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METHODOLOGY
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Abstract 

Background: High throughput non-destructive phenotyping is emerging as a significant approach for phenotyp-

ing germplasm and breeding populations for the identification of superior donors, elite lines, and QTLs. Detection 

and counting of spikes, the grain bearing organs of wheat, is critical for phenomics of a large set of germplasm and 

breeding lines in controlled and field conditions. It is also required for precision agriculture where the application of 

nitrogen, water, and other inputs at this critical stage is necessary. Further, counting of spikes is an important measure 

to determine yield. Digital image analysis and machine learning techniques play an essential role in non-destructive 

plant phenotyping analysis.

Results: In this study, an approach based on computer vision, particularly object detection, to recognize and count 

the number of spikes of the wheat plant from the digital images is proposed. For spike identification, a novel deep-

learning network, SpikeSegNet, has been developed by combining two proposed feature networks: Local Patch 

extraction Network (LPNet) and Global Mask refinement Network (GMRNet). In LPNet, the contextual and spatial 

features are learned at the local patch level. The output of LPNet is a segmented mask image, which is further refined 

at the global level using GMRNet. Visual (RGB) images of 200 wheat plants were captured using LemnaTec imaging 

system installed at Nanaji Deshmukh Plant Phenomics Centre, ICAR-IARI, New Delhi. The precision, accuracy, and 

robustness  (F1 score) of the proposed approach for spike segmentation are found to be 99.93%, 99.91%, and 99.91%, 

respectively. For counting the number of spikes, “analyse particles”—function of imageJ was applied on the output 

image of the proposed SpikeSegNet model. For spike counting, the average precision, accuracy, and robustness are 

99%, 95%, and 97%, respectively. SpikeSegNet approach is tested for robustness with illuminated image dataset, and 

no significant difference is observed in the segmentation performance.
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Background
Wheat is one of the 3 major cereals, cultivated since the 

beginning of agriculture to support approximately 30% 

of the world population [1]. It is grown every year in 

around 215 million hectares in the world. Nearly US $50 

billion worth of wheat is traded globally on yearly basis. 

It is the first and foremost food crop of 2.5 billion peo-

ple in 89 countries [1]. Urbanization and rising incomes 

are driving a rapid rise in global wheat consumption. It is 

predicted that by 2050, consumers will require 60% more 

wheat production than today [2]. Further, this challenge 

needs to be addressed in the face of climate change and 

the associated increase in abiotic stresses. �erefore, a 

genetic improvement in wheat for input use efficiency 

and climate resilience is the key to future food security. 

Among the two pillars of genetic improvement of crops, 

genotyping is done with greater ease and accuracy now, 

while the phenotyping remains a rate-limiting step in 

the establishment of phenotype-genotype relationships. 

To remove this bottleneck, non-destructive image-based 

phenomics is gaining momentum worldwide. Visual 

image is the most common and low-cost method of 

imaging system used in non-destructive high throughput 

phenotyping as well as crop management, where image-

based methods can help in input management.

Spike or ear emergence is a critical phenological event 

in wheat development, as it is required for the applica-

tion of nitrogen, water, and other critical inputs for 

crop production. Further, yield estimation in wheat has 

received significant research attention as it is an impor-

tant primary food for a large proportion of the world’s 

population [3]. Since spike number is a key factor that 

determines the grain number per unit area and thus 

yield, counting of the number of spikes/ears is an impor-

tant measure to determine the yield of the plant [4]. 

�erefore spike detection and counting are important for 

phenology based input management for crop production 

and assessing the crop yield. Counting of the number of 

spikes per plant or per unit area through naked-eye is 

a laborious and time-consuming process. Hence, non-

destructive spike detection and counting by image anal-

ysis are needed as a fast alternative. On the other hand, 

computer vision, particularly object detection through 

digital image analysis and machine learning techniques, 

plays an essential role in non-destructive plant pheno-

typing. It is strongly argued that future trends in image-

based plant phenotyping will be a combined effort of 

image processing and machine learning for feature 

extraction and data analysis [5]. Most recently, deep con-

volutional network, i.e., a branch of machine learning, 

is being successfully applied in the area of object detec-

tion and classification and it out-performed many of the 

classical machine learning approaches in many diverse 

domains, for example, pattern recognition [6], instance 

detection and segmentation [7], UNet: for biomedical 

image segmentation [8], SegNet: for segmentation [9], 

plant disease detection and diagnosis [10], classification 

of fruits and flowers of plants from field images [11]. �e 

deep neural network employs the mapping of the input 

layer to the output layer over a series of stacked layers of 

nodes [12]. A wide range of deep learning architectures 

have been used in plant phenotyping like, LeNet archi-

tecture used in biotic stress identification in banana [13], 

AlexNet and GoogLeNet used in apple scab and black-rot 

detection [10], Inception-v3 and ImageNet architectures 

for cassava brown streak disease detection [14] and Caff-

eNet and ImageNet architectures used in biotic stress 

detection in pear, cherry peach [15].

In the recent past, a galaxy of researchers worked 

in the area of computer vision to detect and character-

ize objects, such as spikes and spikelets in the wheat 

plant. Morphological image processing has been used 

in measuring spike characteristics, such as awn number, 

awn length, and spike length in wheat [16]. Also, spike 

identification method was developed to measure seven 

characteristic parameters with the images of individual 

spikes based on back-propagation neural network using 

Hu moments [17]. Here, images of detached spikes were 

used, and hence these methods are seemed to be not 

suitable for high-throughput and non-destructive detec-

tion and counting of intact spikes from the whole plant. 

Recently, some techniques have been developed for auto-

matic detection of heading and flowering stage in wheat 

plant by using Bag-of visual- words approach [18]. In 

Conclusion: In this study, a new approach called as SpikeSegNet has been proposed based on combined digital 

image analysis and deep learning techniques. A dedicated deep learning approach has been developed to identify 

and count spikes in the wheat plants. The performance of the approach demonstrates that SpikeSegNet is an effec-

tive and robust approach for spike detection and counting. As detection and counting of wheat spikes are closely 

related to the crop yield, and the proposed approach is also non-destructive, it is a significant step forward in the area 

of non-destructive and high-throughput phenotyping of wheat.
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this approach, SIFT algorithm was used for low level fea-

ture extraction and finally support vector machine clas-

sification technique was used to classify growth stages. 

