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Abstract

Integrate-and-fire (IF) models can provide close matches to the discharge activity of neu-

rons, but do they oversimplify the biophysical properties of the neurons? A single compart-

ment Hodgkin-Huxley (HH) model of the oxytocin neuron has previously been developed,

incorporating biophysical measurements of channel properties obtained in vitro. A simpler

modified integrate-and-fire model has also been developed, which can match well the char-

acteristic spike patterning of oxytocin neurons as observed in vivo. Here, we extended the

HHmodel to incorporate synaptic input, to enable us to compare spike activity in the model

with experimental data obtained in vivo. We refined the HHmodel parameters to closely

match the data, and then matched the same experimental data with a modified IF model,

using an evolutionary algorithm to optimise parameter matching. Finally we compared the

properties of the modified HHmodel with those of the IF model to seek an explanation for dif-

ferences between spike patterning in vitro and in vivo. We show that, with slight modifica-

tions, the original HH model, like the IF model, is able to closely match both the interspike

interval (ISI) distributions of oxytocin neurons and the observed variability of spike firing

rates in vivo and in vitro. This close match of both models to data depends on the presence

of a slow activity-dependent hyperpolarisation (AHP); this is represented in both models and

the parameters used in the HHmodel representation match well with optimal parameters of

the IF model found by an evolutionary algorithm. The ability of both models to fit data closely

also depends on a shorter hyperpolarising after potential (HAP); this is explicitly represented

in the IF model, but in the HHmodel, it emerges from a combination of several components.

The critical elements of this combination are identified.

Introduction

The supraoptic nucleus of the hypothalamus has been a rich source of insight into how the

intrinsic properties of neurons are adapted to meet physiological requirements. It contains

only neuroendocrine neurons that secrete their peptide products into the circulation from
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nerve terminals in the posterior pituitary gland. Some of these neurons make vasopressin,

which acts at the kidneys and the peripheral vasculature to mediate antidiuresis and to control

plasma volume, the rest make oxytocin, which promotes uterine contractions during parturi-

tion and mediates milk let-down in response to suckling. However, both oxytocin and vaso-

pressin have additional roles, some mediated by release of oxytocin and vasopressin within the

brain, and some by actions at other peripheral targets [1,2]. These two populations display

very different discharge characteristics, and extensive studies in vitro have characterised their

intrinsic membrane properties [3–7], while studies in vivo have characterised their responses

to physiological challenges [1,8]. During suckling in lactating rats, oxytocin neurons discharge

in intermittent bursts that give rise to pulses of oxytocin secretion. The same neurons, in re-

sponse to increases in plasma osmotic pressure, show graded increases in electrical activity [9]

that result in increases in plasma oxytocin that modulate sodium excretion by actions at the

heart and kidneys. Oxytocin neurons are osmosensitive: the increases in osmotic pressure

result in a graded depolarisation of membrane potential, and, in addition, they receive synaptic

input from other osmosensitive neurons in anterior brain regions [10,11].

In oxytocin neurons, spike patterning modulates the response to input signals and also

determines the Ca2+ entry that triggers exocytosis from axonal terminals. Typically, clustering

of spikes facilitates this; Ca2+ entry is coupled non-linearly to spike activity by complex me-

chanisms at the terminals [12,13]. The patterns in which oxytocin neurons fire are strongly

influenced by two intrinsic activity-dependent mechanisms: Each spike is followed by a hyper-

polarising afterpotential (HAP) that makes the neuron relatively inexcitable for up to 100 ms,

and also by a much slower activity-dependent afterhyperpolarisation (AHP). Following indi-

vidual spikes, the AHP is very small, but after a high frequency burst of spikes, the AHP forms

a conspicuous long hyperpolarisation.

In vivo, data from extracellular single-cell recordings comprise series of spike times. These

can be used to analyse spike patterning, using techniques such as inter-spike interval (ISI)

distributions, hazard functions, and index of dispersion (IoD) (also known as ‘Fano Factor’)

[14,15]. Although we can’t use in vivo data to identify the underlying mechanisms, we can

detect and quantify their effect. Looking at the distribution of ISIs allows us to detect and mea-

sure features such as the HAP. Analysis over multiple ISIs, using IoD to examine the timescale

dependence of ISI variability, allows us to detect more subtle features such as the AHP. Using

integrate-and-fire (IF) based modelling we can simulate simplified versions of these afterpo-

tentials to generate spike times and apply the same ISI analysis techniques, matching the

model output closely to experimental data. Our modified adaptive IF model removes the post-

spike reset of the classic IF model, and uses spike-incremented, exponentially decaying vari-

ables to represent post-spike hyperpolarisations and depolarisations, like the spike-response

model [16], but retaining a continuous differential-equation based form.

In an IF model with just an HAP [9] we previously concluded that, for an increase in synap-

tic activity to produce a linear increase in spike rate, the input must comprise a mixture of

EPSPs and IPSPs. We tested this experimentally, and confirmed that osmotic stimulation

indeed increases the release of both the excitatory neurotransmitter glutamate and the inhibi-

tory neurotransmitter GABA in the supraoptic nucleus.

In non-lactating rats the oxytocin neurons do not communicate directly with each other,

but they do in lactating rats, and milk-ejection bursts arise as a result of interactions between

the oxytocin neurons [17]. Using a network of IF model neurons to simulate the bursting, we

concluded that the AHP is important in “shaping” the bursts. However, the AHP also affects

discharge patterning in non-lactating animals at low spike rates, acting as a slow negative feed-

back that regularises the firing rate over a time course of seconds. We showed in the IF model

that the variability of spike activity is markedly reduced by the AHP [15].

Modelling oxytocin neurons
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Thus IF models can provide close matches to the spike activity of oxytocin neurons, and

relate intrinsic properties such as the afterpotentials to function, but do these models oversim-

plify the biophysical properties of the neurons?

Fitting the IF model to in vivo data has helped us to match patterning features detected in

ISI analysis to these afterpotentials, and also quantify their magnitude and time course. To test

these matches, or to identify which afterpotentials might exist, we need to be able to relate the

simplified afterpotentials to the ionic currents that shape neuronal membrane activity. In vitro,

we lose most of the synaptic inputs that stimulate the neurons, but have much more control

over the input signal, allowing the detection and measurement of the properties of the ionic

currents. These can be assembled to build a detailed simulation of membrane activity using

Hodgkin-Huxley (HH) style modelling. An existing oxytocin neuron HHmodel [18] models

eight ionic currents, subsets of which act to generate a HAP and an AHP. The AHP is attrib-

uted to the Ca2+-dependent SK-type K+ current, but the HAP is more complex, thought to be

the summed action of the delayed rectifier (KDR), the A-type K+, and the BK-type K+ currents,

combining both voltage and Ca2+ dependence, on multiple time courses.

The afterpotentials therefore have multiple identities, as their effect on spike patterning, as

their simplified forms in the IF model, and as the complex action of ionic currents. The same

is true of other intrinsic, pattern influencing, properties of neurons, such as the K+ leak current

which is thought responsible for phasic firing in vasopressin neurons [19–21] in its guise as a

slow DAP. Here, we are attempting to map between these identities in oxytocin neurons, using

modelling to bridge in vivo and in vitro experimental data.

