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Abstract

Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a
threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound
influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by
adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and
processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses
recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold
adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not
contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond
to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the
membrane potential captures spike threshold variability in vivo.
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Introduction

Neurons encode information in sequences of stereotypical

action potentials or spikes. Spikes are all-or-none voltage

deflections triggered when the membrane potential of a neuron

crosses a threshold. In vivo, the spiking threshold, as measured as

the voltage at the upstroke of spikes, varies with firing history and

input properties. This phenomenon has been widely observed in

the central nervous system, e.g. visual cortex [1,2], auditory

midbrain [3], hippocampus [4], somatosensory cortex [5]. It has

been proposed that threshold variability measured in vivo reflects

an adaptation of the spike threshold to the membrane potential,

due to the inactivation of sodium channels [6–8] or the activation

of potassium channels [9,10]. Threshold adaptation would have a

profound influence on how the combined input of a neuron is

encoded in the spiking output [5,6,11–14], such as enhancing

coincidence detection [1,2], improving feature selectivity [5] and

temporal coding in sensory neurons [15]. However, previous

studies in vivo only reported correlations suggestive of threshold

adaptation. Other authors have suggested that threshold variabil-

ity observed in vivo could also reflect measurement artifacts because

spikes are initiated at the axon initial segment but measured at the

soma [16]. Threshold variability could also be due to channel

noise [17], slow changes in excitability [18] or modulation by

axonal synapses [19]. More generally the voltage measured at the

upstroke of spikes may be a poor estimate of the actual criterion

for spiking (which could depend on unobserved quantities). The

goal of this study was to determine whether threshold variability

observed in vivo is mainly due to threshold adaptation to the

membrane potential, or to one of the alternative hypotheses.

Unfortunately, this question cannot be entirely addressed in vitro,

where inputs are better controlled. First, there are potential

sources of threshold variability in vivo that do not exist in vitro; in

particular, noise and synaptic inputs to the initial segment. Second,

properties of Na channels are likely to be different in vivo. Indeed,

Na channels can be modulated in various ways, including their

peak conductance and both the time constant and voltage-

dependence of inactivation [20]. Therefore, results in vitro may not

readily extend to in vivo conditions.

In this work we studied the dynamics of the spiking threshold in

neurons of the barn owl’s external nucleus of the inferior colliculus

(ICx) in vivo. While the spatial tuning [21,22] and the underlying

computations in ICx neurons have been investigated [23–25],

previous studies have shown wide variation in spiking threshold

over the stimulus duration [3]. To understand this variability, we

fitted a mechanistic model of spike threshold adaptation that

generalizes a model based on sodium-channel inactivation [26] to

intracellular recordings in vivo. The model is used to test whether it

is possible to accurately predict spiking from the membrane

potential history. If threshold variability is due to noise, then this

prediction should fail; if it is due to factors other than adaptation

(for example phosphorylation of Na channels, or GABA inputs

onto the initial segment), then the parameter values of the fitted

model should depend on the stimulus.

The model was able to predict spikes with high accuracy and to

account for most observed variance in measured threshold. In
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addition, it allowed us to estimate the threshold at all times,

including between spikes. We found that the spike threshold tracks

the membrane potential at a shorter time scale than the

membrane time constant. The ‘‘effective signal’’ for spike initiation

is then best defined as the difference between threshold and

membrane potential. Fast threshold adaptation has two major

functional consequences: 1) the effective signal is less variable than

the membrane potential, because low frequency components of

the input are filtered out; 2) the neuron can only respond to inputs

with dynamics faster than the adaptation timescale, an order of

magnitude lower than the membrane time constant. These

findings show that most threshold variability observed in vivo in

these neurons can be explained by fast adaptation to the

membrane potential.

Results

Spike threshold depends on preceding membrane
potential
Neurons of the barn owl’s ICx are selective to sound direction

[21], by combining tuning to interaural time (ITDs) and intensity

differences (IIDs) [22,23]. We recorded the membrane potential

(Vm) of ICx neurons in vivo while presenting 100 ms broadband

sounds (white noises filtered between 0.5 and 10 kHz) through

earphones, varying either ITD or IID (Fig. 1a). Spike thresholds

(Fig. 1b) were measured using the Vm derivative, a procedure

known to produce reliable estimates [27]. At spike initiation the

derivative increases abruptly and the precise value of the criterion

makes little difference to the estimated voltage (Fig. 1c). The spike

threshold was highly variable, spanning a range of about 8 mV

(s=3.161.1 mV). In fact, the distribution of spike thresholds was

so large that it overlapped the Vm distribution induced by the

input (Fig. 1d). As previously observed in this [3] and other areas

[1,5,13], spike threshold was positively correlated (r = 0.7560.1,

regression slope = 0.4360.1) with the average Vm preceding spikes

(Fig. 1e), and negatively correlated (r = 0.6160.1, regression

slope =20.4960.3 ms) with the rate of depolarization before

spikes (Fig. 1f). We did not observe significant correlation between

inter-spike interval (ISI) and spike threshold (r = 0.260.2, regres-

sion slope =20.0160.03 mV/ms, Fig. 1g), as was observed in a

few other studies [4], indicating that spike refractoriness is shorter

than typical ISIs.

Fitting a spike threshold model
These observations suggest that the spike threshold adapts to the

Vm dynamics. However, what we called ‘‘spike threshold’’ above is

in fact only a measurement of the voltage at the upstroke of spikes.

It could be that the relevant criterion for spiking is a quantity (or

set of quantities) other than somatic voltage, and that the voltage at

the upstroke of spikes is correlated with Vm history but has no

causal relationship therewith.

To address this issue and demonstrate that the spiking criterion

(and not just the measured voltage at the upstroke of spikes) adapts

to the membrane potential, we used a generalization of a model of

threshold adaptation based on sodium channel inactivation [8] to

predict the occurrence and timing of spikes. Our goal was to

predict spike trains, not the voltage at the upstroke of spikes.

