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In order to determine patterns of neural activity, spike signals recorded by extracellular

electrodes have to be clustered (sorted) with the aim of ensuring that each cluster

represents all the spikes generated by an individual neuron. Many methods for spike

sorting have been proposed but few are easily applicable to recordings from polytrodes

which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently

closely that signals from single neurons will usually be recorded on several adjacent sites.

Although this offers a better chance of distinguishing neurons with similarly shaped spikes,

sorting is difficult in such cases because of the high dimensionality of the space in which

the signals must be classified. This report details a method for spike sorting based on a

divide and conquer approach. Clusters are initially formed by assigning each event to the

channel on which it is largest. Each channel-based cluster is then sub-divided into as many

distinct clusters as possible. These are then recombined on the basis of pairwise tests

into a final set of clusters. Pairwise tests are also performed to establish how distinct each

cluster is from the others. A modified gradient ascent clustering (GAC) algorithm is used to

do the clustering. The method can sort spikes with minimal user input in times comparable

to real time for recordings lasting up to 45 min. Our results illustrate some of the difficulties

inherent in spike sorting, including changes in spike shape over time. We show that some

physiologically distinct units may have very similar spike shapes. We show that RMS

measures of spike shape similarity are not sensitive enough to discriminate clusters that

can otherwise be separated by principal components analysis (PCA). Hence spike sorting

based on least-squares matching to templates may be unreliable. Our methods should be

applicable to tetrodes and scalable to larger multi-electrode arrays (MEAs).
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INTRODUCTION

A classical technique for studying the brain is to record electri-

cal signals with a microelectrode placed near the cell body of a

neuron. Action potentials generated by the neuron are detectable

as brief (<1 ms) small (<1 mV) changes in electrical potential.

These are conventionally referred to as “spikes.” In recent years

physiologists have exploited the advantages offered by recording

with electrodes that have multiple recording sites close enough to

record the same neuron on several adjacent sites. Tetrode elec-

trodes (Reece and O’Keefe, 1989) have 4 recording sites that

are typically 25–50 µm apart. Polytrode electrodes (Drake et al.,

1988; Bragin et al., 2000; Buzsáki, 2004; Blanche et al., 2005) typi-

cally have 1–3 columns of 8–64 channels spaced 50–70 µm apart.

Larger multi-electrode arrays (MEAs; Litke et al., 2004; Segev

et al., 2004; Frey et al., 2009) designed for recording from reti-

nal patches or brain slices may have hundreds or even thousands

of sites. All of these types of electrode are designed so that a given

neuron will produce a characteristic pattern of voltage change on

a number of adjacent recording sites depending on the position of

the unit relative to the sites. This has the advantage that the spike

signature of a given neuron can be defined by the voltage change

on several different channels, allowing for better discrimination

of units (Blanche et al., 2005). However, the overlap, and the large

numbers of channels present on most polytrodes and MEAs pose

a problem for spike sorting. The dimensionality of the space in

which the signals are present (number of channels × number of

voltage samples per channel) is large and it is hard to reduce it

to a single low dimensional space in which clustering of spike

shapes might be done (Einevoll et al., 2012). Additional factors

that make sorting difficult are (a) variability in spike shape of sin-

gle units over time (Fee et al., 1996a,b; Quirk and Wilson, 1999);

(b) similarity in spike shapes between neurons; (c) the frequently

non-Gaussian nature of the noise in the clusters (Fee et al., 1996a)

and (d) the large amount of data (hours of recording and millions

of spikes leading to file sizes of several GB) that may have to be

processed.

Relatively few of the papers published on spike sorting in

recent years propose solutions that address all of the above prob-

lems. Many deal with only single or independent channel sorting

(e.g. Zouridakis and Tam, 2000; Quiroga et al., 2004) or tetrodes

(e.g. Gray et al., 1995; Fee et al., 1996a; Nguyen et al., 2003;

Gasthaus et al., 2009; Franke et al., 2010) and do not specifi-

cally address the problems caused by spatially overlapping spikes

on many channels. Many address specific problems, e.g. non-

stationary spike shapes (Bar-Hillel et al., 2006; Wolf and Burdick,

2009; Calabrese and Paninski, 2011) but do not scale well with
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numbers of spikes, clusters or channels. Many papers assume that

clusters are Gaussian in shape (Harris et al., 2000; Nguyen et al.,

2003; Litke et al., 2004; Hazan et al., 2006) and/or use cluster-

ing methods that are slow and/or require a high degree of user

intervention (Meister et al., 1994; Gray et al., 1995; Segev et al.,

2004). Recent solutions that have been proposed specifically for

retinal MEAs (Segev et al., 2004; Prentice et al., 2011; Jäckel et al.,

2012; Marre et al., 2012) all take the approach of identifying a set

of spike templates from a limited sample of recording data and

then use template matching to identify spikes in the remaining

data. This strategy may be appropriate for the retina, where most

cells can be expected to fire during the initial sampling period and

electrode or tissue drift is not a major problem. However, for cor-

tical recordings, where units fire less predictably, there is a serious

risk of missing units which fire at low rates or episodically during

the recording period. In addition, these methods are all (report-

edly) labor intensive and slow and users often resort to manual

determination of cluster boundaries (Einevoll et al., 2012).

In this paper we present a “divide and conquer” approach

to sorting spikes recorded with 54 channel polytrodes. It has

the aims of being (a) scalable with the number of electrode

channels and the number of spikes; (b) fast; (c) substantially

automated and (d) complete—i.e. that it addresses all stages of

sorting. Following event detection, signals are initially divided

into channel-based clusters i.e. one (potentially multi-unit) clus-

ter per electrode channel. Using the principal components derived

from the voltage values on the central and immediately neigh-

boring channels, each initial cluster is sub-divided into as many

distinct clusters as possible. These are then recombined on the

basis of pairwise tests into a final set of clusters. Pairwise tests

are also performed to establish the degree to which each cluster

is distinct from the others. Because clustering is only ever done

in the space defined by the voltages on a central channel and its

neighbors, the number of processing steps will scale linearly with

the number of channels on the electrode and hence the method

should be scalable to larger arrays. This procedure of breaking

down and recombining clusters is similar to one proposed ear-

lier by Fee et al. (1996a). Clustering is done with an algorithm,

here termed gradient-ascent clustering (GAC) which is based on

the mean-shift algorithm of Fukunaga and Hostetler (1975). The

procedure is automated except for a final stage where the user

reviews cluster pairs and waveform shapes and decides whether

clusters are distinct or should be merged.

METHODS

DATA ACQUISITION

The method was developed and tested with signals recorded

with 54-site polytrodes (University of Michigan Center for

Neural Communication Technology and NeuroNexus: http://

www.neuronexustech.com/) placed into the visual cortex of cats

anesthetized either with isoflurane and nitrous oxide (Blanche

et al., 2005) or with a mixture of propofol and fentanyl. Eye move-

ments were prevented either by continuous infusion of pancuro-

nium bromide or by retrobulbar injections of α-bungarotoxin

(Tocris). Following a craniotomy the dura was carefully removed

and a nick made in the pia with an ophthalmic slit knife. The

electrode was then inserted into the cortex, under visual control,

so that the upper recording sites lay just below (∼100–200 µm)

the visible top surface of the cortex. The plane of the electrode

was parallel to the medio-lateral axis with the recording sites fac-

ing anterior. The insertion angle was as nearly perpendicular as

could be judged to the cortical surface. Following insertion, cere-

brospinal fluid (CSF) was wicked away and the craniotomy was

filled with an agarose gel (2.5%, Type III-A, Sigma-Aldrich, St.

Louis, MO) in artificial CSF at 38–40◦C. Experiments on each

animal lasted 2–3 days. Single periods of continuous data acquisi-

tion lasted typically from 15 to 45 min and consisted of recordings

of spontaneous as well as visually driven activity. Visual stim-

uli included white noise (m-sequence) stimuli, moving bars, sine

wave gratings and natural scene stimuli. The signals coming from

the recording channels on the electrode were amplified and band

pass filtered from 500 to 6 KHz before being digitized with 12 bit

resolution at a rate of 25 KHz (a sampling interval of 40 µs).

Continuous acquisition of samples at this rate resulted in file sizes

of about 8 GB for 45 min of recording.

These and other details of the experimental procedures

(Blanche et al., 2005) were carried out in accordance with guide-

lines established by the Canadian Council for Animal Care and

institutional protocols approved by the Animal Care Committee

of the University of British Columbia.

Recording sites on the electrode are referred to here as chan-

nels. On any particular electrode, usually 2–3 channels were

non-functional and connected to ground. They were identifiable

on the basis of a low noise level and were masked out from subse-

quent processing. Electrodes were either of 2 or 3 column design

(Blanche et al., 2005) with sites 50, 65, or 75 µm apart.

PRE-PROCESSING

Inspection of Fourier power spectra of raw voltage recordings

containing action potentials showed that recorded spikes con-

tributed energy spread across a wide range of frequencies. This

suggests that smoothing or other frequency-based (linear) oper-

ations on the signal are unlikely to increase the spike-signal-to-

noise ratio. We nevertheless tested a variety of pre-processing

options, described as follows.

Removal of common mean

Subtraction of the common mean when a large number of chan-

nels is being used has been shown to be advantageous by Ludwig

et al. (2009). The underlying argument is that some sources of

noise, especially those from non-physiological external sources,

will be common to all channels and this signal can be estimated

by taking the mean of all the signals and subtracting it from each

channel. This method will work if the internal signals of interest

are all uncorrelated across channels and if the number of chan-

nels is large. Neither of these assumptions is completely correct

but the approximation may be good enough to be useful. We

implemented subtraction of the common mean according to the

following formula:

V ′(n, t) = V(n, t) −
1

Nc

Nc
∑

n = 1

V(n, t) (1)

where V ′(n, t) is the transformed voltage, V, recorded on channel

n at the integer time point t, (in units of 40 µs) and Nc is the total

number of channels.
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Temporal smoothing

A simple and fast way to remove noise is to locally smooth each
waveform, such that:

V ′(n, t) = 0.5 V(n, t) + 0.25 V(n, t + 1) + 0.25 V(n, t − 1) . (2)

This can be repeated and, with repetition, approximates con-

volution of the waveform with a Gaussian kernel whose width

increases with the number of repetitions. Correspondingly, the

Fourier spectrum of the original waveform is multiplied by a

Gaussian (whose peak is at zero frequency) thereby implementing

a gradual attenuation of high frequencies in the waveform.

