I
✁
t ✄ � α

✁
1 ☎

sin
✁
2πνstimt ✄ ✄ . In this case, νstim

✁
t ✄ denotes the stimulation frequency and α the stim-

ulation amplitude. The different stimuli used in this paper were chosen to qualitatively

reflect the various current injection protocols in the in vitro studies: constant currents

and frozen noise (Mainen and Sejnowski, 1995), or sinusoid currents (e.g. Nowak et

al., 1997). The amplitudes for the DC input were set to match the experimental fi ring

frequencies. Wt is white noise with the noise scaling factor σ. Note that the θ-neuron

with noise does not have any long-lasting slow processes and is formally a Markov

process with a renewal property.

The white noise injection is capable of evoking spikes in the excitable regime, or

modifying the spike times for periodic fi ring patterns in the oscillatory regime. In the

excitable regime (Fig.1B, left) the model fi res due to random threshold crossings, in

the oscillatory regime (Fig.1B, right) noise modulates the intrinsic rather regular spike

times. Note that the noise level is the same for both panels as is the mean fi ring rate, yet

the excitable regime gives irregular fi ring, while the oscillator is much more regular.

The two fi ring regimes are readily apparent from the interspike interval coeffi cient

of variation CV , defi ned as the ratio between the standard deviation of the interspike

intervals and the mean interspike interval (Fig.1C).

For further discussion of the underlying mechanisms for the interspike interval

irregularity and a heuristic discussion of the stochastic θ-neuron behavior see Gutkin

and Ermentrout (1998). This model can be used to explore response properties of

single neurons, as well as synaptically generated behavior of small circuits (Ermentrout

et al., 2001; Gutkin et al., 2001) and large synaptically coupled networks (Latham et

al., 2000).

Figure 1 here

Simulation parameters. The model was run under several stimulus conditions

with random initial conditions (variance of θ
✁
0 ✄ was 10% around rest values) to model

random membrane drifts seen under experimental conditions. Parameters varied dur-

ing the simulations were σ, β and input stimulus characteristics as described below.

The strength of the noise σ was adjusted as a free parameter. In general, the noise level

fell into two qualitative classes. For “low noise”, σ was chosen suffi ciently small as not

to affect the mean fi ring rate (σ ✁
0 ✂ 01). If the cell is close to spike threshold, this situ-

ation reflects the in vitro constant stimulus condition in Mainen and Sejnowski (1995).

For some simulations, σ was large (σ ✄ 0 ✂ 01, “strong noise”). The latter condition can

be seen as one reflecting the high input levels present in in vivo preparations where
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random synaptic inputs impinge on the neuron at a high rate (e.g. Destexhe and Par´e,

1999; Par´e et al., 1998). We note that the noise comes in our model as a current, while

under in vivo conditions synaptic inputs are conductance fluctuations (see Discussion).

For the constant current injection, the bias β was adjusted so as to provide an

average (spontaneous) fi ring rate consistent with previous experiments (10-40 Hz).

For the time structured aperiodic stimulus we used a frozen random current. The

amplitude of this stimulus was scaled as a free parameter in the simulations. For the

injected sinusoid stimuli, the amplitude and frequency were changed to examine their

effects on the spike-time jitter. In general, the frequency of the sinusoid was varied

between 0.2 and 150 Hz, the amplitudes were set between 0 and 0.5, σ between 0 and

0.05. To ensure robust statistics, 1000 traces were simulated for each set of parameters.

The model was integrated with Euler method with time step suffi ciently small to ensure

stability.

Data acquisition and analysis. The analysis protocol closely matches the proce-

dure given in Mainen and Sejnowski (1995). For each parameter setup, the spiking re-

sponses for a fi xed number of repetitions (in our case 1,000) of the same stimulus (con-

stant, “frozen” random or sinusoid current) were, triggered by the stimulus onset, ac-

cumulated. The resulting rasterplots (Fig.2A) were integrated, yielding peri-stimulus

time histograms (PSTHs, Fig.2B). Subtracting a threshold value (Fig.2B, threshold),

which was set at the mean fi ring rate during the stimulus, yielded reduced PSTHs

(Fig.2C). The latter can be viewed as an adequate description of the time course of the

response of the cell to the applied stimulus.

