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Abstract 17 

 18 

Developments in microfabrication technology have enabled the production of neural electrode arrays 19 

with hundreds of closely-spaced recording sites, and electrodes with thousands of sites are currently 20 

under development. These probes in principle allow the simultaneous recording of very large numbers 21 

of neurons. However, use of this technology requires the development of techniques for decoding the 22 

spike times of the recorded neurons, from the raw data captured from the probes. Here, we present a 23 

set of novel tools to solve this problem, implemented in a suite of practical, user-friendly, open-source 24 

software. We validate these methods on data from the cortex, hippocampus, and thalamus of rat, 25 

mouse, macaque, and marmoset, demonstrating error rates as low as 5%.  26 

Introduction 27 

 28 

One of the most powerful techniques for neuronal population recording is extracellular 29 

electrophysiology using microfabricated electrode arrays
1-3

. Advances in microfabrication have 30 

continuously increased the number of recording sites available on neural probes, and the number of 31 

recordable neurons is further increased by having closely spaced recording sites. Indeed, while a single 32 

sharp electrode can provide good isolation of one or two neurons, placing as few as four recording sites 33 

together in a “tetrode” can reveal the firing patterns of 10-20 simultaneously recorded cells
4-7

. This 34 

increase is possible because each recorded neuron produces extracellular action potential waveforms 35 

(“spikes”) with a characteristic spatiotemporal profile across the recording sites
8-10

. The process of using 36 

these waveforms to decipher the firing times of the recorded neurons is known as “spike sorting”
11, 12

.  37 
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Spike sorting, as currently applied in nearly all labs using extracellular recordings, involves a manual 38 

operator. While some labs use a fully manual system, lower error rates can be achieved with a semi-39 

automated process
8
, consisting of four steps. First, spikes are detected, typically by high-pass filtering 40 

and thresholding. Second, each spike waveform is summarized by a compact “feature vector”, typically 41 

by principal component analysis. Third, these vectors are divided into groups corresponding to putative 42 

neurons using cluster analysis. Finally, the results are manually curated, to adjust any errors made by 43 

automatic algorithms
13

. This last step is necessary because although fully automatic spike sorting would 44 

be a powerful tool, the output of current algorithms cannot be accepted without human verification. A 45 

similar situation arises in many fields of data-intensive science: in electron microscopic connectomics, 46 

for example, automatic methods can only be used under the supervision of human operators
14

.  47 

For tetrode data this semi-automatic process performs well, reaching error rates of 5% or lower, as 48 

assessed by ground truth data obtained with simultaneous intracellular recording
8
. However, spike 49 

sorting methods developed for tetrodes do not work for a newer generation of larger electrode arrays
15, 

50 
16

. This failure occurs for two reasons. First, the automated component can fail in high dimensions, for 51 

example due to the “curse of dimensionality” that affects cluster analysis in high-dimensional spaces
17

. 52 

Second and perhaps more critically, the process of manual curation -- while manageable with low-count 53 

probes -- cannot scale to the high-count case without software that guides the operator to only those 54 

decisions that cannot be made reliably by a computer. While many different methods for spike sorting 55 

have been proposed (e.g. refs. 
18-24

), no method has yet solved these problems robustly enough to be 56 

widely adopted by the experimental community.  57 

Here we describe a system for the spike sorting of high-channel count electrode data, implemented in a 58 

suite of freely available software. While the spike sorting problem has attracted considerable theoretical 59 

research, our goal was to produce a practical system that can be immediately used by working 60 

neurophysiologists. The ability to process large datasets (millions of spikes in hundreds of dimensions) in 61 

reasonable human and computer time was deemed essential; error rates comparable to those of 62 

commonly-used tetrode methods were deemed acceptable. We tested the software on data recorded 63 

from rat neocortex with 32-site shank electrodes, as well as data from other species and brain regions. 64 

While traditional methods performed extremely poorly on this data, the new algorithms gave close to 65 

theoretically optimal performance. The techniques and software have been developed in a community-66 

led manner, through extensive feedback from a user base of over 320 scientists in 50 neurophysiology 67 

labs. The software is downloadable and documented at http://cortexlab.net/tools, and is supported by a 68 

highly active user-group mailing list, klustaviewas@groups.google.com. 69 

Results 70 

Our spike sorting pipeline involves three steps: (1) spike detection and feature extraction, (2) cluster 71 

analysis, and (3) manual curation. We describe these steps in order. 72 

Spike Detection 73 

The first step of the pipeline is spike detection and feature extraction, implemented by the program 74 

SpikeDetekt. 75 

The primary difference between spike detection for high count silicon probes and for tetrodes is that 76 

temporally overlapping spikes are extremely common in the former. This phenomenon can be seen by 77 
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examining of a segment of raw data recorded with high count probes (Fig. 1). The spikes seen in these 78 

data are diverse, with some detected on only one or two channels, and others spanning large numbers 79 

of channels, as expected of pyramidal cells whose apical dendrites are aligned parallel to the shank
25

. In 80 

these data, simultaneous firing of multiple neurons is common. However, simultaneously firing neurons 81 

are usually detected on distinct sets of channels.  82 

To deal with the problem of temporally overlapping spikes, we therefore sought to detect spikes as local 83 

spatiotemporal events (Fig. 2). This step requires knowledge of the probe geometry, which is specified 84 

by the user in the form of an “adjacency graph” (Fig. 2a). We illustrate the spike detection process with 85 

reference to a small segment of data containing two temporally overlapping but spatially separated 86 

spikes (Fig. 2b).  87 

The first stage of the algorithm is high-pass filtering the raw data to remove the slow local field potential 88 

signal (Butterworth in forward-backward mode; Fig. 2c). Next, spikes are detected using a double-89 

threshold flood fill algorithm (Fig. 2d,e). Specifically, spikes are detected as spatiotemporally connected 90 

components, in which the filtered signal exceeds a “weak threshold” for every point, and in which at 91 