Spatial smoothing

We sometimes averaged signals across neighboring channels at

the same time point. This was done by convolution with a

Gaussian with a width comparable to the spacing between adja-

cent electrode channels:

V ′(n, t) =

Nc
∑

m = 1

V(m, t)G(n, m, σa) (3)

where G(n, m, σa) is a Gaussian function of distance, in microns,

between electrode sites n and m, and σa gives the width of the

Gaussian. Combining spatial smoothing, e.g. with σa = 50 µm,

with temporal smoothing yielded extremely clean-looking signals

with almost no noise other than what looked like spikes. However,

there was no clear indication that either event detection or sorting

were improved as a result.

Sample-and-hold correction

Voltage samples from different channels are acquired at slightly

different times because the A-D converters (we used two boards

with 32 channels each, running in parallel) sample channels

sequentially (Blanche and Swindale, 2006) with 1 µs holds (or

delays) between consecutively sampled channels. This resulted

in sampling delays up to 31 µs across pairs of channels. This is

an appreciable fraction of the sampling interval of 40 µs. The

required correction was made by recalculating voltage waveform

on each channel, interpolating so that voltage values were shifted

by amounts that brought the waveform on each channel into exact

temporal alignment. Although this correction should probably

always be made, we found it made little difference to the results

and it was generally omitted.

In summary, pre-processing of the voltage waveforms was

either omitted or was limited to removal of the common mean

and a single temporal smoothing pass (Equation 2).

OVERVIEW OF SORTING PROCEDURE

Spike sorting following pre-processing (if any) had the follow-

ing stages (Figure 1): (a) event detection followed by initial event

alignment; (b) assignment of events to channels to form an

initial set of channel-based clusters and then (c) splitting (or sub-

clustering) these events into single, homogenous clusters. Because

single units may give rise to events that are inconsistently assigned

to different (usually neighboring) channels, and therefore end

up in different clusters, a further stage was needed, (d) where

FIGURE 1 | Stages of the procedure for spike sorting.

clusters were either merged or events were reassigned between

pairs of neighboring clusters. Clusters that were objectively dis-

tinct from all other clusters were identified during this stage. In

the final stage (e) the user reviewed cluster pairs that could not

be defined as distinct by automated procedures. Pairs could be

merged, recombined and split, or declared to be distinct by the

user. Ambiguous clusters—those which failed the distinctness test

for one or more cluster pairs—could either be deleted or treated

as incomplete and/or multi-unit.

EVENT DETECTION

The event detection method we used will not be described in

detail here on the grounds that it is conceptually a separate stage

of spike sorting. We emphasize that the sorting methods we

describe can be applied to events detected by any method. We

will however, give a brief justification and description of the event

detection method we used, as follows.

A problem specific to event detection on multichannel elec-

trodes is that a single spike may give rise to detectable events

on several adjacent channels. Existing methods (e.g. see Blanche,

2005) consist of applying a threshold test of some kind to the

waveform on a particular channel, n, at some time t, and reg-

istering an event if the waveform passes a further test (e.g. falls

above or below a second threshold, or thresholds, at one or more

points in time following t). Following event registration at (n,

t) a spatiotemporal lockout is applied, meaning that events are

vetoed from detection for a short time (typically t ± 0.5 ms) on

the same channel. Events detected at the same time on chan-

nels some specified distance away (typically <150 µm) are also

locked out on the grounds that they are likely to be caused by

the same spike. Spatiotemporal lockout is problematic however
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given that spikes from different neurons may occur close together

in time and space. Whichever of the two events is detected first

will cause the other one to be locked out even though the two

events might otherwise be identifiable as two. This is undesir-

able because as well as resulting in undetected events, measures of

spike synchrony between nearby cells at short time intervals will

yield fewer synchronous or near-synchronous events than might

actually be occurring. The fact that a single real event (i.e. a spike)

may give rise to multiple detected events on adjacent channels

suggests that event detection on polytrodes is, for most spikes,

a clustering problem. Events detected at nearby positions in space

and time may be caused by a single spike, though sometimes adja-

cent, or nearly adjacent, events may be caused by different spikes.

The way in which the events are clustered in space and time how-

ever, may give clues as to whether they are caused by single or

multiple spikes.

Given this, we accomplished event detection by first registering

points in time and space, referred to here as proto-events, which

passed a threshold test. We defined proto-events as thresholded,

local voltage space-time maxima or minima. That is, a point (n, t)

was registered as a proto-event if (a) its voltage V(n, t) exceeded

the voltage in all the nearest neighbors of channel n in the array at

time t, and if it exceeded the values of V(n, t −1) and V(n, t +1),

and (b) if V(n, t) exceeded a threshold voltage. The inverse of this

was also applied, i.e. a point was registered as a proto-event if V(n,

t) was a local minimum and if V(n, t) fell below the same (nega-

tive) voltage threshold. Following Quiroga et al. (2004) we defined

the voltage threshold separately for each channel as a multiple,

θe, of the channel noise, measured as the median of the absolute

voltage values divided by 0.6745. A single spike might sometimes

give rise to only one proto-event if only a single peak crossed

threshold; however most spikes gave rise to several proto-events

on neighboring channels at points in time corresponding to the

peaks and troughs of the waveform. Peak or trough voltages of a

spike did not always occur at the same time on adjacent channels

and such occurrences likewise could give rise to multiple proto-

events. Two spikes that are adjacent in space-time will give rise

to clusters of proto-events that might abut but should be recog-

nized as separate clusters. Figure 2 shows a sample portion of

recorded waveforms with detected proto-events shown as blue

dots and the resulting event cluster centers shown as red dots. We

typically used thresholds θe, in the range 5.0–6.0 for proto-event

detection.

Proto-events were then clustered with the aim that those

belonging to the same spike were merged into a single event

while those belonging to different spikes were not. The clustering

methodology was based on the gradient ascent method described

below. Tests and comparisons of the method with more stan-

dard event detection methods will be reported in more detail

in a separate paper (Swindale and Spacek, in preparation). We

emphasize that none of the results presented in this paper depend

critically on the use of this particular method and that similar

results would be obtained with more standard event detection

methods.

Event detection yielded event times, given by the integer

ti, where i indexes the event, and t is the time of the event in

multiples of the sampling interval of 40 µs. A channel number,

ni, was defined as the channel that was closest to the final position

of the event.

CALCULATION OF TEMPLATES AND EVENT ALIGNMENT

A number of procedures were common to all stages of sorting.

Following assignment of events to a cluster, the average waveform

of the events in the cluster, which is here termed the template,

was calculated. Prior to, or following, calculation of a template,

events may be aligned in various ways. By alignment we mean

the choice of an exact time at which the event can be said to

have occurred. Alignment may be based on a variety of criteria:

(1) event-based alignment in which each event is independently

aligned based on the shape of the event itself (e.g. to a peak or

trough) without reference to a template or other events; (2) least-

squares matching to the template in which events are aligned to

minimize a least-squares match to the template; and (3) template-

based alignment in which the alignment of all the events in a single

cluster is changed by the same amount causing the position of the

template to shift.

Alignment is important as it allows more exact comparisons

of events and templates for the purposes of splitting and merg-

ing clusters. In order to do this we found it necessary to increase

the accuracy of representation of event time by calculating a

fractional floating point offset, δi based on sinc interpolation of

the event waveform between sample points (Pouzat et al., 2002;

Blanche and Swindale, 2006). Sinc interpolation was done to 4 µs

accuracy (9 interpolated points per sample point, summed over ±

6 sample points). The extra accuracy in alignment of waveforms

given by interpolation was found to give a significant advantage

in subsequent clustering. In particular it avoided the artifactual

FIGURE 2 | Event detection: section of recorded voltage waveform

showing proto-events—local maxima or minima in space-time (blue

dots)—and the resulting event locations (red dots) on the assigned

event channel (ni ) following proto-event clustering. Recording channels

are arranged in order of vertical position on the polytrode, which had three

columns. Spatially adjacent channels are thus not always adjacent on the

figure. One flat channel (9th from the top) is masked out from processing.

Note the inconsistent assignment of events that are probably from the same

unit to different channels. The two waveforms marked by proto-events at the

top (3rd and 8th channels from the top) are on channels that are close together

and were recognized as a single event. Subsequent clustering confirmed that

these were not two separate units. Scale bar = 1 ms and 100 µV.
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splitting of clusters of large-amplitude spikes into two clusters.

Storing event times as an integer plus a separate floating point

offset also avoided the loss of accuracy that might result from

using a single floating point value to store both the integer and

fractional parts of the time index since the integer parts could be

large (∼227) for long (∼60 min) recording periods.

The procedures for calculating templates and for aligning

events are described in more detail in the following sections.

Event-based alignment

Event-based alignment was used immediately following event

detection when clusters were not yet present. Options explored

included: (a) alignment to the largest peak of the waveform; (b)

alignment to the most negative trough; (c) alignment to a mea-

sure of the center of the entire waveform or (d) alignment to the

position of the first positive-going zero-crossing of the waveform.

For the results presented in this paper we chose option (b) since a

single negative minimum was often prominent.

Calculation of templates

Following the assignment of events to a cluster, or the addi-

tion or removal of events from an existing cluster, a template,

Tk(n, τ)—the average waveform of all the events in the cluster—

was calculated as:

Tk (n, τ) =
1

Nk

∑

i∈Q(k)

V∗(n, ti + δi + τ) (4)

where k denotes the template or cluster number, n is the channel

number, τ is the time index relative to the template center (τ = 0)

in integer units of 40 µs, Q(k) is the set of events, i, in cluster

k, Nk is the number of events in the cluster, ti + δi is the time

(integer plus fractional offset) of event i, and V∗(n, t) returns the

interpolated value of V for the non-integer time t = ti + δi + τ.

Voltages were calculated for values of τ in the range −10 to 15

(−0.4 to +0.6 ms) inclusive, giving 26 voltage samples per tem-

plate waveform. To speed up calculations for clusters larger than

1000 events in size, only 1000 randomly chosen events were used

to calculate the template. The standard deviation of the voltage

values was also calculated.

Following calculation of the template, a set of channels, Pk, was

assigned to it. A center channel, nk, on which the peak-to-peak

voltage was greatest was always assigned. Additional channels

were included in the set if the peak-to-peak voltage, Vpp ≥ 0.2

times the peak-to-peak voltage on the center channel, and if the

peak-to-peak height on the channel was >2 times the standard

deviation of the template measured on its center channel. This

typically resulted in the assignment of 3–8 channels per template.

