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Abstract 

The accurate quantification of eukaryotic species abundances from bulk samples remains a 

key challenge for community ecology and environmental biomonitoring. We resolve this 

challenge by combining shotgun sequencing, mapping to reference DNA barcodes or to 

mitogenomes, and three correction factors: (1) a percent-coverage threshold to filter out 

false positives, (2) an internal-standard DNA spike-in to correct for stochasticity during 

sequencing, and (3) technical replicates to correct for stochasticity across sequencing runs. 

The SPIKEPIPE pipeline achieves a strikingly high accuracy of intraspecific abundance 

estimates (in terms of DNA mass) from samples of known composition (mapping to barcodes 

R2=0.93, mitogenomes R2=0.95) and a high repeatability across environmental-sample 

replicates (barcodes R2=0.94, mitogenomes R2=0.93). As proof of concept, we sequence 

arthropod samples from the High Arctic, systematically collected over 17 years, detecting 

changes in species richness, species-specific abundances, and phenology. SPIKEPIPE provides 

cost-efficient and reliable quantification of eukaryotic communities. 

 

1. Introduction 

The key dimensions of ecological community structure are species composition and species 

abundances (Vellend 2010). To survey communities of animals, plants, and fungi, 

researchers have traditionally relied on morphological characters. However, a technological 

revolution is beginning to replace this labor-intensive approach with spectral, acoustic, and 
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molecular data (Bohan et al. 2017; Bush et al. 2017; Ovaskainen et al. 2018; Schulte to 

Bühne et al. 2018), offering replicable and efficient ways to estimate change in community 

structure over time, space, and environmental gradients. 

 

We focus here on the use of DNA-sequence information to estimate eukaryotic species 

composition and abundance from mixed-species samples, such as bulk samples of 

invertebrates (Ji et al. 2013; Hering et al. 2018; Pawlowski et al. 2018), or water or air 

samples that have been filtered to capture environmental DNA (Bohmann et al. 2014; 

Abrego et al. 2018; Goldberg et al. 2018). In particular, we aim at quantifying within-species, 

spatiotemporal variation in a set of known target species, as measured by variation in the 

occurrence and mass of marker DNA sequences.  This is the type of information typically 

sought in applied biomonitoring. 

 

The two main approaches to identify eukaryotic species from mixed-species samples are 

known as ‘metabarcoding’ and ‘mitogenomics’ (Tang et al. 2015; Crampton-Platt et al. 2016; 

Bush et al. 2017; Bista et al. 2017). Metabarcoding uses PCR to amplify short, taxonomically 

informative ‘DNA barcode’ sequences from mixed-species samples. These amplicons are 

then sequenced, and the reads are assigned to taxonomies by matching to barcode 

reference databases. Metabarcoding is associated with low per-sample cost, because 

samples are individually tagged during PCR so that multiple samples can be pooled before 

being prepared for sequencing (‘library prep’) and because even a low sequencing depth of a 

few thousand reads is sufficient for characterizing the dominant species of a sample. This 

means that many samples can be included in the same sequencing run. Metabarcoding also 
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has two other important advantages: access to well-populated reference databases, such as 

BOLD (Ratnasingham & Hebert 2007) and Midori (Machida et al. 2017), and the fact that 

PCR amplification allows the detection of species present only as low-concentration 

environmental DNA (eDNA), such as trace animal tissue in water. However, metabarcoding 

has two important limitations: susceptibility to sample contamination, due to PCR 

amplification of stray DNA (precisely what makes metabarcoding useful for eDNA in the first 

place), and loss of quantitative information, due to primer and polymerase biases (Yu et al. 

2012; Piñol et al. 2015, 2018; Nichols et al. 2018; Deagle et al. 2018a; Lamb et al. 2019). 

 

By contrast, mitogenomics is a variant of metagenomics and is based on the shotgun-

sequencing of genomic DNA from a bulk sample, followed by mapping the reads onto a set 

of reference mitochondrial genomes, each of which serves as a ‘super barcode’ for a species 

(Crampton-Platt et al. 2016). Mitogenomics is more expensive than metabarcoding, because 

each sample must be individually library prepped, because samples must be sequenced 

more deeply than for metabarcoding, and because compiling a mitogenome reference 

database imposes additional costs for specimen acquisition, sequencing, and assembly. 

Mitogenomics is also unsuitable for eDNA because library prep requires sample DNA to be of 

high quality and quantity, and because mapping is only efficient if the sample consists 

mostly of the target organisms (but see Wilcox et al. 2018). However, mitogenomics has two 

key advantages over metabarcoding, due to not using PCR: mitogenomics is robust to 

sample contamination, because stray DNA is detected at low levels, if at all, and can thus be 

ignored. Also, mitogenomics preserves quantitative information, as the proportion of reads 

that map to a species’ mitogenome correlates with that species’ relative biomass in the 
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sample (Zhou et al. 2013; Gómez-Rodríguez et al. 2015; Tang et al. 2015; Bista et al. 2017). 