Besides, the accuracy of the method for spike detection 

was 85% and 99% at flowering and late growth stage, 

respectively. Li et al. [19] proposed an approach to detect 

and characterize the geometric properties of spikes of a 

single wheat plant grown in a controlled environmental 

condition. �ey used color index method for plant seg-

mentation and neural network method with Laws texture 

energy for spike identification with around 80% accuracy. 

In these studies, color and texture were mostly used to 

identify wheat spikes, which are not totally machine-

dependent as manual intervention is required to define 

the texture and range of color intensity for the segmenta-

tion purpose. In this context, Pound et al. [20] developed 

a deep learning approach for localizing wheat spikes and 

spikelets with around 95% accuracy, and the plants were 

imaged in a small-purpose built chamber with uniform 

background. Hasan et al. [21] used the region-based Con-

volutional Neural Network (R-CNN) approach to detect, 

count and analyze wheat spikes in the field condition. In 

this study, we propose an alternative approach to detect 

and count the number of spikes. �e approach involves 

two stages: (i) identification of spikes on the digital image 

of the wheat plant and (ii) counting of spikes. Identifi-

cation of spikes on the digital image is a class of pixel-

wise segmentation problem of objects. Convolutional 

encoder-decoder deep learning based networks, viz, 

UNet [8], SegNet [9] and PixISegNet [22] are successfully 

used for pixel-wise segmentation of objects in various 

sectors. In the present study, a novel deep-learning net-

work, known as SpikeSegNet, has been proposed by con-

sidering “U-Net” convolutional architecture [8] for spike 

identification. SpikeSegNet is a combination of two pro-

posed feature networks: Local Patch extraction Network 

(LPNet) and Global Mask refinement Network (GMR-

Net). In LPNet, the contextual and spatial features are 

learned at the local patch level. �e output of LPNet is 

a segmented mask image that may contain some inaccu-

rate segmentation of the object, and is further refined at 

the global level by GMRNet. For counting the number of 

spikes from the analyzed image, “analyse particles” func-

tion of imageJ [23] has been applied on the output image 

(binary/segmented mask image containing spike regions 

only) of the SpikeSegNet model. To fix the problem of 

over-counting and undercounting of spike number per 

plant, different side views of the plant have been consid-

ered. �e major advantage of the proposed approach is 

that it provides an efficient non-destructive approach of 

spike identification as well as counting of spikes in wheat 

plant through digital image analysis and deep learning 

technique.

Materials and methods
Image acquisition

Wheat plants were grown in pots in the climate-con-

trolled greenhouse in Nanaji Deshmukh Plant Phenom-

ics Centre, ICAR-Indian Agricultural Research Institute, 

New Delhi, India. Names of the genotypes used in this 

study are given in Additional file  1. �e single wheat 

plant was grown to maturity in the pot with recom-

mended cultural practices. Images of the plants were 

taken by using 6576 × 4384 pixel RGB camera (LemnaTec 

GmbH, Aachen, Germany). �ree different side view 

images (angles: 0°, 120°, 240°) of the plants were recorded 

using the automated turning and lifting unit present 

inside the imaging unit. �e side views were considered, 

as it is hypothesized that the image from one direction 

cannot cover all the spikes of the plant; besides, it helps 

in increasing the data points corresponding to one plant. 

Only side views were taken as it provides more infor-

mation than the top view [19]. A uniform background 

was maintained to increase the accuracy of separation 

between background and plant regions. Images were 

stored in PNG format. Imaging was done during the 

reproductive stage of the plant. After imaging, the num-

ber of spikes per plant was counted manually, which 

is used as ground truth value to validate the proposed 

approach.

Dataset preparation

�e original size of the image was 6576 × 4384 pixels, 

which consist of not only the plant regions but also the 

chamber used in imaging, as shown in Fig. 1a. Hence, the 

images were cropped (of size 1656 * 1356) to get only the 

region of interest (plant regions) from the whole image, 

as shown in Fig. 1b. Visual images (RGB) and their cor-

responding ground-truth mask images with class labels 

(i.e., spike regions of the plant) were prepared manually 

[24] with the help of Photoshop software for training the 

network. In mask image, black pixels (pixel value = 0) 

represent the spike regions whereas white pixels (pixel 

value = 255) for the remaining portions of the corre-

sponding visual image. Pseudocode of the segmented 

mask image preparation is given in Additional file  2. 

�e output obtained from the running pseudocode is 

given in Fig. 1c, d. Visual images (of size 1656 * 1356) as 

well as ground truth mask images (of size 1656 * 1356) 

were divided into 100 pixel overlapping patches of size 

256 * 256 for training the network (Fig.  2). Patches are 

nothing but the small overlapping portions of an image. 

�us, from one image (of size 1656 * 1356), 180 patches 

(row wise 15 * column wise 12) were generated. Besides, 

training of network using patches also helped in learn-

ing local features more effectively than using the whole 

image [22]. 
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Proposed approach for detection and counting of spikes 

in a single plant

�e proposed approach consists of two broad stages of 

analysis. First stage deals with identification or detec-

tion of spike regions from the whole wheat plant image 

and the second stage consists of counting of the num-

ber of spikes of the plant.

Proposed architecture of SpikeSegNet network for spike 

identi�cation

�e backbone of SpikeSegNet network is based on con-

volutional encoder-decoder deep-learning technique 

with hourglass, as a part of the bottleneck network. 

SpikeSegNet is a combination of two proposed feature 

networks:

A. Local Patch extraction Network (LPNet) and

B. Global Mask refinement Network (GMRNet).

In LPNet, the contextual and spatial features are 

learned at the local patch level. �e output of the LPNet 

is the segmented mask image patches of size 256 * 256, 

which are further combined to generate the original 

mask image (mergeLPmask) of size 1656 * 1356. However, 

mergeLPmask may contain some inaccurate segmenta-

tion of the object (or, spikes) and thus they are further 

refined at the global level using GMRNet. �e overall 

flow-diagram of the proposed approach has been given in 

Fig. 3, and the detail of network architecture is discussed 

below:

A. LPNet �e LPNet consists of Encoder, Decoder, along 

with Bottleneck network as shown in Fig.  4. Encoder 

takes input patch image to give feature map representa-

tion that holds the contextual and spatial information. 

�e Decoder takes the information as input and produces 

corresponding segmentation masks as output [8, 12]. 