A spatial center position, (xk, yk) of the template was calculated

as the mean position of the channels in set Pk, weighted by the

peak-to-peak voltages.

Least-squares alignment of events to templates

After the initial calculation of the template, individual events were
realigned to it using a least-squares match. This was done by cal-
culating the temporal offset, τmin, which when added to the event

time, minimized the RMS difference between the event waveform
and the template. This is given by

τmin = arg min
τs

⎧

⎨

⎩

∑

n⊂Pk

τ= 15
∑

τ=−10

[

V∗(n, ti + τ+ τs) − Tk(n, τ)

]2

⎫

⎬

⎭

(5)

This was done over a range of values of τs = −5.0 to +5.0 (equiv-

alently ± 200 µs). The event time was then recomputed as t′i =

int(ti + τmin) and δ′
i = ti + τmin − t′i .

Equation 5 does not necessarily have a single local minimum,

however in nearly all cases (>99.75%) a minimum was found

within τ = ±1. Values of τmin at the extremes of the search range

(i.e. = ± 5) generally indicated noisy or spuriously shaped events

and these were either left where they were, or removed from the

cluster.

Since least-squares realignments changed the shape of the tem-

plate, it was recalculated following the realignment of events.

Further realignments resulted in increasingly small and insignif-

icant changes in template shape and individual event alignment

times.

Template-based alignment

For the purposes of deciding whether template pairs are similar

(indicating that they should be merged) or different, it is desirable

to align them in a way that makes recognition of similarity easy.

Templates can be aligned to the same types of feature used for

event-based alignment, such as peaks or zero-crossings. Aligning

a template implies realigning all the events within it by adding

or subtracting a constant time value to all of the individual event

times. This is best done by choosing an alignment criterion that

does not depend on a non-linear selection of a feature such as a

peak or zero-crossing. For example some spike waveforms may

have two troughs of nearly equal amplitude on either side of

a larger peak (e.g. see Figure 3D). This can result in templates

aligned to different features of what is actually the same event

waveform, with the result that they are spuriously assigned to

apparently distinct clusters. We chose instead to align templates

to a 2nd derivative weighted measure of the average position in

time, τ̄k, of template k:

τ̄k =

∑

n⊂Pk

∑τ0
τ = −τ0

τ

∣

∣

∣

d2Tk(n, τ)

dτ2

∣

∣

∣

∑

n⊂Pk

∑τ0
τ = −τ0

∣

∣

∣

d2Tk(n,τ)

dτ2

∣

∣

∣

(6)

where d2T(n, τ)

dτ2 = 2T(n, τ) − T(n, τ − 1) − T(n, τ + 1). A

relatively long temporal window, with τ0 typically = 38 (i.e.

1.5 ms), was used to determine the average position because tem-

plates can be extended in time. Ideally, small shifts in the template

position should shift τ̄k by the same amount and this will only

happen if the entire non-zero portion of the template lies within

the range of values of τ0. Following calculation of τ̄k, the new inte-

ger time of each event was defined as t′i = int(ti + δi + τ̄k) and

the new fractional offset was given by δ′
i = ti + δi + τ̄k − t′i .

This method had the advantage of being parametric, i.e. small

changes in template shape produce only small changes in the

template position, unlike non-linear measures based on feature
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FIGURE 3 | Menagerie of spike shapes classified according to the

presence and temporal order of peaks and troughs. Types (A–C) are the

most common; type (D) less so; types (E) and (F) were the closest

approach to monopoles we could find in our data and are uncommon

(<1%). In order the classifications can be labeled as [−, +], [+, −], [+, −,

+], [−, +, −], [−], and [+]. Although these labels can be derived

unambiguously from most averaged spike templates, the categories are not

clearly distinct, and individual waveforms even less so.

selection. The use of the 2nd derivative weighting tended to bias

the center of the template toward the sharpest of the peaks or

troughs and to reduce the influence of slow changes following the

spike, which could often be quite prolonged.

FORMATION OF CHANNEL-BASED CLUSTERS

Following event detection and initial event-based alignment, an

initial set of clusters was formed, one for each non-masked (sec-

tion Data Acquisition) electrode channel, by assigning all the

events registered to a particular channel to the same cluster. The

template of each channel-based cluster was then calculated (sec-

tion Calculation of Templates) and events were realigned to the

templates using least-squares matching (section Least-Squares

Alignment of Events to Templates).

SUB-CLUSTERING OF CHANNEL-BASED CLUSTERS

We next carried out a test for the presence of sub-clusters in each

of the channel-based clusters. If the cluster was considered to be

homogenous and unsplittable it was labeled as such and the algo-

rithm proceeded to the next cluster in the list. Otherwise, the

cluster was split according to user defined preferences into two

or more sub-clusters. Each of these clusters was then subjected to

the same test and split if necessary, until all of the sub-clusters

formed from the initial one were judged to be unsplittable. This

procedure was repeated for the next channel-based cluster and so

on until all the clusters in the list were judged to be individually

unsplittable. The sub-clustering was done as follows.

EXTRACTION OF PRINCIPAL COMPONENTS

For each of the Nk multichannel waveforms in the cluster, a data

vector was constructed by taking the voltage values at M selected

time points of the waveform on the channels assigned to the

cluster template. We selected the time points by ranking the vari-

ances of the Nk voltages at each time point and taking up to

M = 100 points with the highest variance (the number could be

less for channels with few neighbors). From these N vectors an

M × M covariance matrix was calculated and the principal com-

ponent eigenvectors were calculated using standard techniques

(Press et al., 1994). These were sorted in order of eigenvalue and

the dot products of the first few with each data vector were used as

inputs for the subsequent clustering stage. We typically used only

the first two or three principal components for clustering.

GAC CLUSTERING BASED ON PRINCIPAL COMPONENTS

The GAC algorithm works in the following way. Data points

(in this case the principal component values extracted from the

spike waveform) vi = (x1,i, x2,i...), i = 1 . . . N, where N is the

total number of events being clustered, were duplicated to form

a second set, sk = vi, k = 1 . . . K; K = N initially. The points sk

will be referred to as “scout points.” A set of cluster indices, ci

was assigned such that ci = i initially. At each step, each scout

point used a Gaussian kernel estimator to calculate a local density

gradient from points vi and moved up the gradient by an amount:

�sk =

∑N
i = 1 (vi − sk) e

−
|vi − sk|

2

2σ2
m

∑N
i = 1 e

−
|vi − sk|

2

2σ2
m

(7)

This procedure for ascending density gradients is elsewhere

termed the mean-shift algorithm (Fukunaga and Hostetler, 1975).

Following this step, pairs of points in s that came within a dis-

tance, ε, of each other were merged, together with their associated

cluster indices. This was done by deleting the point with the

higher index, then setting those cluster index values that equaled

the index of the deleted point equal to the lower index. The values

of indices higher than that of the merged point, and the value of

K, were then decremented by 1. This ensured that cluster indices

remained in the range 1 to K.

Equation 7 was then recomputed for the remaining scout

points and the process of movement followed by merging was

repeated until all the points in s satisfied a criterion for being sta-

tionary. This criterion was that the point should have moved a

distance �s < 0.001 for 25 successive iterations. The end result

was a set of K clusters with the cluster membership of the i-th

data point vi given by the value of ci.

Equation 7 is slow to compute (of order N2) if the summa-

tion is done over all the data points in the cluster. If the number

of data points is large, not all of them need to be included

in the summation, at the expense of possibly losing some very

small clusters. We normally summed over every m-th point where

m = int(N/5000) + 1.

The algorithm can be visualized working on a hilly density

landscape as follows: at the beginning, each scout point in s is

labeled with an integer that uniquely identifies the data point
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in v from which it originates. Scouts move uphill and if two

meet, one hands over its label, or set of labels, to the other and

is deleted. Eventually there remains a single scout at the top of

each hill with a set of labels that identifies all the data points that

belong to the same cluster. Thus, points that have moved up gra-

dient paths that merge in a common center are considered to

be members of the same cluster. The detail, or smoothness, of

the density landscape is determined by the value of σm. If the

data points form well defined, separate clusters there should be

a range of values of σm that leads to similar numbers and sizes of

clusters.

Stability of cluster sizes was measured by running the algo-

rithm with a series of increasing values of σm, referred to below

as a clustering pass. The end result of each run, indexed by m, is

a set of K(m) sub-clusters, indexed by k, with varying numbers

of members, Ck
m, in each. The value of σm was increased until

the number of clusters K = 1. To identify stable ranges of σm for

particular sub-clusters, they had to be tracked across consecutive

values of σm. A sub-cluster was identified as the same from one

value of σm to the next, if (a) its size changed by less than a crite-

rion percentage θN (typically 5%) and (b) if its position (the mean

value of all its members) changed by less than 0.14σm. Each sub-

cluster was then assigned a stability score, Sk
m, which was equal

to the number of steps of σm across which it had been tracked.

Splitting of the cluster was then determined by the values of Sk
m

for the different sub-clusters. If no scores fell above a threshold,

θc, the cluster was deemed to be unsplittable. We explored the

options of (a) choosing to split the single sub-cluster with the best

score; (b) choosing the value of σm for which the score summed

across all the potential sub-clusters was a maximum; or (c) choos-

ing the value leading to the splitting of the maximum number of

clusters. A minimum cluster size, Nmin, was also applied during

this procedure. Once a best value for σm had been chosen, events

in sub-clusters for which Nk < Nmin were deleted, by setting their

cluster index to zero.

Specific parameters used for the results reported here were

σ1 = 5 µV, with σm increasing by 10% on successive iterations

and terminating with a value for which K = 1; the merge dis-

tance ε = σm; the % change threshold θN = 5%; the clustering

score threshold θc = 8 and the minimum cluster size Nmin =

50. For the results presented in this paper we chose option (a)

above, i.e. splitting off the sub-cluster with the highest value of

S, since (as shown below in section Single Clustering Pass) this

often led to an increase in the clusterability of the remaining

points.

Whenever a new cluster was formed by the above procedures,

or events were removed from a cluster, the template was recal-

culated and the new or remaining events were aligned to it by

least-squares matching. Once a cluster was deemed to be stable,

the template was aligned as described above in section Template-

Based Alignment in preparation for the following merging and

reassignment stage.