 

Thus, mitogenomics promises the ability to measure both of a community’s key dimensions, 

species composition and abundances. However, to date, reported correlations between read 

and abundance frequencies in samples of known composition have been noisy, and the 

shape of the relationship has varied idiosyncratically. For instance, analysing mixed-species 

communities, Zhou et al.’s (2013) pioneering study reported an R2 of 63% for a curvilinear 

regression, Tang et al. (2015) reported a linear-regression R2 of 25%, Gómez-Rodríguez et al. 

(2015) reported an R2 of 64% for a linear log-log regression, and Bista et al. (2017) returned 

R2 values between 45% and 87%, using logistic or linear models to fit different species. 

 

Here we describe a step-change improvement in the mitogenomic pipeline, which performs 

well even when the mapping targets consist only of short DNA barcode sequences. To 

achieve accurate estimates of intraspecific variation in abundance, the pipeline employs a 

set of filters and internal standards: (1) a percent-coverage threshold to filter out false-

positive mappings, (2) an internal-standard DNA spike-in to correct for sequencing-depth 

stochasticity across samples within a sequencing run, and (3) technical replicates to allow 

correction for sequencing-depth stochasticity across sequencing runs. We illustrate the 

pipeline by applying it to a time series (1997–2013) of pitfall-trap samples from the high 

Arctic, the Zackenberg Valley in Northeast Greenland (Schmidt et al. 2016a; Christensen et 

al. 2017). 
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2. Materials and methods 

SPIKEPIPE consists of five steps, which span from the wet lab to bioinformatics to statistical 

analysis (Box 1), and which are co-designed to maximize accuracy in species detection and to 

preserve abundance information. Step 1 consists of compiling a barcode or mitogenome 

reference database to be used as the mapping target. Step 2 consists of constructing, 

standardizing, and sequencing a set of mock communities to be used for calibration. Step 3 

consists of standardizing and sequencing environmental samples (here, the Zackenberg 

samples). Step 4 consists of mapping the reads from the mock communities and 

environmental samples against the reference database and using these mappings to 

compute predictor values for species occurrence and abundance. Step 5 consists of using 

the mock data to fit statistical models that predict species occurrences and abundances, and 

applying these models to predictor values computed from the environmental data. We use 

DNA mass (ng of mitochondrial DNA of a species in the extracted sample) as our abundance 

measure, which is a proxy for species biomass. Below, we first introduce the Zackenberg case 

study, then detail Steps 1–5, and finally evaluate and compare the performance when using 

DNA barcodes versus mitogenomes to estimate community structure, both for the mock and 

the real environmental samples. 

 

Zackenberg Valley case study  

The environmental dataset comes from a time series of yellow-pitfall-trap samples collected 

as part of the BioBasis monitoring program at the Zackenberg Research Station (Schmidt et 

al. 2016a; Christensen et al. 2017), located in the High-Arctic zone of northeast Greenland 
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(74°28’ N; 20°34’ W). Spiders and insects have been collected weekly throughout the 

summer from 1996 onwards from various tundra habitats. These samples have over the 

years been sorted to higher taxonomic rank (mostly family level), analyzed at this low 

taxonomic resolution (e.g. Høye et al. 2007, 2013, 2014; Reneerkens et al. 2016; Schmidt et 

al. 2016b, 2017), and warehoused as taxonomically sorted sub-samples in ethanol at room 

temperature in Museum of Natural History, Aarhus, Denmark (Supplement Text S3). The 

BioBasis protocols for sample collection, sorting, and storage have introduced cross-sample 

contamination (Supplement Text S3), making the samples unsuitable for metabarcoding. We 

use the subset of samples collected weekly in three yellow pitfall traps in a mesic heath 

habitat, from 1997 to 2013 (Supplement Text S3), during which time summer has doubled in 

length (see Kankaanpää et al. 2018). 

 

Step 1. Compiling the DNA-barcode and mitogenome reference databases 

For the DNA-barcode database, we use the 406 insect and spider BIN sequences (Barcode 

Identification Numbers) compiled by Wirta et al. (2016) at Zackenberg (lengths range from 

453 to 654 bp, mean 613). For the mitogenome database, we assembled 308 mitogenomes 

(lengths range from 5768 to 18625, mean 15720). The protocol for assembling mitogenomes 

is standard (Gómez-Rodríguez et al. 2015; Tang et al. 2015; Crampton-Platt et al. 2016; Bista 

et al. 2017), so we provide here a summary, with details in Supplement Text S1. Each 

voucher specimen was individually library-prepped and shotgun-sequenced to prevent 

chimeric assemblies and to preserve the option of using the nuclear-DNA reads in the future 

(cf. Sarmashghi et al. 2018). We successfully assembled 283 mitogenomes from these data, 

with a further 25 mitogenomes assembled out of a mixture of these data and the mixed-
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species pitfall-trap samples’ data. Finally, we used COI from each mitogenome to confirm 

species identities, matching them to the BIN sequences of Wirta et al. (2016). Of the 

resulting 308 mitogenomes, 282 are in one contig, and the remaining 26 are in two or three 

contigs. 273 mitogenomes have all 13 protein-coding genes, and the remaining 35 have one 

or more missing or incomplete protein-coding genes (details in Supplement Table S1). 12S, 

16S, and D-loop were seldom assembled, so these were omitted from all mitogenomes.  