Skip connections [22] are formed between the encoder 

and the decoder and is also known as merge or concat-

Visual image taken in LemnaTec facility 

(6576*4384)

Cropped image 

(1656*1356)

(a) (b)

Ground truth mask

images (1656*1356)

Cropping Selection of 

spike pixels

Segmented mask

image generation

(c) (d)

Fig. 1 Dataset preparation: a LemnaTec image (of size 6576 × 4384) consists of not only the plant regions but also the chamber used in imaging; 

b the images are cropped (of size 1656 * 1356) to get only the region of interests; c spike pixels (x, y) are selected and previous color of the selected 

pixel is replaced by the fill_color; d segmented mask image is generated by setting the pixel value of fill_color as 0 (black) elsewhere, 255 (white)

(b) 
Visual image patches of size 256*256

(a) 
Visual image of size 1656*1356

(c) 
Mask image patches of size 256*256

(d) 
Mask image of size 1656*1356

Fig. 2 Patch generation: a visual images (of size 1656 * 1356) as well as d ground truth mask images (of size 1656 * 1356) are divided into 100 pixels 

overlapping patches [b, c] of size 256 * 256
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enation operation, which helps in transferring the spatial 

information across the network for better localization of 

the segmentation masks. �rough the skip connections, 

corresponding feature maps from the encoder before 

down-sampling (or, max-pooling) are concatenated with 

the corresponding feature maps of the decoder after up-

sampling (or, transverse convolution). Bottleneck network 

in between encoder and decoder network has been intro-

duced to compress the feature map representation for 

better segmentation results. �e architecture of the pro-

posed LPNet network consists of 3 encoder blocks, corre-

sponding hierarchy of 3 decoder blocks, and 3 hourglasses 

between encoder-decoder as part of the bottleneck net-

work. By introducing hourglass in the bottleneck, the seg-

mentation network gives precise and contextually more 

confident segmentation mask. �e numbers of encoder 

blocks, decoder blocks, and the hourglasses are estimated 

empirically to yield the best results with optimum perfor-

mance. �e details of encoder, decoder, and hourglass are 

discussed in follows.

Encoder network: �e encoder network consists of 3 

encoder blocks. �e 1st encoder block takes the visual 

image patches (of size 256 * 256) as input and produces 

corresponding feature maps as output and forwarded 

it to the 2nd, followed by the 3rd encoder block for fur-

ther feature extraction. Each encoder block contains a 

set of convolution layers to learn feature representation 

at different receptive fields [25], where each convolution 

layer applies a 3 * 3 filter followed by a non-linear activa-

tion function, namely Rectified Linear Unit (ReLU) [26]. 

�en these feature maps are batch normalized [27] to 

improve the performance and stability of the network 

followed by max-pooling with 2 * 2 window with stride 

2 (non-overlapping) for sub-sampling or down-sampling 

the features by a factor of 2. Max-pooling operation using 

window size 2 * 2 or by sampling factor of 2, considered 

as standard [8, 10, 22, 28]. By choosing sample factor 2, 

the features are downsampled by half of its original size, 

and the aggregate features are extracted more effectively. 

Each encoder block is repeated with a varying filter depth 

Patch generation

Visual image

of size 1656*1356

LPNet

Predicted mask image patches

of size 256*256

Merging of mask patch images

mergeLPmask image

of size 1656*1356

GMRNet

mergeLPmask image 

of size 256*256

Resize into 256*256

Visual image patches

of size 256*256

Refine mask image

of size 256*256

(a) (b)
(c)

(d)

(e)(f)

Fig. 3 Flow diagram of SpikeSegNet: The network is developed for pixel-wise segmentation of objects (or spikes) from the wheat plant. 

SpikeSegNet is a combination of two proposed feature network namely Local Patch extraction Network (LPNet) and Global Mask refinement. 

Network (GMRNet). a The visual image of size 1656 * 1356 is divided into patches (b) of size 256 * 256 and fed into the LPNet network to extract 

contextual and spatial features at local patch level. Output of LPNet is segmented mask image patches (c) of size 256 * 256 which are then 

combined (mergeLPmask) to generate the original mask image of size 1656 * 1356 (d); mergeLPmask image may contain some sort of inaccurate 

segmentation of the object (or, spikes) and are refined at global level using GMRNet network; before passing through GMRNet, it is resized to 

256 * 256 (e) to reduce the network complexity. The output of GMRNet network is nothing but the refined mask image (f) containing spike regions 

only



Page 6 of 20Misra et al. Plant Methods           (2020) 16:40 

of 16, 64, and 128 to encode the features. Square filter 

has been used as it is popularly used in various state-of-

art methods [29] for the image of square shape. Details 

of each encoder block (i.e., input to each encoder block, 

number of convolution filters used with their sizes, the 

output of each encoder block, input, and output to the 

corresponding max-pool) are given in Table 1.

Bottleneck network: Output of the encoder network 

is passed as input to the bottleneck network. �e bot-

tleneck network consists of 3 hourglasses, scale up, and 

scale down operations. By introducing hourglass, it gives 

more confident segmentation result [8]. It is mainly due 

to the innate design of the hourglass network, which 

minimizes the feature map and captures the information 

by only concentrating on essential features. Scaling up 

and scaling down operation help in finding the relation-

ship among aggregate features at different scales, which 

further helps to get the robust features [22]. Multiple 

hourglass networks (i.e., stacked hourglass) enhance the 

invariant features that are captured at various scale, view-

point and occlusion very effectively to predict the seg-

mentation mask of the image accurately [22]. But, more 

than one hourglass in the network will increase the net-

work depth and performance may fall due to over-fitting. 