Reduced PSTHs were used as input for further analysis. In most cases, the stim-

ulation led to statistically signifi cant peaks in the reduced PSTHs (Fig.2C), indicating

the occurrence of spikes at preferred times during the course of the stimulus. In ac-

cordance with Mainen and Sejnowski (1995), these peaks in the (reduced) PSTHs are

called events. A standard statistical analysis of these events was used to characterize

the response with measures of reliability and precision: Event reliability is defi ned as

the fraction of spikes within a single event and, thus, equals the ratio between number

of spikes in a single event and the total number of spikes in the reduced PSTH (see

Fig.2D). Reliability is the sum of the event reliability for all events occurring in the

reduced PSTH, thus quantifying the fraction of total spikes specifi cally evoked by the

stimulus. Event jitter is defi ned as the standard deviation (SD) of the spikes within a

single event (Fig.2D). Finally, precision is defi ned as the average of the event precision

for all events in the reduced PSTH.

Results

To determine spike time precision of the stochastic θ-neuron in the oscillatory regime,

we ran a number of simulations with a constant injected current I
✁
t ✄ � α. The stimula-

tion amplitude α was set to produce repetitive fi ring at fi ring rates consistent with those

previously reported in experiments (see e.g. Mainen and Sejnowski 1995). The model
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was biased to oscillate in the range of 10-40 Hz frequencies (0 ✂ 1 ✁ α ✁
0 ✂ 11 for fi xed

σ � 0 ✂ 01 and β � ✂ 0 ✂ 099). Fig.3 shows representative results for 10 Hz and 30 Hz

average fi ring rate. The model responds to the constant stimulus with nearly periodic

spike trains. Across different trials, individual spikes are randomly shifted due to the

noise. The mean fi ring rate, reliability and jitter can be easily matched to that observed

in experiments by adjusting the noise strength σ and bias β. The PSTHs (Fig.3A)

show clear peaks (events), indicating a rather regular (periodic) response. The SD of

the peaks increases in the course of the stimulation (Fig.3B), leading to the “diffusion”

of the events; i.e. successive events become broader and lower in amplitude, as ex-

pected for a simple renewal process. For a given noise strength, at the lower fi ring

rates the event structure may be completely masked by the random spike-times shifts

towards the end of the spike train, while for the higher fi ring frequencies the structure

remains (results not shown). The jitter depends on the noise strength σ and decreases

with increasing mean fi ring rate.

Figure 2 here

We then examined the response of the θ-neuron to time structured aperiodic stimuli

(see Methods). Parameters, including noise, bias and initial conditions were chosen to

give a mean fi ring rate of 10 Hz without aperiodic stimulus. Under the aperiodic

stimulus the fi ring rate was approximately 17 Hz (Fig.3C, left). Spike times were

highly correlated from trial to trial. However, in contrast to the constant stimulus, here

the event jitter was not a function of the event number, but rather determined by the

aperiodic input current itself (compare Fig.3C and D, right). Moreover, in the shown

example, the fi ring rate was determined by the aperiodic stimulus and not by the bias

since the background rate was 10 Hz and the “driven” rate was 17 Hz.

We can understand the above results in an intuitive way if we consider that during

the constant current injection (or a slowly changing current input) the neuron is in a

repetitive fi ring regime, i.e. the neuron produces spikes due to the intrinsic dynamics.

The periodic cycling of the currents that underlies spike generation yield two distinct

time scales for the evolution of the phase in the theta-neuron: the rapid all-or-none

action potentials and the slow recovery (or re-polarization) of membrane excitability

between the spikes. The timing of the spike depends on the duration of this slow

recovery, and the membrane spends under these conditions a comparable long time

in the neighborhood of the fi ring threshold. The presence of noise induces random

changes in the recovery duration as well as random threshold crossings. Thus, in the

repetitive fi ring regime, the noise has an expanded window of opportunity to effect

individual spike times. Furthermore, previously it was shown (see Gutkin & Ermen-

trout, 1998) that for the Type I neurons the spike latency depends on the amplitude

of input deviations above the threshold and that minute amounts of randomness in the

current amplitude are amplifi ed by the intrinsic spike generating mechanism (for ex-
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perimental evidence see Azouz & Gray 1999, 2000). Thus, the repetitive fi ring regime

in conjunction with noise act to induce randomness in the individual spike times.