 

Step 2. Constructing, standardizing, and sequencing mock communities 

To calibrate SPIKEPIPE and estimate its accuracy, we constructed two kinds of mock 

communities using known input-DNA amounts of Zackenberg species: ‘mock-even’ and 

‘mock-gradient’ communities (detailed in Supplement Table S2). We created six mock-even 

communities. For each, we used 20 species (19 Diptera, one spider), with equal amounts of 

DNA from each of the 20 species. This taxonomic composition reflects realistic sample 

compositions in the High Arctic, which is dominated by Diptera (Wirta et al. 2016). To mimic 

variation in sample absolute biomasses, two mock-evens used 50 ng DNA per species, two 

used 100 ng, and two used 200 ng (each creating a technical-replicate pair). We also created 

three mock-gradient communities. For each, we used 19 input species (all Diptera), with the 

first species represented by 20 ng of DNA, increasing geometrically by a factor of 1.3 until 

the most abundant species, at 2698.9 ng, a 135-fold range. The mock-gradient samples 

mimic the common situation where a sample contains both abundant and rare species 

(here, by DNA mass). We further included two negative controls without any species. The 

pooled set of mock communities allowed us to address the following questions: (1) 

replicability: do technical replicates return the same results?; (2) within-species 
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quantification: for a given species, does the number of mapped reads correlate with the 

amount of input DNA?; (3) across-species quantification: do different species with the same 

input DNA return the same number of mapped reads?; and (4) sensitivity: can rare species 

be detected? 

 

Internal-standard DNA – The fraction of the reads in a sample that maps to a species is an 

estimate of that species’ relative biomass in the sample, but to estimate that species’ 

absolute abundance (and allow comparisons across samples), we should correct for 

stochasticity in sequencing depth across samples. To do so, we used a fixed amount of an 

internal-standard DNA to ‘spike’ a 1.2 ml aliquot of lysis buffer from each of the mock 

samples (Box 1), so samples with more reads of the internal standard can be down-weighted 

(see Smets et al. 2016; Deagle et al. 2018b; Tkacz et al. 2018 for PCR-based protocols). To 

make the internal standard, we PCR-amplified and pooled fixed amounts of COI-barcode-

amplicon DNA (658 bp) from three insect species collected in China and for which there are 

no confamilials in Greenland: 0.2 ng of Bombyx mori (Lepidoptera: Bombycidae), 0.4 ng of an 

unnamed beetle species (Coleoptera: Mordellidae), and 0.8 ng of another unnamed beetle 

species (Coleoptera: Elateridae) (For the PCR protocol, see Supplement Text S2.2). We used 

three species to check for error and degradation; the mapped reads from the three species 

should be found in the input ratio of 1:2:4. If, for instance, one of the species is not at the 

correct ratio with the other two, we can omit that species’ reads. After spiking each mock 

sample, we extracted and purified the DNA and sent the mock samples for individual library 

prep and sequencing at the Earlham Institute (Supplement Text S2 for details). We 

sequenced the 6 mock-evens twice because one of the 50-ng mocks failed the first time, 
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resulting in 11 total mock-even and 3 mock-gradient datasets, as well as the 2 negative 

controls. 

 

Step 3. Constructing, standardizing, and sequencing environmental samples 

In 2016 and 2017, we non-destructively extracted DNA from the warehoused taxonomic 

subsets of 493 trap-week samples collected from 1997 to 2013 (except for 2010, the 

samples of which had been lost in transport from Greenland) (Supplement Text S4.1). We 

then pooled lysis-buffer solutions to reconstruct the 493 complete trap-week samples, 

aliquoted 1.2 ml from each sample, spiked each aliquot with 0.2 ng, 0.4 ng, and 0.8 ng of the 

three internal-standard species (from Step 2), extracted and purified the DNA, and sent 

them for individual library prep and sequencing at the Earlham Institute. The samples were 

spread over three sequencing runs, so we included 4 or 5 technical replicates per year of 

samples from the previous two runs in the final run, to allow correction for stochasticity in 

sequencing depth across runs (Supplement Text S4.2). 