Our aim in the present study was thus to relate the simple IF model of the oxytocin neuron

to the more complex HHmodel. Our approach is to apply both the IF and HH oxytocin mod-

els to the same set of in vivo data, comparing the parameters and model elements which are

associated with fitting the various spike patterning features. This is straightforward with the IF

model, and to produce an objective fit, we have developed a new automated fitting process,

based on a genetic algorithm. However, the HHmodel has only previously been tested against

in vitro data and requires the addition of synaptic input to simulate in vivo data. Neurons in

vitro are usually stimulated either by an applied current or by a depolarising solution, replacing

the in vivo noisy synaptic input signal with a fixed depolarisation. This results in very different

spike patterning in vitro, and it is not clear whether this is purely due to the change in input

signal, or because the loss of synaptic input, and the resulting change in membrane properties,

significantly alters the properties of the ionic currents.

Methods

Supraoptic oxytocin neurons in virgin rats in vitro have a mean (SD) resting potential of −62

(7.2) mV [22], and spikes are triggered when depolarising current drives the membrane above

a threshold of* -50 mV. The spikes (measured from within 5 mV of spike threshold) have a

mean (SD) amplitude of 73.2 (7.6) mV and a width at half-maximal amplitude of 1.5 (0.4) ms.

The repolarization phase overshoots rest and merges into an HAP, which lasts for up to* 100

ms [23] with a maximummagnitude of 8.6 (5.7) mV [24]. Trains of spikes evoke an AHP with

a peak amplitude of 0.9 (0.3) mV per spike, which decays with a time constant of 520 (567) ms

[24]. The AHP is abolished by removing extracellular Ca2+, and is attenuated by exposure to

apamin [24–26], which selectively blocks SK-type small conductance K+ channels.

In the supraoptic nucleus, glutamate is the predominant excitatory, and GABA the predom-

inant inhibitory neurotransmitter [27], each accounting for about a third of all synaptic input.

EPSPs typically elevate the membrane potential by a few mV when the cell is at rest. The den-

sity of synapses in the supraoptic nucleus is about 35 x 106 per mm3 of tissue [28]; the volume

Modelling oxytocin neurons
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of the nucleus is about 2 mm3 (2 x 1 x 1 mm) and it contains about 4500 neurons [29]. The

nucleus only contains magnocellular neurons, about a third of which are oxytocin neurons

and the remainder vasopressin neurons, so assuming that these are equally densely innervated,

there are about 15000 synapses for each neuron. Cells receive synaptic inputs from diverse

sites including afferent forebrain regions such as the subfornical organ and organum vasculo-

sum of the lamina terminalis, the caudal brainstem, the arcuate nucleus, nucleus accumbens,

and from the perinuclear zone dorsal to the nucleus [1]. In vitro, most of these inputs are miss-

ing and most neurons have truncated dendrites; observed EPSP and IPSP rates are low, and

random, spontaneous GABAergic synaptic activity (mostly from miniature synaptic poten-

tials) dominates 4–5 fold over excitatory activity. Accordingly, most neurons are inactive

unless depolarised to close to spike threshold. In vivo, under urethane anesthesia, oxytocin

neurons are active at 2–5 spikes/s in basal conditions [15], but the synaptic input rate is not

known.

The IF model

We used an IF model described in [15,21]. The model simulates the firing response to ran-

domly timed, exponentially decaying inputs, representing EPSPs and IPSPs at mean rates Ire
and Iri, where Iri is defined as a proportion of Ire given by Iratio. We assumed that EPSPs and

IPSPs have equal and opposite magnitude (eh = 3 mV and ih = -3 mV) and a half-life (λsyn) of 8
ms; the precise values of these do not have a critical impact on any of the conclusions that we

come to below, within a range of physiologically plausible values. Vsyn represents the summed

EPSPs and IPSPs. Other model variables represent the HAP and the AHP. After a spike, HAP

and AHP are incremented by fixed values kHAP, and kAHP, and these potentials decay exponen-

tially with half-lives λHAP, and λAHP. In contrast to the classic IF model, there is no post-spike

reset of the variables, allowing AHP to accumulate across multiple spikes. The model variables

are summed with the resting potential (Vrest, here fixed at -66 mV to match the HHmodel) to

generate a membrane potential V where

V ¼ Vrest þ Vsyn � HAP � AHP

When V exceeds the spike threshold (Vthresh, fixed at -48 mV), the neuron fires a spike and

the spike time is recorded. The large, fast decaying HAP produces a post-spike relative refrac-

tory period. The model uses a 1-ms step size, with simulations run for 1000–10000 s of simu-

lated activity. The default IF model parameters, chosen to match the equivalent physiological

parameters of the HHmodel, are given in Table 1.

Table 1. IF model default parameters.

Name Description Value Units

Ire excitatory input rate 600 Hz

Iratio inhibitory input ratio 0.5 -

eh EPSP amplitude 3 mV

ih IPSP amplitude -3 mV

λsyn PSP half life 8 ms

kHAP HAP amplitude per spike 60 mV

λHAP HAP half life 8 ms

kAHP AHP amplitude per spike 0.5 mV

λAHP AHP half life 500 ms

Vrest resting potential -66 mV

Vthresh spike threshold potential -48 mV

https://doi.org/10.1371/journal.pone.0180368.t001

Modelling oxytocin neurons

PLOSONE | https://doi.org/10.1371/journal.pone.0180368 July 6, 2017 4 / 27

https://doi.org/10.1371/journal.pone.0180368.t001
https://doi.org/10.1371/journal.pone.0180368


Evolutionary parameter fitting

We used a genetic algorithm (GA) to automate parameter fitting with the IF model. This

searches the parameter space by randomly generating a population of parameter sets, here

called ‘chromes’, using these to run the model, and calculating a measure of fit for each chrome

by comparing the model-generated spike times with those from a recorded neuron. The best

chromes are then interbred, applying random crossover and mutation of their parameters, to

make a new generation. After enough generations, the algorithm should converge on a param-

eter set which closely fits the target data.

We used a 128 chrome population, varying parameters kHAP, kAHP, λHAP, λAHP, and Ire,

with initial values randomly generated from the ranges specified in Table 2, chosen to go well

above and below the normal range for these parameters, balancing flexible search with physio-

logically plausible values. The range for kAHP starts at 0, allowing fits with no AHP. All other

parameters were fixed as in Table 1.