Although the model was derived from properties of sodium

channels, we used it here as a phenomenological model of

threshold adaptation, which may also be consistent with other

intrinsic mechanisms (see Discussion). This model consists of a

differential equation describing the adaptation of the threshold h

to a function of Vm, h?(Vm), with a time constant th:

th
dh

dt
~h?(Vm){h

A spike is predicted to occur when Vm~h. More generally, the

spike threshold is defined as the voltage value at which the neuron

would spike if its membrane potential were instantaneously

brought above it. Thus it is a threshold in the sense of an explicit

spiking criterion, unlike the empirical measurements. The function

h?(Vm), called the steady-state threshold, represents the value of

the spike threshold when Vm is clamped at a fixed value. This can

be considered as a general first-order model of threshold

adaptation. Theory based on the properties of sodium channels

predicts that the steady-state threshold is constant below the half-

inactivation voltage Vi, and increases approximately linearly

above it [8]. However, threshold adaptation can also result from

activation of voltage-gated potassium channels [9]. Therefore, to

be more general, we did not impose a constant threshold below Vi.

Instead, we used a smooth function with a different slope below

and above the critical voltage Vi, and a parameterized curvature

(Fig. 2a). Parameters characterizing the two slopes, the connecting

point and the curvature were constrained by the data. Some

threshold adaptation models also include an explicit effect of spikes

on threshold [26,28] (the threshold increases after each spike), but

it did not appear useful in our case, as we observed no correlation

between ISI and spike threshold.

A straightforward approach would be to use this model to

predict the value of spike threshold measured in the intracellular

traces. However, as argued above, the measured somatic voltage at

the upstroke of spikes may not correspond to the spike threshold,

in the sense of a criterion for triggering a spike. For example, it has

been argued that the relevant criterion should in fact be the

voltage value at spike onset in the axon initial segment (AIS),

where spikes are initiated [16,29]. Even if the somatic voltage at

the upstroke of spikes truly corresponded to the spike threshold,

there would still be a methodological issue with optimizing the

threshold model to predict that voltage. Indeed a trivial solution to

the fitting problem is the threshold model defined by

h?(Vm)~Vm and th~0 ms: the ‘‘spike threshold’’ always equals

the membrane potential, in particular at the upstroke of spikes.

To avoid these problems, we instead used the threshold model

to predict the occurrence of spikes and their precise timing based

only on Vm. The trivial solution mentioned above is a poor

predictor of spikes since it would predict too many spikes. The

voltage trace was thus passed through the model equation to

produce a dynamic spike threshold (Fig. 2b). Theory predicts that

a spike should be produced when the voltage trace crosses

threshold. The model can fail by producing spikes at the wrong

time or by producing extra spikes. To account for both types of

errors, we defined a stringent coincidence window (d=84 ms) and

Author Summary

Neurons spike when their membrane potential exceeds a
threshold value, but this value has been shown to be
variable in the same neuron recorded in vivo. This
variability could reflect noise, or deterministic processes
that make the threshold vary with the membrane
potential. The second alternative would have important
functional consequences. Here, we show that threshold
variability is a genuine feature of neurons, which reflects
adaptation to the membrane potential at a short
timescale, with little contribution from noise. This demon-
strates that a deterministic model can predict spikes based
only on the membrane potential.

Spike-Threshold Adaptation In Vivo
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calculated the proportion of coincident spikes in both the recorded

and predicted spike trains. We used the gamma factor C, a

normalized coincidence measure that has been used in a number

of studies [30–32]. We optimized the model parameters to

maximize C on a given recording, and the model performance

was then tested on different recordings in the same cell.

We first checked that this optimization strategy was correct on

different neuron models with an explicit adaptive threshold with a

time constant of 3–5 ms (Fig. 2c–e; see Materials and Methods).

The first model had a fixed threshold (Fig. 2c), the second an

adaptive threshold with rectified-linear characteristics (only adapts

above Vi~{67mV ; Fig. 2d) and the third a threshold that

adapted linearly in the entire voltage range (Fig. 2e). Note that

there is a constant bias in the predicted threshold, corresponding

to the sharpness of spike initiation in these neuron models (i.e.,

spikes start slightly above the threshold value because sodium

channels open gradually) [8]. Apart from this bias, both the steady-

state threshold curve and the adaptation time constant were

correctly estimated by the optimization procedure (Fig. 2c–e,

bottom curves). We also confirmed that the fitting procedure

yielded expected results when the threshold time constant was an

order of magnitude shorter than the membrane time constant

(Fig. 2f). Finally, we checked that the resulting parameters did not

depend on the input statistics, by running the optimization

procedure with input currents of different means and standard

deviations on models with a short threshold time constant (Fig. 2g)

and a short input autocorrelation time constant (Fig. 2h).

We then applied the fitting procedure to a biophysically detailed

neuron model, in which spikes are initiated in the AIS and Na

channel densities in the axon were measured with immunochem-

istry [7]. In this multicompartmental model, the value of the spike

threshold measured at the soma can be accurately predicted from

the value of ionic channel gating variables at the AIS [26]. We

stimulated the model with fluctuating current, and we observed

that there was a linear dependence between the measured value of

the spike threshold and the logarithm of the Na inactivation

variable h at the AIS (Fig. 3a; slope 23.2 mV; r =20.98). We

then fitted the threshold model to the voltage response of the

Figure 1. In vivo intracellular recordings. a, Intracellular recordings (Vm) in the owl’s ICx, with binaural stimuli (L: left, R: right). Either ITD is varied
at best IID (top) or IID is varied at best ITD (bottom). Owl picture source: http://openclipart.org/detail/17566/cartoon-owl-by-lemmling. b, Two spikes
from the traces in (a); red dots indicate the estimated spiking threshold. c, Trace from (a) shown in phase space: dVm=dt vs. Vm . Spike threshold is
detected when dVm=dt exceeds a fixed value (red dashed line). d, Distribution of subthreshold membrane potential (blue) and spike threshold
(green). e, Spike threshold vs. average Vm before spike. f, Spike threshold vs. depolarization slope before spike. g, Spike threshold vs. preceding
interspike interval. Red lines are linear regressions.
doi:10.1371/journal.pcbi.1003560.g001
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model (Fig. 3b). After optimization, we observed that the time-

varying threshold of the fitted model closely tracked the spike

threshold estimated from ionic channel gating variables (which

were hidden to the fitting procedure). At the spike times predicted

by the fitted model, the corresponding predicted threshold was

very close to the actual measured threshold (Fig. 3c). The steady-

state threshold curve matched the curve calculated from the Na

inactivation function [8], especially near the spike initiation region

(Fig. 3d). In the multicompartmental model, the time constant of

Na inactivation is voltage-dependent, unlike in our simple

threshold model (Fig. 3e, green). However, the fitted threshold

time constant matched the value of the inactivation time constant

in the spike initiation region (250 to 240 mV; Fig. 3e, red).