 

In a variant protocol, for years 1997-1999 and 2011-2013, the first samples that we 

sequenced, we used 10 ng, 20 ng, and 40 ng of the three internal-standard species. We 

subsequently determined that the internal-standard DNA represented a too-large 

proportion of the resulting reads (mean 10.9%), so we library-prepped and sequenced the 

remaining DNA from the aliquots a second time to increase data. Altogether, we successfully 

sequenced 728 samples: 14 mocks, 712 trap-week samples (original and technical-repeat 

aliquots), and two negative controls (which returned only the internal-standard species) 

(Supplement Table S4.2.1).  
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Step 4. Mapping reads and computing predictors 

All sequencing outputs (mock communities, negative controls, and the Zackenberg samples) 

were processed as follows (details in Supplement Text S5). We removed Illumina adapter 

sequences using TrimGalore 0.4.5 (Martin 2011) and used minimap2 2.10 in short-read 

mode (Li 2018) to map the paired-end reads against either the DNA-barcode or the 

mitogenome reference database, plus the three internal-standard sequences. We used 

samtools 1.5 (Li et al. 2009) to exclude reads that mapped as secondary or supplementary 

alignments and to include only paired-end reads mapped at quality ≥48, in the correct 

orientation, and at approximately the correct distance apart (‘proper pairs’).  

 

PC, FSL, RUN, SPECIES – If a species is truly present in a sample, we expect reads from that 

sample to map along the length of that species’ DNA-barcode or mitogenome, not just to 

one segment, resulting in a higher percentage coverage (henceforth PC) (Supplement Figure 

S5.1). We used bedtools 2.27.1 (Quinlan & Hall 2010) to calculate PC as the fraction of 

positions covered by one or more mapped reads. We expected the fraction of reads from a 

sample that map to a species’ barcode or mitogenome to be correlated with that species’ 

relative abundance. However, the absolute number of mapped reads in a sample is 

determined by that sample’s dataset size, which is affected by numerous random factors 

from DNA extraction to sequencing. We used an internal standard with the aim of correcting 

for these random variations and recovering each sample’s original biomass, allowing 

calculation of each species’ absolute abundance per sample (Box 1). To do so, we added the 

same amount of internal-standard DNA to the fixed aliquot of each sample before DNA 

extraction (see Internal-standard DNA), and kept track of the fraction of total lysis buffer 
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that the aliquot represents. We defined the quantity FSL for each species in each sample, 

defined as          , where   is the number of reads mapped to a focal species (unit: 

sequence count),   is the “spike” (unit: sequence count/DNA mass), and   is the fraction of 

lysis buffer represented by the aliquot (unitless). The spike   was first computed for each of 

the three internal standards as number of reads mapped to the internal standard divided by 

the input amount of DNA, and then averaged over the three internal standards. To test the 

importance of the internal standard, we also computed FTL, defined as          , where   

and   are the same as above, and   is the total number of sequences in a sample’s dataset. 

As the mapping from PC and FSL to species presences and abundances might also vary 

among sequencing runs, we used the identity of the three sequencing runs (henceforth 

RUN), as an additional predictor, implemented as a factor. Finally, as sequencing success 

could be idiosyncratically species-specific, e.g. species varying in their mitochondrial-to-

nuclear-DNA ratios or in how much tissue is released into solution during lysis, we 

considered the identity of the species (henceforth SPECIES) as an additional predictor, 

implemented as a factor. To summarize, the outcome of Step 4 is two datasets of values for 

PC, FSL, RUN, and SPECIES, computed after mapping reads from the pooled mock-

community dataset against the DNA-barcode and the mitogenome reference databases.   

 

Step 5. Predicting species occurrences and abundances 

In this step, statistical models that predict species occurrences and abundances were 

calibrated with the mock-sample datasets and then applied to the environmental data. First, 

we used logistic regression to model species presence/absence as a function of PC, FSL, 

RUN, and SPECIES, of which we expected PC to be the most important predictor. Second, we 
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used a linear regression with the same predictors to model variation in abundance 

conditional on presence (the log-transformed amount of DNA included in the mock 

community), with the expectation of FSL being the most important predictor. Note that we 

used log-transforms in our models because the amounts of DNA in both the mock samples 

and the environmental samples can vary over orders of magnitude. In such a case, the 

researcher is likely to be interested in quantifying proportional differences among samples, 

e.g. “sample A has 100 times more and sample B has 10 times more DNA of the focal species 

than sample C has”. Moreover, we log-transformed both the response variable and the main 

predictor (FSL) to make them compatible with each other. Thus, the theoretical expectation 

for the slope value of FSL is 1.0, because that corresponds to the number of (SL-corrected) 

mapped reads being directly proportional to the amount of input DNA. 