In contrast, when the neuron is stimulated by the aperiodic stimulus (superimposed

on the constant current and noise), this stimulus dominates the behavior of the mem-

brane and the neuron fi res in response to the threshold crossings induced by the input

current. Here, the neuron acts as a threshold element and the noise mechanisms dis-

cussed above are swamped by the action of the input, leading to individual spike times

which are relatively robust across trials. This is in line with experimental results in

Bryant and Segundo (1976), who reported reproducible and precise spike times un-

der repeated noise injection and suggested a threshold model of the spike-triggering

system.

In dynamical terms, the neuron, biased by a constant current, is a noise-perturbed

nonlinear oscillator. Thus, it produces action potentials as a renewal process, meaning

that the probability for the occurrence of the
✁
N ☎ 1 ✄ th event depends only on two

factors, namely the time of occurrence of event N and the statistics of generating an

event in a given time interval.

Let us assume that the interspike interval (ISI) distribution function P
✁
τISI;µ ✝ σ ✄ ,

where τISI gives the ISI duration, is characterized by some mean µ and standard devia-

tion σ. We can also write the moment generating function for the ISI duration Φ
✁
τISI ✄ ,

given by the Laplace transform of P
✁
τISI;µ ✝ σ ✄ . Assuming that we have a stationary

renewal process (no memory and statistical stationarity), all interspike intervals are

identically distributed and independent. The time of the N-th event (spike) is the sum

of the interspike intervals (τi) tN
� τ1 ☎ τ2 ☎ ✂ ✂ ✂ ☎ τN

� NτISI , and the probability dis-

tribution of the N-th event time equals the N-fold convolution of the ISI distribution

function:

P
✁
tN;µN ✝ σN ✄ � P

✁
τ1;µ ✝ σ ✄ ✁ ✂ ✂ ✂ ✁ P

✁
τN;µ ✝ σ ✄ ✂ (2)

The moment generating function for the Nth event time is:

Φ
✁
τN ✄ � N

∏
i ✂ 1

Φ
✁
τi ✄ �☎✄Φ ✁

τISI ✄✝✆ N ✂ (3)

From this it is easy to show that the variance for the Nth event is just N σ2. 1 Thus,

standard deviation of spike times should build up as a product of the square root of the

spike number and the standard deviation of the fi rst spike. Fig.3B shows plots of event

jitter and variance (insets) as a function of event number. The latter follow a linear

relationship, consistent with the renewal prediction. A similar relationship should hold

for the experimental results (as in Mainen & Sejnowski 1995).

1This follows directly from the basic properties of sums of independent random variables: The

distribution of the sum is characterized by the mean, which is equal to the sum of the individual means

and the variance, equal to the sum of the individual variances. A simple example of this is the Poisson

process where the sum of several Poisson processes is just another Poisson with the parameter (mean

rate) being the sum of the individual rates (e.g. see Cox, 1979).
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In contrast, for a cell driven with strong aperiodic inputs, the response appears to

be evoked by the fast rising input current. The latency of the spikes is determined

by the time of the current rise, and the intrinsic regenerative membrane currents are

superseded. In this situation, the spike generation is not a renewal process and the

precision of spike times is independent of spike number (Fig.3C).

Spike-time precision appears to be dependent on the frequency composition of the

input (as found in Nowak et al. 1997). In fact, recent experiments in cortical slices

suggest that certain input frequencies may be encoded preferentially, since they may

be in resonance with subthreshold membrane oscillations. It was shown (Fellous et al.,

2001) that in vitro the subthreshold dynamics of neurons may act as a band pass fi lter,

allowing reliable 1 : 1 phase-locked responses to sinusoidal stimulation in a band of

driving frequencies commensurate with the intrinsic oscillations.

Figure 3 here

Therefore, we next investigated the response of the θ-neuron to sinusoidal stimu-

lation. In general, the model showed a 1 : 1 phase-locking in a broad parameter range

of the driving stimulation. The occurrence of a 1 : 1 phase-locking regime was relative

robust to changes in the noise strength σ and bias β, which both determine the intrinsic

frequency (representative examples for low and strong noise, and driving frequencies

of 10 and 30 Hz are shown in Fig.4). However, the quantitative characteristics of the

locking regime depend on the model parameters. To further characterize the response,

we investigated the mean output frequency νout , the jitter (precision) and reliability as

a function of the driving stimulus frequency for given sets of σ and β.