Finally, we found that the value of the Na inactivation variable h

at the AIS could be estimated between spikes from the value of the

spike threshold in the fitted model (Fig. 3f; slope 20.22 mV21;

r =20.97). Those results show that our method can successfully

predict the spike threshold and characterize the sodium inactiva-

tion properties at the AIS of a complex multicompartmental

neuron model containing an axon and an extended dendritic tree.

Taken together, these results show that our optimization

strategy can indeed accurately characterize the properties of spike

threshold adaptation. We then applied this technique on our

recordings, where spike times were accurately predicted, with few

false alarms and typical rectified-linear curves for the estimated

steady-state threshold (Fig. 4a). To emphasize the fact that we

predict the threshold for spike initiation, and not simply the

voltage at the upstroke of spikes, we show the voltage trace vs.

dynamic threshold h in Fig. 4b, where it can be seen that a spike is

produced as soon as the identity line is crossed. Also, there are no

Figure 2. Model fitting approach. a, Steady-state threshold function, defined by 5 parameters. b, Illustration of the model fitness computation,
Voltage trace (blue) and the corresponding dynamic threshold in the model (red). A spike is predicted when the curves cross, and a refractory period
follows (grey). Prediction is considered correct when the actual and predicted spikes are within a fixed coincidence window (green). Left: incorrect
predictions, right: correct prediction. Note that for the sake of illustration the coincidence window is drawn larger than what it is in reality. c–f, Top:
output of the fitting procedure on neuron models with explicit dynamic threshold (green: actual dynamic threshold, red: model prediction), with four
different steady-state threshold functions and threshold time constants (bottom). g, The fitting procedure was run for the same model shown in f,
but with input currents varying in mean (20–200 pA) and standard deviation (50–400 pA). The shaded area shows the mean and standard deviation
of the fitted steady-state threshold function: optimization results were not strongly dependent on the input current used for training. h, Same as g,
but with th~3 ms and input current with short autocorrelation time constant (0.5 ms).
doi:10.1371/journal.pcbi.1003560.g002
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crossings of the identity line between spikes. The absence of

threshold crossings between spikes can be related to the sharpness

of spike initiation [33], due to the compartmentalization of spike

initiation in the AIS [34]. This observation means that the value of

h in the model predicts whether a spike is initiated, rather than

simply predicting the somatic voltage at spike onset. This implies

that it is indeed possible to predict spikes using only the membrane

potential at the soma, even though spikes are initiated in the axon

initial segment.

Fitted parameters are consistent among conditions
If threshold variability is due to ionic channel properties, then

threshold parameters should depend on the cell and not on the

experimental condition. On the contrary, if threshold variability

were due to other factors such as synaptic input onto the axonal

initial segment, we would expect these parameters values to be

variable across conditions. Therefore we optimized the model

parameters separately on each cell and sound-stimulation condi-

tion (e.g., one condition is varying the ITD with a fixed IID) to

check for stimulus dependency. As an additional check of

robustness, we divided the entire set of recordings into subsets

(2–8) with different Vm ranges, and optimized the model

parameters separately in each set. We then compared the

parameter values obtained for the same cell but different

recordings. We found little variation in the results across

conditions in the same cell (Fig. 5 and Figs. 6a, b, c). Consistent

with theoretical predictions for Na channel inactivation [8], the

steady-state threshold was near-constant at low voltages and

increased linearly with slope near 1 at high voltages (Fig. 5). The

fact that the steady-threshold curve does not cross the diagonal

(Fig. 5, dashed lines) is consistent with large threshold variability

[8].

In the entire set of cells (n = 21), we consistently found that the

slope of the steady-state threshold curve was small at voltage

smaller than Vi (Figs. 6a, mean b&0:3) and near 1 above Vi

(Figs. 6b, mean a&1:1), which is consistent with predictions based

on sodium channel inactivation [8]. The mean critical voltage, Vi,

was 25966 mV and the minimum threshold was VT =2

6166 mV. Although there is some uncertainty about absolute

voltage in intracellular recordings with sharp electrodes, the Vi

values are within the range of half-inactivation voltages of Na

Figure 3. Fitting procedure applied on a multicompartmental
model of a cortical neuron [7]. a, Spike threshold measured at the
soma vs. logarithm of the sodium inactivation variable h at the axonal
initiation site. The dashed line shows the linear regression (slope
3.2 mV). b, The fitting procedure is run on the somatic voltage trace
(blue), and the predicted threshold (red) is compared to the threshold
calculated from the value of ionic channel variables (green; as in [26]). c,
Predicted threshold resulting from the fitting procedure vs. measured
threshold for all spikes. The dashed line is the identity. d, Steady-state
threshold function of the optimized model (red) compared to the
corresponding function calculated from the properties of sodium
channel inactivation. e, Estimated time constant of threshold adapta-
tion (red) vs. time constant of sodium inactivation. The estimation is
correct in the spike initiation zone (250 to240 mV). f, Logarithm of the
sodium inactivation variable h at the axonal initiation site plotted
against predicted threshold for the entire simulation, excluding spikes.
doi:10.1371/journal.pcbi.1003560.g003

Figure 4. Fitting procedure applied on an intracellular voltage
trace. a, Top: voltage trace (top, black) and predicted threshold (red).
Bottom: steady-state threshold in the fitted model. b, Vm vs. predicted
threshold for the trace in (a). The identity line (red) sharply separates
subthreshold fluctuations from spikes.
doi:10.1371/journal.pcbi.1003560.g004

Figure 5. Steady-state threshold curves. Threshold curves
resulting from optimizing the threshold model to recordings in 16
cells. The dashed line is the diagonal h~Vm and the shaded area
represents the average 6 standard deviation over all recording
conditions in each cell.
doi:10.1371/journal.pcbi.1003560.g005

Spike-Threshold Adaptation In Vivo
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channels [35]. The curvature of the steady-state threshold is

determined by the model parameter ka=762 mV, which is in the

range of measured Na activation slopes [35]. Finally, the

threshold-adaptation time constant was th~260+122ms (Fig. 6c).