 

To examine the information gained from the addition of the spike, we replaced in the best 

model FSL by FTL. To examine how much accuracy is lost if the results are not calibrated per 

run, we dropped RUN from the model. To examine how well the abundance estimates are 

calibrated across species, we examined performance of a model variant where SPECIES was 

dropped. Further, to examine if species effects can be explained by their mitogenome 

lengths, we regressed the estimated effects of SPECIES from the abundance model on log-

transformed mitogenome length, reasoning that longer mitogenomes should attract more 

reads. Finally, the models calibrated with mock community data were used to predict 

species occurrences and abundances in the environmental data (Box 1). 
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Evaluating SPIKEPIPE’s replicability with re-sequenced samples 

After performing steps 1–5 of SPIKEPIPE described above, we tested its replicability by 

comparing results between technical replicates. If a sample was sequenced more than twice 

(see Table S4.2.1), we considered all pairs of replicates, so that a sample sequenced in runs 

X, Y and Z contributed to the comparisons (X,Y), (X,Z) and (Y,Z). To evaluate the robustness of 

detecting species presence, we counted how often a species was inferred to be present or 

absent in both runs of comparison (agreement) or present in only one (disagreement). To 

evaluate the robustness of species abundance estimation, we used only cases where a 

species was classified as present in both runs of comparison. For each pair of runs, we used 

a linear model to estimate how well the abundance estimates obtained from one run 

explained variance in abundance estimates in the second run. We performed this analysis 

either controlling or not controlling for the effect of the specific run, to examine whether 

run-specific correction factors are needed. 

 

Evaluating SPIKEPIPE’s utility for making ecological inference 

Finally, we tested SPIKEPIPE’s power to detect ecological change, and how this power differs 

between mapping against reference DNA barcodes or reference mitogenomes. To this aim, 

we merged the results from the four runs by assuming that a species is present in a sample if 

it was inferred to be present in any of the runs containing that sample, and we used the 

average of run-corrected abundance estimates as the final estimate for abundance. We then 

normalized abundance within each species across all samples to mean zero and unit 

variance, so that the unit of the abundance is within-species deviation from the species’ 

mean. We summed inferred presences over all species to estimate species richness per trap-
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week, and we averaged normalized abundances over all species to estimate community-

wide variation in abundance. To test whether these richness and abundance data convey 

signals of change in a warming Arctic, we used Poisson regression to model species richness 

per trap-week, and linear regression to model mean abundance conditional on presence. In 

both cases, the data points (n=493) are weekly samples from the three traps in the years 

1997–2013. We used as the candidate predictors the continuous effect of the year (to 

capture a linear trend), the Julian date and its square (to capture phenological variation 

within year), the interaction between year and Julian date (to capture change in 

phenological timing), and the trap (to capture technical variation among the three traps). 

We performed variable selection in all models using the Akaike Information Criterion (AIC). 

 

3. Results 

3.1. Mock community analyses: species composition and abundances 

Mapping to short barcodes and long mitogenomes were both highly successful in identifying 

species occurrences in the mock samples, even though these included the mock-gradients 

with their rare species: the barcode approach detected 97%, and the mitogenome approach 

detected 100% of the species that were actually present (Table 1). The false-positive rates 

were also very low even when using the lax criterion of letting just one mapped read infer 

species presence (Table 1). Due to this high separation, fitting logistic regression models was 

not meaningful. Instead, we defined conservative thresholds PC0 for percentage cover (set to 

PC0=0.5 for barcodes and PC0=0.1 for mitogenomes), so that applying the threshold 

condition PC > PC0 resulted in zero false positives and thus gave strong evidence for species 
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occurrence in a sample (Table 1, see also Tang et al. 2015). Sensitivity remained high when 

applying the criterion PC > PC0, with the barcode approach detecting 95% and the 

mitogenomics approach 97% of the species that were actually present.  

 

In terms of sensitivity, we found a taxonomic difference. Among the two classes represented 

in the mock communities (19 Diptera, one spider), the spider performed worse than the 

other taxa in our analyses: in the mock data, the spider was present in 11 samples and 

absent in 5 samples. For the barcode approach, the presence-absence model predicted that 

the species was present only once, resulting in 1 true positive, 5 true negatives, and 10 false 

negatives. For the mitogenomics approach, the number of true positives was 3, and thus the 

number of false negatives was 8. This implies that further tests with species outside Diptera 

will be needed to validate the generality of our results. 

 

Turning next to species abundances, we focused on the species inferred to be present by PC 

> PC0, attempting to predict how abundant each was. Model selection with AIC supported 

keeping FSL, RUN, and SPECIES in the final model when mapping against either barcodes or 

mitogenomes. With these models, R2 equaled 0.93 for barcodes and 0.95 for mitogenomes 

(Table 2, Box 1), and the slope of FSL was 0.90 for both barcodes and mitogenomes, i.e. close 

to the theoretical expectation of 1.0. Models without the internal standard (i.e. using FTL 

rather than FSL as the predictor) performed poorly, as did models from which RUN or 

SPECIES was dropped (Table 2, Box 1). Variation among SPECIES effects in the final model 

was not explained by length of barcode (p=0.96) nor mitogenome (p=0.21). In total, these 

results imply that calibration between sequencing runs is necessary and that only within-
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species variation in abundance can be quantified accurately (i.e. ‘Species A is more abundant 

in this sample than in another’). To estimate among-species variation (i.e. ‘Species A is more 

abundant than species B’), it will be necessary to run mock communities with all target 

species of interest to estimate species-specific calibration factors.  