Three qualitatively different regimes of phase-locking were found. First, a 1 : n

regime, where the cell responds with several spikes during one phase of the driving

stimulation (“bursts”, see Fig.5A). Here, the stimulus acts as a slowly changing (or

nearly constant) bias, and the output frequency during one period is mainly determined

by the stimulation amplitude (Fig.6A, compare circles with triangles for νstim
✁

10 Hz).

The jitter, estimated for the whole “burst”, was high (Fig.6B) and a function of the

period of the stimulation. After a low reliable response for very small νstim (
✁

1 Hz),

at higher stimulation frequencies nearly all spikes clustered into the “bursts”, yielding

high reliability (Fig.6C) especially in the case of low noise strength (Fig.6C, left).

Interestingly, the reliability reached a plateau much earlier than the jitter, and for low

noise strength the reliability value characterizing this plateau was nearly independent

of the stimulation amplitude (Fig.6C, left).

An increase in the stimulation frequency leads to a rather sharp transition into the

second regime, where the model 1 : 1 phase-locked to the external stimulus (see Fig.5B

and the linear regime in Fig.6A). The jitter was low and nearly unaffected by the driv-

ing frequency (see plateau regions at low jitter in Fig.6B), but the value depended

markedly on the intrinsic noise strength with an increasing jitter (lower precision) for
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increasing noise strength (compare fi lled and white circles in Fig.6B). For a given noise

strength, the width of the 1 : 1 regime depended mainly on the stimulation amplitude

(compare white dots and triangles in Fig.6B), but was found to be rather large for a

broad parameter range. For low noise amplitudes (compared to the stimulation ampli-

tude), the behavior of the reliability as a function of the driving frequency followed

that of the jitter, with a plateau region at high reliability in the 1 : 1 regime.

For strong noise strength and small stimulation amplitudes, a 1 : 1 phase-locking

regime could not be observed (Fig.6A, right, fi lled triangles). Here, the fi ring rate of

the model did not change with the driving frequency, and was mainly determined by

the intrinsic noise amplitude and bias. The cell acted like under constant stimulation,

showing events with low reliability and temporal precision (Fig.6B and C, right, fi lled

triangles).

Figure 4 here

For increasing noise amplitudes the reliability decreased and showed a peak at

stimulation frequencies comparable to the response rate with slow varying or constant

stimulation of the same amplitude. Given that the average fi ring rate sets the threshold

for estimating the reliability (see Methods), and due to the dependence of the average

fi ring rate on the noise strength, the reliability can be viewed as a measure of the

signal-to-noise ratio. For higher (but fi xed) noise strength, this ratio becomes optimal

(maximal) for certain stimulus characteristics, as shown here for νstim.

For further increase of the driving frequency, 1 : 1 locking is lost (stars in Fig.6B

and C), as indicated by the decrease in the output rate (Fig.6A). The response of the cell

in this regime was either determined by noise, or a n : 1 phase-locking was observed

(Fig.5C). In the fi rst case, no events could be seen in the PSTHs, hence no values of

jitter and reliability could be deduced (fi lled and white triangles in Fig.6B and C). In

the n : 1 phase-locking regime the model showed, for increasing stimulation frequency,

a response with low jitter and decreasing reliability (for high noise, see Fig.6 fi lled

dots), or increasing (but low) jitter and constant reliability (for low noise strength, see

Fig.6 white dots). This difference between the behavior of reliability and jitter for

various noise strengths can be traced back to the defi nitions of these two measures (see

Methods). In general, as in the 1 : n regime, in the n : 1 regime the cell cannot follow

the time course of the stimulation and acts like it is under constant stimulation. This is

further supported by the observation that the jitter only slowly varies with increasing

frequency.

Figure 5 here
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In summary, our simulations of the θ-neuron show that precise and reliable spike-

times in response to sinusoid stimuli are obtained in a wide range of driving frequen-

cies. Without exhibiting strong or narrow resonances for a particular intrinsic fre-

quency range, the cell acts like a band pass fi lter, in agreement with previous studies

(Fellous et al., 2001). The intrinsic parameters, like the noise strength or constant bias,

act as a modulating factor on the shape and width of the 1 : 1 locking regime.