MERGING AND REASSIGNMENT OF EVENTS BETWEEN CLUSTERS

The result of the first clustering stage is the formation of a number

of clusters (100–150 is typical) which are individually deemed to

be unsplittable. There remains however, the problem that events

belonging to a single unit may have been split between adja-

cent channels. This happens especially for units whose spikes are

smaller and have a wider spatial spread than others, or in cases

where a more narrowly distributed spike happens to be positioned

midway between channels. The splitting may have two possible

outcomes. One is that the events end up in two (or sometimes

more) clusters which have to be recognized as containing the same

class of events and simply have to be merged into one. This out-

come is more likely when the two relevant clusters are roughly

equal in size. Another occurrence is that a small number of spikes

from a cluster get registered to a neighboring channel and end up

being included in a larger cluster. Frequently, the same thing hap-

pens to spikes in the other cluster. This case requires reassigning

spikes between the two clusters which can be done by merging and

re-clustering. Another problem requiring merging is that clusters

may have been wrongly split because of inconsistent alignment to

variably placed negative troughs.

Testing for these cases required comparisons of all pairs of

clusters. Given a measure of distinctness between pairs, a cluster

was formally defined as “distinct” if it was unambiguously sep-

arable from all other clusters. If it was not, then the status was

defined as “ambiguous”: spikes might be missing and/or the clus-

ter might contain subsets of spikes from a variety of units with

similar shapes. Note that the term “distinct,” if applied to a clus-

ter pair, indicates only that the pair is distinct. Calling a cluster

“distinct” implies that it is distinct from all other clusters.

The goal of the second stage of clustering was therefore to

apply a distinctness measure to all pairs of clusters, merging

clusters and reassigning events with the goal of maximizing the

number of distinct clusters. Although the number of pairs is

large (for 100 clusters it is 4950) the great majority can safely be

declared as distinct because they are physically far apart and have

few or no channels in common. We decided to partially automate

the procedure, leaving a final set of pairs for which the user was

able to decide on the basis of visual inspection whether to merge,

merge and re-split, define as distinct or leave as ambiguously

related. Two measures of cluster similarity were used as a guide

to this process: an RMS measure of template shape similarity and

a measure of overlap of the points in clusters pairs in their com-

mon principal components space. Template pairs were excluded

from this comparison (i.e. were deemed not to overlap spatially)

if less than half of the members of both sets of channels assigned

to the templates were members of the other set. For example, a

template with only two channels will overlap another one if one

of the two channels is also assigned to the other template, no mat-

ter how many other channels the template has, whereas a template

with three channels would not overlap if only one of the three was

in common.

RMS template similarity

An obvious measure of similarity between two clusters is the sim-

ilarity between their templates. A measure of this is the RMS

voltage difference between the pair, which we calculated as:

qk,l =

⎧

⎨

⎩

1

M

∑

n⊂Uk,l

τ = 15
∑

τ = −10

[Tk (n, τ) − Tl (n, τ)]2

⎫

⎬

⎭

0.5

(8)
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where Tk(n, τ) is the voltage on channel n, at time τ of the k-th

template; Uk,l denotes the union of the channels in sets Pk and Pl,

and M is the number of points in the summation (= 26 × number

of channels in Uk,l). The measure is symmetrical (i.e. qk,l = ql,k).

Cluster pair overlap

Because our primary clustering measure is based on a projection

of spike waveform values into a reduced principal components

space it seemed appropriate to use the same kind of projection

as a measure of overlap between cluster pairs. To do this we tem-

porarily merged the pair, calculated the template, and realigned

all the events to it. We then calculated the principal components

and projected the points, labeled as to their cluster origin, into the

first two dimensions of the space. We refer to plots of points in

this common space as cPC plots. If the points have similar, over-

lapping distributions it should be safe to merge the clusters. If

the points form clearly separable clusters then the source clusters

can safely be labeled as distinct. For intermediate cases of partial

overlap the GAC algorithm can be used to decide if two distinct

clusters are present. To assess the distinctness of the distributions,

we used an overlap measure defined on the basis of nearest-

neighbor identity. For the smaller of the two clusters, labeled k

and l, where Nk < Nl we calculated the number of nearest neigh-

bor points, uk, that belonged to cluster k. The proportion, pk =

uk/Nk, was compared with the value expected for completely

mixed clusters ek,l = Nk/(Nk + Nl) to give a normalized measure

ok,l =
1 − pk

1 − ek,l
(9)

This measure is close to 1 (it can be slightly greater) for clusters

that overlap nearly completely and has a minimum value of 0

for clusters with no overlap, i.e. where all nearest neighbor pairs

belong to the same cluster. Calculation of ok,l was sped up by

sub-sampling equal fractions from the two clusters so that the

total number of points in the comparison was ≤2000. A further

increase in speed up came from only calculating it for templates

that were deemed to overlap spatially (see above in section

Merging and Reassignment of Events Between Clusters).

Pairwise distinctness tests

The overlap index could sometimes be low (e.g. <0.1) for clus-

ter pairs whose template shapes, measured by q, were similar

(e.g. <10 µV). This meant that low values of q could not safely

be used as a criterion for merging. Conversely, template shapes

could be different for clusters pairs whose points were not clearly

separated in cPC plots. For these reasons (and others, discussed

below in section Merging and Splitting Clusters) we approached

the task of automated merging and splitting cautiously, relying

largely on the overlap index.

We began by calculating lists of qk,l and ok,l for every pair of

clusters. Each cluster, k, was then defined as “distinct” if one or

more of the following pairwise criteria were satisfied for all other

clusters, l 
= k:

1. Less than half the channels in set Pk were members of set Pl

and vice versa;

2. qk,l >25 µV (a conservative criterion that separated clusters

with very different waveforms);

3. ok,l < 0.05 (a conservative criterion that identified cluster pairs

with very little overlap that could safely be assumed to be

distinct with few wrongly assigned spikes);

4. The user indicated that the pair is distinct;

We will refer to this distinctness test as DT(k,l) returning the value

true or false for a given cluster pair. If a cluster pair fails this

test, both clusters are defined as “ambiguous” (= not distinct) no

matter what their relations are with other clusters.

In the initial, automated, stage of the merging and reas-

signment procedure, ambiguous cluster pairs were merged if

qk,l < 5.0 µV and if ok,l > 0.9. Following this, pairs for which

0.05 ≤ ok,l < 0.15 (indicating a minor degree of overlap), were

then combined and tested for the presence of stable sub-clusters.

If these were present (i.e. if the clustering stability score S exceeded

the threshold θc for one or more sub-clusters) the cluster was

split. Since the cluster was the sum of two source clusters, split-

ting consisted of reassigning points between the original two

clusters plus occasional rejection of outlying points that fell into

neither sub-cluster. If, on the other hand, the combined cluster

was unclusterable, i.e. no clustering score, S, exceeded the thresh-

old θc, the original two clusters were restored and the relation

between them remained ambiguous.

Following each merge or reassignment, the lists of values of qk,l

and ok,l were updated by recalculating all of the pairwise measures

involving either of the two clusters.

During automated merging and reassignment the number of

distinct clusters generally increased. At the end of it, the user was

able to serially review a list of cluster pairs that still failed test

DT(k,l). Review involved inspecting the projection of combined

pairs into the common (cPC) space together with superim-

posed plots of spike waveforms from the two clusters. The user

could decide to merge two clusters if waveforms appeared simi-

lar and if points in the cPC plots appeared to combine to form a

homogenous distribution around a common center. Occasionally,

waveforms appeared different and yet the cPC plots and over-

lap measure did not clearly indicate separable clusters. In such

cases the user was able to apply rule 4 of test DT to indicate that

the clusters were distinct. In many cases the cPC plots showed

irregular and/or overlapping distributions of points and we gen-

erally let such pairs remain ambiguous. Plots showing the times

at which pairs of units fired (x-axis) together with the peak-to-

peak height (y-axis) colored according to cluster origin (similar

to Figure 10G), as well as cross- and auto-correlograms, were

often helpful in deciding whether to combine clusters or not.

For example if one unit started firing immediately after the other

one stopped, and the peak-to-peak heights were similar at the

transition point it seemed likely that they should be combined.

CODE

Program code was written using Intel Visual Fortran Composer

XE running under Windows 7 (64 bit) on an Intel Sandy Bridge

Core i7 CPU at 3.4 GHz. The entire voltage record (typically

2–8 GB) was read from disk and stored in RAM. A stand-alone

Windows program that executes the procedures described in the
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paper is available on request. Source code is also available if

requested. An alternate implementation (http://spyke.github.io)

was written in Python and tested in Linux, using free libraries and

multithreaded Cython code for computationally expensive steps

such as GAC. This implementation works across multiple voltage

records of greater total duration, loading data as needed on the fly.

Table 1 lists the more common mathematical symbols used in

the above description.

RESULTS

TEMPLATE SHAPES

Figure 3 shows a variety of waveform shapes that we encountered

in our recordings, defined in terms of the temporal order and

number of peaks and troughs. No claim is made as to the actual

distinctness of these types but the variation they embody appears

to go beyond that predicted by biophysical modeling studies (e.g.

see Gold et al., 2006; Mechler et al., 2011) and is relevant to

the problem of alignment. Of the 6 types, type A was the most

common, accounting for roughly 80% of the templates. Type B

occurred at a rate 1–5%, type C around 15% while types D, E,

F were relatively uncommon, accounting for at most 1% each.

Types E and F are arguably just extreme cases of type C and D.

Types A and B can be aligned consistently based on the choice

of either the peak or trough, because (by definition) these types

contain only a single peak or trough. Type C events however can-

not be consistently aligned based on the use of the maximum peak

because, for many of them, there may be two peaks of nearly equal

amplitude where one is not consistently larger than the other.

This will result in spikes being split into two clusters. A similar

argument applies to the troughs of type D spikes.

SINGLE CLUSTERING PASS

Table 2 shows the number of sub-clusters, K, their sizes, Ck
m, and

stability scores, Sk
m, for a single clustering pass with varying val-

ues of σm. As described above in section GAC Clustering Based

on Principal Components this consists of a series of applica-

tions of the clustering algorithm with gradually increasing widths,

σm, of the Gaussian kernel gradient estimator (Equation 7). As

σm increases in size, the number of sub-clusters decreases until

only one is present. Ranges of σm within which sub-clusters

Table 1 | Definitions of commonly used mathematical symbols, typical values, and units.