Although this may seem small, time constants tend to be short in

the barn owl’s auditory brainstem, which is specialized for fast

temporal processing [6,13], as also seen in the timescale of spikes

in Fig. 1 (see Discussion). In addition to the fact that threshold-

adaptation time constants were similar across cells and recording

conditions, the precise value of the model time constant was also

important for predicting spikes. Fixing the time constant to a

shorter or larger value than the optimal one significantly degraded

the fitting quality (Fig. 7). A consistent observation is that above

Vi, the steady-state threshold always lies just a few mV above Vm

(Fig. 5, distance between solid curve and dashed line). Thus the

condition for triggering spikes is not Vm exceeding a fixed

threshold, but rather a fast depolarization of a few mV. This

property implies that when the neuron is slowly depolarized, it

does not spike because the threshold increases at the same time. It

can contribute in making the neuron respond with a single spike at

the onset of a current step – but not necessarily because the reset

may introduce fast variations in membrane potential. Electro-

physiological properties of IC neurons are not known in the barn

owl, but onset electrophysiological behavior has been observed in

IC neurons of rodents, although not all neurons [36]. In the chick,

neurons in Nucleus Laminaris, which project to IC, also respond

to current steps by firing a single spike [37].

The optimized parameters varied across cells but not across

stimulation protocols or Vm ranges in the same cell (Fig. 6a–c, blue

error bars). The average distance between steady-state threshold

curves obtained in the same cell for different conditions was an

order of magnitude smaller than the average distance between

steady-state threshold curves and the diagonal (Fig. 6d). These

findings indicate that there is little threshold adaptation acting on a

slow timescale in these neurons.

We then tested the optimized threshold models on recordings in

the same cell that were not used for fitting the parameters, whether

a different stimulation protocol or a different Vm range, and we

found that the models produced few false alarms (6.8%, Fig. 6e).

Finally we tested whether at spike times, the value of the spike

threshold variable in the model corresponded to the measured

somatic voltage at the upstroke of spikes. We found that the model

threshold could account for 89% of experimentally measured

‘‘spike threshold’’ variance on average (Fig. 6f). This means that

the measured somatic voltage at spike onset does in fact

correspond to the spike threshold, in the sense of a criterion for

triggering a spike. In addition, since this value can be accurately

predicted by our model, this result implies that the measured spike

threshold is in fact determined by the Vm dynamics at the soma,

rather than noise or external factors. Finally, it also implies that if

there was stimulus-specific adaptation in these neurons as found in

rats [38], it did not act on spike threshold, since we did not include

such phenomena in the model.

Functional consequences
We finally turn to the functional implications of spike-threshold

adaptation. Since the spike threshold adapts to Vm, any voltage

fluctuations that are slower than threshold adaptation should not

Figure 6. Fitting results. The optimization results for all cells are
shown for three parameters: high voltage slope b (a), low voltage slope
a (b) and time constant th (c). Blue bars correspond to mean 6
standard deviation over all recordings categorized by average
membrane potential, and red bars (when available) correspond to
mean 6 standard deviation over all recordings categorized by stimulus
condition (e.g. varying ITD with fixed IID). d, Distribution of average
distance within cells between steady-state threshold functions (grey)
and between steady-state threshold functions and the diagonal (green).
e, Distribution of false alarm rates when the models are tested against
recordings with a different mean Vm (blue) and with different sound
stimulation (red) than used for fitting. f, Same as (d) for the explained
variance of measured spike threshold.
doi:10.1371/journal.pcbi.1003560.g006

Figure 7. Fit quality vs. threshold time constant. To show that the
optimized threshold time constant (about 260 ms on average) is
accurate, we fitted the threshold model to the recordings while setting
the time constant to a fixed value, i.e., the time constant is no longer a
parameter to be optimized. The plots show the resulting gamma factor
(in black, right ordinate) and explained variance (in red, left ordinate) as
a function of threshold time constant for 9 cells. Moving the time
constant away from its optimal value results in large increases in the
fitting error.
doi:10.1371/journal.pcbi.1003560.g007

Spike-Threshold Adaptation In Vivo
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have an impact on output spiking. This is captured by the concept

of ‘effective signal’ (ES) illustrated in Fig. 8. The ES is the

difference between the Vm and the dynamic spike threshold

(Fig. 8a). A spike is produced when the ES exceeds a fixed

threshold (0 mV). Therefore, the Vm dynamics with threshold

adaptation is equivalent to the ES dynamics with a fixed threshold.

In the ES, voltage variability is greatly reduced, dropping from

s=4.4 mV in the Vm to s=1.6 mV in the ES for this recording

(Fig. 8b). This occurs because slow voltage fluctuations are filtered

out by threshold adaptation. This becomes clear when we

compute the autocorrelation of the voltage traces (Fig. 8c). We

found that the half-height width (HHW) of the Vm autocorrelation

was 4.6 ms. This value corresponds to a membrane time constant

of 3.3 ms for white noise input (HHW/(2.log 2)); in this case it may

also reflect the timescale of synaptic currents. In contrast, the

HHW of the autocorrelation of the ES is only 0.5 ms, which is in

the order of magnitude of the threshold time constant. Because of

threshold adaptation, postsynaptic potentials (PSPs) are effectively

shortened. Specifically, the exponential decay of PSPs disappears

from the ES, making the effective PSP shorter (Fig. 8d). In all cells,

voltage variability is greatly reduced by threshold adaptation: from

about s=5.161.0 mV in the Vm to s=2.260.8 mV in the ES

(Fig. 8e). Since threshold adaptation has little effect on the peak

size of a fast PSP (Fig. 8d), the ratio between PSP size and

background voltage variability is effectively increased. In the same

way, HHW is reduced from 4.761.4 ms to 1.761.5 ms (Fig. 8f).