Discussion

In this report we have considered the reproducibility of spike timing in Type I neurons

by studying the responses of the canonical model for this excitability class, the θ-

neuron. First, we showed that spike timing precision and reliability results reported

previously from in vitro experiments can be reproduced by the stochastic θ-neuron.

In spike trains evoked by constant current injections (oscillating regime, Fig.3A and

B), the overall spike-time jitter is high and increases with successive spikes. Here the

response is caused by regenerative activity of the intrinsic currents and the jitter in

each spike depends on the jitter in the preceding spikes. On the other hand, under

aperiodic stimulus (Fig.3C), the response is caused by the rapid fluctuations in the

stimulus itself, and the cell acts as an excitable threshold element. In this case, a

given spike is largely statistically independent from the previous spike and its jitter is

stationary and relatively low compared to the constant case with constant stimulation.

We tested the hypothesis that spike timing precision is strongly affected by the tem-

poral structure of the stimulus. The simulations with sinusoid input showed that slow

rising stimuli act almost like an additional bias and result in imprecise spike times.

Rapid stimuli (frequencies above 100 Hz) are fi ltered by the membrane and once again

lead to low precision (Fig.5C). In between both regimes, there was a wide optimal

range of input frequencies that evoke precisely timed spikes (Fig.5B and 5). No sharp

resonances with respect to intrinsic frequencies were found, but a rather broad band

pass fi lter behavior. This is predicted from the dynamics of Type I membrane excitabil-

ity and is quite different from the situation described in studies of noise driven Type II

oscillators (e.g. Jensen, 1998). In the latter case, each oscillator exhibits subthreshold

oscillations in a limited frequency band, leading to a narrow range of periodic inputs

that evoke precisely timed responses.

Fellous et al. (2001) showed in vitro that the precision tuning in prefrontal cortical

neurons can be correlated with subthreshold oscillations of the membrane potential. A

broad tuning curve for the reliability of the response to sinusoid current stimuli at a

frequency corresponding to the average subthreshold oscillation frequency was found.

Although there are no subthreshold oscillations in the theta-neuron model, we obtain

results that qualitatively match these experimental fi ndings. In addition, no sharp dif-

ferences in the precision and reliability tuning could be deduced between the cases

where the constant stimulus amplitude was below the oscillatory regime (thus, the cell

operated in the excitable regime) and those in the oscillatory regime (see Methods).
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This suggests that the stated link between subthreshold oscillations and reliability of

the cellular response might be weaker. Also, the broad reliability tuning found experi-

mentally appears to be in contrast with a sharp tuning one expects for a resonance cou-

pling between subthreshold oscillations and response, indicating that the subthreshold

neuronal dynamics is not the only determinant of a reliable response under the inves-

tigated current stimuli.

The loss of precise spike-timing in the model for higher input frequencies can be

explained by the structure of the stable locking regimes of non-linear oscillators (e.g

see Coombes and Bresloff, 1999). That is, the precision and reliability tuning curves

have their inflection points at the frequency where 1:1 locking mode is lost. For Type I

oscillators this upper bound is dependent on the input amplitude (as it would be for any

non-linear oscillator), and also on the amplitude of the back-ground DC component of

the input. Thus, we predict that it is the upper edge of the tuning that would be modifi ed

by the input amplitude or the DC off-set.

The response rate of the model as a function of the stimulus frequency shows that,

in the 1 : 1 phase-locking regime, the cell phase-locked to the external stimulus by

modulating its fi ring rate. The fi ring rate sharply decreased at a critical frequency,

indicating the loss of a reliable and precise response to the external stimulus. This

behavior is typical for current driven (noise or stimulus) models. Simulations per-

formed using simplifi ed models of cortical neurons with voltage-dependent membrane

conductances and synaptic background activity modeled either by current or conduc-

tance noise (Destexhe et al., 2001) revealed two different modes of 1 : 1 phase-locking.

Whereas under current noise the neuron encoded different stimuli by modulating its fi r-

ing frequency, under conductance noise the relative timing of spikes was changed with

only minimal impact on the mean output rate (Rudolph and Destexhe, unpublished

observation). High-frequency stimuli (up to 200 Hz) could be resolved for a broad

parameter range with high precision and reliability with conductance noise (Rudolph

and Destexhe, 2002), but not with current noise. The latter is in agreement with the

breakdown of a precise response for higher driving frequencies (νstim ✄ 70 Hz) re-

ported here. The difference between both locking modes can be traced back to the

high conductance component imposed by synaptic background activity, and the re-

sulting decrease of the effective membrane time constant. To which extent the noisy

component σ in the stochastic θ-neuron model used in the present study describes

synaptic background activity remains to be investigated.