 

3.2. Zackenberg analyses: replicability 

Data based on mitogenomes provided a somewhat higher success rates than did data based 

on barcodes, as judged by two criteria: a higher number of species presences inferred, and a 

lower proportion of cases where a species was inferred to be present in one run only (Table 

3). But overall, the numbers were surprisingly similar (Table 3), given that mean barcode 

length was only 3.9% of mean mitogenome length. The comparisons also suggest that the 

error rate in identifying species presence is somewhat higher in the environmental data 

(Table 3) than with the mock communities (Table 1), as may be expected given extra 

complexities with environmental data. The consistency of the run-corrected abundance 

estimates was almost as high as with the mock data: the abundance estimate from one run 

explained 94% (for barcodes) or 93% (for mitogenomes) of the variation of the abundance 

estimate derived from the other run (Fig. 1AD). Species of different taxonomic affinity varied 

slightly in performance (see Supplement S4.3). The consistency among replicate samples 

was somewhat higher for Araneae than for Diptera, and somewhat lower for Hymenoptera 

and Lepidoptera than for Diptera, but these latter two orders were generally too rare to 

make robust conclusions.   
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3.3. Zackenberg analyses: ecological inference 

Of the 371 species that were present in our DNA-barcode reference database and that were 

systematically sampled over the years, we observed across all samples 145 species at least 

once, and 72 species at least five times. Of the 308 species in our mitogenome reference 

database, we observed 148 species at least once, and 81 species at least five times. Even 

though our analyses with mitogenome reference database contained 17% fewer species, 

mapping to mitogenomes consistently revealed higher species richness (53 species observed 

on average per year) than did mapping to DNA barcodes (46 species observed on average 

per year; Fig. 2). 

 

We then contrasted the effects of using barcodes versus mitogenomes on estimates of 

community change, including only species that were observed at least five times. In our 

models of species richness per trap-week, we observed a peak in the middle of the summer 

and a decrease from 1997 to 2013 (Fig. 1BE), regardless of whether we used barcodes or 

mitogenomes. With mitogenomes (but not with barcodes), a statistical interaction between 

year and Julian season was retained, suggesting that peak species richness occurred earlier 

in 2013 than in 1997 (Fig. 1E). Both the barcode and the mitogenome datasets recorded 

greater total species abundance in 2013 over 1997, but only the mitogenome approach 

detected that community abundance decreased over the summer (Fig. 1CF). 

 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

4. Discussion 

The harnessing of high-throughput DNA sequencing to infer species composition and species 

abundances is a huge opportunity for community ecology and environmental monitoring 

(Tang et al. 2015; Bush et al. 2017; Bista et al. 2017; Porter & Hajibabaei 2018). We report a 

step-change improvement in the accuracy and precision of the mitogenomic approach, 

achieved by combining shotgun sequencing with a percent-coverage threshold (PC0), an 

internal-standard DNA spike-in (FSL), and correction factors among sequencing runs (RUN; 

Box 1). The highest accuracy and precision are achieved with longer mitogenome targets but 

remain surprisingly high with short DNA-barcode targets (Table 1, 3; Box 1, Fig. 1), and both 

approaches recover signals of structural change from real samples of arthropods at a high-

Arctic site with marked environmental change (Figs. 1, 2). 

 

4.1. High accuracy and precision 

Our pipeline accurately inferred the presence and absence of species in mock samples. By 

selecting a conservative threshold for percentage cover (Table 1), we could completely 

eliminate false positives, while keeping false-negative rates only at 3% and 5% when 

mapping to mitogenomes and DNA barcodes, respectively. However, differences in the 

performance of Diptera and Araneae suggest that further tests will be needed to validate 

the generality of our results across a wider range of taxa. We could also accurately estimate 

within-species variation in abundance, achieving R2 values of 0.95 for mitogenomes and 0.93 

for COI barcodes, and reaching almost direct proportionality between the number of 

mapped reads and species abundance (Fig. 1). These results are a major improvement over 
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many previous studies (including our own), which have reported positive but noisy and 

idiosyncratic correlations between read number and biomass (Tang et al. 2015, Zhou et al. 

2013; Gómez-Rodríguez et al. 2015; Bista et al. 2017). Overall, they seem to deliver on the 

key promise of mitogenomic approaches, adding quantitative information beyond that 

achieved by metabarcoding approaches (see Introduction). 