This means that the integration time window of these neurons is

about three times shorter than inferred from the membrane

potential alone, making the neuron sensitive to input coincidences

at a millisecond timescale.

Discussion

Origin of threshold variability
In vivo, the spiking threshold is highly variable, typically

spanning a range of about 10 mV. This phenomenon has been

observed in many areas of the nervous system: visual cortex [1,2],

auditory midbrain [3], hippocampus [4], somatosensory cortex

[5], neocortex [10], and prefrontal cortex [7]. Spike threshold has

been found positively correlated with average membrane potential

[2,7] and inversely correlated with the preceding rate of

depolarization [1,2,5,12]. These observations are consistent with

the hypothesis that the spike threshold adapts to the membrane

potential, because of inactivation of sodium channels [1,2,5,8,26]

and/or activation of low-voltage activated potassium channels

(Kv1) [9,10,26]. However, these observations could also result in

part or entirely from one or several of the following alternative

causes:

a) spike threshold variability resulting from ion channel

stochasticity [17], or other independent sources of noise;

b) experimental artifact where threshold appears variable at the

soma but it is not at the spike-initiation zone in the axon

[16,39];

c) spike threshold modulation by processes not directly

dependent on Vm, such as synaptic inputs to the axon initial

segment (AIS) [19], intrinsic plasticity [18] or variations in

total synaptic conductance [26].

Empirical support for threshold adaptation and for these

alternative hypotheses comes from in vitro studies, and therefore

it is not known whether and to what extent they may explain in vivo

observations. Indeed, there are potential sources of threshold

variability in vivo that do not exist in vitro (noise, synaptic inputs to

the initial segment), and Na channels can be modulated in various

ways, including their peak conductance and both the time constant

and voltage-dependence of inactivation [20].

To distinguish between these hypotheses, we applied a

predictive approach to in vivo recordings, which does not rely on

measuring the somatic voltage at spike onset. Instead, the

threshold model is evaluated on the basis of its ability to predict

the occurrence of spikes from the previous membrane potential.

This approach addresses the concern that criteria based on spike

shape at the soma to measure ‘‘threshold’’ might inaccurately

assess the actual criterion for triggering a spike.

In these data, the threshold model accounted for 89% of

measured spike threshold variance. Therefore, most observed

variability was due to deterministic processes, which ruled out

hypothesis (a). It confirms theoretical considerations showing that

ion channel stochasticity should imply a positive correlation

between rate of depolarization and spike threshold, contrary to our

and previous experimental observations [8].

According to hypothesis (b), spikes are actually initiated at a

fixed voltage threshold, but it appears variable because it is not

measured at the initiation site (in the axon). Our results discard

this possibility because the threshold model is optimized to

predict the occurrence of spikes, not the measured voltage at

spike onset at the soma. It indeed predicts the occurrence and

precise timing of spikes very accurately, and with very few false

alarms. Therefore, the variability of measured somatic voltage at

spike onset did reflect the variability of spike threshold in these

recordings (see also Fig. 4b). It confirms theoretical considerations

showing that variability due to hypothesis (b) should also imply a

positive correlation between rate of depolarization and spike

threshold [8].

Figure 8. Effective signal. a, Top: voltage trace Vm (black) and the
corresponding fitted threshold (red). Bottom: the effective signal (black)
is the difference. A spike occurs when it crosses 0 mV (red). b,
Distribution of Vm (top) and of the effective signal (bottom). c,
Autocorrelogram of Vm (top) and of the effective signal (bottom),
showing the half-height width (HHW). d, Top: postsynaptic potential
(PSP, black) and its effect on the threshold (red). Bottom: effective PSP.
e, Standard deviation of the effective signal vs. standard deviation of
Vm (line: identity). f, HHW of the effective signal’s autocorrelogram vs.
HHW of Vm ’s autocorrelogram.
doi:10.1371/journal.pcbi.1003560.g008
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To address hypothesis (c), we fitted the threshold model in

the same cell but in different experimental conditions (either

different ranges of Vm or different stimulus conditions). If

threshold variability were due to other processes that are not

directly determined by Vm (e.g. synaptic input to the AIS or

intrinsic plasticity), then we would expect the fitting process to

yield different parameters values depending on context. In

contrast, parameter values of the model were very robust across

different conditions for the same cell, and variable between

cells. These results make hypothesis (c) implausible in our

recordings. On the basis of single-compartment biophysical

models, it has been proposed that the total synaptic conduc-

tance may also modulate the spike threshold in a logarithmic

way, by opposing the Na current [26]. Our results would only

be consistent with this hypothesis if total synaptic conductance

were constant in all conditions (all stimuli and all mean Vm).

Although it seems unlikely, we cannot entirely rule out this

possibility. Recent theoretical analysis taking into account the

axonal initiation of spikes indicates that the total synaptic

conductance at the soma should have negligible impact on spike

threshold because spike initiation is compartmentalized [34]

(i.e., only channels expressed at the AIS can directly modulate

the spike threshold).

Therefore, our results discard all the alternative hypotheses

mentioned above, and demonstrate that threshold variability

reflects deterministic adaptation of the spike threshold to the

somatic membrane potential.

Biophysical mechanisms
Adaptation of spike threshold points to voltage-gated ion

channels expressed in the AIS. Spike initiation is due to Na

channels of the Nav1.6 subtype expressed in the distal part of the

AIS [40]. These channels are partially inactivated at rest, and

therefore voltage changes should substantially modulate the spike

threshold by changing the proportion of available channels for

spike initiation. The threshold model used in this study derives

from a theoretical analysis of the biophysical properties of Na

channels [8,26]. This analysis accurately predicted the spike

threshold in a multicompartmental model of a cortical neuron

with measured channel densities in the AIS [26]. The theory

predicts that 1) the spike threshold is constant in the hyperpo-

larized range because Na channels are not inactivated, 2) the

spike threshold follows the membrane potential in the depolar-

ized range because activation and inactivation curves have similar

slopes [8], 3) the transition between the two regimes occurs at

around half-inactivation voltage. Our results confirm these

predictions.