We ran each chrome to generate 1000-s trains of spikes and for each generated a fit score

to the in vivo reference data, using four analysis measures generated for both the in vivo and

model generated spike times; the front (first 30 bins) and tail (bins 30 to 125) of the ISI distri-

bution, the hazard function (Sabatier et al. 2004), and the IoD for bin sizes of 0.5,1, 2, 4 and 8 s

(Royo et al. 2016), calculating the fit score for each using a root mean square (RMS) error mea-

sure. The ISI distribution, generated from limited data with uniform 5-ms bin sizes, has the

problem of being noisy and highly skewed, with a fit measure that gives equal weight to each

bin. To fix this, we use an ISI distribution (and hazard function generated from this) with his-

togram bin sizes which increase in size on an exponential scale, generated based on the qua-

dratic formula:

bin ¼ ð�0:975þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:9752 þ 0:1ISI
q

ÞÞ=0:05 ðbin is quantized to the nearest integerÞ

The distribution is also smoothed using a five bin window. The code, with full details of the fit

measures and RMS error calculations, is given in the supplementary material (S1 Code). The

four RMS scores were weighted, summed, and scaled to generate a single fit score using the

formula:

fit score ¼ ðfrontRMS frontWeight þ tailRMS tailWeight þ hazRMS hazWeight

þ IoDRMS IoDWeightÞ=ðfrontWeight þ tailWeight þ hazWeight þ IoDWeightÞ

The 32 chromes with the best (lowest) fit scores were then interbred to generate a new 128

chrome generation, using two-point crossover and mutation. Full mutation (randomly gener-

ating an entire new chrome independent of parents) occurs with 0.05 probability. Otherwise,

two parents are randomly selected (from the 32) and a new chrome is generated using cross-

over, where two random points define a section of the parameters copied from one parent,

and the rest from the other. Each parameter also has mutation applied in the form of a random

Table 2. IF model: Genetic algorithm fit parameters.

Name Min Value Max Value Fit Value

Ire 50 5000 334 (2.3), 648 (9)

kHAP 10 500 83

λHAP 2 50 8

kAHP 0 5 0.77

λAHP 50 1500 482

https://doi.org/10.1371/journal.pone.0180368.t002
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offset proportional to the difference in value for that parameter between the two parents. The

next generation’s parents are then selected from the best of the 32 parent chromes and the 128

new chromes, so that parents are only discarded when improved upon. The code, with full

details, is given in the supplementary material (S1 Code). We ran the genetic algorithm for 20

generations, and took the result as the best chrome from the final generation.

The implementation is mainly in C++ but uses CUDA [30] based code to run the IF model

in parallel for the whole population on a GPU. A run of 20 generations with a population of

128 takes ~17 s on an Nvidia GTX 960 graphics card.

The HHmodel

The original oxytocin HHmodel that we began with has been described fully elsewhere [18],

so here we give an abbreviated account. We renamed currents IKDR (previously IK or IDR), IBK
(previously IC), and ISK (previously IAHP). We also made some corrections to the published

equations, based on model code kindly supplied by Peter Roper (detailed below).

The model is a single compartment, with electrical activity modelled as:

dV

dt
¼ �

1

C
ðINa þ ICa þ IKDR þ IA þ IBK þ ISK þ ISOR þ IleakÞ

All voltage- and Ca2+-dependent currents have the standard activation/inactivation form:

IgðtÞ ¼ ggm
a

g
ðtÞhb

g
ðtÞðV � ErevÞ or IgðtÞ ¼ ggm

a

g
ðtÞðV � ErevÞ

The first equation describes an inactivating current, with gating variables mγ (activation) and

hγ (inactivation), and the second a non-inactivating current with just mγ. Each activation (m)

or inactivation (h) gating variable x(t) evolves to an equilibrium x1 with time constant τx,

according to:

d

dt
xðtÞ ¼

x1 � xðtÞ

tx

Each current Iγ has conductance gγ and reversal potential Erev. The Na
+ and K+ reversal poten-

tials are ENa = 50 mV and EK = -96 mV. The Ca2+ reversal potential is given by:

ECa ¼ 12:5logn
½Ca2þ�o
½Ca2þ�i

� �

where [Ca2+]o = 4 mM, and [Ca2+]i, varies as Ci, described below. We assumed a capacitance

C = τ/R of 1 μF/cm2 [31].

INa is a fast Na
+ current [32] which mediates the upstroke of the spike, and has a cubic activa-

tion and linear inactivation. We assume that it activates instantaneously (m(t) = m1).

ICa is a high-voltage activated non-inactivating Ca2+ current. Supraoptic neurons express sev-

eral high- and intermediate-voltage activated Ca2+ channels; these are active only during a

spike, and so are approximated by a single current. Correction to the Roper et al 2003 model

description: ICa(t) = gCam
2(V−ECa) (m instead of m1)

IKDR is the delayed rectifier voltage-sensitive K+ current [33].

IA is a transient A-type inactivating voltage sensitive K+ current [33,34].

ISK is a Ca2+-dependent K+ current carried by small conductance (SK) channels [25,35,26],

and is controlled by Ca2+ in a micro-domain close to the membrane. ISK underlies spike

Modelling oxytocin neurons
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frequency adaptation during repetitive firing and the AHP. Correction to the Roper et al

2003 model description:

q1ðCSKÞ ¼ 1þ exp �1:120� 2:508log
10

CSK � Cr
1000

� �� �� ��1

log
10
instead of log

� �

IBK is a Ca2+- and voltage-dependent K+ current carried by BK channels [36].

ISOR is the sustained outward-rectifier K+ current that is present in oxytocin neurons but not

in vasopressin neurons [3]: it activates slowly, and only when the cell is close to spike

threshold, and is non-inactivating.

Ileak is a leak current which models processes that comprise the passive response of the mem-

brane and accounts for the membrane time constant (12–16 ms; [24]). It comprises Na+

and K+ components:

Ileak ¼ gNaleakðV � ENaÞ þ gKleakðV � EKÞ

where gNaleak = 0.018 and gKleak = 0.066, generating a leak reversal potential of ~65mV.

Intracellular Ca2+

To simulate the microdomains created by the proximity of IBK and ISK’s Ca
2+ sensors to mem-

brane Ca2+ channels, the model has two channel-specific [Ca2+]i compartments, CBK, CSK, as

well as the bulk compartment, Ci. The BK channels are close to the Ca2+ channels and experi-

ence a large, fast-changing Ca2+ signal. The SK channels are further away, and experience a

smaller, slower changing signal. Ca2+ concentrations evolve according to:

d

dt
Cg ¼ �agICa �

1

tg
ðCg � CrÞ

where γ = {BK, SK, i}. αγ relates the amplitude of the Ca2+ current to Ca2+ influx. The time con-

stant τγ approximates the processes that return the Ca2+ transient to rest. Cr is the basal Ca
2+

concentration; the mean value observed experimentally is 113 nM, and spike-induced

increases decline exponentially with a mean (SD) time constant of 0.99 (1.6) s [18].

Synaptic input

Wemodel synaptic input as a random train of excitatory and inhibitory post-synaptic currents

(EPSCs and IPSCs):

Isyn ¼ mipscðV � EipscÞ þ mepscðV � EepscÞ

The same Poisson processes as used in the IF model generate EPSC and IPSC counts nepsc and

nipsc at each time step, at mean rates Repsc and Ripsc. The gating variables mepsc and mipsc

describe the summation and decay of the synaptic events:

d

dt
mg ¼ �

mg

tg
þ Dgng

where γ = {epsc, ipsc}. Each PSC is modelled as an instantaneous rise of amplitude Δγ followed

by an exponential decay with time constant 3.3 ms for both EPSCs (τepsc) and IPSCs (τipsc).