least one point exceeds a “strong threshold”	  (optimal values for these parameters were found to be 4 92 

and 2 times the standard deviation of the filtered signal, as described below). Two points are considered 93 

neighboring if they are on a single channel and separated by one time sample, or at a single timepoint 94 

on channels joined by the adjacency graph; this allows the algorithm to work with probes of any 95 

geometry, not just linear ones.  The dual-threshold approach avoids spurious detection of small noise 96 

events, since isolated islands in which only the weak threshold is exceeded are not retained. Conversely, 97 

spikes will not be erroneously split due to noise, as areas joined by weak threshold crossings are 98 

merged.  99 

After detection, spikes are temporally realigned to subsample resolution, to the center of mass of the 100 

spike’s suprathreshold components, weighted by a power parameter 	(see Methods). Visual inspection 101 

showed that spike times detected with this method correspond closely to those that would be assigned 102 

by a human operator (Fig. 2e).  103 

The waveforms of each spike are summarized by two vectors. First, a “feature vector” is found by 104 

principal component analysis of the realigned waveforms on each channel (3 principal components were 105 

kept for the current analysis). All channels are used in computing the feature vector; thus our two 106 

example spikes have similar feature vectors, as their central times are similar (Fig. 2f). Second, a “mask 107 

vector” is computed from the peak spike amplitude on each detected channel, rescaled and clipped so 108 

channels outside the connected component have mask 0, and channels with amplitude above  have 109 

mask 1. The mask vector allows temporally overlapping spikes to be clustered as separate cells. Indeed, 110 

although the feature vectors of our two example spikes were very similar, their mask vectors are 111 

completely different (Fig. 2g).  112 

Performance Validation and parameter optimization 113 

To quantify the performance and optimize the parameters of this algorithm requires “ground truth”: 114 

knowledge of when the recorded neurons actually fired.  We created a simulated ground truth dataset 115 

by repeatedly adding the spikes of a “donor cell” identified in one recording, to a second “acceptor” 116 

recording made with same probe; since the extracellular medium is a linear conductor
26

, addition of 117 

spike waveforms serves as a sufficient model for overlapping spikes. To evaluate the performance of the 118 
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system, we chose 10 donor cells with a variety of amplitudes and waveform distributions (Fig. 3a), using 119 

recordings from rat cortex with a 32-channel probe shank. To model the variability of waveforms 120 

produced by a single neuron due to phenomena such as bursting
27-29

, we scaled each spike to a random 121 

amplitude in a range that varied by a factor of 2 (see Methods). We refer to the spikes added to the 122 

acceptor dataset as “hybrid spikes”, and the result as a “hybrid dataset”. 123 

To evaluate spike detection performance, we used a heuristic criterion to identify which spikes detected 124 

by the algorithm corresponded to which hybrid spikes (see Methods). We measured performance as a 125 

function of three algorithm parameters ( , , and ), using four performance statistics.  126 

The first statistic was the fraction of hybrid spikes detected (Fig. 3b). This showed a strong dependence 127 

on the thresholds: values of  above 4 times standard deviation (4 SD) resulted in poor detection, 128 

particularly for low-amplitude cells. The dependence of performance on  was more complex: poor 129 

performance resulted not just from overly high values (>2.5 SD), but also overly low values (<2 SD). 130 

Examination of example errors (not shown) indicated that overly low values of  led to inappropriate 131 

merging of temporally overlapping but spatially separated spikes, while overly high values led to 132 

artificial splitting of single spikes.  133 

The second statistic was the total number of detection events (Fig. 3c). Because this includes noise 134 

events as well as true spikes of the hybrid and background cells, this number should be as small as 135 

possible provided the fraction correctly detected remains high. We found that this statistic most 136 

critically depended on the strong threshold, increasing markedly for values below 4SD. 137 

The third statistic was timing jitter: the standard deviation of the difference between the detected and 138 

actual times of each hybrid spike (Fig. 3d). Jitter was in all cases less than one sample, and improved for 139 

larger values of  and , indicating that spike times are best estimated from a minority of larger 140 

amplitude spikes. For all hybrid cells, jitter was worse for  < 1; for low amplitude cells it showed a 141 

further worsening for  > 2, reflecting noise introduced by overweighting of peak amplitude times.  142 

The final statistic was mask accuracy (Fig. 3e), which measures how closely the detected mask vectors 143 

match those expected from the ground truth (see Methods). This showed strongest dependence on  144 

with a peak around 2 SD, and less pronounced dependence on  peaking around 5 SD. 145 

We conclude that close to optimal performance can be obtained using a strong threshold of 4 SD, a 146 

weak threshold of 2 SD and a power weight of 2. Furthermore, using these parameters yields around 147 

95% correctly detected spikes, and spike timing jitter of 0.5 samples. 148 

Cluster Analysis 149 

  150 

The second step of our spike sorting pipeline is automatic cluster analysis, implemented in the program 151 

KlustaKwik.  152 

For tetrode data, we previously found that cluster analysis using a mixture of Gaussians fit gave close to 153 

optimal performance
8
. This approach cannot be directly ported to high-channel-count data for two 154 

reasons. The first is the “curse of dimensionality”: in high dimensions, noise measured on the large 155 

number of uninformative channels will swamp signals measured on the smaller number of informative 156 

channels. Second, because temporally overlapping spikes have similar feature vectors (Fig. 2F), further 157 

information such as the mask vectors must be used to distinguish these spikes.  158 
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To solve this problem, we designed a novel method, the “masked EM algorithm”
30

. This algorithm fits 159 

the data as a mixture of Gaussians, but with each feature vector replaced by a virtual ensemble in which 160 

features with masks near zero are replaced by a noise distribution (see Methods). Channels with low 161 

mask values are thus “disenfranchised”, and do not contribute to cluster assignment; the probabilistic 162 

nature of this disenfranchisement means false clusters are not created when amplitudes cross an 163 

arbitrary threshold. The computational complexity of this algorithm is better than that of the traditional 164 