As there is a trade-off between the number of parameters 

and accuracy, we have chosen one scale up and one scale 

down operations along with 3 hourglasses empirically to 

get the best results with optimal parameters and opti-

mum performance. �e hourglass consists of two parts: 

Hourglass Encoder  (HgE) and Hourglass Decoder  (HgD). 
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Fig. 4 Architecture of LPNet network

Table 1 Details of each encoder block and corresponding max-pool

Encoder block # Input to encoder block Convolution 
�lter size

Number 
of convolution 
�lter

Output 
of encoder 
block

Input to max-pool Output to max-pool

Block 1 256 * 256 (patch image) 3 * 3 16 256 * 256 * 16 256 * 256 * 16 128 * 128 * 16

Block 2 128 * 128 * 16 3 * 3 64 128 * 128 * 64 128 * 128 * 64 64 * 64 * 64

Block 3 64 * 64 * 64 3 * 3 128 64 * 64 * 128 64 * 64 * 128 32 * 32 * 128
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Each layer in  HgE/HgD is realized as layer Residual Mod-

ule/Block. �e Residual Module/Block consists of a 1 * 1 

convolution of depth 128 followed by 3 * 3 convolution 

of depth 128 and then 1 * 1 convolution of depth 256 

(Fig.  5). Each residual block again consists of skip con-

nection that allows the flow of gradient and spatial infor-

mation across the deep network and facilitates in solving 

the problem of vanishing gradient. In general, Encoder/

Decoder network, after each max pool step, the output 

of the encoder block is concatenated with the corre-

sponding decoder block. In hourglass network, instead 

of concatenating the layer of the encoder with that of the 

decoder, the layer is further convolved through residual 

block and then added element-wise to the correspond-

ing layer of the decoder.  HgE network receives the out-

put from the encoder network and contains four residual 

modules in sequential order and  HgD network contains 

3 long skip connections to preserve the spatial informa-

tion along with four residual modules in sequential order 

(Fig. 5). �e Input and output of each hourglass is given 

in Table 2.

Decoder network: In decoder, the output from the  3rd 

hourglass (32 * 32 * 128) is up-sampled using a 3*3 trans-

pose convolution with padding 1 and stride 1. �en the 

resulting feature map (of size 64 * 64 * 128) got concat-

enated with the corresponding encoder feature map. 

�e concatenated feature map (of size 64 * 64 * 256) is 

then passed to two, 3 * 3 convolution layers (padding 1 

and stride 1) followed by ReLU activation and Batch 

Normalization and is repeated with filters having var-

ied channel depths of 128, 64 and 16 as opposite to the 

encoder blocks. Details of each decoder block (i.e., input 

to the each decoder block, number of convolution filter 

used with their sizes, output of each decoder block, input 

and output to the corresponding transpose convolutional 

layer) are given in Table 3. �e output of the final decoder 

has been fed into 3 * 3 * 1 convolution layer with “soft-

max” activation function [30] to classify the object (i.e., 

spike) at the patch level. �e output of LPNet is a pre-

dicted mask image patch of size 256 * 256 corresponding 

to the input patch image (i.e., visual image patch of size 

256 * 256), as shown in Fig. 4.
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Fig. 5 Architecture of Hourglass network (top) with residual block (bottom)

Table 2 Input and output of each hourglass

“_” indicates the corresponding operation has not been done

Hourglass Input Output After scale up After scale 
down

Hourglass 1 32 * 32 * 128 32 * 32 * 128 64 * 64 * 128 _

Hourglass 2 64 * 64 * 128 64 * 64 * 128 _ 32 * 32 * 128

Hourglass 3 32 * 32 * 128 32 * 32 * 128 _ –
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B. GMRNet �e GMRNet consists of 3 encoder blocks 

and the corresponding hierarchy of 3 decoder blocks. �e 

architecture has also been developed by taking inspiration 

from UNet architecture [8]. �e architecture of GMRNet 

is the same as the architecture of LPNet without hourglass 

network. �e input of GMRNet is mergeLPmask image of 

size 256 * 256. Outline of the architecture is given in Fig. 6. 

�e inner-structure, input, output and hyper-parameter 

of the each encoder and decoder block is the same as 

given in Tables 1 and 3 respectively.

Approach for counting number of spikes in a single plant

�e “analyse particles” function of imageJ [23], which 

implements flood-fill technique [31], has been used in 

counting the number of spikes per plant. �e flood-fill 

technique employs object count by growing through 

similar pixel regions from the starting pixel. �e “ana-

lyse particles” function counts and measures (pixel 

area) objects in binary or threshold images. �e visual 

images of single plant from three direction side views 

(0°, 120°, 240°) have been used as input to the proposed 

Table 3 Details of each decoder block and corresponding transpose convolutional layer

Decoder block # Input to transpose 
convolution

Output 
of transpose 
convolution

Input to decoder block Convolution 
�lter size

Number 
of convolution 
�lter

Output 
of decoder 
block

Block 1 32 * 32 * 128 64 * 64 * 128 64 * 64 * 128 3 * 3 128 64 * 64 * 128

Block 2 64 * 64 * 128 128 * 128 * 64 128 * 128 * 64 3 * 3 64 128 * 128 * 64

Block 3 128 * 128 * 64 256 * 256 * 64 256 * 256 * 64 3 * 3 16 256 * 256 * 16

Output

 (Mask image 

of size 

256*256)
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Convolution 
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SpikeSegNet model and then the “analyse particles” func-

tion was applied on the predicted output mask images 

(i.e., refined mask image of size 256 * 256) to count num-

ber of objects (spikes) in a single plant. �ree side views 

are considered as image from one direction cannot cover 

all the spikes of a plant.

Model development and performance measurement

To develop/train the SpikeSegNet model, dataset consist-

ing of images taken from 3 directions of 200 plants was 

considered. �e dataset was subsequently bifurcated 

randomly into training set and validation set with 85% 

and 15% of the total plants respectively. For develop-

ing SpikeSegNet, both the network models (LPNet and 

GMRNet) have been trained on Linux operating system 

with 32  GB RAM and NVIDIA GeForce GTX 1080 Ti 

graphics card (with memory 11 GB).

Training of LPNet: �e training dataset contains ran-

domly selected 85% images of the total plants (i.e., images 

of 170 plants out of 200). As 3 direction images corre-

sponding to one plant have been considered, the dataset 

consists of 510 images (i.e., 170 plant * 3 direction image) 

of size 1656 * 1356. �e network has been trained by 

using visual image patches. Each of the 510 visual images 

(of size 1656 * 1356) has been divided into 100 pixel over-

lapping patches (of size 256 * 256), and from one image, 

180 patches (row wise 15 * column wise 12) were gen-

erated. Hence, total 91,800 (510 image * 180 patches) 

patches have been used for training the network. Train-

ing strategy of the network involves multi-stage modular 

training [22] where each module is trained independently 

and then merged to form a single network, which is then 

trained in end-to-end fashion in the final stage. �e 

model was developed by using “Adam” optimizer [32] 

with a learning rate of 0.0005 to update the weights. �e 

network was trained for 200 epochs with batch size of 32 

images (each of 256 * 256) as per the system constraints. 