Modelling oxytocin neurons

PLOSONE | https://doi.org/10.1371/journal.pone.0180368 July 6, 2017 7 / 27

https://doi.org/10.1371/journal.pone.0180368


ISI distributions

The ISI distributions are constructed as histograms using 5-ms bins, and normalised to 10000

ISIs.

Implementation

Both models were implemented using software developed in C++ with the open source

wxWidgets graphical interface library [37]. The HHmodel differential equations were run

using the Runge-Kutta method, with a 50-μs time step. A single run of the HHmodel, simulat-

ing 1000 s of activity takes ~43 s. on an Intel i7-5960X processor running at 3.5GHz. An equiv-

alent run of the IF model takes ~0.3 s, more than 100 times faster. The HHmodel is much

slower both because of its much larger set of equations, and its heavy use of compute-intensive

math functions. Profiling using the open source CPU profiling software ‘Very Sleepy CS’ shows

that compute time running the HHmodel is dominated by the ‘exp’ and ‘pow’ functions.

Results

Reference data

From a large library of recordings of oxytocin neurons in vivo, we selected one long recording

for matching to the models (Fig 1). The chosen recording is from a single supraoptic neuron

of an adult virgin female rat anaesthetised with urethane (ethyl carbamate, 1.3 g/kg body

weight i.p.) in which the supraoptic nucleus and neural stalk were exposed by ventral surgery

and a femoral vein was cannulated for i.v injection of cholecystokinin (CCK). The neuron was

antidromically identified as projecting to the neural stalk to identify it as a magnocellular neu-

rosecretory neuron, and it was identified as an oxytocin neuron by its excitatory response to

CCK (see [38]. The cell was also exposed to an i.v. infusion of hypertonic saline, which in-

creased its firing rate linearly from ~2.3 to ~9 spikes/s. This recording was chosen because its

spontaneous discharge characteristics and its responses to CCK [15,38] and hypertonic saline

[9] are all typical of oxytocin neurons in vivo. At 9 spikes/s, the mode of the ISI distribution is

well defined at ~ 55 ms, close to the mean (50 ms; SD 13 ms) ISI mode for oxytocin cells [38].

The ISI distribution is skewed: at 2.3 spikes/s, just 1.3% of ISIs are< 55 ms (Fig 1B). At 9

spikes/s, 17.5% of ISIs are shorter than the mode, and the distribution of ISIs longer than the

mode is well fit by a single negative exponential (Fig 1B). This cell did not exhibit an apparent

DAP as inferred from hazard functions (Fig 1C); a fast DAP is present in a minority of oxyto-

cin cells [15,39] but is not included in the models described here: the biophysical basis of the

fast DAP is not yet defined.

Adding synaptic input to the HHmodel

The original HHmodel [18] has a resting potential of -65.7 mV and a spike threshold of -47.8

mV, and, in response to an applied current, it produces regularly timed spikes of stereotypical

form (Fig 2A). To test it against in vivo data, we added synaptic input (EPSCs and IPSCs, Fig

2B and 2C), using synaptic parameters (Table 3) that produced EPSP and IPSPs of 2 to 3 mV

at a typical inter-spike membrane potential, ~58 mV. From a resting potential of -65.7 mV, an

EPSC amplitude (Δepsc) of 0.024 produced an EPSP of 3 mV, and an IPSC amplitude (Δipsc) of

0.059 produced an IPSP of 1 mV (the amplitudes also depend on the time constants τepsc and

τipsc, both set at 3.3 ms). The IPSC reversal potential, Eipsc = -75 mVmakes IPSCs more sensi-

tive to membrane potential during subthreshold activity than EPSCs, so typical IPSPs are

larger than the 1 mV seen at rest. The decay phases of EPSPs and IPSPs are mainly determined

by the membrane time constant (~12 ms), which is governed by Ileak. The inputs generate a
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Fig 1. Reference data for model fitting. (A) shows the mean firing rate of an oxytocin neuron (in 16-s bins) recorded from the supraoptic
nucleus of a urethane-anesthetised rat. The neuron was antidromically identified as projecting to the posterior pituitary gland and identified
as an oxytocin neuron by the transient excitation in response to CCK (arrow). The neuron was recorded throughout an i.v. infusion of
hypertonic saline (yellow bar) which increased its firing rate from 2.3 spikes/s to 9.0 spikes/s. See [9] for full experimental details. (B) shows
on the left, the ISI distribution for the 850-s period of low frequency activity (1945 spikes) indicated by the light blue background, and on the
right, the ISI distribution for the 2000-s period of high frequency activity (17236 spikes) indicated by the dark blue background (S1 Data).
These distributions are typical of oxytocin cells, and have been normalised to 10000 ISIs. The ISI distributions after the mode are well fit by a
negative exponential (black dotted lines, equations of best fit given). Fewer spikes produces a noisier distribution. (C) shows the hazard
functions (in the same 5-ms bins) corresponding to the ISI distributions inB. A flat hazard indicates no time dependent influence on the
chance of firing. The initial climb from 0 shows the effect of the HAP.

https://doi.org/10.1371/journal.pone.0180368.g001
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Fig 2. Adding synaptic input to the oxytocin neuron HHmodel. (A) The original oxytocin HHmodel, challenged with a constant
applied current of 4.5 nA produces regular firing at 10 spikes/s; each spike is followed by a conspicuous but short HAP. (B) shows
the HHmodel with EPSCs at 600 Hz (Repsc = 600,Ripsc = 0), generating spikes at a mean rate of 5.6 spikes/s. The randomly timed
EPSCs generate a noisy spiking membrane potential that much more closely resembles an in vivo neuron than the regular spikes
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noisy, irregularly spiking, membrane potential that resembles an in vivo neuron [40,41] much

more closely than the regularly-timed spikes produced by the applied current (Fig 2A). With

EPSCs at 600 Hz, the HHmodel generates 5.6 spikes/s (Fig 2B), and adding IPSCs at 300 Hz

reduces the firing rate to 1.6 spikes/s (Fig 2C).

Fitting the IF model

We fixed the IF model parameters Vrest = -66 mV and Vthresh = -48 mV to match the measured

membrane properties of the HHmodel, and fixed the synaptic parameters λsyn = 8 ms, eh = 3

mV, and ih = -3 mV to match the HHmodel’s PSP magnitudes and decay rates.

To fit the IF model to the in vivo reference data, we developed an automated, genetic algo-

rithm (GA) similar to that which we previously used to fit a vasopressin neuron IF model [42],

and fitted the remaining parameters to match the data for the period in which the reference

neuron was firing at 9 spikes/s (Fig 1). We fitted five parameters: the HAP magnitude and

half-life (kHAP and λHAP), the AHP magnitude and half-life (kAHP and λAHP), and the synaptic

input rate (Ire). We ran the algorithm for 20 generations with a population of 128 parameter

sets (‘chromes’). This was sufficient for the population to converge (Fig 3A), and the final fit

for each run was chosen as the chrome in the final generation with the best fit.