Symbol Meaning Range or typical value Units

GENERAL

i Event number 1–500,000

n Channel number 1–54

Nc Number of non-masked electrode channels 51–52

V (n,t) Voltage on electrode channel n at time t −250 to 250 µV

ti Integer time index of event i 1–108 40 µs

x, y Position in electrode coordinates 0–2500 µs

Zn The set of immediate neighbors of channel n

δi Fractional offset of the event time relative to ti 0–1 40 µs

θe Threshold for proto-event detection 2–6

TEMPLATES

dk,l Physical distance between centers of templates k and l 0–1200 µm

nk Center channel for template k 1–54

Pk The set of channels assigned to template k

qk, l RMS voltage difference between templates k and l 3–40 µV

τ Time offset from template or event center −10 to +15 (−0.4 to +0.6 ms) 40 µs

Tk (n,τ) The template voltage on channel n, at time τ, obtained as the mean

of the waveforms in cluster k

±250 µV

Uk,l The union set of channels in templates k and l

CLUSTERING

ci Cluster index assigned to point i (of N waveforms) 1–1000

Ck
m The number of points in sub-cluster k obtained with σm

K Number of clusters 50–200

Nk No of points (events) in cluster k 50–100,000

Nmin Minimum cluster size 5–50

m Clustering step 1–30

ok,l Overlap between clusters k and l in cPC space 0–1

Q(k) The set of events i in cluster k

Sk
m The clustering score for sub-cluster k at σm 1–20

s List of coordinates of scout points

v List of principal component values for each waveform

σm Spatial scale for clustering of principal components 5–100 µV

θc Threshold applied to the clustering score, S 8

θN Cluster size change threshold 5 %
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Table 2 | Values of clustering parameters obtained on a single pass of the GAC algorithm.

m σm K C1
m[S1

m] C2
m[S2

m] C3
m[S3

m] C4
m[S4

m] C5
m[S5

m] C6
m[S6

m] C7
m C8

m

1 5 5 2496 [25] 1293 [4] 1244 [4] 71 [2] 51 [1] 44 39 37

2 5.5 6 2541 [25] 1286 [4] 1252 [4] 71 [2] 58 [1] 51 [1] 48 39

3 6.1 6 2664 [25] 1301 [4] 1276 [4] 84 [2] 63 [1] 55 [2] 32 32

4 6.7 5 2784 [25] 1318 [4] 1318 [4] 80 [2] 55 [2] 32 32 30

5 7.3 3 2908 [25] 2649 [21] 56 [1] 33 32 31 29 26

6 8.1 2 3036 [25] 2708 [21] 29 26 23 18 12 11

7 8.9 2 3037 [25] 2703 [21] 30 29 28 15 15 14

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·

12 14.3 2 3153 [25] 2782 [21] 28 16 8 6 3 2

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·

20 30.6 2 3182 [25] 2782 [21] 40 0 0 0 0 0

21 33.6 2 3223 [25] 2781 [21] 0 0 0 0 0 0

22 37 2 3223 [25] 2781 [21] 0 0 0 0 0 0

23 40.7 2 3222 [25] 2782 [21] 0 0 0 0 0 0

24 44.8 2 3222 [25] 2782 [21] 0 0 0 0 0 0

25 49.2 2 3226 [25] 2778 [21] 0 0 0 0 0 0

26 54.2 1 6004 [1] 0 0 0 0 0 0 0

The value of σm increases by 10% at each step. The number of points in each of the clusters obtained for a given value of σm is shown, followed by the cluster

stability score, S, in square brackets. Figure 4 shows the clusters present at step 12 (σm = 14.3).

remain stable in size and position were used to identify the pres-

ence of sub-clusters among the events. If no scores exceeded a

threshold θc, the cluster was deemed to be unsplittable. For cases

where scores exceed threshold, one or more stable sub-clusters

may be present and different choices of σm are possible. We

normally chose the single most stable sub-cluster and split that

off before repeating the pass on the remaining points. Figure 4

shows the points from which the values shown in Table 2 were

obtained.

Figure 5 shows examples of clustering outcomes for the GAC

algorithm, including sets of points that were deemed to be unclus-

terable. Note the clustering of non-Gaussian distributions of

points (e.g. the red points in Figure 5D) and that points in

the tails or skirts of clusters are often included in the cluster

(e.g. Figure 5B). While tails and skirts are often preserved, iso-

lated, scattered points usually get deleted (Figure 5F). Boundaries

between overlapping clusters are generally in the right places

(e.g. Figure 5E) and, with the parameters chosen, irregular or

sparse, non-concentrated distributions of points (Figures 5I,J)

are usually not split.

Whenever a new cluster was formed, or events removed from

an existing one, a new principal components space was defined

based on the remaining points in the cluster, and the clus-

tering process was repeated. Figure 6 shows an example of a

series of splits and re-projections of this nature. We frequently

observed that removal of a single sub-cluster revealed new or

more distinct clusters in the remaining points (e.g. compare

Figures 6B,C).

MERGING AND SPLITTING CLUSTERS

Events from a unit that is located midway between channels are

likely to be inconsistently assigned to different channels and hence

will end up in different clusters that need to be recombined.

Figure 7 shows an example of this occurrence. The figure also

illustrates the importance of aligning templates with a method

whose dependence on the non-linear selection of features such as

peak positions, or the center channel of the cluster, is minimized.

As a guide to merging, we compared pairs of clusters, k and

l, calculating the RMS difference, qk,l, between the waveforms

(Equation 8) and the overlap measure, ok,l, (Equation 9) obtained

from the distributions of points in the cPC space formed by tem-

porarily combining the events in the pair. This was done only

for cluster pairs with non-overlapping templates (see above in

section Merging and Reassignment of Events Between Clusters).

Figure 8F shows the distribution of values of qk,l and ok,l obtained

for a total of 1902 such cluster pairs in the 8 recordings listed

in Table 3. Overlap indices tend to be high (ok,l > 0.5) for very

small RMS differences (qk,l < 5 µV), and small (ok,l < 0.05) for

large RMS differences (qk,l > 20 µV). However, overall, values of

q are not reliably predictive of o and vice versa. Cluster pairs with

RMS differences <10 µV, indicating similarly shaped templates,

could have high or low overlap indices (Figure 8). Although

most pairs with large RMS differences (>15 µV) had low overlap

indices (Figure 8B) some pairs could have high overlap indices

(Figure 8F, points on the upper right of the distribution) sug-

gesting that they might not be distinct in spite of their waveform

shape difference. These observations indicate that the template
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FIGURE 4 | The data points used in Table 2 with clusters colored

according to the assignment in step 12. The cluster with the highest

stability score (S1 = 25) is shown in white; the second highest, cluster C2

(S2 = 21) is shown in red; the remaining clusters (green, dark blue, purple,

cyan and yellow) are all less than threshold size and were later deleted. In

this, and subsequent figures (Figures 5, 6, 8, 10, and 11) the x and y axes

shows the first and second principal component values, respectively. Each

point is a single event.

Table 3 | Summary of sorting results from 8 recordings made from 8 penetrations in 4 animals.

Recording ID Stimulus Recording No of Automated sorting Initial no of Pairs to Final no of % events

duration (min) events time (min) distinct/total examine distinct/total classified

17–32 S 45 3.3 × 105 23 36/100 62 77/79 97.4

17–48 M 44 3.6 × 105 13 8/41 37 30/30 98.0

18–09 S 17 1.7 × 105 9 34/72 48 59/59 97.6

18–50 M 44 3.1 × 105 47 26/76 58 51/55 95.6

21–03 M 44 1.3 × 105 7 8/37 36 26/30 97.2

21–57 M 44 1.1 × 105 6 18/60 44 46/48 96.1

22–17 M 44 2.7 × 105 9 29/70 33 53/57 98.3

22–26 M 44 1.6 × 105 33 23/117 90 72/83 93.7

The recordings were of spontaneous activity (stimulus = S) or responses to m-sequence stimuli (stimulus = M). The time taken for user-guided merging and

splitting was <10 min in all cases. Note that the total number of clusters drops during the user-guided stage due to merging of cluster pairs. The number of distinct

clusters rises as a result of the user indicating that some pairs are distinct or the effects of merging or splitting. Parameters for the sorting were the same for all

the recordings. For event detection, θe = 5.0; σx = σy = 70 µm and σt = 0.44 ms. The clustering thresholds were θN = 5% and θc = 8. Other parameters were as

defined in the text.
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FIGURE 5 | Examples of clustering. Panels (A–E) show examples of

sub-clusters with high stability scores (S > 8). (F) shows an example of a

single stable sub-cluster (red) surrounded by smaller clusters (white) which

were less than the minimum cluster size, and were later deleted. (G–J) show

stable clusters. (G) is an example of the final state of many clusters; (H) had

a potential sub-cluster with a score S = 7 (points in the lower left-hand

corner) that fell just below the clustering threshold of 8; (I,J) are irregular

distributions whose scores also fell below threshold. Examination of the

events in the irregular cluster (red) in (D) suggested that they came from a

single unit whose height and shape varied over the period of recording.

Sub-clusters were assigned with a choice of σm that lay in the middle of the

range of values across which the number of stable sub-clusters was a

maximum. These are ranked by size with colors in the order red, blue, yellow,

and purple. Actual scores (in the same order) for each of the examples are: A

(18, 25, 14), B (16, 12), C (14, 13), D (20, 15, 6), E (14, 14, 12, 8), F (15), G (7),

H (7), I (3), and J (7).

FIGURE 6 | (A–D): successive stages in splitting a channel-based cluster.

Top row: clusters in principal components space. Bottom row: waveforms

of the clusters shown in red in the top panel. Waveforms on the center

channel are shown in black; waveforms on a neighboring channel in gray.

The center channel in (B) has shifted because the spatial center of the

template formed from these waveforms was closest to the lower

channel. (A): (top panel) the initial set of points (n = 6116) showing the

single most stable cluster identified (red). After the points in this cluster

are split off, a new principal components space is calculated from the

remaining points (B) and the most stable cluster in this set is identified.

This procedure is repeated until only one stable cluster remains (D).

Newly split clusters are subjected to the same procedure until all the

clusters formed are judged to be stable. Note that the removal of a

cluster in (B) results in clusters in the remaining points becoming more

distinct (C). Note that clustering is based on a larger number of channels

than shown in the figure.