EM algorithm, scaling with the mean number of unmasked channels per spike (which does not increase 165 

for larger arrays), rather than the total number of channels.  166 

To evaluate the performance of this algorithm, we used the hybrid datasets described above. For each 167 

dataset, we identified the cluster containing most hybrid spikes and computed the false discovery rate 168 

(fraction of spikes in the cluster that were not hybrids), and the true positive rate (fraction of all hybrid 169 

spikes assigned to the cluster). To estimate the theoretical optimum performance that could be 170 

expected, we used the Best Ellipsoid Error Rate (BEER) measure
8
, which fits a quadratic decision 171 

boundary using ground truth data, and evaluates its performance with cross-validation, varying the 172 

parameters of the classifier to obtain an ROC curve showing optimal performance.  173 

The masked EM algorithm’s performance on an example hybrid dataset was close to the optimum 174 

estimated by the BEER measure  but the classical EM algorithm’s performance was poor, with error 175 

rates typically exceeding 50% (Fig. 4a). Across all hybrid datasets, we found no significant difference 176 

between the total error of the masked EM algorithm and theoretical optimal performance (p = 0.8, t-177 

test), but a significant difference between the performance of the Classical and Masked EM algorithms 178 

(p = 0.005, t-test; Fig. 4b). To ensure the poor performance of the classical EM algorithm did not simply 179 

reflect incorrect parameter choice, we reran it for multiple values of the penalty parameter (which 180 

determines the number of clusters found), but this could not improve Classical EM performance. This 181 

analysis also demonstrated that the error rates of the masked EM algorithm were largely independent 182 

of the penalty parameter; using a value corresponding to the Bayesian Information Criterion seems a 183 

good option for penalty choice, as it led to a reasonably small number of clusters without compromising 184 

error rates (Fig. 4c,d). 185 

We conclude that the performance of the Masked EM algorithm is close to optimal for this clustering 186 

problem, yielding false positive and false discovery rates both of the order 5%. 187 

Manual Curation 188 

The final step of the spike sorting pipeline is manual verification and adjustment of cluster assignments, 189 

which are implemented in the program KlustaViewa.  190 

Although semi-automatic clustering provides more consistency and lower error rates than fully manual 191 

spike sorting
8
, further manual corrections are typically required, such as merging of clusters split due to 192 

electrode drift, bursting, or other reasons
27-29

. These waveform shifts are hard to model and correct 193 

mathematically, but can usually be identified by inspection of waveforms, auto- and cross-correlograms, 194 

and cluster shapes. It is essential that this step be done with a minimum of human operator time, a 195 

particularly acute problem with the very large numbers of neurons recorded by large dense electrode 196 

arrays. Specifically, if  clusters are produced automatically, it is impractical for a human operator to 197 

inspect all order  potential merges.  198 
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We addressed this problem using a semi-automatic “Wizard,” that reduces the number of potential 199 

merges to order . The Wizard works by presenting the operator with pairs of potentially mergeable 200 

clusters, ordered by a measure of pairwise cluster similarity. Because the Wizard is used iteratively, this 201 

measure must be computable in a fraction of a second, even for datasets containing millions of spikes. 202 

Thus, only metrics based on summary statistics of each cluster, rather than individual points, are 203 

suitable. We evaluated several candidate similarity measures. The Kullback-Leibler divergence between 204 

two Gaussian distributions was unsuitable as it overweighted differences in covariance matrix relative to 205 

differences in the mean. However, good performance was obtained using a single step of the masked 206 

EM algorithm to compute the similarity of the mean of one cluster to each of the others (Fig. 5a). To 207 

verify the accuracy of this measure, we simulated automatic clustering errors by splitting the ground 208 

truth clusters in the hybrid datasets into two subclusters containing high and low amplitude spikes. In all 209 

cases, the similarity measure correctly identified the other half of the artificially split cluster (Fig. 5b).  210 

The manual stage can take several hours of operator time, and human error is lowest during the start of 211 

this period. The Wizard therefore iteratively presents the operator with decisions that can be made 212 

quickly, with the most important decisions presented first. The Wizard iterates through all clusters 213 

starting with the best currently unsorted spikes. The remaining clusters are ordered by similarity to the 214 

best unsorted cluster, and the decision of whether to merge, split, or delete each merge candidate is in 215 

turn made by the operator (Fig. 5c,d). Once satisfied that no more potential merges exist for the 216 

currently best unsorted cluster, the operator either accepts it as a well-isolated neuron, or rejects it as 217 

multiunit activity or noise, and the top-level iteration begins again.  218 

Although the Wizard guides the operator through the decision process, the operator at all times has free 219 

access to all data required to make rapid decisions, provided by KlustaViewa’s user-friendly and easily-220 

navigable graphical user interface (Figure 6). Using this software, the time taken for manual curation 221 

scales linearly with the number of clusters, with a scaling factor that varies between operators and is 222 

generally about 1 minute per cluster, regardless of probe size. This software therefore allows for 223 

thorough manual curation of a dense-array recording in a few hours.  224 

We assessed the performance of 8 human operators (5 experienced spike-sorters, 3 novices) using this 225 

system (Fig. 7a). First, we asked whether the operators would correctly fix a misclustering that was 226 

produced by the masked EM algorithm in simulation of electrode drift (described further below). All 227 

experienced operators, and all but one of the novices did this correctly. Second we asked how 228 

consistent the results of these operators would be on the same dataset (Fig. 7b-d). We separately 229 

assessed consistency on spikes that all operators had identified be in “good” clusters, on spikes that at 230 

least one operator had identified to be in a good cluster, and on all remaining spikes. Similarity was 231 

assessed with the Fowlkes-Mallows index
31

, which gives a score between 1 for complete agreement, and 232 0 for complete disagreement.  For all operators apart from one of the novices, consistency was 233 

extremely high for those spikes identified as good by at least one operator (Fig. 7e,f); nevertheless the 234 

judgement of whether a cluster should be considered well-isolated varied between operators (Fig. 7g). 235 