 

We used as a unit of abundance DNA mass – i.e. nanograms of mitochondrial DNA of each 

species in a compound sample of DNA. Importantly, this is an absolute rather than a relative 

metric, allowing one to assess variation in the occurrence and concentration of DNA of the 

target species among samples, and thus to estimate within-species population changes. By 

measuring such changes for multiple species, one can detect quantitative changes in 

community structure. If desired, the unit of DNA mass can be converted into an estimate of 

the more traditional metric of individual counts per sample, given the availability of an 

estimate of mitochondrial DNA mass per individual per species. 

 

Like any survey method, the method presented here will likely miss some species that are 

actually present in an environmental sample (Table 3), especially those present at low 

abundance. Thus, exhaustive sampling will require several sequencing runs, or at least a very 

high sequencing depth in a single run. When multiple sequencing runs are used, our results 

suggest that variation between runs can be almost completely accounted for, if including 

some samples in all runs to enable calibration. However, our tests are not exhaustive, and 

that this conclusion should thus be taken with caution. We also note that our mock samples 

were designed to reflect the High-Arctic fauna, which is dominated by the order, Diptera, 
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and we have shown that it is possible to differentiate congener species in this order, which is 

an important requirement for understanding changes in this community. However, we 

caution that given the enormous diversity of the Arthropoda, our tests can only be 

considered partial, and we robustness should continue to be tested in other studies. 

 

4.2 Mitogenomes versus DNA barcodes 

We consistently detected more species when mapping to mitogenomes than to barcodes – 

even though we had 406 barcodes but only 308 mitogenomes (Table 1, Fig. 2). This 

difference was caused by the higher PC threshold needed to avoid false positives for 

barcodes (PC0 = 0.5) than for mitogenomes (PC0 = 0.1). Perhaps as a result, mitogenome 

datasets also appear to be more powerful for detecting change in community structure (Fig. 

1EF).  

 

However, the higher statistical power of a mitogenome reference dataset trades off against 

the higher cost of compiling it, especially if suitable barcode sequences are already available 

(Ratnasingham & Hebert 2007; Machida et al. 2018; Nilsson et al. 2018). A mitogenome 

reference dataset is likely justified if the aim is to repeatedly monitor a fixed species list, in 

which case the initial cost of assembling a mitogenome dataset can be amortized. 

Conversely, in species-rich areas, DNA barcodes might be the only feasible option, in which 

case our results suggest that it will be helpful to increase sequencing depth per sample, and 

possibly also the number of samples per location. For example, the new Illumina NovaSeq 

delivers 1.5–5 times the output of the Illumina 2500 that we used (Bleidorn 2017). Our per-

sample sequencing cost on the Illumina 2500 ranged from 130€ to 220€ per sample, plus the 
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LITE library cost of 5.6€ per sample. A high sequencing depth was required because in our 

samples, only ~0.2-0.4% of the reads mapped to our 308 mitogenomes, the remainder 

representing the nuclear genomes or microbes, not counting the internal-standards. Baits 

could potentially help (Liu et al. 2015, Wilcox et al. 2018), but baits do introduce bias, and 

the enrichment factor will vary across samples, obscuring abundance information. A final 

consideration is that a barcode reference dataset is currently more likely to allow detection 

of unexpected species, since barcode datasets can more easily include species from outside 

the study area. However, it could eventually become routine to carry out high-volume de 

novo mitogenome assembly from bulk samples themselves (Crampton-Platt et al. 2015), 

allowing species discovery and detection from the same samples. A related strategy is 

targeted assembly of barcodes from shotgun-sequenced samples (Greenfield et al. 2019). 

 

4.3. Changes in community structure correlated with Arctic warming 

SPIKEPIPE revealed major changes in mean phenology and abundance in the Zackenberg 

arthropod community. While we will report detailed analyses elsewhere, the patterns 

identified in Fig. 1BCEF expand upon two morphology-based studies in Zackenberg. Loboda 

et al. (2018) individually identified 18,385 Muscidae flies into 16 species and found a decline 

in species diversity between 1996 and 2014 – but no statistically significant change in 

species abundances in the mesic heath habitat (the same habitat as our environmental 

samples). Bowden et al. (2018) individually identified 28,566 spiders into nine species and 

found a decline in some species but no change in others. Such differential responses across 

species are altering the structure of Arctic communities (Høye et al. 2014; Kankaanpää et al. 