RMS difference is an unreliable guide for deciding whether or not

to merge clusters.

AUTOMATED SORTING

Table 3 summarizes overall sorting results from a representa-

tive set of recordings, showing the number of distinct clusters

following the initial automated sorting stage and the num-

ber following the user guided stage. The time required for

both stages was less than the recording time in most cases,

though the ratio can be expected to rise for recordings with

higher overall spike rates and spike numbers than those

tested here.
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FIGURE 7 | Effect of alignment choice on spikes from a unit whose

spike height was similar on two adjacent channels. As a result, spikes

were inconsistently registered to different channels and ended up in

different clusters (superimposed waveform plots in red and blue). (A): the

effect of aligning the two templates to the negative trough on the center

channel for each. Arrows show the center channels for the red cluster

(5528 events) and the blue cluster (11314 events). The RMS difference, q,

between the templates = 15.9 µV. (B): the two clusters after separately

aligning each to the 2nd derivative weighted measure of the template

center (Equation 6, section Template-Based Alignment). Now q = 3.5 µV

allowing the clusters to be automatically merged.

Figure 9 shows examples of complete sets of templates and

randomly selected event waveforms present on the complete set

of electrode channels in two representative recordings.

LARGE AMPLITUDE SPIKES

Large amplitude spikes (e.g. > 200 µV peak-to-peak) could

sometimes vary slowly and substantially in amplitude over the

period of recording (Figure 10). Continuous variations led to

clusters that were smeared out in PC space, often along the

first principal component axis (Figures 10C,F). GAC could often

tolerate such variations if they were gradual, however this was

not always the case and spike height could sometimes vary dis-

continuously, resulting in the splitting of spikes into different

clusters. These could normally be recombined in the user-guided

stage based on the knowledge that the problem is common with

large-amplitude spikes and the observation that the entire spike

waveform shape changes in amplitude, rather than in any other

shape aspect. Time course plots (Figure 10G) colored according

to cluster origin, were also helpful in deciding that two units were

actually more likely to be a single unit with a spike amplitude that

was time-varying.

RECEPTIVE FIELD BEHAVIOR

Figure 11 shows an example (found with relatively little search-

ing) of a pair of units whose template shapes were similar

(q = 8.94) but which had clearly different receptive fields.

Although spike shape was almost identical on the center channels

(Figure 11A, bottom right), small differences in shape on the

neighboring channels gave rise to two distinct clusters in cPC

space (Figure 11B). One of the two units had a well-defined

receptive field as determined by reverse-correlation to the

m-sequence stimulus used during the period of recording

(Figure 11C, upper row) while the other (presumably a complex

cell) did not.

TESTS WITH SURROGATE DATA

Sorting was tested with surrogate data distributed to participants

in a Workshop on Spike Sorting Software organized by G. Buzsaki

and T. Harris, held at Janelia Farm Research Campus, USA, on

February 24–26, 2013. Participants had no prior knowledge of

the nature of the data or how results would be evaluated. Datasets

were generated by taking recordings made with polytrode probes

placed in the thalamus (8 site probe, staggered 20 µm spacing) or

hippocampus (32 site probe, linear spacing) of freely moving rats

(Peyrache et al., unpublished data). Spike signals for which there

was “ground truth” were generated by taking well isolated spikes

from a putative unit recorded on one shank and adding them to

the recording on another shank thus, ensuring that the relation-

ship of that spike train with background activity and brain states

was preserved. All the recordings contained actual spiking activ-

ity in addition to the added ground truth spike trains. The quality

of the spike sorting was judged by calculating the False Negative

(FN) and False Positives (FP) for the ground truth spike trains.

The FP rate for the 8 channel data (n = 6936 spikes) was 0.26%

and for the 32 channel data (n = 7077 spikes) it was 0.014%. The

corresponding FN rates were 2.1 and 0.37% (Peyrache, Personal

Communication).

Additional tests were done on simulated ground truth

data described in Quiroga et al. (2004) and available at

http://www2.le.ac.uk/departments/engineering/research/bioengin

eering/neuroengineering-lab/software This data consists of a

simulated single-channel recording with three different spike

shapes added to noise backgrounds of variable amplitude.

Classification results for these data for two different clustering

methods, superparamagnetic clustering (SPC) and K-means,

applied to the PCA distributions of the spike waveforms are

given in Table 2 of Quiroga et al. (2004). We applied our event

detection and clustering routines, without modification, to the

simulated recordings after high-pass filtering with a cutoff at

0.5 KHz and a half-Gaussian roll-off with width σ = 0.25 KHz.

The results are shown in Table 4 together with the values reported

by Quiroga et al. (2004). They show that we detected and classi-

fied similar numbers of events as Quiroga et al. (2004) and that

GAC made about a third (total = 4904) of the errors made by

SPC (total = 16640). K-means clustering did better in some cases

but we noted that the clusters in the simulated data (as shown

by PCA) were approximately spherical, evenly distributed, and

of almost equal size. These are ideal conditions for K-means but

this algorithm would be expected to perform significantly less

well with variably shaped and irregularly positioned clusters, as

occurs in our non-simulated data. In addition, K-means, unlike

GAC, is supervised, requiring seeding with the correct number

of clusters. We also note that Quiroga et al. (2004) omitted event

detection but instead used the known times of the spikes in the

files. This means that FP are absent in their error rates. Our false

positive rates were generally low, with the exception of files with

noise levels of 0.2 or greater.

DISCUSSION

It may not have been appreciated when polytrodes were first

introduced (Drake et al., 1988; Bragin et al., 2000; Buzsáki, 2004;

Blanche et al., 2005) that spike sorting might turn out to be
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FIGURE 8 | (A–E): Comparisons of cluster pairs using the RMS waveform

differences (q) and cPC overlap measure (o). Left panels show waveforms for

the two clusters overplotted in red and blue with waveforms placed in

positions corresponding to the recording sites. Right panels show the points

in cPC space. (A): example of a pair with similar waveform shapes and high

cluster overlap, indicating that they should be merged. (B): example of a pair

with very distinct waveform shapes (q = 14.6) and low cluster overlap

(o = 0.01) indicating that the pair is distinct. (C): example of a pair with similar

waveform shapes (q = 5.2) but distinct clusters (o = 0.03) in cPC space. (D):

a cluster pair with similar waveform shapes giving rise to two distinct but

overlapping clusters in cPC space, indicating the need for merging followed

by splitting. (E): example of an ambiguous relation between two clusters:

waveform shapes are similar and the combined set of points does not yield

clearly separable clusters. Scale bar in (A) shows 0.5 ms and 100 µV, and

applies to all waveforms. (F) Values of the cluster-pair overlap index ok, l

plotted against values of template RMS difference qk, l . Data are taken from

a total of 1902 randomly chosen cluster pairs out of a total of 9510 in the 8

recordings shown in Table 3, immediately following the completion of

splitting of channel-based clusters, and prior to automated or user-guided

merging of clusters. The plus sign marks the origin in PC space.

a substantially more complex problem than with tetrodes. This

has proved to be the case and can be attributed to the much

higher dimensionality of the space in which spike signals must

be detected and clustered as well as the greater volume of data

that needs to be handled (Einevoll et al., 2012). An additional

problem, not specific to polytrodes but also limiting, is the lack

of a reliable, fast, algorithm for detecting clusters in the features

extracted from the spike waveforms. The methods devised here

address these and other difficulties specific to spike sorting with

polytrodes: (1) alignment of events in such a way as to best reveal

the presence of common features among them; (2) extraction of

those low-dimensional features that are best diagnostic of differ-

ences between neurons; (3) clustering of these features to reveal

putative single units; (4) post-clustering processing, including the

need to merge clusters or reassign spikes between cluster pairs and

finally (5) the need for an objective measure of how distinct each

cluster is from all the others. Many of these problems also occur in

the context of tetrode spike-sorting and multichannel electrodes

in general. They are separable, which means that improvements in

any one of them can be expected to lead to improvements in the

overall procedure. We discuss our particular solutions of them in

the same order, as follows.

ALIGNMENT OF EVENTS AND TEMPLATES

We found that accurate definition of event times, interpolat-

ing to within a few µs, was critical to clustering and avoiding

artifacts. For example if interpolation was not done, large ampli-

tude spikes were sometimes split into two spurious clusters (data

not shown) if the peak was used for alignment. The choice

of an alignment criterion was difficult because of the variabil-

ity in event shapes, both within and between units. Alignment

can be done in two ways: either with reference solely to the
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FIGURE 9 | Two complete sets of sorted template waveforms

(left side of each pair) and superimposed individual event

waveforms (right sides) from recordings (A): 18-09 and (B):

22-27. The template waveform displays show the templates for

each of the units, including waveforms on the center channel and

its immediate neighbors in colors that correspond with those used

on the right panel. The event waveform displays show 25

randomly selected waveforms from each of the units on the

center channel for each unit. Channels are laid out in their

physical arrangement, though the horizontal spacing has been

exaggerated for the purposes of display. Scalebar = 0.5 ms and

100 µV.
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FIGURE 10 | (A–F): Spike waveforms from two units (panels A–C and D–F,

respectively), whose height varied significantly over 45 min periods of

recording. Panels (A,B,D, E) each show 50 superimposed waveforms, taken

from periods when the height was a maximum (A,D) and minimum (B,E).

Only the center (maximum) channel of each unit is shown. The cyan line

shows the average template waveform taken over the entire period of

recording. The peak-to-peak amplitudes of the two templates were 205 and

325 µV. Panels (C, F) shows the distribution of the first two principal

components of the spike waveforms. The cross marks the origin in PC space.

In both cases the initial automated stage of clustering resulted in two clusters

for the units which were merged in the user-guided stage. (G): Plots of spike

peak-to-peak height over time for two simultaneously recorded units (red and

black dots). Each dot represents one spike. The variable unit (black dots) is the

one shown in (D–F). Note the lack of correlation in spike height variation for

the two units. The two units were estimated to be 270 µm apart. The plus

sign marks the origin in PC space.

event waveform—event-based alignment—or with reference to a

template which is the average of many similar waveforms. Event-

based alignment has to be done immediately following event

detection since reliable templates do not exist yet. Since it is

based on information in only a single waveform, it is suscepti-

ble to noise, especially for events of low-amplitude. Before events

can usefully be aligned with respect to a template there needs

to be some certainty that the events from which the template

is formed are already approximately well aligned and similar to

each other. However, this condition is generally met following the

initial clustering step. We tested a variety of specific alignment

criteria for event and template alignment, including alignment

to the most negative trough, the most positive peak, the time of

the positive going zero-crossing and the 2nd derivative weighted

estimate used in Equation 6. As argued above, measures that

depend on a non-linear selection of a feature such as a peak

or a zero-crossing have the disadvantage that a small change in

waveform shape may result in a large change in alignment time.