The parameters of the best fits varied between runs. To explore this, we ran the genetic algo-

rithm 100 times, and plotted the final parameters against each other (Fig 3B), and against rele-

vant elements of the fit measure (Fig 3C). The parameters of the best fits are not independent;

for both the HAP and the AHP, the parameters for magnitude and half-life were inversely

related (Fig 3B). The best fits were mostly clustered in a small range, and to choose a single

best fit we took the median value for each parameter from the 10 best fits: Ire = 648 Hz, kHAP =

83 mV, λHAP = 8 ms, kAHP = 0.77, and λAHP = 482 ms. We then tested this parameter set

against the 2.3 spikes/s data from the same cell (Fig 1A), running the algorithm with all param-

eters fixed except Ire, achieving a good fit with Ire = 334 Hz (Fig 4).

The parameters found are consistent with previous fits to the HAP and AHP [15], with an

AHP that most closely matches the time course of the apamin-sensitive medium AHP [25].

We have no good experimental evidence for the true proportion of excitatory and inhibitory

synaptic input in vivo, so we repeated the fitting for different balances of excitatory and inhibi-

tory synaptic input (Iratio = 0, 0.5, and 1), but found no consistent difference in fit scores or fit-

ted parameters. For subsequent simulations and the results shown here we used Iratio = 0.5.

produced by an applied current. Note that the post-spike HAP is less conspicuous and of more varied appearance than inA. (C)
shows the HHmodel with EPSCs at 600 Hz, and IPSCs at 300 Hz (Repsc = 600,Ripsc = 300), generating spikes at a mean rate of 1.6
spikes/s. Note that the HAP following spikes is even less conspicuous than inB.

https://doi.org/10.1371/journal.pone.0180368.g002

Table 3. HHmodel synaptic input parameters.

Name Description Value Units

Repsc excitatory input rate 0 to 10000 Hz

Iratio inhibitory input ratio 0 to 0.5 -

Δepsc EPSC amplitude 0.024 nA

Δipsc IPSC amplitude 0.059 nA

τepsc EPSC decay time constant 3.3 ms

τipsc IPSC decay time constant 3.3 ms

Eepsc EPSC reversal potential 0 mV

Eipsc IPSC reversal potential -75 mV

https://doi.org/10.1371/journal.pone.0180368.t003
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https://doi.org/10.1371/journal.pone.0180368.g003
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Fitting the HHmodel: The HAP and the ISI distribution

The original oxytocin HHmodel was used to generate 1000-s simulated recordings at ~2.3 and

~9 spikes/s (Fig 5A) for comparison with the two regions of steady firing rate in the reference

data (Fig 1A). We challenged the model with EPSCs at various rates to find values of Repsc for

which the model spike rate matched the target firing rate. A spike rate of 2.3 spikes/s was pro-

duced with Repsc = 505 Hz, and 9 spikes/s with Repsc = 769 Hz. At both rates, the model gener-

ated an excess of short ISIs (< 50 ms), with an earlier mode of the ISI distribution (25 vs 50 ms

at 9 spikes/s; Fig 5B), indicating a weaker HAP than observed in the reference data.

In the HHmodel, the HAP is generated by the combined effect of IKDR, IA, and IBK [18],

but the sustained component is thought to be due to IBK [43]. Removing IA (by setting gA = 0)

increased the mean firing rate (from 2.3 to 3.8 spikes/s and from 9 to 10.5 spikes/s) with no

effect on the mode of the ISI distribution. Removing IKDR (by setting gKDR = 0) decreased the

firing rate (from 2.3 to 2.1 spikes/s and from 9 to 8.5 spikes/s), but again the shape of the ISI

distribution was unaffected. IBK is both voltage and Ca2+ sensitive, and a key parameter deter-

mining the HAP is the time constant τp, set at 1.22 ms. This short time constant is required

for IBK to activate during a spike, but for the HAP to be sustained, IBKmust deactivate more

slowly. The time-constant τp of this channel was originally set at 1.22 ms for both activation

0 100 200 300 400 500

0

200

400

600

ISI (ms)

ISI distribution (5ms bins)

0 300 600 900 1200 1500
0

40

80

120

160

ISI (ms)

n
o

rm
a

lis
e

d
 i
n

c
id

e
n

c
e ISI distribution (5ms bins)

A

0.0

0.2

0.4

0.6

0.8

1.0

in
d

e
x
 o

f 
d

is
p

e
rs

io
n IoD range

B

bin size (s)

0.5 1 2 4 8

in vivo 2.3Hz

IF model

in vivo 9.0Hz

IF model

0.0

0.2

0.4

0.6

0.8

1.0

bin size (s)

IoD range

0.5 1 2 4 8

Fig 4. The IF model genetic algorithm fitted to in vivo oxytocin data. (A) shows in blue the ISI distribution in the reference data (Fig 1)
for spike activity at 2.3 spikes/s (left) and 9 spikes/s (right), and in green the fit achieved with the parameter set found by the genetic
algorithm (Fig 3). We used the parameters given in Fig 3 to generate the fit to the data at 9 spikes/s; to fit the 2.3 spikes/s data we reran the
genetic algorithmwith all parameters fixed except the synaptic input rate (Ire). This achieved a good fit with Ire = 334 Hz. (B) shows the
corresponding matches to IoD values (reference data in blue, model data in green).
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and deactivation; we explored the effects of increasing the time-constant independently for

deactivation, replacing τp with τpa (activation) and τpd (deactivation).

Studies of supraoptic neurons in vitro [36] concluded that the open time constant for the

BK channel is ~8.5 ms, while closed times are best fitted by two exponentials with time con-

stants of 1.6 and 12.7 ms. We therefore increased τpd to 5, 10, and 15 ms, adjusting Repsc to gen-

erate trains at 9 spikes/s. Increasing τpd decreased the proportion of short ISIs, increased the
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Fig 5. Fitting the HHmodel to ISI distributions. (A) shows examples of the HHmodel spiking activity used to generate the ISI
distributions. (B) shows in maroon the ISI distributions generated by the original HHmodel, at firing rates of 2.3 spikes/s (left) and 9 spikes/s
(right), compared with reference data (blue). These were achieved with EPSC rates (Repsc) of 505 Hz and 769 Hz. In both the proportion of
short ISIs is larger than in the reference data (in blue), and the mode is earlier. (C) shows the ISI distributions from the HHmodel with τpd, the
deactivation time constant of IBK, increased from 1.22 to 10 ms. EPSC rates (Repsc) were slightly increased, to 506 Hz and 774 Hz, to
reacquire the firing rates of 2.3 and 9 spikes/s. In the adjusted model, the ISI distributions fit the reference distributions well at both firing
rates.

https://doi.org/10.1371/journal.pone.0180368.g005
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height of the ISI mode, and shifted the mode to the right, and with τpd at 10 ms we could closely

match the target ISI distributions at both firing rates (Fig 5C). At 9 spikes/s (Repsc = 774 Hz),

18.3% of ISIs were< 55 ms (compared to 17.5% in the reference data; Fig 1B) and the mode

was ~60 ms; at 2.3 spikes/s, 2.0% of ISIs were< 55 ms (1.3% in the reference data; Fig 1B). In

ten simulations with different random sequences of PSCs, the mean (SD) intervals< 55 ms at

2.3 spikes/s was 2.2 (0.2) % (range 1.7–2.5%), and at 9 spikes/s was 18.8 (0.3) % (range 18.2–

19.2%). Hence, the increased τpd consistently produced a closer match to the reference ISI dis-

tributions at both 2.3 spikes/s (Repsc = 506 Hz) and 9 spikes/s (Repsc = 774 Hz; Fig 5C). The 10

ms deactivation time constant is similar to the fitted λHAP (8 ms half-life = 11.5 ms time con-

stant) in the IF model, suggesting that the HAP in the IF model captures the effect of prolonged

BK channel activation.