The time constant of threshold adaptation may seem surpris-

ingly low, about 250 ms. In Hodgkin-Huxley models, this

adaptation time constant reflects the time constant of the

underlying ionic channel mechanism (inactivation of Na channels

or activation of K channels). Na channel inactivation time

constants for subthreshold voltages are generally found to be on

the order of the ms in vitro, in the cortex and hippocampus [41].

However, there is evidence that the time constant of inactivation

can be modulated [20], and that it depends on functional

constraints, such as energetic efficiency [41]. In the electric organ

of the electric fish, it has been found the inactivation time

constants of Na and K channels are co-regulated, and correlate

with the frequency of electrical discharges [42]. In this particular

context, Na inactivation time constant varied between 500 ms and

3 ms (Fig. 7). Therefore it seems possible that this time constant is

also short in a nucleus involved in the processing of sounds with

frequencies of several kHz. The fact that spikes are shorter than

500 ms (Fig. 1b) in our recordings is an indication that it may

indeed be the case.

Low-voltage activated potassium channels (Kv1) are also

expressed at high density in the AIS [43,44]. Activation of Kv1

channels by depolarization can also raise the threshold, and

therefore, Kv1 channels can produce threshold adaptation with

similar qualitative properties as Na channel inactivation [26]. A

few in vitro studies show that pharmacologically blocking Kv1

channels can abolish threshold variability [9]. This could be

because Kv1 channels are responsible for threshold adaptation, or

because blocking these channels lowers the spike threshold so that

spikes are initiated before Na channels can inactivate (this happens

in Fig. 3 if threshold curves are shifted down and intersect the

diagonal). It is possible that the residual threshold adaptation seen

in the hyperpolarized range (Fig. 5) is due to Kv1 channels.

Clearly distinguishing between Na inactivation and Kv1 activation

might require dual recordings in the soma and AIS, sodium

imaging or pharmacological manipulations.

Threshold variability in other areas
Our results were obtained with in vivo intracellular recordings in

the barn owl’s inferior colliculus, and one may wonder to what

extent they may generalize to other areas. The detailed statistics of

threshold variability are similar to previous observations in cortical

neurons [1,5], both qualitatively and quantitatively, except

perhaps for the depolarization rates, which tend to be larger in

our recordings (Fig. 1f). The mechanisms of spike initiation are

also widely shared across the nervous system [40,44]. Therefore it

is reasonable to expect that our findings are generally valid.

However, it is likely that the time constant of threshold adaptation

(which was only a few hundred of microseconds in our study) is

larger in other areas. Indeed auditory neurons in subcortical areas

are known to display faster kinetics than in other areas, not only in

the barn owl but also in mammals [45,46].

Another likely difference is that in some in vivo studies, spike

threshold was found to strongly depend on the time since the

previous spike [4,28]. This is not contradictory with the model,

which displays this phenomenon when the adaptation time

constant is larger than the typical interspike-interval. Finally, in

pyramidal cells of the cortex, and also in hippocampus neurons,

the AIS is targeted by GABAergic neurons named Chandelier cells

[19]. Their action could potentially modulate the spike threshold

depending on local network activity (for instance on the phase

relative to theta oscillations in the hippocampus [47]), in a way

that is not determined by the cell’s Vm at the soma (hypothesis (c)).

Signals that elicit spikes
Our results show that threshold variability is mainly due to

deterministic features of the input, rather than noise. Given the

extent of this variability (more than 10 mV), this finding has major

implications for the input-output properties of neurons. It implies

that the relevant time-dependent variable is not so much the

membrane potential, but rather its distance to a dynamic

threshold, which we called the ‘‘effective signal’’.

Our method allowed us to estimate the spike threshold not only

at spike times but also continuously between spikes, and thus to

estimate the effective signal. We found that a large part of the

variability appearing in the voltage trace vanishes in the effective

signal, because slow variations of the membrane potential are

filtered out by threshold adaptation, leaving only variations that

are faster than threshold adaptation. Secondly, we found that the

effective signal varies on a shorter timescale than the membrane

potential. It implies that the temporal window of integration is

shorter than expected from the membrane time constant, and

Spike-Threshold Adaptation In Vivo

PLOS Computational Biology | www.ploscompbiol.org 8 April 2014 | Volume 10 | Issue 4 | e1003560



closer to the threshold time constant. These findings confirm

previous suggestions that threshold variability enhances coinci-

dence detection properties of cortical neurons [1,5], and corrob-

orate observations that spikes tend to be preceded by fast

depolarizations in cortical neurons in vivo [48].

Taken together, these findings demonstrate the causal link

between membrane potential dynamics and spike threshold

variability in vivo. In elucidating the deterministic nature of

threshold, this work shows that threshold adaptation makes

neurons selective to fast input variations and remarkably

insensitive to slow ones.

Materials and Methods

Ethics statement
The protocol #20110502 for this study followed the National

Institutes for Health Guide for the Care and Use of Laboratory

Animals and was approved by the Institutional Animal Care and

Use Committee of California Institute of Technology.

Experimental methods
Data were obtained from in vivo intracellular recordings of 21

ICx neurons in 14 anesthetized adult barn owls, as described

previously [24,24,49]. Sharp glass electrodes (40–80 MV) filled

with 2M potassium acetate were used for recording. All

experiments were performed in a double-walled sound-attenuating

chamber. Acoustic stimuli were digitally synthesized and delivered

through earphones. Sound stimuli consisted of broadband-noise

bursts (0.5 to 10 kHz, 100 ms in duration and 5 ms linear rise/fall

times, 30 dB above threshold) presented once per second.

Earphone assemblies containing a speaker and a calibrated

microphone were inserted into the ears and gaps were sealed

with silicone material. The earphones were calibrated at the

beginning of each experiment to correct for speaker irregularities.