“Binary cross-entropy” [22] was used as loss function to 

predict binary class label (i.e., spikes and non-spikes) at 

the patch level. It is the most commonly used loss func-

tion in the image segmentation to compute pixel-wise 

cross entropy. It examines each pixel individually and 

compares its binary class predictions (either 0/1; in this 

context, spikes region or not) to the ground truth (or, 

segmented ground truth mask image consisting of spike 

regions only). Cross entropy loss evaluates the class pre-

dictions for each pixel individually and averages it over all 

the pixels. �erefore, each pixel contributes uniformly to 

the overall objective loss function. Feature maps (i.e., out-

put of applying the filters to the input image or, another 

feature map) are given in Additional file 3. It shows the 

sample output feature maps after applying the encoder 

network, hourglass network, and the decoder network in 

the LPNet.

Training of GMRNet: �e output of LPNet is a pre-

dicted mask image patch of size 256 * 256 correspond-

ing to the input patch image (i.e., visual image patches 

of size 256 * 256), as shown in Fig.  3. �erefore, from 

91,800 (= 510 image * 180 patches) visual image patches 

(i.e., training dataset), the same number of mask image 

patches will be generated. �e predicted mask image 

patches (of size 256 * 256) are then combined to construct 

mergeLPmask image (of size 1656 * 1356), as discussed 

in the earlier section. Hence, 180 predicted mask image 

patches corresponding to the single visual image of size 

1656 * 1356 are combined to construct a single mergeLP-

mask image. In this way, from 91,800 mask image patches 

(of size 256 * 256), 510 (= 91,800 patches/180 patches) 

mergeLPmask images (of size 1656 * 1356) have been 

generated. �ese images have been resized into 256 * 256 

(to reduce the network complexity) and used in training 

GMRNet using the same system configuration used in 

training the LPNet network. Similar to LPNet, this net-

work has also been developed by using “Adam” optimizer 

[32] with a learning rate of 0.0005 to update the weights. 

�e network has also been trained for 200 epochs with 

batch size of 32 images (each of 256 * 256) and “Binary 

cross-entropy” loss function has been used to predict 

binary class label (i.e., spikes and non-spikes).

Performance measures for identi�cation of spikes

�e segmentation performance of the SpikeSegNet in the 

identification/detection of spikes was analyzed on the 

validation image dataset. �e dataset was then passed 

through LPNet followed by GMRNet using the step-wise 

procedure as outlined in the flow diagram (Fig.  3) and 

the final output mask image (i.e., predicted refined mask 

image of size 256 * 256) (Fig. 3f ) was compared with the 

ground-truth segmented mask image prepared using the 

pseudocode mentioned in Additional file 2 under “Data-

set preparation” section. �e pixel-wise segmentation 

performance was evaluated by the performance param-

eters [Type I Classification Error (E1), Type II Classi-

fication Error (E2), Jaccard Index (JI)] discussed in the 

literature [22, 33–35]. Following performance parameters 

were used for measuring the segmentation performance 

and are defined as follows:

• True positive (TP_D): # pixels correctly classified as 

spikes pixels.

• True Negative (TN_D): # pixels correctly classified as 

non-spikes pixels.

• False Positive (FP_D): # non-spikes pixels classified as 

spikes pixels.
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• False Negative (FN_D): # spikes pixels classified as 

non- spikes pixels.

Precision, Recall, F-measure and Accuracy are defined 

as:

• 

• 

• 

• 

Comparative analysis for spike identification with illu-

minated images: A comparative analysis was conducted 

with the illuminated images to test the robustness of the 

proposed approach for spike segmentation. �e valida-

tion image dataset was artificially illuminated by applying 

Gamma correction ( γ ) at different levels from darker to 

the brighter illumination. Gamma correction is a non-lin-

ear operation used in encoding and decoding luminance 

values in the image [36]. We have considered gamma 

values 0.1 to 2.5, from darker to brighter, as the level of 

illumination may not go beyond that in the field condi-

tions. �e illuminated image dataset was passed into the 

SpikeSegNet network as input, and the step-wise opera-

tions were done to produce the predicted mask image as 

output. Subsequently, the performance parameters  [E1, 

 E2, JI, Eq. (1), Eq. (2), Eq. (3), Eq. (4)] are computed at dif-

ferent levels of illumination to analyze the segmentation 

performance of the proposed approach.

Comparative analysis for spike identification with the 

existing approach: �e performance of SpikeSegNet 

has also been compared with the approach given by Li 

et  al. [19]. Broadly, the latter approach involves 3 steps. 

In the first step, the color index method was applied for 

plant segmentation. Several color indices [(R–G), (G–B), 

(1)

Pr ecision =
TP_D

TP_D + FP_D
denotes the %

of detected pixels are actually spikes

(2)

Recall =
TP_D

TP_D + FN_D
measures, %

of actually spikes spike pixels are detected

(3)

Accuracy =
TP_D + TN_D

TP_D + TN_D + FP_D + FN_D

indicates the performance of the proposed approach

(4)

F1Score = 2
precision ∗ recall

precision + recall
measures robustness of the

proposed network in detecting or identifying spikes

(G−B)/(R−G), (2G−R–B) and (3G−2.4R–B)] were used 

based on digital number (DN) of each band [red (R), 

green (G) and blue (B)]. In the second step, spikes were 

detected by applying the neural network-based (NN) 

method with Laws texture on the output image of the 

first step, and the resultant output was further improved 

by removing noise using area and height threshold in the 

third step. �e performance of spike detection was meas-

ured by manually checking all the spikes in the image. 

Accuracy was measured by taking the ratio of the num-

ber of correct spikes detected with the total number of 

spikes. For comparative study, we have applied the 3-step 

procedure of Li et al. [19] on our validation image data-

set (case 1) as well as applied our proposed approach, 

SpikeSegNet, on the sample dataset provided by Li et al. 

[19] at the website (link: https ://sourc eforg e.net/proje cts/

spike -detec tion/) (case 2). For comparing the pixel-wise 

segmentation performance in Case 2, the ground truth 

mask image has been prepared based on their dataset 

by using the pseudocode mentioned Additional file  2 

under “Dataset preparation” section, and the segmenta-

tion performance has been measured by the performance 

metrics.