We have shown that the θ neuron model reproduces experimental results which

suggest that the precisely timed spiking is primarily a result of rapidly changing inputs

driving the cell to spike threshold. This particular fact has already been recognized by

Bryant and Segundo (1976) in an experimental study of Aplysia neurons in vitro. The

authors found that in response to repeated injection of Gaussian white noise the neu-

ron responded with highly reproducible spike trains. After estimating the fi rst order

Wiener kernel for the neuron (or the average current input leading to spike produc-

tion), Bryant and Segundo were able to heuristically account for this effect of noise

injection by a simple current threshold device coupled with this kernel. In our study
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we looked into this issue by quantifying the precision of spike timing for individual

spikes. We also found that, in this mode, the neuron’s response can be described best

in terms of a thresholding effect, provided that spike-generating dynamics are taken

into account. Interestingly, Bryant and Segundo found that the average input leading

to a spike depended on the DC input bias, with more depolarized bias yielding in-

put waveforms that included an early hyperpolarizing component, followed by a rapid

depolarizing component. This is compatible with our conjecture (see Results) that a

neuron that is sitting near its fi ring threshold would need to be transiently re-polarized

in order to remove any partial inactivation of the sodium channels and, thus, augment

the membrane excitability. Such re-polarization would break any remaining effects of

the previous spike or, in other words, transiently move the cell out of the oscillating

regime and, hence, result in a reliable spike timing. At more hyperpolarizing bias the

cell is away from the threshold and, thus, already in the excitable (threshold) regime,

with no requirement of an additional hyperpolarization.

A crucial difference between the elegant early study by Bryant and Segundo (1976)

and the work presented here is that Bryant and Segundo essentially approached spike

generation as a thresholding process. In this study we suggest a specifi c dynamical

structure for spike generation (Type I dynamics). We show that it is able to account

for responses of neurons to a variety of noisy stimuli (DC and noise, repeated noise,

sinusoid current and noise) quantitatively and also provide a unifying explanation for

such responses. Furthermore, the focus of the study by Bryant and Segundo (1976)

was different by asking what input patterns lead to spikes and how such pattern can be

characterized by estimating fi rst and second order Wiener kernels. We drew attention

more on the question wether a canonical model of spike generation can account for

spike time precision and reliability and how these can be explained in the context of

non-linear oscillators.

In fact we propose that spike timing is a microscopic quantity that reflects strongly

the fi ne temporal structure of the input current (i.e. high frequency fluctuations, pos-

sibly due to correlation structure in the synaptic inputs as discussed in Salinas and

Sejnowski, 2000). On the other hand bias induced fi ring preserves the over-all fi ring

rate, a macroscopic quantity that depends on the mean level of the input current. In

this way we may imagine that the fi ring rate and the spike timing can be multiplexed

to carry two related but different kinds of information about a sensory stimulus. It is

interesting to note that when the spike-times are precise across trials, the ISIs within an

individual spike train are highly variable (CV near 1, results not shown). In fact, there

is a reciprocal relationship between the ISI coeffi cient of variation and the spike time

jitter (see Gutkin & Ermentrout 1998 for further discussion). Thus, we suggest that

the high CV observed in vivo is a signature of precise spike-timing, whereas a more

regular discharge activity indicates that the neuron acts as an oscillator.

In this report we have not considered the effect of slower intrinsic currents, such as

currents causing spike-frequency adaptation. The latter would increase variability as a

consequence of the “forward excitability break” proposed by Wang (1998), and change

the renewal explanation given here for the constant current case (see Results). The
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simple picture we presented is a minimal case. Our modeling conditions correspond

roughly to the experiments of Tang (1997) where the slow potassium channels were

blocked by acetylcholine. This manipulation appeared not to affect the overall pre-

cision of a given spike-train. The slow currents may induce subthreshold resonances

on the membrane potential by converting Type I behavior into Type II (as shown in

Ermentrout et al., 2001). Signatures of resonances have been shown experimentally in

Aplysia neurons (see Hunter et al., 1998). In that study, the resonance in spike-time jit-

ter was shown to be directly related to the resonant frequency of the stimulated neuron.