We conclude that experienced operators are likely to make accurate and consistent judgements on 236 

cluster merging identification, but that the judgement on which clusters to term “good” is inconsistent; 237 

we therefore recommend that quantitative metrics
32, 33

 be used to determine isolation quality. 238 
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Additional tests 239 

We used the system described above to answer several additional questions regarding the process of 240 

spike sorting, and the design of electrodes.  241 

First, we used our simulated ground truth dataset to ask how spike sorting performance would change 242 

for different electrode designs. We considered two cases. In the first (“site thinning”; Supplementary 243 

Figs. 1 and 2), the electrode was made less dense by omitting alternating channels on both sides. We 244 

evaluated the performance of spike detection and clustering using the same hybrid spikes described 245 

earlier, but only on this subset of channels (the adjacency graph was modified to join any two channels 246 

that both connected to a missing channel). Spike detection was strongly impacted, with correct 247 

detection rates dropping to an average of below 80% (Supplementary Fig. 1). Clustering performance 248 

was also impacted, as assessed both by the theoretical optimum, and by the Masked EM algorithm. 249 

While some cells saw little decrease in clustering performance (typically those found on multiple 250 

channels), others were strongly impacted by both metrics (Supplementary Figure 2). We conclude that 251 

performance in rat cortex decreases substantially for site spacing larger the 40µm same-side site spacing 252 

of these test probes.  253 

Next, we simulated removing one side of the probe (Supplementary Figs. 3 and 4). Of the 10 hybrid cells 254 

analyzed, 6 were only detectable on one of the probe’s two sides, while the other 4 could be detected 255 

on both sides to a greater or lesser extent (Supplementary Table 1). The effect of side removal was 256 

different to that of site thinning. The performance of each unit’s “preferred side” was comparable to 257 

that of the full probe. However, for the 4 units that were visible on both sides of the probe, performance 258 

on the “unpreferred side” was substantially worse than performance on the full probe, as assessed both 259 

by theoretical optimum performance and the actual results of the masked EM algorithm.  We conclude 260 

that in staggered probes, the probe’s two sides function largely independently: the primary benefit of 261 

two-sided shanks is not to increase the isolation quality of a cell already well isolated on one side of the 262 

probe, but to record from a larger number of units. 263 

Next, we asked whether similar performance to that seen in neocortex could also be obtained in other 264 

brain structures and species. We first generated an additional 5 hybrid cells using 10-site recordings 265 

from rat CA1 (Supplementary Figs. 5 and 6). Good performance was again obtained; furthermore, the 266 

spike detection parameters found to be optimal in cortical data were also optimal in CA1 data. We then 267 

ran the same code on high-count data collected from a wider range of preparations: V1 of awake mouse 268 

and awake macaque monkey (Supplementary Figs. 7-9), and LGN thalamus of anesthetized marmoset 269 

(Supplementary Fig. 10). Additional confidence in the method was provided both by further analyses of 270 

hybrid data (Supplementary Fig. 11) and by the observation of sharp orientation-tuned responses 271 

(Supplementary Fig. 7c-l), including amongst cells of apparently similar waveforms that were 272 

nevertheless separated by the spike sorting procedure (Supplementary figure 7m). 273 

Next, we asked how well the system would deal with non-stationarity in spike amplitudes. Such non-274 

stationarity can occur both because of electrode drift, and also because of activity-related changes in 275 

spike amplitude such as after bursts or prolonged periods of firing
27

. Examination of data from acute 276 

recordings (where electrode drift is often stronger than with chronic probes), showed that the algorithm 277 

often tracked drift successfully, but in other cases split the spikes of a single drifty cell into multiple 278 

clusters requiring manual merging (Supplementary Fig. 12).  279 
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To simulate nonstationarity, we constructed 6 hybrid datasets in which spike amplitude drifted 280 

throughout the recording as a geometric random walk (Supplementary Fig. 13). Spike detection was 281 

hardly impacted by this nonstationarity (Supplementary Fig. 14). For clustering, only one of the 6 drifty 282 

hybrid datasets required manual curation, and once this was performed, accuracy of the masked EM 283 

algorithm was comparable to the theoretical optimum (Supplementary Fig. 15). A different type of 284 

nonstationarity, in which the hybrid cell simply stopped firing halfway through the recording, also had 285 

no effects on performance (p=0.75; two-sample t-test on total errors; Supplementary Fig. 16). As an 286 

important task is often to track cells between recordings made over multiple days – i.e. where drift 287 

occurs in non-recorded periods – we also asked whether the Wizard’s similarity metric might be used for 288 

this purpose. Although ground truth data was not available, a conservative criterion gave encouraging 289 

results, as indicated by the similarities of the autocorrelograms of the units associated to each other 290 

(Supplementary Fig. 17). 291 

A strategy sometimes used to deal with nonstationarity is to include time as an additional feature in the 292 

cluster analysis algorithm, in principle allowing the algorithm to track slow changes in amplitude. To our 293 

surprise, we found that this actually worsened clustering performance, which could not always be 294 

overcome by manual curation (Supplementary Fig. 15). We conclude that nonstationarity (at least of the 295 

type modelled here) does not present a serious problem to automatic sorting performance if time is not 296 

added as an additional feature, and if manual curation is performed when required.  297 

Discussion 298 

We have produced a software suite for spike sorting of data from large, dense electrode arrays. Analysis 299 

of simulated ground-truth data indicated that error rates of this approach are frequently of the order 300 

5%.  301 

A critical step in this system, and all others currently in wide use for in vivo data, is manual curation. 302 