Performance metrics for counting number of spikes

Performance of the spike count approach was evalu-

ated on the validation image dataset (i.e., randomly 

selected 15% of the total plant) by the procedure given 

in “Approach for counting number of spikes in a sin-

gle plant” section. �e output obtained i.e., spike count 

using imageJ was manually compared with the ground 

truth value. �e performance of the developed model 

in counting number of spike was evaluated on the basis 

of precision, recall, accuracy and the  F1 score based on 

true positive (TP_C), false positive (FP_C), true negative 

(TN_C), and false negative (FN_C) which are defined as 

follows:

• TP_C = number of objects correctly classify as spike.

• FP_C = number of objects incorrectly classify as 

spike (i.e., leaf, background) or overlapping spikes 

(connected objects).

• FN_C = number of actual spikes that are not visible 

in any of the side image.

• TN_C = is always’zero’ in this binary classification 

problem as background is not determined for object 

detection.

Precision, recall, accuracy and  F1 score were measured 

by using the above Eqs. (1–4) where, Precision measures 

the % of detected objects which are actually spikes, Recall 

depicts the % of actually spikes that have been detected 

https://sourceforge.net/projects/spike-detection/
https://sourceforge.net/projects/spike-detection/
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among the ground truth, Accuracy measures the perfor-

mance of the approach and  F1 score measures robustness 

of the approach.

Results
In this experiment, a total of 600 images of 200 plants 

from 3 directions were recorded. Image dataset of ran-

domly selected 85% of the total plants (i.e., 510 images 

of 170 plants) were used in developing the SpikeSegNet 

network model to identify the spike regions on the digi-

tal image of the plant. 510 RGB images and their corre-

sponding ground-truth segmented mask images were 

used in training the proposed network. In the first phase 

of training, LPNet was trained at patch level using 91,800 

patches of size 256 * 256. �e efficiency of the training 

model was analyzed by the training loss and error-rate 

at each epoch during the learning stage of the network. 

Although the training was done for 200 epochs, a remark-

able decrease in the loss was measured at each epoch of 

training. �e loss was initially high, and a plateau in the 

decrease was found around 135 epochs (Fig.  7a). In the 

second phase of training, GMRNet was trained using 

510 mergeLPmask images. Although the training was 

done for 200 epochs, a plateau in the decrease was found 

around 45 epochs (Fig. 7b).

�e performance analysis of the proposed segmen-

tation network, SpikeSegNet, for identification of 

spikes was tested on the validation dataset consisting of 

randomly selected 15% of the total plants (i.e., 90 images 

from 3 side-directions of 30 plants each). �e segmenta-

tion performance is measured by different performance 

parameters  (E1,  E2, Jaccard Index (JI), Accuracy, Preci-

sion, Recall, and F-measure) and the average values of 

these parameters are shown in Table  4. �e graphical 

representation of  E1,  E2, Jaccard Index (JI), Accuracy, 

Precision, Recall, and F-measure of 30 plants are shown 

in Fig.  8. Here, for each plant, average measurement of 

the metrics of 3 direction images (0°, 120°, 240°) are 

presented.

Segmentation performance in spike identi�cation 

with illuminated images

Performance of SpikeSegNet has been tested on the 

illuminated image dataset consisting of various levels 

of illumination from darker to brighter. After apply-

ing γ operation on the same validation image dataset at 

different levels [0.1, 0.3, 0.5, 1.5, 2.0, 2.5], the outputs 

are shown in first column of Fig. 9. Sample output after 

applying the SpikeSegNet model at different levels of 

illumination is shown in second column of Fig.  9. For 

visual analysis of pixel count error, output of SpikeSeg-

Net at different levels of illumination were superimposed 

on the ground truth segmented mask image (manually 

prepared) and shown in the third column of Fig. 9. �e 

colored pixels (pink and green) represent the wrongly 

classified pixels where pink indicates that actual spike 
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Fig. 7 a Training loss in LPNet is plateaued around 135 epochs and incase of b GMRNet it is around 45 epochs

Table 4 Performance analysis of SpikeSegNet approach on our validation dataset

E1 E2 JI Accuracy Precision Recall F-measure

0.0016 0.0487 0.9982 0.9991 0.9993 0.9989 0.9991
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pixels are not identified, and the green pixels indicate 

that non-spike pixels are misclassified as spike pixels. �e 

circles on the Fig. 9 represent the spike pixels that are not 

detected. �e performance analysis is given in Table  5. 

It is observed that SpikeSegNet has a stronger ability to 

perform spike segmentation at different levels of illumi-

nation (from Table 5 and Fig. 9).

Segmentation performance for spike identi�cation 

with the existing approach

For comparing the performance of SpikeSegNet with the 

existing approach, we have applied Li’s approach [19], on 

our validation image dataset (case 1) (Fig. 10). Figure 10a 

shows the various color indices used in plant segmenta-

tion; segmentation results (step 1) displayed in Fig. 10b, 

c represents the outcome after applying neural networks 

with Laws texture energy on the segmented images (step 

2) and by removing noise using area and height thresh-

old (step 3). �e validation dataset consists of randomly 

selected images of well-irrigated and drought stressed 

plants. �e sample output after applying Li’s approach on 

the validation dataset is given in Fig.  11, which reflects 

that the segmentation performance is far better in well-

irrigated plants than that of drought stressed plants. �e 

circles in the Fig. 11 show wrongly classified spike pixels. 

It was found that (2g– r–b)-color index out-performs all 

the color indices with an accuracy of around 81% while 

considering the well-watered plants. Besides, SpikeSeg-

Net, was also applied on the sample dataset provided by 

Li et al. [19] (case 2) and the output is shown in Fig. 12. 

�e pixel-wise segmentation performance is given in 

Table 6.

Performance analysis in counting number of spikes 

per plant

For counting the number of spikes in wheat plant, the 

developed model has been tested on the same vali-

dation dataset as well as the approach described in 

“Approach for counting number of spikes in a single 

plant” section. It is observed that, the maximum spike 

count obtained from the images of three directions (0°, 

120°, 240°) of the single plant is very closely associated 

with the ground truth spike count (Fig. 13). Hence, the 

image with maximum spike count was used to com-

pare and evaluate the performance of the said approach 

for spike counting. In order to validate the counting 

approach, resultant output mask images were super-

imposed over the original images (RGB images). �e 

precision, accuracy and  F1 score corresponding to the 

30 plants are represented in Table 5. �e average preci-

sion, accuracy and  F1 score are observed that 99%, 95% 

and 97%, respectively.