Intracellular recordings were stored at 24 kHz sampling rate.

Spike threshold measurement
Measured spike threshold is defined as the voltage at the onset

of action potentials. For each spike, the onset is defined as the first

time preceding the peak when the first derivative dVm=dt crosses a
fixed criterion, 25 mV/ms. On the phase plot (Fig. 1c), it

corresponds to a voltage value that is only crossed when a spike

is produced. The precise value is not critical for model fitting

because we predict the timing of spikes rather than the voltage at

spike onset. Fig. 1e shows the mean vVmw computed in 5-ms

window preceding a spike. Fig. 1d shows the rate of depolarization

over 1.5 ms preceding a spike.

Adaptive threshold model
The dynamic threshold depends only on Vm, and is determined

by [26]:

th
dh

dt
~h?(Vm){h

Where th is the time constant of the threshold dynamics. h?(Vm)

is the steady-state threshold (Fig. 2a):

h?(Vm)~a(Vm{Vi)zVTzka log 1zexp
Vm{Vi

ki

� �� �

where a is the slope on the left side of the knee. The slope b on the

right side is ka
ki
za. The curvature C (Fig. 2a) is indirectly

determined by ka, th, a, b, ka, ki, Vi, VT were the parameters to

optimize. A spike is produced when Vm exceeds h and is followed

by a refractory period of 0.5 ms. If threshold modulation is due to

sodium channel inactivation, the theoretical prediction [8]

corresponds to a~0.

Model fitting procedure
Given a Vm trace and its corresponding spike onsets (described

above), we want to find the parameter values of the adaptive

threshold model that maximize the similarity between predicted

and recorded spike trains. This similarity is quantified using the

gamma factor (C) [30,31], a normalized measure of coincidence

between spike trains within a temporal window d:

C~
1

1{2drrec

� �

Ncoinc{2Nrecdrrec

NreczNpred

rrec is the mean firing rate of the experimental recording, Ncoinc is

the number of coincidences between the predicted and recorded

spike trains computed within a time window d~0:84ms, Nrec and

Npred denote the number of spikes in the recorded and predicted

spike train, respectively. 2Nrecdrrec is the expected number of

coincidences generated by a Poisson process with rate rrec. The

first term in brackets is a normalization factor so that the

maximum of C is 1. C~0 means that there are no more

coincidences than expected by chance whereas C~1 means that

the model prediction is perfect, at temporal resolution d.

To perform the optimization, an evolution algorithm (CMAES)

[50] was implemented on Graphical Processing Units (GPU)

[32,51] using the Playdoh optimization toolbox [52].

Neuron models
A spiking neuron model with an adaptive threshold was used to

generate the membrane voltages of Fig. 2c–h. All other voltage

traces are intracellular recordings. The model is based on the

exponential integrate and fire [53]. Vm is governed by a

differential equation that includes a leak current and an

exponential term describing sodium current activation at spike

initiation:

tm
dVm

dt
~ EL{Vmð ÞzD exp

(Vm{h)

D

� �

zRmI

where tm~5ms is the membrane time constant, El~{70mV is

the reversal potential of the leak current, D characterizes the

sharpness of the initiation. D~1mV except in Fig. 2 f., g. and h.

where D~0:3mV . Rm~100MV is the membrane resistance.

The membrane voltage diverges quickly once it exceeds the

threshold h, it is then reset to 270 mV, and a refractory period of

0.8 ms follows (in practice, spikes are detected when

Vmwhz3mV ). In Fig. 2c–f, the input current I is an Ornstein-

Uhlenbeck process with mean 40 pA, standard deviation 120 pA,

and time constant 3 ms. In Fig. 2g–h, the optimization is

performed on a set of currents with mean between 20 and

200 pA and standard deviation between 50 and 400 pA, selecting

those eliciting at least 20 spikes and a firing rate lower than

200 Hz. Current time constant was 3 ms in Fig. 2g and 0.5 ms in

Fig. 2h. The exponential model accurately captures the dynamics

of the sodium current near spike initiation [28], while allowing

sharp spike initiation. We used this, rather than a Hodgkin-

Huxley model, because spike initiation is unrealistically shallow in

a single-compartment Hodgkin-Huxley model and spike onsets

are not well defined [33,34]. Multicompartmental models can
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display sharp spike initiation [7] but the threshold is not explicitly

defined, a problem to test the predictive power of a threshold

model.

We assume that threshold dynamics are governed by the

differential equation given in section ‘‘Adaptive threshold model’’.

The model has a constant threshold in Fig. 2c (a~0, ka~0,
VT~{63 mV, Vi~{67 mV and th~5 ms), rectified threshold

in Fig. 2d (same except ka~5 mV), linear threshold in Fig. 2e

(a~1, ka~0, VT~{63 mV, Vi~{66 mV and th~3 ms),

rectified threshold in Fig. 2f, but with fast threshold adaptation

(th~0:5 ms).

In Fig. 3, we used a biophysically detailed multicompartmental

model of a cortical neuron based on immunochemistry measure-

ments, in which spikes are initiated in the axonal initial segment

[7]. It was stimulated at the soma with fluctuating current as

described above, with mean 0.7 nA, standard deviation 0.2 nA

and time constant 10 ms. The spike threshold is estimated from

ionic channel gating variables as described in [26] (Fig. 3b, green).

All simulations except for the multicompartmental model were

performed using the Brian simulator [54] with a sampling

frequency of 42 kHz. The multicompartmental model was

simulated with Neuron [55].

Training and testing the threshold model
For each cell, the voltage traces were grouped in subsets. A

subset is a set of traces sharing common conditions. The first type

of condition used to characterize subsets is the binaural protocol

used. For instance, the first subset can be the set of traces recorded

when varying the ITD, another when varying IID, and another

when varying average binaural intensity (ABI). Depending on the

cell, there were two or three recording protocols used, resulting in

two or three subsets. The second type of condition is the mean Vm

during stimulation. For each cell, responses to all sounds are

ordered by mean Vm. Each subset is then constructed incremen-

tally by adding consecutive traces until there are at least 120 spikes

in the subset. This makes 2–8 subsets per cell.