Extracellular array recordings are subject to numerous sources of error including electrode drift, 303 

overlapping spikes, and the fact that neuronal spike waveforms are not constant, but change according 304 

to firing patterns including but not limited to bursting
27-29

. While most working neurophysiologists have 305 

a good understanding of these potential artifacts, formalizing this knowledge into a reliable 306 

mathematical model has proved challenging. Because spike sorting errors could lead to erroneous 307 

scientific conclusions
29

, it remains essential that a scientist is able to inspect the results produced by an 308 

automatic algorithm, then correct or discard its results. We found that experienced operators tended to 309 

make similar judgements during the manual curation process, but that their judgements of which units 310 

were well-isolated were subjective. Fortunately, quantitative criteria exist for assessing the quality of 311 

unit isolation
32, 33

, and we therefore recommend that these be used, rather than human judgements, 312 

when deciding which cells to include in further scientific analysis. 313 

The current performance of the system is sufficient for practical analysis of data produced by current, 314 

commercially-available silicon probes. Nevertheless, there remain areas for further improvement. The 315 

first of these concerns execution time. KlustaKwik is several orders of magnitude faster than standard 316 

mixture of Gaussians fitting; nevertheless, when running on large datasets, it can take hours or even 317 

days to complete on a standard single-core machine. Hardware acceleration such as GPUs
34

 or cloud 318 

computing
35

 may speed up this analysis stage, as may alternative cluster analysis algorithms that 319 

exclude the most computationally expensive step of covariance matrix estimation (e.g. Refs. 
36, 37

). Faster 320 
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versions of the code presented here, currently under development, are available at 321 

https://github.com/kwikteam/klustakwik2 and https://github.com/kwikteam/phy. A second opportunity 322 

for improvement regards the detection of spatiotemporally overlapping spikes. While the current 323 

algorithm can detect the majority of temporally overlapping spikes, which occur on distinct sets of 324 

channels, it cannot resolve spikes that overlap in both space and time. Template-matching algorithms 325 

have solved this problem in the case of in vitro retinal array data
38, 39

, but these data are much less noisy 326 

than in vivo brain recordings. While recent research suggests that certain forms of template matching 327 

may succeed at least for tetrode data in vivo
18, 21

, such methods are not at present widely applied to in 328 

vivo recordings, and numerous challenges need to be overcome, most critically regarding the manual 329 

curation step. The platform we have described here constitutes both a practical solution to today’s spike 330 

sorting challenges, and also a framework from which to develop solutions for future generations of 331 

electrodes containing thousands of channels. 332 

Contributions 333 

C.R., D.F.M.G., S.N.K. and J.S. wrote SpikeDetekt. K.D.H, S.N.K., and D.F.M.G. designed the Masked EM 334 

algorithm and wrote KlustaKwik. C.R. and M.L.D.H. wrote KlustaViewa. C.R wrote Galry. S.N.K. analyzed 335 

algorithm performance. Rat data were recorded by A.G., M.B. and G.B.. Mouse data were recorded by 336 

A.S and M.C.. Marmoset data were recorded by S.S. The procedure for non-chronic laminar recordings 337 

with Neuronexus Vector probes in awake, behaving macaques was developed by G.H.D., A.S.E., A.S.T., 338 

who also collected the data. K.D.H., S.N.K., and C.R. wrote the manuscript with inputs from all authors. 339 
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 438 

Figure Legends 439 

 440 

Figure 1: High-count silicon probe recording.  441 

(a), Layout of the 32-site electrode array used to collect test data. (b), Short segment of data recorded in 442 

rat neocortex with this array. Color of traces indicates recording from the corresponding colored site in 443 

(a). Black rectangles highlight action potential waveforms; note the frequent occurrence of temporally 444 

overlapping spikes on separate recording channels.  445 

 446 

Figure 2: Local spike detection algorithm. 447 

(a), Adjacency graph for the 32-channel probe. (b), Segment of raw data showing two simultaneous 448 

action potentials on spatially separated channels (scale bars indicate 0.5mV / 10 samples). (c), High-pass 449 

filtered data shown in pseudocolor format (units of standard deviation). Vertical lines on the colorbar 450 

indicate strong and weak thresholds,  and  (respectively 4 and 2 times standard deviation). (d), 451 

Gray-scale representation showing samples which cross the weak threshold (gray), and the strong 452 

threshold (white). (e), Results of two-threshold flood fill algorithm, showing connected components 453 

corresponding to the two spikes in orange and brown. Note that isolated weak threshold crossings 454 

resulting from noise are removed. White lines indicate alignment times of the two spikes. (f), 455 

Pseudocolor representation of feature vectors for the two detected spikes (top and bottom). Each set of 456 

three dots represents three principal components computed for the corresponding channel (arbitrary 457 

units). Note the similarity of the feature vectors for these two simultaneous spikes (top and bottom). (g), 458 

Mask vectors obtained for the two detected spikes (top and bottom; 0 represents completely masked, 1 459 

completely unmasked). Unlike the feature vectors, the mask vectors for the two spikes differ. Each set of 460 

three dots represents the three identical components of the mask vector for the corresponding channel.  461 

 462 

Figure 3: Evaluation of spike detection performance. 463 

(a), Waveforms of the 10 donor cells used to test spike detection performance, in order of increasing 464 

peak amplitude (left to right). (b), Fraction of correctly detected spikes as a function of strong threshold 465 

 (left), weak threshold 	(center), and power parameter  (right). Colored lines indicate performance 466 

for the correspondingly colored donor cell waveform shown in A; black line indicates mean over all 467 

donor cells. (c-e), Dependence of the total number of detected events, timing jitter, and mask accuracy 468 

on the same three parameters.  469 

 470 

Figure 4: Evaluation of automatic clustering performance. 471 

(a), Receiver-Operating Characteristic (ROC) Curve showing the performance of the Masked EM 472 

algorithm (blue) and Classical EM algorithm (red) on one of the 10 hybrid datasets; each dot represents 473 

performance for a different value of the penalty parameter. The cyan curve shows a theoretical upper 474 
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bound for performance, the best ellipsoid error rate (BEER) measure obtained by cross-validated 475 

supervised learning. (b), Mean and standard error of the total error (false discovery plus false positive) 476 

over all 10 hybrid datasets for theoretical optimum (BEER measure), Masked EM and Classical EM 477 

algorithms. For each dataset and measure, the parameter setting leading to best performance was used. 478 