Discussion
�e performance of spike identification is calculated 

at pixel level, and it can be observed from the value of 

classification error  (E1), that, on an average only 105 

pixels were classified wrongly among 65,536 (256 * 256) 

pixels of one image. Accuracy of the developed model 

is close to 100% and spikes are detected with an average 
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Fig. 8 Graphical representation of E1, E2, Jaccard Index (JI), Accuracy, Precision, and F-measure of 30 different plants
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Gamma=0.3

Gamma=0.1

SpikeSegNet output

Gamma=1 

(Original image)

Superimposition

of  SpikeSegNet output on

the ground truth mask image

Gamma=0.5

Fig. 9 Segmentation performance with different levels of illuminated images: First column shows the illuminated images at different gamma 

values; Second column represents the output images after applying SpikeSegNet approach; For visually analyzing the pixel count error, output of 

SpikeSegNet at different level of illumination is superimposed on the ground truth segmented mask image (manually prepared).The colored pixel 

(pink and green) represents the wrongly classified pixels where pink indicates that actual spike pixels are not identified and the green pixels indicate 

that non-spike pixels are misclassified as spike pixels. The circles on the figure represent the spike pixels which are not detected
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Gamma=1.5

Gamma=2.0

Gamma=2.5

Fig. 9 continued

Table 5 Performance analysis of SpikeSegNet approach on illuminated dataset

Gamma 0.1 Gamma 0.3 Gamma 0.5 Gamma 1 
(original 
image)

Gamma 1.5 Gamma 2.0 Gamma 2.5

Classification error rate  (E1) 0.005349223 0.003051249 0.002396139 0.001693726 0.00177917 0.0020579 0.002359009

Classification error rate  (E2) 0.083304137 0.042303843 0.040107991 0.04874738 0.06317883 0.08736489 0.108331881

Average_Precision 0.998094286 0.999318633 0.999408703 0.999325313 0.99911935 0.99879521 0.998452183

Average_Recall 0.996521902 0.997607927 0.998178134 0.99896944 0.99908922 0.99913291 0.998812372

Average_F_1_measure 0.997302422 0.998461999 0.998792781 0.999147219 0.99910416 0.99896389 0.998812369

Average_Accuracy 0.997302421 0.998462003 0.998792786 0.999147223 0.99910416 0.9989639 0.998812372

Average_Jaccard_Index_for_
Spike_detection:

0.994627456 0.99693175 0.997591056 0.998298182 0.99821199 0.99793177 0.997629168
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precision and recall of 99.93% and 99.89%, respectively. 

�e precision value reflects that 99.93% of the detected 

pixels are actually spikes, whereas recall value reflects 

that 99.89% of actual spike pixels are detected among 

the ground truth spike pixels using the developed net-

work. Average  F1 score reveals that the proposed net-

work is 99.91% robust in identifying/detecting spikes 

from whole plant images. We have tested the robustness 

of SpikeSegNet approach with diversified illuminated 

image dataset as well as with another approach given by 

Li et al. [19]. �e performances obtained are discussed 

as belows.

SpikeSegNet vs illuminated image dataset

As the performance of spike identification was calcu-

lated at pixel level, it can be observed from the value 

of the classification/segmentation error  (E1) given in 

Table  5, that on an average only 351 (0.00535%) pix-

els at gamma 0.1, 200 (0.00305%) pixels at gamma 0.3, 

157 (0.00239%) pixels at gamma 0.5, 116 (0.0017%) 

pixels at gamma 1.5, 135 (0.0027%) pixels at gamma 

2.0 and 155 (0.00235%) pixels at gamma 2.5 were clas-

sified wrongly out of 65,536 (256 * 256) pixels of one 

image. �e values of  E1 at different illumination lev-

els have also been graphically represented in Fig.  14a, 

which reflects that classification/segmentation error is 

minimum at gamma = 1 (original image), and it is grad-

ually increasing when gamma value is either decreas-

ing or increasing from 1. To check the consistency of 

SpikeSegNet in terms of classification error at differ-

ent levels of illumination, we have also computed Least 

Significant Difference (LSD) at 5% level of significance 

and the result revealed that classification error is com-

paratively higher at gamma 0.1 and is at per (i.e., no sig-

nificant difference) at gamma 0.3 to 2.5. �e accuracies 

are almost consistent from gamma value ranging from 

0.3 to 2.0 (Table 5 and Fig. 14b). Although the effect of 

illumination level (gamma values ranges from 0.1 to 

2.5) on the original image has a significant difference in 

image quality, as shown in the first column of Fig. 9, the 

proposed approach has very well-addressed such type 

of issues. �us, the SpikeSegNet approach can adapt 

to the different illumination levels and also provides a 

high segmentation performance.

SpikeSegNet vs Li’s approach

For comparing the performance of SpikeSegNet with 

Li’s approach, we have considered two cases. In case 1, 

from Fig. 10, it can be easily observed that, performance 

of NN approach with Laws texture energy [19] is better 

in the color indices (G–B), (G–B)/(R–G) and (2G–R–B) 

as compared to (R–G) and (3G–2.4R–B) indices. Li’s 

approach considered (3G–2.4R–B)-index for plant seg-

mentation, it might be due to the presence of several 

factors like the background of imaging, light condition 

presence during imaging, accessories present in the 

imaging chamber, etc. From Fig. 11, it is reflected that 

the segmentation performance of Li’s approach is far 

better in the well-irrigated plants than in the drought-

stressed plants, which may be due to the consideration 

Original 

Image

R-G

G-B

(G-B)/(R-G)

(2G − R –

B)

(3G − 2.4R 

– B)

(a) (b) (c)

Fig. 10 Comparative analysis with the approach given by Li 

et al. [19] (case 1): a shows the various color indices used in plant 

segmentation; segmentation results (step 1) displayed in b; c 

represents the outcomes after applying neural networks with Laws 

texture energy on the segmented images (step 2) and by removing 

noise using area and height threshold (step 3)
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of well-irrigated plants as well as color based features 

for developing the approach. Hence, Li’s [19] approach 

may have limited application for analysis of stress 

plants with leaf senescence and drying and plants near 

to the maturity where leaf and spike often have simi-

lar color. In case 2, it can be observed from Fig. 12 that 

the spikes presented on the sample image dataset are 

well detected by SpikeSegNet approach. �e pixel-wise 

Control Plants Drought Plants

Fig. 11 Sample output after applying (2 g − r–b) color indices with the NN approach (Li et al. [19]) on our validation dataset consists of randomly 

selected control as well as drought plants. The circle shows the wrongly classified spike pixels
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Fig. 12 (Case 2) Output of SpikeSegNet on the sample dataset provided in the website (link: https ://sourc eforg e.net/proje cts/spike -detec tion/)