This can result in spurious clusters. Measures of mean position

are not susceptible to such effects but they seemed susceptible to

noise, especially for low-amplitude events, when used for event-

based alignment. Hence we compromised, using alignment to the

negative trough for initial event-based alignment, followed by

least-squares matching to the template and then template-based

alignment to mean position as soon as clusters were split off from

the initial channel-based set by the GAC algorithm. Other initial

alignment choices however did not give radically worse results.

EXTRACTION OF LOW-DIMENSIONAL FEATURES

Following event detection, clusters were initially defined as sets

of events registered to a specific channel on the electrode. We

then attempted to split each of these clusters. For this, and all

subsequent clustering steps, we chose to use principal compo-

nents analysis (PCA) to extract features to use in clustering, using

interpolated voltage values from waveforms on the channels

assigned to the template, taken within a time window of ∼1 ms

centered on each event. The first two or three principal compo-

nents were generally found to be adequate for revealing clusters.

Clustering time scales linearly with the number of feature dimen-

sions so additional components might be used with relatively

little penalty. However, we have, so far, no clearly documented

evidence of an improvement in clustering produced by using

more than three components. Other methods, such as wavelet

analysis (Quiroga et al., 2004) or independent components

analysis (ICA; Comon, 1994; Lewicki, 1998; Hyvärinen and Oja,

2000) might be used to extract features at this stage. While PCA

is able to detect remarkably small differences in spike waveform

shape (Figure 11) ICA (which is much more computationally

intensive) seems better at separating clusters of very unequal size

(Spacek, unpublished observations). Feature selection methods

that make assumptions about the normal shapes of spikes (for

example fitting a mathematical model of spike shape to each

event and using the model parameters as features) face a problem

in that we quite often found units (the one shown in Figure 7 is

an example) with unconventional shapes—waveforms that are

not similar to any of the shapes shown in Figure 3. It is unlikely

that model based feature extraction, or possibly also wavelet

analysis, would detect such shape variations. PCA or ICA analysis

on the other hand embodies no assumptions about the shapes of

the events to be classified.

VARIABILITY IN SPIKE SHAPE

Spike shape, especially amplitude, can change over time and

can result in spurious clusters. The changes likely have varying

causes. We sometimes observed erratic increases and decreases in

peak-to-peak height in large amplitude spikes. The same varia-

tions were not observed in smaller simultaneously recorded units

(Figure 10). Perhaps neurons with larger amplitude spikes are

physically closer to the electrode than other units and are thus

more susceptible to movement and other artifacts; otherwise it

is difficult to ascribe a cause to the variations. We sometimes

observed slow changes in waveform shape that were correlated

with shifts in the estimated positions of many different units

(section Calculation of Templates); these were most likely due

to accidental shifts in electrode position (Spacek and Swindale,

unpublished data). Occasionally, a small cluster of spikes differed

from a larger cluster only by discrete variation in a small portion
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FIGURE 11 | Two units with similar spike shapes but different receptive

fields. (A): overplots of 50 randomly chosen spikes from the two units (red

and blue); (B): Clustering of the two units in their cPC space; (C): the

receptive fields of the units determined by reverse correlation to an

m-sequence stimulus. Top row is the red unit (2163 spikes) and the bottom

row the blue unit (1318 spikes). The plus sign marks the origin in PC space.

of the waveform on a single channel, suggestive of all-or-none

dendritic spikes (Buzsáki and Kandel, 1998). Variations observed

by others include decreases in spike amplitude during bursts or

over short (<50 ms) inter-spike intervals (Fee et al., 1996b; Harris

et al., 2000; Henze et al., 2000). Systematic slow decreases in

height over longer periods of time, sometimes over periods of

minutes of prolonged firing have been observed in hippocampal

recordings (Quirk and Wilson, 1999). Such systematic effects on

spike height did not seem common in our visual cortex record-

ings, possibly because the neurons tended not to fire in bursts

or at prolonged high rates. GAC is relatively insensitive to such

variations, especially if they result in smooth elongations of clus-

ter shape (Figure 10F). However, height and shape variations can

occasionally be discontinuous and the resulting clusters can only

be recognized as likely to belong to the same unit by the user—and

even then not always with complete certainty. One way of mitigat-

ing the effect of variations in large amplitude spikes might be to

rescale voltage values using a compressive transform. Another is

to use the normalized dot product (or correlation) as a way of

detecting similar template pairs since this measure is insensitive

to multiplicative changes in voltage scale. Severe shape variations

causing waveform shapes of different units to overlap (so that the

shape of one at the start of a recording period might resemble the

shape of another at the end) might be dealt with by including

event time, appropriately scaled, as one of the feature dimen-

sions used in clustering. The logic of this is that such clusters

may be separable at each point in time, but not if points are col-

lapsed across the time axis. Other methods for clustering that take

response variability into account, but which we did not attempt

to implement, have been proposed (Pouzat et al., 2004; Bar-Hillel

et al., 2006; Calabrese and Paninski, 2011).

GRADIENT-ASCENT CLUSTERING

The GAC algorithm we have used here appears to have significant

advantages over existing clustering methods and has not, to our

knowledge, previously been applied to spike sorting in the form

used here. Conceptually, GAC defines a cluster as a collection of

points distributed around a central location, with a density that

falls off monotonically along trajectories leading outwards from

the center. Boundaries between clusters are density minima or

saddle points where the direction vector (Equation 7) has zero

length. The density gradient is estimated with a Gaussian ker-

nel with a width σm. The width is chosen so that the positions

and sizes of the clusters that are found remain within defined

limits across a range of values of σm. This may be regarded as a

form of scale-invariance, a property that has been found useful in

identifying visual features in images (Lowe, 2004). In addition to

satisfying an intuitive definition of a cluster, the GAC method has

a number of advantages. Unlike k-means, the number of clusters

does not need to be specified in advance, and boundaries between

clusters are not necessarily drawn halfway between lines joining

their centers. Unlike algorithms based on Gaussian mixture mod-

els (Harris et al., 2000; Litke et al., 2004) no restrictions are put

on the shapes of clusters. Although clusters in our data were often

Gaussian in shape, this was not always the case. Height varia-

tions in particular tended to produce non-Gaussian distributions

and other clusters often had tails or skirts which it seemed desir-

able to include. The GAC algorithm is also quite fast. As shown

in Table 3, we were able to cluster recordings with several hun-

dred thousand spikes typically in 30 min or less. Because each

scout point has to sum over all the other points in the sample

(Equation 7) GAC execution time should scale as the square of

the number of sample points. We avoided this by summing over a
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Table 4 | Comparison of different clustering algorithms applied to simulated single channel recording data (Quiroga et al., 2004).

Data file Noise Classification errors Number of spikes classified Number of test spikes

SPC K -means GAC QNB SS

“Easy1_noise” 0.05 1 0 3 + 3 2729 2789 2797

0.1 17 0 1 + 1 2753 2810 2831

0.15 19 0 1 + 0 2693 2730 2760

0.2 130 17 19 + 19 2678 2725 2756

0.25 911 68 85 + 58 2586 2580 2645

0.3 1913 220 193 + 147 2629 2379 2708

0.35 1926* 515 388 + 473 2702 2028 2773

“Easy2_noise” 0.05 4 0 4 + 0 2619 2660 2668

0.1 704 53 8 + 0 2694 2734 2747

0.15 1732 336 162 + 10 2648 2679 2706

0.2 1791* 740 926 + 186** 2715 2689 2775

“Difficult1_noise” 0.05 7 1 0 + 0 2616 2649 2659

0.1 1781 184 77 + 0 2638 2715 2717

“Difficult2_noise” 0.05 1310 212 2 + 0 2535 2620 2637

0.1 946** 579 104 + 0 2742 2793 2813

0.15 1716** 746 891 + 15** 2631 2663 2695

0.2 1732* 1004 963 + 165** 2716 2763 2763

The column headed “GAC” shows the number of classification errors, expressed as the total number of events in the final set of clusters that were from the wrong

cluster, and the number of false-positives (i.e. events included in one of three clusters not present in the test set), for our combined event detection and clustering

procedures. The two numbers are shown as a + b where a is the classification errors and b is the number of false positives. Asterisks show cases where only 1

(*) or 2 (**) clusters could be identified. High noise data files where both SPC and GAC failed to find more than one cluster are omitted. For comparison, errors

reported by Quiroga et al. (2004) are shown for the same data sets clustered by K-means or SPC applied to the PCA distributions, together with the total number

of spikes that was classified by Quiroga et al. (2004) (column “QNB”) and by us (column “SS”). The total number of simulated spikes in the datasets that we

clustered, following removal of overlapping spikes as described in Quiroga et al. (2004) is shown in the column headed “Total test spikes.” The smaller numbers of

spikes in column “SS” are due to events in the file that were not detected. Note that Quiroga et al. (2004) did not run an event detection stage but instead used

the known times of the spikes in the files. For the sorting we used an event detection threshold θe = 2.8, with σt = 0.5 ms. Events were aligned to the positive

peak. Clustering used the first 3 PCA dimensions, with a temporal window = ±0.75 ms around each spike. Clustering thresholds were θN = 5% and θc = 8. Other

parameters were as defined in the text. Sorting times were typically less than a minute. In some cases a spurious fourth cluster consisting of false-positive events

was manually removed, but this had no impact on the measurements in the Table.

subset of the points (section GAC Clustering Based on Principal

Components). Additional ways of speeding up the code can be

envisaged. For clustering in two dimensions, data points can be

represented not as a list of position values but as a density distri-

bution in a two-dimensional array. Depending on the size of the

array there will be some loss of resolution of position values but

this seems unlikely to have a substantial effect on the accuracy of

placement of cluster boundaries.