(c), Effect of varying the penalty parameter (as a multiple of the AIC penalty) on the total error for both 479 

algorithms. The dotted line indicates the parameter value corresponding to BIC. Note that the Masked 480 

EM algorithm performed well for all penalty values. (d), The number of clusters returned by the Masked 481 

EM algorithm as a function of the penalty parameter. 482 

 483 

Figure 5: The “Wizard” for computer-guided manual correction. 484 

(a), Illustration of the measure used to quantify cluster similarity.  represents the posterior 485 

probability with which the EM algorithm would assign of the mean of cluster  to cluster . (b), To test 486 

this measure, the clusters corresponding to hybrid spikes were artificially cut into halves of high and low 487 

amplitude. In each case, the similarity measure identified the second half as the closest merge 488 

candidate. (c), The Wizard identifies the best unsorted cluster as the one with highest quality (top), and 489 

finds the closest match to it using the similarity matrix. (d), The Wizard algorithm. The best unsorted 490 

cluster and closest match are identified. The operator can choose merge the closest match into the best 491 

unsorted, ignore the closest match, or delete it by marking it as multiunit activity or noise; the wizard 492 

then presents the next closest match to the operator (blue arrows). After a sufficient number of 493 

matches have been presented, the operator can decide that no further potential matches could have 494 

come from the same neuron, and either accept the best unsorted cluster as a well-isolated neuron, or 495 

delete it as multiunit activity or noise. The wizard then finds the next best unsorted cluster to present to 496 

the operator (orange arrows).  497 

Figure 6: Screenshot of the KlustaViewa graphical user interface.  498 

In order to make the decisions presented by the Wizard, the operator has access to information 499 

including waveforms (center panel; gray waveforms correspond to masked channels), principal 500 

component features (top right), auto- and cross-correlograms (bottom right), and an automatically 501 

computed similarity metric for each pair of clusters (inset). To enable rapid navigation, all views are 502 

integrated; for example, clicking on a particular channel in the Waveform View will update other views 503 

to show the selected channels or clusters. 504 

Figure 7: Consistency of manual curation across operators.  505 

(a), Performance of 8 human operators (5 experts, 3 novices) on a “drifty” hybrid cell requiring manual 506 

curation (see supplementary figure 13b). A tick indicates correct merging of the split hybrid cell, a cross 507 

indicates this merge was not performed. (b-d), consistency of assignments of multiple operators over all 508 

cells in this dataset. Each submatrix shows the conditional probability of the first operator’s cluster 509 

assignments given the assignments of the second operator (color scale at bottom of (d)). (b), consistency 510 

of cluster assignments for spikes marked as well-isolated by all operators; (c), consistency of cluster 511 

assignments for spikes marked as well-isolated by at least one operator; (d), consistency of whether 512 

spikes were marked as well-isolated by different operators. (e-g): Operator consistency for the analyses 513 

of (b-d) was quantified using the Fowlkes-Mallows index, for which 1 represents complete agreement 514 
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and 0 complete disagreement. Note that while cluster assignments were highly consistent between all 515 

expert operators, the operators were often inconsistent in their judgements of which units were well-516 

isolated. 517 

Methods 518 

A supplementary Methods checklist is available. 519 

Test data 520 

To test the algorithm, we created simulated ground truth data using a method termed “hybrid 521 

datasets”. The primary raw data used to construct this ground truth (shown in the main text figures) 522 

consisted of two separate recordings from somatosensory cortex (−3.8 mm from bregma, 3 mm lateral 523 

to midline, 1mm depth) of sleeping adult rats, using silicon probes with 32 non-activated platinum-524 

plated recording sites of size 10x16 µm arranged in a staggered shank configuration (vertical spacing 20 525 

µm between adjacent sites on opposite sides of the shank, 40 µm between adjacent sites on the same side), 526 

mounted on a home-made microdrive. Ground and reference electrodes were stainless steel screws 527 

over the cerebellum. Data was continuously recorded wideband (1Hz-Nyquist), at a sampling rate of 20 528 

kHz. During the recording session, the signals were amplified (1000x), bandpass filtered (1 to 5000 Hz), 529 

and acquired continuously at 20 kHz on a 128-channel DataMax system (16-bit resolution; RC 530 

Electronics). All protocols were approved by the Institutional Animal Care and Use Committee of Rutgers 531 

University. 532 

To perform additional tests (supplementary figures 5-12), we analyzed data collected in additional brain 533 

structures and species. Data was collected from the septal third of hippocampal CA1 region in male rats 534 

using 10-site silicon probes using the same methods as above. All protocols were approved by the 535 

Institutional Animal Care and Use Committee of Rutgers University. To obtain recordings in mouse V1, 536 

mice were implanted with a custom-built head post and recording chamber (4 mm inner diameter) 537 

under isoflurane anesthesia. After several days acclimatization to head-fixation, animals were 538 

anesthetized under isoflurane and a ~1 mm craniotomy was performed over area V1 one day prior to 539 

the first recording (see Refs. 
40, 41

 for further details). Data were recorded with an acutely-inserted 32-540 

site Neuronexus Edge probe (20 micron spacing). Experiments were conducted according to the UK 541 

Animals (Scientific Procedures) Act, 1986 under personal and project licenses issued by the Home Office 542 

following ethical review. Non-chronic recordings were obtained from cortical area V1 of two awake, 543 

behaving, adult male rhesus monkeys (macaca mulatta) using Neuronexus Poly2 and custom-designed 544 