The BK current and the HAP

To understand what effect the slower deactivation of IBK has on the HAP, we studied the

changes during a single spike (Fig 6A). Increasing the deactivation time constant τpd from 1.22

to 10 ms increased the active duration of IBK from ~10 to ~50 ms. The 50 ms corresponds to

the duration of the apparent refractory period in the reference ISI distribution (Fig 1B). Block-

ing IBK by setting gBK = 0 left only a small, residual HAP due to IA and IKDR (Fig 6B). The

equivalent experimental data (Fig 6C) where IBK is blocked in vitro using iberiotoxin [18] also

shows a reduction in the HAP; the reduction is smaller than in the model, but the pharmaco-

logical block is likely to be less complete. The in vitro data also shows an HAP duration of ~50

ms, so the adjusted model gives a better fit to both in vivo and in vitro data.

The effects of synaptic input properties

The IF model is relatively insensitive to changes in synaptic input parameters, in that changes

in PSP decay rates and magnitudes have effects that can be mimicked simply by changing the

input rates. We asked how changes to synaptic input parameters in the HHmodel affect the

ISI distribution. With τpd at 10 ms, the model was used to generate spikes at 9 spikes/s with

varied Δepsc and τepsc, adjusting Repsc to match the 9 spikes/s firing rate. Increasing EPSC

amplitude (changing Δepsc from 0.008 to 0.032 nA to increase EPSPs from ~1 to 4 mV) slightly

shifted the ISI distribution towards shorter ISIs but with no change in mode (Fig 7A). Increas-

ing τepsc had a similar effect; an increase from 1.1 to 4.4 ms produced a small shift in the ISI

distribution with no change in mode (Fig 7B). Thus EPSC amplitudes and decay rates had little

effect on the ISI distribution (for a given firing rate) over a wide range of physiologically plau-

sible values.

Adding inhibitory synaptic input

In previous work fitting oxytocin neurons with the IF model we showed that an equal balance

of EPSPs and IPSPs (Iratio = 1) increased the linearity of the spike response [9]. In an IF model

with fixed magnitude PSPs it is easy to produce an exact balance of inhibitory and excitatory

input, but this is not practicable in a HHmodel with reversal potentials, where PSP magni-

tudes shift in opposite directions with increased membrane activity. Testing balanced EPSC

and IPSC rates (Iratio = 1), the HHmodel is unable to fire faster than 3 spikes/s: the output

response peaks at a ~ 3000 Hz input rate, before slowly declining with increased input (not

shown). The competing IPSPs increase in magnitude as well as rate, creating a non-linear

increase in the inhibitory component of the synaptic signal and maintaining a membrane

potential that is generally too hyperpolarised to trigger spiking. Reducing Iratio to 0.5 allowed

spiking at 10 spikes/s with a 2000 Hz input rate (Repsc = 2000).
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We studied whether introducing IPSCs has any effect on spike activity beyond requiring a

higher rate of EPSCs to produce a given firing rate. Increasing Iratio from 0 to 0.5 (while adjust-

ing the overall input rate to match the target spike rate) increased the proportion of short ISIs

at both 2.3 and 9 spikes/s, shifting the ISI distribution to the left (Fig 8A). To understand why,
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Fig 6. Spike waveforms in the HHmodel with varied BK. (A) shows the voltage, IBK current, and IBK activation behaviour of a
spike induced by a 5-nA current step for 5 ms, in the original oxytocin HHmodel (yellow, τpd = 1.22 ms), and the adjusted model
(green; τpd = 10 ms). Experimentally, the HAP lasts for 25–125ms and hyperpolarises the cell by ~7.5 mV [18]. In the original HH
model, the HAP is too short and too small, because IBK both rises and falls sharply after a spike. In the adjusted model, IBK is
prolonged by the slower deactivation, making a better match to the HAP observed in vitro, as well as improving the fit to the in vivo

ISI distribution. (B) shows, for the adjusted model, the effects of setting gBK = 0 (red, compared to original value gBK = 1, in green),
on a single spike induced by an 8-nA current step for 3 ms, to simulate the pharmacological block of IBK [18]. When IBK is blocked,
the HAP is smaller and decays faster. (C) shows the in vitro experiment data simulated in (B), redrawn from [18]. The duration and
amplitude of the HAP is a much closer match to the adjusted model. The block shows only a partial reduction, but is likely to be less
total than the model.

https://doi.org/10.1371/journal.pone.0180368.g006
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we reconstructed ‘average spike waveforms’ (Fig 8C). In the presence of IPSCs (Iratio = 0.5) the

HAP is greatly attenuated. The shape of the HAP could be restored by increasing the conduc-

tance of the BK channel (gBK) from 1 to 3.2, and this also restored the fit to the ISI distribution

(Fig 8B).

Increasing Iratio without also increasing the EPSC rate showed no attenuation of the HAP in

the spike waveform (not shown), indicating that the reduced HAP magnitude is due to the

increased rate of EPSCs. The increased rate of IPSCs fails to counter this effect due to the HAP

taking the membrane very close to the IPSC reversal potential at -75mV.

Spike rate variability and the AHP

The AHP, which is small but long-lasting, has little effect on the ISI distribution [14] but a

large effect on the variability of firing rate [15]. This variability can be captured by the IoD of

the firing rate. Randomly timed spikes, uninfluenced by previous activity, give an IoD value of

1 that is independent of firing rate and binwidth. The in vivo reference data at both 2.3 and 9

spikes/s show IoD values well below 1 (Fig 9A), and which decrease as binwidth increases up
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in τepsc are plotted on the right. EPSC rates (Repsc = 2685, 1220, 774, and 567 Hz respectively) were adjusted to achieve a
firing rate of 9 spikes/s.

https://doi.org/10.1371/journal.pone.0180368.g007
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https://doi.org/10.1371/journal.pone.0180368.g008
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to 4 s, indicating that some activity-dependent influence reduces the variability of firing rate.

Previous work with the IF model showed that this was due to the AHP [15].

We ran the HHmodel for 1000 s, with τpd = 10 ms, Iratio = 0.5, gBK = 3.2 (as in Fig 8B). The

IoD values at both 2.3 spikes/s (Repsc = 694 Hz) and 9 spikes/s (Repsc = 1290 Hz) were higher

than in the reference data, and at 2.3 spikes/s showed no dependence on binwidth. This indi-

cated that the AHP generated by the SK current in the HHmodel was too small. The SK cur-

rent is purely Ca2+ dependent, and, to strengthen the activity dependence of the AHP, we

increased αSK (the scaling factor which relates the amplitude of the Ca2+ current (ICa) to the

SK specific Ca2+ concentration) from 1.6 to 4.5, increasing Repsc to 746 Hz and 1860 Hz to

match 2.3 and 9 spikes/s respectively. With these changes, the IoD values closely matched the

reference data (Fig 9A), and the ISI distributions still fitted the reference data well at both fir-

ing rates (Fig 9B). The final adjusted parameters are given in Table 4. Thus, for a given firing

rate, strengthening the AHP current strongly reduces spike rate variability, while having little

effect on the ISI distribution.