Table 6 Performance analysis of  SpikeSegNet approach on  the  sample dataset provided on  the  website (link: https ://

sourc eforg e.net/proje cts/spike -detec tion/)

E1 E2 JI Accuracy Precision Recall F-measure

0.00172 0.0488 0.9982 0.9991 0.9984 0.9989 0.9991

https://sourceforge.net/projects/spike-detection/
https://sourceforge.net/projects/spike-detection/
https://sourceforge.net/projects/spike-detection/
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segmentation performance is given in Table 6, and the 

value of  E1 is on an average only 0.00172% per image. 

We have obtained an average accuracy of 99.91%, with 

average precision and recall of 99.93% and 99.89%, 

respectively, which is almost similar to the performance 

results (Table 4) obtained on our validation dataset. It 

is because of, SpikeSegNet approach has been trained 

on patch level for training local as well as global fea-

tures from the images taken from plants subjected to 

diverse treatments (from irrigated to drought stressed).

Although the proposed SpikeSegNet model achieved 

99.91% accuracy in identifying spikes  (Table  5), but the 

counting accuracy is about 95%  (Table  7). �is may be 

due to undercounting of spikes that overlap each other 

and object linking (or connecting) problem (Fig. 15). As 

flood-fill technique employs object count by growing 

through similar pixel regions from the starting pixel the 

multiple objects are treated as if they are linked together 

and counted as one object.

�e previous studies [16–19] involve more laborious 

and complex procedures to develop image processing 

pipeline by manually defining texture and color inten-

sity ranges in a particular situation to detect and char-

acterize spikes in wheat plants. Bi et al. [16] and Lv [17] 

achieved ~ 87% accuracy for spike identification, but, 

they have used destructive method for taking images. In 

this counter, [18] and [19] proposed a non-destructive 

approach for spike identification. But, it involves a hectic 

job of image pre-processing as well as manually defined 

textures as input to the machine learning model to iden-

tify the spikes. In the recent trend, it has been seen that 

computer vision, particularly, object detection plays an 

important role in non-destructive plant phenotyping 

through digital image analysis and deep-learning tech-

nique for automatic detection of spikes in wheat [20, 

21] as well as in other valuable sectors [10, 11, 13–15] in 

agriculture. In this context, a novel approach has been 
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presented in this study based on combined effort of digi-

tal image analysis and deep learning techniques which 

involve identification as well as counting of spikes from 

the digital images of whole wheat plant. It’s not only elim-

inating the tedious job of image pre-processing but also, 

manual intervention of defining the features for the par-

ticular task. �e main beauty of the approach is to auto-

matically detect and learn from the features to produce 

the desire output. For designing and building the deep 

learning network, some iterative optimization is needed 

in taking decision about the number and size of the net-

work layers and tuning the hyper-parameters. Although 

the above considerations are essential for training the 

network, it is less cumbersome and robust approach for 

spike detection.

Conclusion
Detecting and counting of wheat spikes in a non-destruc-

tive and high throughput manner is a challenging task 

in the area of plant phenotyping. In this study, a new 

approach SpikeSegNet has been presented based on com-

bined digital image analysis and deep learning techniques 

to identify and count spikes in the wheat plant. �e pro-

posed deep learning network achieved an accuracy of 

99.91% in spike identification, whereas 95% average accu-

racy is achieved in spike counting. �e approach is tested 

with different illumination levels for its robustness in the 

field conditions. SpikeSegNet approach can adapt to the 

different illumination levels and also provides a good seg-

mentation performance. Further non-destructive detec-

tion of ear emergence will be useful in the automation 

Table 7 Outcome of the approach of spike counting on the test images of 30 plants

Image no Ground truth Predicted using 
model

TP FP FN Precision Accuracy F1 score

1 10 9 9 0 0 1.00 1.00 1.00

2 8 7 7 0 0 1.00 1.00 1.00

3 10 9 8 0 0 1.00 1.00 1.00

4 11 10 10 0 1 1.00 0.91 0.95

5 10 10 10 0 0 1.00 1.00 1.00

6 9 9 8 1 0 0.89 0.89 0.94

7 10 9 9 0 0 1.00 1.00 1.00

8 6 6 6 0 0 1.00 1.00 1.00

9 12 11 10 0 1 1.00 0.91 0.95

10 12 12 11 0 1 1.00 0.92 0.96

11 13 12 10 0 1 1.00 0.91 0.95

12 11 10 9 0 1 1.00 0.90 0.95

13 6 6 6 0 0 1.00 1.00 1.00

14 8 8 8 0 0 1.00 1.00 1.00

15 16 15 13 2 1 0.87 0.81 0.90

16 2 2 2 0 0 1.00 1.00 1.00

17 10 10 10 0 0 1.00 1.00 1.00

18 1 1 1 0 0 1.00 1.00 1.00

19 11 10 10 0 0 1.00 1.00 1.00

20 7 7 7 0 0 1.00 1.00 1.00

21 8 7 7 0 1 1.00 0.88 0.93

22 8 7 7 0 1 1.00 0.88 0.93

23 10 10 10 0 0 1.00 1.00 1.00

24 11 10 10 0 1 1.00 0.91 0.95

25 2 2 2 0 0 1.00 1.00 1.00

26 8 8 7 0 0 1.00 1.00 1.00

27 9 8 7 0 1 1.00 0.88 0.93

28 12 10 10 0 2 1.00 0.83 0.91

29 7 7 7 0 0 1.00 1.00 1.00

30 8 8 7 1 0 0.88 0.88 0.93

Average 0.99 0.95 0.97
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of phenology based treatments in automated phenomics 

facilities, nutrient/water application in precision agricul-

ture. As counting of wheat spikes is closely related to the 

crop yield and the proposed approach is efficient in iden-

tifying wheat spike, it is a significant step forward in the 

area of non-destructive and high-throughput phenotyp-

ing of wheat.
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