Although the GAC algorithm was independently developed

by us, many clustering algorithms use related approaches. An

early approach used a technique known as gravitational cluster-

ing (Butler, 1969; Wright, 1977) in which points aggregate under

mutual attraction. The procedure of using a Gaussian kernel den-

sity estimator to move up a density gradient of fixed data points

was first devised by Fukunaga and Hostetler (1975) and is else-

where termed the mean-shift algorithm (http://en.wikipedia.org/

wiki/Mean-shift). This algorithm was recently applied to spike

sorting of single channel data by Zhao et al. (2010) and to multi-

electrode recordings from the retina by Marre et al. (2012). Other

similar gradient-based methods have been proposed for cluster-

ing problems, e.g. by Kowalewski (1995) and Wang et al. (2004).

However, the present paper adds several features to the mean-shift

algorithm that make it very much more tractable for spike sort-

ing. Merging scout points following each position update speeds

up the algorithm substantially (the exact amount depends on a

variety of factors but can be two orders of magnitude for >20,000

data points). Our procedure for automatically choosing the band-

width parameter σm (section GAC Clustering Based on Principal

Components) and the assignment of a stability score to different

clusters removes the need for the user to choose a suitable value,

while at the same time it allows a degree of flexibility in the clus-

tering strategy. For example it allows for the strategy used here of

defining and splitting off the single most stable (distinct) cluster

and then re-clustering the remaining points. To the best of our

knowledge these particular strategies have not been used before

in the context of spike sorting.

As well as comparing SPC (Blatt et al., 1996; Quiroga et al.,

2004) with GAC on surrogate data (section Tests with Surrogate
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Data, Table 4) we tested it on our own data but found that it fre-

quently was unable to separate distributions that were connected

by narrow bridges of low density. Part of the appeal of this algo-

rithm is that it is extremely insensitive to density variations and

cluster shape. However, this behavior seemed unsuitable for many

of the types of cluster that we encountered in our data.

We have not attempted a full comparison of GAC with the

many other clustering methods that have been proposed (e.g. see

http://scikit-learn.org/dev/modules/clustering.html). As cluster-

ing is only one step in the processing chain proposed here (albeit

an important one) it might, in principle, be replaced by some

other method.

THE MERGING PROBLEM

Recognition of template/cluster similarity for the purposes of

merging turned out to be quite difficult. We found that the RMS

difference between template waveforms (qk,l, Equation 8) was not

an adequate measure to use on its own for merging clusters. We

devised a different measure of cluster similarity by projecting the

data points in the two clusters into the cPC space formed by com-

bining the two clusters and making a quantitative measure of the

degree of overlap of the two distributions (ok,l, Equation 9). If

qk,l is an adequate measure of template similarity it should reli-

ably predict ok,l, however it does this only weakly (Figure 8F).

Within the major part of the range of values of q—between about

5 and 20 µV—values of ok,l were broadly distributed, with val-

ues <0.1 indicating cluster pairs that were extremely distinct and

values >0.9 indicating that clusters pairs were almost certainly

not distinct and should be merged. Extremely small values of q

(<5 µV) and very large values (>25 µV) could safely be used

as a criterion, but this accounts for only a small number of the

possible pairs. Hence we relied largely on the cPC overlap value

as a basis for merging and for declaring cluster pairs to be dis-

tinct. RMS differences are widely used as a way of matching spikes

to templates (e.g. Segev et al., 2004) however, our analysis sug-

gests that the procedure will sometimes fail to match spikes to a

template to which they belong (i.e. large values of q can accom-

pany large values of o) while spikes belonging to different units

may be wrongly matched to the same template (low values of q

accompanying low values of o). There are two possible reasons

for insensitivity of the RMS measure. Firstly, RMS measures the

distance between the means of the waveforms (or between a single

waveform and the mean of another set) and does not take the dis-

tributions of the waveforms, or their correlations, into account.

Secondly, RMS measures distance in the voltage space of the two

waveforms whereas the overlap measure is based on distances

measured in only the first two principal components dimensions,

which ignores much of the variance, presumably increasingly due

to noise, in the additional higher dimensions. Hence the RMS

measure may simply be too diluted by noise to be useful for

assessing whether spikes, or templates, derive from the same unit.

CLUSTER DISTINCTNESS

We were able to extract clusters from our data which we can say

are objectively unitary entities inasmuch as they are separable

by our clustering algorithm and pass test DT, (section Pairwise

Distinctness Tests) for distinctness from all other clusters in the

recording. Some qualifications need to be attached to this how-

ever. Spikes that end up in clusters less than the threshold size

may be deleted before merging and hence will be lost. This prob-

lem can be minimized by choosing a smaller minimum cluster

size at the expense of having to deal with more small clusters. A

second problem is that the GAC algorithm is capable of separating

clusters whose distributions overlap at the edges. Even though this

means the pair is defined as distinct, some spikes in each will be in

the wrong cluster. It is difficult to be sure how many without mak-

ing assumptions about cluster distributions which may not always

be correct. Even when this problem does not occur, we have no

objective way of knowing that clusters represent all, or the major-

ity, of the spikes from only a single neuron. An irregular, or a

non-Gaussian distribution of principal components or other fea-

ture value does not necessarily mean that a cluster is multi-unit.

This is demonstrably the case for many large amplitude spikes,

but might be true for smaller amplitude spikes as well. Such irreg-

ular, non-Gaussian distributions imply that, for our data, the

quality metrics for spike sorting proposed by Hill et al. (2011)

would be of limited use. Conversely, a homogenous Gaussian dis-

tribution may suggest that only a single unit is present but one

cannot be sure of this. The differences in spike shape between

different neurons can in some cases be small (Figure 11) and

might in other cases be even smaller. Nor can one be certain

that different clusters are necessarily always different units. The

spikes produced by a single neuron might vary in shape, possibly

bimodally, resulting in spikes from a single unit being wrongly

split into two clusters. We did sometimes observe cluster pairs,

one typically with many more events than the other, which were

distinguished only by variations in the spike waveform preceding

the initial phase of the spike. We generally decided to merge such

pairs. It is conceivable that spike shapes might differ depending

on the way in which the spike was initiated within the cell (for

example whether stimulus driven or spontaneously generated),

or depending on the presence of a backpropagating action poten-

tial. Although perhaps unlikely, this is a possible explanation of

the results in Figure 11. It is also possible that backpropagating

(Buzsáki and Kandel, 1998) or other dendritic spikes or other

local non-linear phenomena might variably change spike shape.

Ultimately, the validity of this and other spike sorting meth-

ods, and arguably of all types of extracellular recording that claim

to isolate single neurons, depends on the presumption that wave-

form variations due to the smallest position differences between

pairs of cells are reliably larger than, or detectably different in

kind from, intrinsic variations within cells over time. This pre-

sumption will be hard to verify. The relevant position differences

will often be small (e.g. 10–20 µm) since neuronal cell bodies in

the cortex can abut (Feldman, 1984). Turning the problem on its

head, Mechler et al. (2011) estimate that, with tetrodes, the volt-

age signal from a single neuron allow it to be localized within

a sphere of ∼50 µm radius. This has the corollary that it may

be hard or impossible to separate signals from neurons that are

less than 50 µm apart. Tests in which a single neuron is recorded

both intra- and extra-cellularly (Harris et al., 2000), though they

yield valuable data about the completeness of sorted clusters, do

not seem adequate to answer this question. Simultaneous intra-

and extra-cellular recordings from pairs of neighboring neurons,
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perhaps offer the best chance of answering the question but may

be very hard to do, especially in vivo.

OVERLAPPING SPIKES

Our procedure does not attempt to identify or sort temporally

overlapping spikes. Hence spikes from units that are physically

close (e.g. <100 µm apart) and that occur within 1 ms of each

other (which is roughly the temporal resolution of our event

detection method) are unlikely to be sorted correctly. Unless the

temporal firing relationship of the pair is determinate to within

fractions of a millisecond (which seems very unlikely) the super-

imposed waveforms will be variable in shape and are most likely

to end up as outlying points in the cluster distributions and will be

deleted. Such overlapping pairs are unlikely to be a large fraction

of the spikes for any given unit. For example, for a pair of units fir-

ing at a relatively high rate (for visual cortex) of 20 Hz only about

2% of the spikes in each of the pairs would be expected to over-

lap and be lost. In addition to this, for measures of correlation

between cell pairs that used a binwidth of the order of 10 ms, only

about 10% of the spikes in the most central (�t = ± 5 ms) bin

would be expected to be lost. Hence, even for measures of cross-

correlation, the consequences of losing overlapping spikes may

often not be severe. The limitation does not apply at all to pairs

of units that are >100 µm apart, and this constitutes the majority

of cell pairs in any given recording. However, methods for resolv-

ing overlapping spikes have been proposed (Lewicki, 1994; Segev

et al., 2004; Franke et al., 2010; Marre et al., 2012) and these might

perhaps be applied to the classification of events rejected by our

sorting procedure (typically around 5–10% of the total: Table 3).

APPLICATION TO TETRODES AND MEAs

Although developed as a method for sorting spikes recorded

with 54 channel polytrodes, our methods are applicable to spike

sorting with other kinds of multichannel electrode, including

tetrodes. An approach to sorting single or multiple tetrode

recordings, which we have explored in preliminary tests, is to

form 4 clusters per tetrode initially, assigning events to the tetrode

site on which the event peak-to-peak amplitude is greatest. Each

set of four clusters is then split and recombined in the same way

as done for polytrodes following the initial formation of channel-

based clusters (section Formation of Channel-Based Clusters).

Because our method uses the “divide and conquer” approach of

defining clusters based only on the voltage waveforms present on

a center and a limited number of nearby channels, the time taken

for the initial splitting of channel-based clusters should scale lin-

early with the number of channels. The second stage of sorting,

which is based on pairwise tests, should also scale linearly because

although the number of pairs increases with the square of the

number of channels, only those pairs that are located close to each

other enter directly into the comparisons (rule 1 of test DT, sec-

tion Pairwise Distinctness Tests). Hence processing time for the

second sorting stage should also scale linearly with the number

of sites. A potential limitation to the method exists in the case

of arrays with very closely spaced sites. Here it is possible that

signals from single neurons might be variably assigned to sev-

eral adjacent sites (with the design of polytrodes that we have

tested it is rarely more than two) resulting in excessive splitting of

single units into multiple clusters. Recombining these one pair at

a time might prove to be time-consuming, especially if done dur-

ing the user-guided stage. Possible alternative strategies might be

to assign events to virtual sites, more coarsely spaced than the real

ones, or to exploit the greater spatial resolution of closely spaced

arrays and form initial clusters based on estimates of the position

of each event in the x-y plane of the electrode.
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