Input balance and spike rate response

In an IF model with no AHP, adding inhibitory synaptic input linearizes the response to

increasing synaptic input [9]. Using our final version of the HHmodel, we plotted the relation-

ship between input (PSC) frequency (parameter Repsc) and spike rate for different values of Ira-

tio and tested the effect of removing the AHP by setting gSK = 0. With Iratio = 0 (i.e. with EPSCs

only) and no AHP, spike output increases non-linearly (Fig 10A). The physiological range of

spike rates (0–12 spikes/s) is encompassed by an approximate doubling of EPSC frequency

(from ~350 to ~ 700 Hz). Increasing Iratio reduces the slope of the relationship between input

rate and output rate without altering the threshold at which spike activity starts to increase,

and linearizes the input-output response throughout the physiological range of firing rates.

For Iratio = 0.5, the physiological range of spike rates (0–12 spikes/s) is encompassed by increas-

ing EPSC frequency (from ~ 350 to ~ 2400 Hz). This result with the HHmodel matches the

previous IF model result, reproduced with the current IF model in Fig 10B.

However, comparing models with and without an AHP showed that the AHP itself has a

strong linearizing effect. With Iratio = 0 and an AHP, spike output increases non-linearly up to

about 2 spikes/s as EPSC frequency increases, but above this the increase is approximately lin-

ear with EPSC frequency (Fig 10C). In all conditions, the same tests with the IF model (Fig

10B and 10D) showed very similar results, except that a lower input rate was required to match

a given spike rate. PSP magnitude in the IF model was fixed to match PSP magnitude in the

HHmodel at resting potential, but in the HHmodel, due to reversal potentials, EPSPs become

smaller and IPSPs become larger with increased activity, and resulting in a higher PSP rate

required to produce the same firing rate.

Matching spike patterning in vitro

Oxytocin neurons in vivo and in vitro show very different ISI distributions [38]. Spiking in

vitro (in explant or slice preparations) is mostly stimulated by a constant applied input, or by

exposure to a depolarising solution, with little residual synaptic input, and it shows a narrow,

Gaussian ISI distribution [6] (Fig 11) rather than the long-tailed Poissonian distribution

observed in vivo (Fig 1B). We previously suggested that the differences were due to changes in

membrane properties caused by the loss of synaptic input, resulting in changes to the currents

that determine spike patterning. However, by adding small EPSCs at a low frequency to simu-

late membrane noise and residual synaptic activity (Δepsc = 0.008, Repsc = 120 Hz, Iratio = 0,

with 4.5 nA current step), we were able to closely match the in vitro ISI distribution using the
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same HHmodel parameters that fit the in vivo data. This suggests that the differences between

the spike patterning in vivo and in vitro can be explained purely by the change in input signal.

We reproduced the same result in the IF model (see Methods) (Fig 11) by adding constant Vext

to simulate an applied voltage:

V ¼ Vrest þ Vsyn � HAP � AHP þ Vext

where Vext = 20.3 mV, with synaptic input parameters Ire = 120 Hz, eh = 0.08 mV, and Iratio =

0. The low value synaptic input parameters are used to simulate residual synaptic activity,
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https://doi.org/10.1371/journal.pone.0180368.g009

Table 4. Adjusted HHmodel parameters.

Name Original Adjusted

τpd 1.22 ms 10 ms

gBK 1 3.2 mS cm-2

αSK 1.6 4.5

https://doi.org/10.1371/journal.pone.0180368.t004
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most of the input signal is due to the applied voltage Vext, equivalent to the current step in the

HHmodel.

Discussion

The common advantage of HHmodels and IF models is their ‘observability’, the ability to

relate their parameters to measurable physiological values [44]. This study has shown that a

HHmodel of oxytocin neurons, based on current dynamics and spike waveforms derived

from in vitro experiments, with minor modifications and the addition of a simulated random

synaptic input, can fit the ISI distribution of spike times and other statistical features of spike

patterning recorded in vivo. This allows a direct comparison with an IF model in terms of how

well they match functionally relevant data, and enables a better understanding of how the sim-

plified HAP and AHP in the IF model relate to detailed current-based mechanisms.

The ISI distributions of oxytocin neurons in vivo and in vitro are very different [38]. As well

as the loss of a noisy input signal, the loss of synaptic input in vitro changes a cell’s input resis-

tance, and we had assumed that this would alter current dynamics, particularly voltage sensi-

tivity. We had therefore expected that, because the HHmodel of [18] was based on in vitro

data, we would need to modify many of its parameters to fit in vivo data. However, the HH

model, when stimulated with a randomly timed sequence of EPSCs, produced an ISI distribu-

tion that was a surprisingly close match to our in vivo reference data. It showed an excess of

short ISIs, but this was corrected by modifying just one parameter, increasing the BK current

deactivation time constant to increase HAP duration.

0 200 400 600 800 1000 1200 0 100 200 300 400 500

input rate (Hz)

0

4

8

12

s
p
ik

e
s
/s

Iratio 0

Iratio 0.25

Iratio 0.5

Iratio 0.75

input rate (Hz)

A B

HH model

AHP (g
SK

 = 0.18)

IF model

AHP (k
AHP

 = 0.77)

0

4

8

12

s
p
ik

e
s
/s

HH model

no AHP (g
SK

 = 0)
IF model

no AHP (k
AHP 

= 0)

C D

Fig 10. Spike rate response with varied Iratio and AHP. The panels show how the spiking rate increases with the synaptic input rate
(increasingREPSC with varied Iratio = 0, 0.25, 0.5 and 0.75), comparing the HHmodel (left) and IF model (right). (A)With no AHP (gSK = 0),
the HHmodel with only excitatory input (Iratio = 0) shows a highly non-linear response, which becomes increasingly linear as Iratio is
increased. (B) shows a similar result with the genetic algorithm-fitted IF model with kAHP = 0, matching [9]. (C)With the AHP (gSK = 0.18) the
HHmodel shows a more linear response even with Iratio = 0. (D) Similarly in the IF model, the AHP linearises the response to increasing
input. Thus, the AHP, in both the HH and IF models, has a similar linearising effect to increasing the ratio of inhibitory input.

https://doi.org/10.1371/journal.pone.0180368.g010
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The HAP has a dual identity as mechanism and effect. It is the summed action of K+ chan-

nels activated after a spike, and can be observed both as a prolonged hyperpolarisation in the

spike waveform and as a shortage of short ISIs in the ISI distribution. The dominant element

of the mechanism is IBK, a voltage and Ca2+-dependent K+ current carried by BK channels. In

the original model, activation and deactivation shared a single time constant, and the require-

ment for rapid voltage-sensitive activation during a spike had dictated its small value. Increas-

ing the deactivation time constant from 1.2 ms to 10 ms was sufficient to achieve a close match

between model and in vivo ISI distributions, and is consistent with in vitro data studying BK

channel kinetics [36], as well as making a better match to the post-spike waveform (Fig 6).