Edge (60 micron spacing) Vector probes. Animals were first implanted with scleral search coils and fit 545 

with a custom-built titanium head post and recording chamber (see Refs. 
42, 43

 for further details). 546 

Subsequently, a 2-3mm diameter trephination was performed through which daily penetrations would 547 

be made. Data were acquired as broad-band signals (0.5–16 kHz, sampled at 32 kHz), digitized at 24-bits 548 

using PXI-4498 cards (National Instruments, Austin, TX). All procedures were conducted in accordance 549 

with the ethical guidelines of the National Institutes of Health and were approved by the Baylor College 550 

of Medicine IACUC. To obtain recordings from dorsal lateral geniculate nucleus (LGN) of sufentanil-551 

anaesthetised adult male marmoset monkey (Callithrix jacchus), a craniotomy was made over the right 552 

LGN and a Neuronexus A16x2 probe (500µm probe separation, 50µm spacing between contact points 553 

on each shank) was lowered into LGN and allowed to settle for at least 30 minutes before recording. 554 

Data were band-pass filtered (0.3–5kHz, sampled at 24kHz), and digitized by a Tucker-Davis 555 



15 

 

Technologies RZ2 real time processor (see Ref. 
44

 for further details). All procedures were approved by 556 

the University of Sydney Animal Ethics Committee and conform to Australian National Health and 557 

Medical Research Council (NHMRC) policies on the use of animals in neuroscience research. 558 

Hybrid datasets 559 

To create the hybrid datasets, we first completed a full spike sorting of each dataset, including manual 560 

verification. Five clusters were chosen from each dataset, corresponding to neurons spanning the range 561 

of amplitudes and channel distributions observed in the data (Figure 3A). The mean unfiltered waveform 562 

of each neuron was computed, its mean was subtracted, and its value at each end was set to exactly 563 

zero by tapering with a Hamming function. These “donor waveforms” were added at prescribed times to 564 

the raw unfiltered data of the other “acceptor” recording. To simulate amplitude variability, we linearly 565 

scaled each added waveform by a random factor chosen from the range [√2/2, √2	] causing amplitudes 566 

to vary by a factor of two, which suffices to capture the variability typical of bursting neurons 
27

. The 567 

interspike intervals typical of bursting neurons were not simulated as this does not affect the spike 568 

detection or clustering process; instead, hybrid spikes were added regularly at rates in the range 2-4 569 

spikes per second. To ensure that the simulated data tested the ability of our software to realign spikes 570 

to subsample resolution, each added spike was shifted by a random subsample offset using cubic spline 571 

interpolation. For simulations of drifty cells, amplitude was as geometric random walk (i.e. the 572 

exponential of a Brownian random walk), which was then normalized so that the mean amplitude 573 

remained the same as its non-drifty counterpart. 574 

File format 575 

To implement the software, we designed an HDF5-based file format to store raw data, intermediate 576 

analysis results (such as extracted spike waveforms and feature vectors), as well as final data such as 577 

spike times and cluster assignments 
45

. The format makes use of HDF5 links to allow a single, small file 578 

(the “.kwik file”) containing all data required for scientific analysis (e.g. spike times, cluster assignments, 579 

unit isolation quality measures). Bulky raw data and intermediate processing steps such as feature 580 

vectors are stored in separate files (the “.kwd” and “.kwx” files). This “detachable” format is designed 581 

for data sharing applications, allowing users to download as much data as required for their needs. A full 582 

specification of the format can be found at https://phycortexlab.net/format. 583 

SpikeDetekt  584 

Spike detection was implemented by SpikeDetekt, a custom program written in Python 2.7 using the 585 

packages NumPy, SciPy, and PyTables.  586 

The first step of the program is to filter the raw voltage trace data to remove the low-frequency local 587 

field potential (LFP). This is achieved with a 3rd order Butterworth filter used in the forward-backward 588 

mode to ensure zero phase distortion. Filter parameters can be specified by the user; for the analyses 589 

described here we used a band-pass filter of 500 Hz to 0.95*Nyquist.  590 

The second step is threshold determination. Spike detection thresholds are specified as multiples of the 591 

standard deviation of the filtered signal; at the option of the user, a single threshold is used for all 592 

channels in order to avoid emphasizing noise from low-amplitude channels. To boost execution speed 593 

while minimizing the chance of biased estimates, the standard deviation is estimated from five data 594 

chunks of length 1 second each, picked randomly from throughout the recording. The standard 595 
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deviation is computed with a robust estimator, median(| |)/.6745, to avoid contamination by spike 596 

waveforms.  597 

The next step is spike detection. The spike detection code operates on consecutive chunks of data (1s 598 

length) for memory efficiency. Spatiotemporally connected regions of weak threshold crossing are 599 

detected using a non-recursive flood fill algorithm, with spatial continuity defined using a user-specified 600 

adjacency graph. Only connected components for which at least one point exceeds the strong threshold 601 

are kept for further analysis.  602 

Spike alignment is computed based on a scaled and clipped transformation of the filtered 603 

voltage	 ( , ): 604 ( , ) = min − ( , ) −− , 1  

Note that ( , ) can never be negative within a spike, as the floodfill algorithm only finds points for 605 

which	− ( , ) > . The center time for each spike  is computed as  606 	 = 	 ∑ 	 ( , )( , )∈∑ ( , )( , )∈  

where ( , ) ∈  denotes the set of times and channels, for all points assigned to this spike by the 607 

floodfill algorithm. If = 1, this formula measures the spike’s center of mass; if p = ∞, it measures the 608 

time of the spike peak. 609 

Spikes were realigned on  to subsample resolution using cubic spline interpolation (note that the 610 

center time will, in general, not be an integer number of samples). Feature vectors are computed for 611 

each channel separately by principal component analysis; the number of features per channel is a user 612 

settable parameter, with default value 3. Finally, mask vectors are computed for each spike  as zero for 613 

channels not appearing in the connected component, and as the maximum scaled waveform for all 614 

channels inside the component: 615 

, = max:( , )∈ ( , ) 