The relationship between the input frequency tuning and the effects of spike frequency

adaptation on the membrane resonances remains to be investigated.

Another issue that remains to be investigated is how the synaptic identity of the

inputs affects the spike time precision (in this report we only considered current stim-

uli). Our results imply that rapid fluctuations in the inputs are crucial for spike-time

precision. Such rapid input fluctuations could be a result of correlated bursts of rapid

excitatory synapses, e.g. AMPA receptors, while the lower frequencies could be either

due to asynchronous synaptic activity or slower NMDA receptors. Recently, Harsch

& Robinson (2000) have shown that spike-time precision is lower for NMDA-like in-

puts than for AMPA postsynaptic potentials. Furthermore, it was shown that for each

NMDA evoked burst of action potentials the initial spikes are precise, while the trailing

spikes are imprecise. This is in agreement with the behavior obtained in simulations

with the θ-neuron for low frequency sinusoids, where the cell fi res many spikes per

stimulus cycle. Thus, the theoretical model presented here is suffi cient to give a sim-

ple explanation of the experimental results: The initial spike in each burst is caused by

the stimulus crossing the threshold, whereas the subsequent spikes are evoked by the

intrinsic spiking mechanism. The resulting average precision should then be lower for

NMDA stimuli.

Another way to obtain rapid fluctuations in the input current is through random

activation of inhibitory synapses. In fact, Harsch & Robinson (2000) reported that the

presence of inhibitory inputs signifi cantly improved spike-time precision. Interpreted

in our framework this means that the inhibitory inputs provide rapid hyperpolarizing

transients and “reset” the neuron (for example by removing inactivation of the sodium

channels and/or activation of slow potassium channels), thus breaking the oscillatory

serial dependence between successive spikes.

In conclusion, by using the θ-neuron, we have tied specifi c experimental results to

a structural mathematical theory of the nonlinear dynamics of spike generation. Since

the θ-neuron is the canonical model for Type I membrane excitability, the results pre-

sented here should apply to neural models as long as they exhibit Type I dynamics.

To which extend our results apply to more complex neural models, e.g. those with

extended dendritic structures, voltage dependent conductances that modulate the dy-

namics of spike generation and conductance inputs, remains an interesting subject for

future investigations.
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Figure Captions

Figure 1 The θ-neuron model. A: Representative Type I membrane dynamics (Morris-

Lecar model). V ✂ w phase plots, where V denotes the membrane potential and w the

recovery variable (see Rinzel and Ermentrout, 1998), are shown for the excitable (left

panel) and oscillatory (right panel) regime. In the excitable regime, w-nullclines (grey

solid) and V -nullclines (grey dashed) intersect at three points: a stable resting state (R),

a saddle point threshold (T) and an unstable node (U). Unstable and stable manifolds

for the saddle node are indicated by black solid and dashed lines, respectively. Lifting

the V -nullcline by a constant bias current, one observes a bifurcation of the critical

points in the course of which the resting state and saddle node disappear, leaving only

the unstable node. The topology of the transient orbits due to suprathreshold excita-

tion in the excitable regime and the stable limit cycle in the oscillatory regime remains

invariant. This invariance allows for a reduction to the phase description. B: Scheme

of the dynamical structure of the θ-neuron, shown in the excitable regime (β ✁
0, left)

and the oscillatory regime (β ✄ 0, right). The relative positions of the rest and the

threshold are determined by β; the spike occurs near θ � π, where the rate of change

of the phase is the fastest and the inputs are “shunted”. If β is adjusted above zero, the

model passes into an oscillatory regime, where the spikes are produced due to intrinsic

oscillations. The unstable node is implicit in the formulation of the θ-neuron. The in-

sets show representative (spontaneous) activity of the θ-neuron in the excitable regime

due to random noise inputs, and oscillatory regime due to intrinsic mechanisms. Here,

β is adjusted so as to produce mean fi ring at 10 Hz in both cases, σ � 0 ✂ 01. Note that

here we plot an auxiliary quantity ν � 1 ✂ cosθ in order to visualize spikes. C: Coef-

fi cient of variation (CV ) as a function of model parameters β and σ. The CV quantifi es

the regularity of the train of individual events, and shows the two regimes characteriz-

ing the θ-neuron: Whereas regular spiking activity (oscillatory regime) yields low CV

values, for irregular activity the CV is around 1.