The HAP in the IF model uses a much simpler mechanism of a two-parameter (magnitude

and decay rate) post-spike decaying exponential. It requires a larger magnitude (~60 mV) to

match the same refractory effect of the HAP in the HHmodel (~15 mV), but its GA-fitted

time constant (11.5 ms) is close to the HHmodel’s BK deactivation. The IF model’s HAP can

thus be considered as a representation of the HHmodel’s HAP effect on excitability, rather

than its effect on membrane potential.

A second discrepancy between the HHmodel and in vivo observations emerged when com-

paring the variability of spike rates measured using IoD over a range of binwidths. The firing

rate of oxytocin neurons is more regular when averaged in bins of a few seconds than expected

from the variability of ISIs, and in an IF model, this can be explained by the presence of an
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https://doi.org/10.1371/journal.pone.0180368.g011
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AHP [15]. The AHP cannot be detected in the spike waveform or the ISI distribution, but it

can be observed using analysis which is sensitive to effects over multiple ISIs. We showed here,

in the HHmodel, that increasing the duration and/or amplitude of the AHP similarly results

in a close match to experimental measurements of IoD, and does so without degrading the

ability to match the shape of the ISI distribution.

The simpler, purely Ca2+-dependent mechanism of the AHP allows a more direct transla-

tion between the HH and IF models. The AHP is generated by a Ca2+-dependent K+ current

carried by SK channels. The HHmodel’s SK channel specific Ca2+ variable, CSK, subject to a

sigmoidal activation function, directly drives ISK. CSK increases with the transitory peaks of ICa
corresponding to each spike, and decays exponentially with time constant 656 ms, following a

very similar form to the spike-incremented exponentially decaying AHP variable in the IF

model, with a GA-fitted decay time constant of 695 ms (half-life 482 ms).

Thus, with slight adjustments, the HHmodel closely fits the spontaneous spike discharge

activity of oxytocin neurons in vivo, as measured by spike rate, ISI distribution and IoD range.

We cannot claim that it will fit all oxytocin cells, as we matched the model to just a single rep-

resentative example, and some oxytocin neurons have a DAP that is not represented in this

model. However, in oxytocin neurons that lack a DAP, the variation in statistical properties

can be matched in IF models by relatively slight variations in the HAP (or, in some cases, by

variations in the proportion of IPSCs and EPSCs) and by variations in the AHP, and by equiv-

alent variations in the HHmodel.

The IF model can be fit objectively by an evolutionary algorithm, an approach that we used

previously to model vasopressin cells [42]. We have previously fitted the oxytocin IF model by

sequential adjustments of parameters [14,15], but the lack of independence of the parameters

and the use of multiple fit measures (spike rate, ISI distribution, and IoD range) makes this

time consuming, and it is less objective than using an automated method. An objective fit is

especially important for making a comparison with the HHmodel where we can directly

compare parameter values. Although results varied between runs, the clustering in parameter

space of the best fit scores indicates that the fit measure is sufficiently robust to choose a single

best fit. The speed of a highly parallel GPU based implementation makes multiple runs very

practical.

The present analysis has forced refinement of other conclusions from our previous work.

Our original IF model [9] included an HAP but not an AHP. That model was matched to ISI

distributions alone: the AHP has little effect on these, and its importance only becomes appar-

ent from higher order statistical features of spike patterning. In that paper, we reported that

oxytocin neurons increase their firing rate linearly when challenged with a linear increase in

osmotic pressure, as illustrated by the representative recording chosen for the present work

(Fig 1). This was difficult to reconcile with the non-linearity of stimulus-response characteris-

tics of the simple IF model, but we noted that if the model was challenged not with a linear

increase of EPSP frequency but with a linear increase of a balanced mixture of EPSPs and

IPSPs, then the response was linear. We then showed, by measuring release of GABA and glu-

tamate in the supraoptic nucleus, that osmotic challenge was indeed accompanied by release of

both inhibitory and excitatory neurotransmitters. However, we show here that, for both the

modified HHmodel and the modified IF model, the AHP can linearize the stimulus-response

characteristics over much of the physiological dynamic range, without requiring IPSPs. Thus,

we cannot infer from the linearity of response to osmotic pressure that this response necessarily

involves both inhibitory and excitatory components, although experimental data indicate that

it does.

So is there any feature of the spike activity of oxytocin neurons from which we might infer

the relative balance of inhibitory and excitatory inputs that they are receiving? This balance
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does affect statistical features of spike activity: for any given firing rate, a higher proportion of

IPSCs in the input, balanced by a higher rate of EPSCs, will result in more short ISIs. This is a

consequence of the effect of reversal potentials: during a post-spike hyperpolarisation, IPSCs

(which reverse at -75 mV) will be smaller, while EPSCs (which reverse at 0 mV) will be larger,

resulting in an HAP which is functionally shortened. Thus, paradoxically, a synaptic input sig-

nal with an increased proportion of inhibitory inputs favours the generation of short ISIs, that

are likely, because of the frequency dependent non-linearity of stimulus secretion coupling at

nerve terminals, to result in facilitated transmitter release at nerve endings.

The ideal neuronal model is one which matches the function of real neurons, is computa-

tionally efficient, and which can be easily matched to experimental data, both in its parameters

and output. HHmodels are valued because they more completely model the mechanisms

underlying neuronal excitability, with the assumption of a more complete functional match to

real neuron properties. They are also a good match to the bottom-up approach and data avail-

able from studying neurons in vitro. They are computationally expensive and potentially diffi-

cult to apply to neurons in vivo, though we have shown that this is not a difficult leap if in vitro

data is available. In comparison, basic IF models are more analytically tractable and computa-

tionally efficient, at the expense of simplified functional behaviour. Our style of modified IF

models trades some of the analytical tractability for a more complete functional match by add-

ing post-spike potentials such as the HAP and AHP, and we have shown here that their simpli-

fied representations are a good match to the more complex equivalent mechanisms in the HH

model. [45] has even argued that the threshold triggered spiking of the IF model is actually a

better match to the highly non-linear spike initiation dynamics of real neurons than the HH

model’s mechanism. The best approach might be to work between the two, using HHmodel-

ling to map detailed in vitro experimental data on individual currents to functional elements.

These can be added in simplified form to an IF model, modelling greater scales of time or

numbers of neurons in a system which is both more intuitive and faster to run.

Supporting information

S1 Code. HH and IF models and genetic algorithm source code.

HHmodel, IF model, and genetic algorithm fitting C++, IF model CUDA source code.

Files: oxymodbasic.h, oxymodbasic.cpp, oxygenbasic.cpp, evofitbasic.h, evofitbasic.cpp, evofit-

score.cpp, evodat.h, evodat.cpp, evospikegen.cu.

(ZIP)

S1 Data. Oxytocin neuron in vivo spike times.

9 spikes/s and 2.3 spikes/s spike time (ms) data.

Files: oxy9hz.txt, oxy2-3hz.txt.
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