To evaluate the performance of SpikeDetekt, required identifying which detected spikes correspond to 616 

ground truth spikes. This was done with a dual criterion: the difference between the detected time and 617 

ground truth needed to be less than 2 samples, and the detected mask vector  needed to have a 618 

similarity to the ground truth mask vector  of at least 0.8, defined by the mask similarity measure  619 ⋅| || |	 
Note that mask similarity cannot exceed 1, by the Cauchy-Schwartz inequality. The validity of this 620 

criterion was verified by showing that detected spike timing jitter rapidly increased for similarity 621 

threshold for values less than 0.8, but was insensitive to threshold value above 0.8. Once the detected 622 

spikes corresponding to ground truth had been identified, the four measures in figure 3 were computed. 623 

This analysis used the Python library Joblib to prevent unnecessary recomputation. 624 
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KlustaKwik 625 

Automatic clustering was performed by KlustaKwik, a custom program written in C++. The first version 626 

of this program was designed for tetrode data, implemented a hard EM algorithm for maximum-627 

likelihood fitting of a mixture of arbitrary-covariance Gaussians, and was released in 2000 but not 628 

specifically described in a published manuscript. Here, we have implemented several modifications of 629 

this software to enable automatic sorting of high-count probe data. The program now implements a 630 

novel “masked EM algorithm” 
30

 designed for high-dimensional classification, as well as other features 631 

such as cache optimization resulting in a speed increase of over 10,000%.  632 

The masked EM algorithm takes as input both feature vectors and mask vectors. It works by fitting a 633 

mixture of Gaussians to a virtual dataset in which each feature vector is replaced by a probability 634 

distribution: 635 

, 	~	 , prob			 , 	( , ) prob		1 − , 	 
Here, ,  represents the 

th 
component of the feature vector for spike ; ,  represents the 

th 
636 

component of the mask vector for spike ; and ( , ) denotes a univariate Gaussian distribution 637 

with mean and variance equal to those of the subthreshold noise distribution of the 
th 

feature. 638 

The masked EM algorithm consists of alternation of an “E step” in which each spike is assigned to the 639 

cluster for which it has highest posterior probability, and an “M step” in which the means and 640 

covariances of each cluster are estimated. We have derived analytic formulas for the expectation of the 641 

cluster assignment probability used in the E-step, and the cluster mean and variance used in the M step, 642 

over the virtual probability distribution ,  
30

. Thus, explicit sampling from the virtual distribution does 643 

not need to be performed; furthermore, these expectations can be computed much faster than those of 644 

the full EM algorithm as they scale with the square of the number of unmasked features, rather than the 645 

square of the total number of features.  646 

KlustaKwik automatically determines the number of clusters that best fit the data, determined using a 647 

penalty function that encodes a preference for fits with smaller numbers of clusters. We have found a 648 

modification of the Bayesian Information Criterion to deal with masked data works well in practice 
30

. 649 

Because the algorithm allows for dynamic splitting and merging of clusters during the fitting process, a 650 

search for the optimal number of clusters can be achieved in a single run of the algorithm. We have 651 

found that starting the algorithm from an initial clustering determined heuristically from the mask 652 

vectors avoids the problem of local maxima, and allows good results to be obtained from a single run.  653 

KlustaViewa  654 

Manual correction of automatic clustering is performed with KlustaViewa, a custom program written in 655 

Python 2.7. The manual stage requires interactive visualization of very large numbers of data points, for 656 

which existing libraries such as matplotlib were not suitable. We therefore designed a new Python 657 

library for rapid interactive data visualization named Galry 
46

. Galry leverages the computational power 658 

of modern graphics processing units 
34

 through the OpenGL graphics library 
47

. High performance is 659 

achieved by porting most visualization computations to the GPU using custom shaders, and by 660 

minimizing the number of OpenGL API calls through batch rendering techniques. 661 
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To ensure rapid adoption by the experimental community, we designed KlustaViewa’s user interface by 662 

the integrating novel features necessary for high-count probes into a user interface as similar as possible 663 

to existing manual spike sorting environments such as Klusters 
13

. In addition to data views familiar from 664 

previous spike sorting systems (such as waveform, auto- and cross-correlograms, and similarity matrix), 665 

we implemented several new features. The most important of these is the Wizard (described in the 666 

main text), that automatically leads the user through the manual verification and merging process, while 667 

always allowing the user free access to all of the views familiar from standard spike sorting systems. In 668 

addition, a number of enhancements were designed specifically to make the sorting of high-count probe 669 

data tractable. These include features to allow display of masking information; rapid and automatic 670 

display of the channels relevant to selected clusters; transient color brushing 
48

; and automatic 671 

downsampling to ensure low latency display when dealing with very large datasets. 672 

The Wizard is based on a metric of similarity for each pair of clusters. This was computed by running a 673 

single step from the EM algorithm to compute the posterior probability for assigning the mean of cluster 674 

 to cluster : 675 = ( | ; )∑ 	( | ; )		 
Here  represents the weight of cluster  (i.e. the fraction of points already assigned to this cluster);  676 

and  represent its mean and covariance as computed by the M-step of the masked EM algorithm. The 677 

quality of each cluster  was defined as the diagonal element , i.e. the posterior probability for 678 

classifying cluster ’s mean as coming from cluster 	itself. A high value for  therefore indicates that 679 

cluster 	has no close neighbors.  680 

The difference between two clusterings , ′, consisting of  and 		clusters, respectively, and 681 

confusion matrix entries,  where measured using the Fowlkes-Mallows
31

 index, , where: 682 ( , ) = 	 ∑ ( − 1)/2,∑ ( − 1)/2 , ( , ) = 	 ∑ ( − 1)/2,∑ ′ ( ′ − 1)/2 	 = 	 ∑ ,			 ′ = 	 ∑ , , = 1, … , , = 1, … , . 	   is the probability that a pair of 683 

points which are in the same cluster under the clustering  is also in the same cluster in ′.  is the 684 

same with the two clusterings interchanged. The Fowlkes-Mallows index symmetrizes these two 685 

asymmetric quantities by taking their geometric mean.  686 
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