Figure 2 Simulation and data analysis protocol. The responses of the θ-neuron to

repeated stimulation with fi xed stimuli (see Methods) were recorded. The resulting

rasterplots (A) were integrated, yielding peri-stimulus time histograms (PSTHs) with

spike times clustering into contiguous groups of bins (B). After a further reduction

of the PSTHs by cutting above a threshold which corresponds to the mean fi ring rate

during the stimulus (yielding reduced PSTHs, see C), these groups defi ne events of

enhanced occurrence of spikes in the course of the stimulus (see peaks in C). The

number of spikes falling into a single event as well as the standard deviation (SD)

of the spike times belonging to a single event yield event reliability and event jitter,

respectively (D). The average of the event jitter and the sum of the event reliability for

all events observed during the stimulation fi nally defi ne jitter and reliability used in the

analysis.

22



Figure 3 Spike timing jitter under constant current injection is compatible with a

renewal process. The jitter grows as a square root of the event number (variance is

proportional to event number), and is reduced for higher fi ring rates. A: Typical raster-

plots (upper panels) and PSTHs (lower panels) for constant stimuli. The bias was ad-

justed to give 10 Hz (left) and 30 Hz (right) average fi ring rate. The noise strength was

fi xed to σ � 0 ✂ 001. B: Spike-time jitter and spike-time variance (insets) as a function

of the event number. Left: Result for mean fi ring rate of 10 Hz and noise amplitude

of σ � 0 ✂ 001 (stars) and σ � 0 ✂ 003 (dots). Right: Results for σ � 0 ✂ 001 (stars) and

σ � 0 ✂ 003 but higher bias (average fi ring rate 30 Hz). C: Example of spike-time jit-

ter in the θ-neuron under an aperiodic stimulus. Left: rasterplots (upper panel) and

PSTH (middle) for repeated injection of aperiodic current (lower panel; mean fi ring

rate 17 Hz, amplitude of aperiodic stimulus 0.05, noise strength σ � 0 ✂ 003). Right: jit-

ter as function of even number. Note that under such strong aperiodic signal the event

jitter does not depend on event number.

Figure 4 Representative responses of the θ-neuron to sinusoidal stimuli. Rasterplots

(top panels) and PSTHs (bottom panels) for sinusoid injections of a fi xed amplitude

α � 0 ✂ 045 and frequency of 10 Hz (A, C) and 30 Hz (B, D) for two different noise

strength (A, B: σ � 0 ✂ 003 low noise, C, D: σ � 0 ✂ 05 strong noise) are shown (β �
✂ 0 ✂ 099). The mean frequency in the presence of stimulation is marked on the graphs,

and was different from the intrinsic frequency without stimulation (10 Hz). In all cases,

the cell phase-locked to the driving stimulus.

Figure 5 Rasterplots and the PSTHs for three different stimulation frequencies (pa-

rameters: α � 0 ✂ 09, β � ✂ 0 ✂ 099, σ � 0 ✂ 003 weak noise, see also Fig.6), indicating

three locking regimes: Low and high driving frequencies (upper and lower panel,

respectively) act like a constant bias, whereas for intermediate driving frequencies

(middle panel) the model phase-locked with a high temporal resolution to the driving

stimulus.

Figure 6 Mean output rate νout (A), jitter (B) and reliability (C) as a function of the

frequency νstim of the sinusoidal stimulation for weak (left) and strong (right) noise

strength. Representative results for two stimulation amplitudes (dots: α � 0 ✂ 09, trian-

gles: α � 0 ✂ 01) and two different noise strength (white symbols: σ � 0 ✂ 003 low noise;

fi lled symbols: σ � 0 ✂ 5 strong noise) are shown (β � ✂ 0 ✂ 099). The arrows in the upper

right panel mark stimulation frequencies for which rasterplots and PSTHs are shown

in Fig.5. Stars in the precision and the reliability plots mark the frequency at which

1 : 1 phase-locking is lost, or at which the model can no longer resolve the stimulus.

Note that for the weak stimulus the tuning in both precision and reliability is rather

narrow, while for the strong stimulus the tuning is wide. The upper limit of the tuning

in both cases is related to the critical input frequency at which 1:1 locking begins to

deteriorate.
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