2018, Koltz et al. 2018), and the changes are percolating to functional associations, e.g. 
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between plants and their pollinators (Schmidt et al. 2016b; Cirtwill et al. 2018). We clearly 

need species-resolution time series from full communities in order to understand the effects 

of climate change on biodiversity. An expansion of the morphological approach is infeasible, 

but our improvements in quantification, coupled with recent and imminent gains in cost-

efficiency, now make the mitogenomic approach an attractive option for use in community 

ecology and in applied biomonitoring. 
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Box 1. An overview of the SPIKEPIPE metagenomic pipeline for quantifying eukaryotic 

species presences and abundances from mixed-species bulk samples. SPIKEPIPE maps 

shotgun-sequenced reads from the sample against whole or partial mitogenomes, including 

DNA barcode sequences (typically the 3’ portion of mtCOI for animals). Step 1 consists of 

compiling the barcode or mitogenome reference database (for barcodes, reference 

sequences can be downloaded from global databases such as BOLD; Ratnasingham & Hebert 

2007). Step 2 consists of constructing, standardizing, and sequencing a set of mock 

communities to calibrate SPIKEPIPE. Step 3 consists of standardizing and sequencing a set of 

environmental bulk samples. Step 4 consists of mapping the reads from the mock 

communities and environmental samples against the reference database and using these 

mapping data to compute predictor values of species occurrence and abundance: PC, FSL, 

SPECIES, RUN. Step 5 uses the predictor values computed for the mock communities, for 

which we know the true species occurrences and abundances, Y(mock), to fit statistical 

models that predict species occurrences and abundances. These calibrated models are then 

applied to predictor values computed from the environmental mapping data to estimate 

species occurrences and abundances in the environmental samples, Y(environmental). 

Finally, the estimated species occurrences and abundances are used for modelling 

community change (Figs. 1, 2).   
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 Barcode (+) Barcode (-) Mitogenome (+) Mitogenome (-) 

True cases 277 6219 277 4651 

≥ 1 read 269 (97%) 31 (0.5%) 277 (100%) 138 (3%) 

PC > PC0 264 (95%) 0 (0%) 269 (97%) 0 (0%) 

 

Table 1. True- and false-positive and negative observations of species occurrence in the 

mock-community experiment. The table shows the total numbers of species that were 

present (+) or absent (-), pooled over the 14 mock-communities (True cases). The next two 

rows report the number of inferred species presences based on (1) the lax criterion that ≥ 1 

reads were mapped to a focal species and (2) the stringent criterion that mapping percent-

coverage, PC, exceeded a threshold PC0. Note that even with the lax criterion, only 0.5% 

(barcode targets) or 3% (mitogenome targets) of truly absent species were identified falsely 

as present. With the stringent criterion, there were zero false positives.  
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Model Barcode Mitogenome 

 R2 ∆AIC R2 ∆AIC 

Y ~ PC + FSL + RUN + SPECIES 0.93 0.6 0.95 2.0 

Y ~ FSL + RUN + SPECIES 0.93 0 0.95 0 

Y ~ FTL + RUN + SPECIES 0.38 571 0.42 663 

Y ~ FSL + SPECIES 0.53 497 0.69 493 

Y ~ FSL + RUN 0.58 430 0.54 566 

 

Table 2. Variation in species abundance in the mock-community experiment explained by 

alternative models. In all models, the response variable Y is the log-transformed amount of 

DNA used for the focal species as input, and the columns show the proportion of explained 

variance R2 and ∆AIC (relative to the model with lowest AIC). 
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 Barcode Mitogenome 

Number of comparisons 99470 75460 

Present in neither run (agreement) 98072 73726 

Present in both runs (agreement) 1118 1445 

Present in one run (disagreement) 280 (20% of all presences) 289 (17% of presences) 

 

Table 3. Consistency of re-sequenced environmental data. The table shows the consistency 

in species presences and absences between two sequencing runs, with the total number of 

comparisons equaling the total number of sample-by-species combinations. To evaluate the 

robustness of detecting species presence, we counted how often a species was inferred to 

be present or absent in both cases (agreement) or present in one case only (disagreement). 

The proportion of presences is counted as the fraction of all samples where the species was 

inferred to be present in at least one run. 
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Figure legends 

 

Figure 1. Results from the environmental Zackenberg arthropod samples from 1997 and 

2013, collected with yellow pitfall traps and processed using the SPIKEPIPE pipeline. The 

upper panels (A-C) are based on mapping against DNA barcodes, and the lower panels (D-F) 

on mapping against mitogenomes. Panels A, D examine the technical validity of the data by 

comparing run-corrected abundance estimates for species sequenced in technical replicates 

across sequencing runs. Panels B, E show the species richness per trap-week in 1997 (black 

line) and 2013 (red line), as predicted by a Poisson regression model fitted to weekly data on 

all years 1997–2013, as described in the main text. (For clarity, only the starting and end 

years are shown in the figure.) Panels C, F show the mean abundances per week (in the unit 

of log-transformed DNA amount), normalized to zero mean and unit variance within each 

species) of those species that were present in 1997 and in 2013, as predicted by linear 

regression models described in the main text. 

 

Figure 2. Total number of species detected per year in the Zackenberg samples, based on 

mapping to either DNA barcodes (black dots) or to mitogenomes (red dots).  
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