The prediction performance is quantified using two metrics.

The false alarm rate (FA), reported as a percentage, is defined as

the number estimated spikes that are not coincident with recorded

spikes divided by the total number of recorded spikes. The

explained variance (EV) quantifies the prediction quality of the

voltage at spike onset:

EV~1{

P

i (hi{ĥhi)
2

P

i (hi{ĥh)2

with

ĥh~
1

n

X

i

hi

where hi is the voltage at spike onset in the recorded trace and ĥhi is

the predicted voltage at spike onset. These two metrics were

always used on recordings not used for fitting the model (different

binaural protocol or different mean Vm).

For each cell, we calculate the average distance between steady-

state functions hi
?
(Vm) obtained for different conditions (Fig. 6d)

using the following formula:

D(h?)~
2

n(n{1)

X

n

i~1

X

i{1

j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVmax

Vmin

hi
?
(Vm){hj

?
(Vm)

� �2

s

Where Vmax and Vmin are respectively the maximum and

minimum sub-threshold voltages in the trace under consideration,

and n is the number of conditions. For comparison, we also report

the average distance to the diagonal h~Vm:

D(h?,I)~
1

n

X

n

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVmax

Vmin

hi
?
(Vm){Vm

� �2

s

Acknowledgments

We thank Brian Fischer and Kamran Khodakhah for comments on the

manuscript.

Author Contributions

Conceived and designed the experiments: BF RB. Performed the

experiments: BF JLP. Analyzed the data: BF. Contributed reagents/

materials/analysis tools: BF. Wrote the paper: BF JLP RB.

References

1. Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for

synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad

Sci U S A 97: 8110–8115.

2. Azouz R, Gray CM (2003) Adaptive coincidence detection and dynamic gain

control in visual cortical neurons in vivo (2003). Neuron 37: 513–523.

3. Peña JL, Konishi M (2002) From postsynaptic potentials to spikes in the genesis

of Auditory spatial receptive fields. J Neurosci 22: 5652–5658.

4. Henze DA, Buzsaki G (2001) Action potential threshold of hippocampal

pyramidal cells in vivo is increased by recent spiking activity. Neuroscience 105:

121–130.

5. Wilent WB, Contreras D (2005) Stimulus-dependent changes in spike threshold

enhance feature selectivity in rat barrel cortex neurons. J Neurosci 25: 2983–

2991.

6. Kuba H, Oichi Y, Ohmori H (2010) Presynaptic activity regulates Na+ channel

distribution at the axon initial segment. Nature 465: 1075–1078.

7. Hu W, Tian C, Li T, Yang M, Hou H, et al. (2009) Distinct contributions of

Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat

Neurosci 12: 996–1002.

8. Platkiewicz J, Brette R (2011) Impact of fast sodium channel inactivation on

spike threshold dynamics and synaptic integration. PLoS Comput Biol 7:

e1001129.

9. Higgs MH, Spain WJ (2011) Kv1 channels control spike threshold dynamics and

spike timing in cortical pyramidal neurones. J Physiol 589: 5125–5142.

10. Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, et al. (2008) K+

channels at the axon initial segment dampen near-threshold excitability of

neocortical fast-spiking GABAergic interneurons. Neuron 58: 387–400.

11. Reyes AD, Fetz EE (1993) Effects of transient depolarizing potentials on the

firing rate of cat neocortical neurons. J Neurophysiol 69: 1673–1683.

12. Ferragamo MJ, Oertel D (2002) Octopus cells of the mammalian ventral

cochlear nucleus sense the rate of depolarization. J Neurophysiol 87: 2262–2270.

13. Howard MA, Rubel EW (2010) Dynamic spike thresholds during synaptic

integration preserve and enhance temporal response properties in the avian

cochlear Nucleus. J Neurosci 30: 12063–12074.

14. Fontaine B, Benichoux V, Joris PX, Brette R (2013) Predicting spike timing in

highly synchronous auditory neurons at different sound levels. J Neurophysiol

110: 1672–1688.

15. Kuba H, Ishii TM, Ohmori H (2006) Axonal site of spike initiation enhances

auditory coincidence detection. Nature 444: 1069–1072.

16. Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation

explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:

7260–7272.

17. White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends

Neurosci 23: 131–137.

18. Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, et al. (2011) Short-

and long-term plasticity at the axon initial segment. J Neurosci 31: 16049–

16055.

Spike-Threshold Adaptation In Vivo

PLOS Computational Biology | www.ploscompbiol.org 10 April 2014 | Volume 10 | Issue 4 | e1003560



19. Howard A, Tamas G, Soltesz I (2005) Lighting the chandelier: new vistas for

axo-axonic cells. Trends Neurosci 28: 310–316.

20. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure

and function of voltage-gated sodium channels. Neuron 26: 13–25.

21. Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl.

Science 200: 795–797.

22. Moiseff A (1989) Binaural disparity cues available to the barn owl for sound

localization. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 164: 629–
636.

23. Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are
processed independently in the auditory system of the owl. J Neurosci 4: 1781–

1786.

24. Peña JL, Konishi M (2000) Cellular mechanisms for resolving phase ambiguity

in the owl’s inferior colliculus. Proc Natl Acad Sci 97: 11787.

25. Peña JL, Konishi M (2001) Auditory spatial receptive fields created by

multiplication. Science 292: 249–252.

26. Platkiewicz J, Brette R (2010) A Threshold equation for action potential

initiation. PLoS Comput Biol 6: e1000850.

27. Sekerli M, DelNegro CA, Lee RH, Butera RJ (2004) Estimating action potential

thresholds from neuronal time-series: new metrics and evaluation of method-
ologies. IEEE Trans Biomed Eng 51: 1665–1672.

28. Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, et al. (2008) Dynamic
I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage

traces. J Neurophysiol 99: 656–666.

29. Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, et al. (2008)

Action potential generation requires a high sodium channel density in the axon
initial segment. Nat Neurosci 11: 178–186.

30. Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-
based neuron model driven by stochastic spike arrival. J Physiol-Paris 98: 442–

451.
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