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ABSTRACT In hardware-based spiking neural networks (SNNs), the conversion of analog input data into 

the arrival time of an input pulse is regarded as a good candidate for the encoding method due to its bio-

plausibility and power-efficiency. In this work, we trained an SNN encoded by time to first spike (TTFS) and 

performed an inference process using the behavior of the fabricated TFT-type flash synaptic device. The 

exponentially decaying synaptic current model required in the inference process was implemented by reading 

devices in the subthreshold region using triangle pulses. In a high-level system simulation, the TTFS-SNN 

(two-layer MLP with 512 hidden neurons) reached a high accuracy of 97.94%. Compared to conventional 

rate-encoded SNNs, TTFS-SNN made 2.9 times faster judgment and consumed ~10 times less energy in the 

inference process. Additionally, to use the network in a more stable condition, we propose a method to operate 

it using a rectangle pulse in the saturation region of the synaptic device. The distortion caused by this 

approximation was minimized by shortening the pulse width. As a result, the modified inference system 

showed an accuracy of 97.36%, and the prediction time and energy consumption were reduced 3.97- and 

83.04-times when compared to those of the rate-SNN. Finally, we analyzed the sensitivity of the network 

performance due to unexpected issues that may occur in the hardware system and thus explained the 

competitiveness of the proposed synaptic behavior in the saturation region. 

INDEX TERMS Time-to-First-Spike (TTFS) Coding, Temporal Coding, Flash-based Synaptic Device, 

Hardware-based Spiking Neural Networks, Neuromorphic Systems

I. INTRODUCTION 

Recently, SNNs have become regarded as a successful 

computing system and have been widely studied due to their 

compatibility with hardware implementation, enabling the 

parallel operation of massive data and low-power computing 

[1], [2]. However, it is difficult to train an SNN directly due to 

its nature of transmitting data by all-or-nothing discrete spikes. 

As one of the candidate methods for training SNNs, it was 

studied to transfer the weights trained by the ANN to the SNN 

[3], [4]. The conventional ReLU activation function can be 

approximated by a combination of the integrate and fire (I&F) 

neurons and the rate-encoding method that expresses the 

analog-valued input as the frequency of the input pulse in the 

SNN [5]. Due to this approximation, the SNN can achieve the 

performance of a highly advanced ANN without significant 

degradation and can greatly improve the learning speed by 

using GPU-accelerated training packages. However, the 

method of converting the analog input value into the frequency 

of the input pulse requires a very large number of spikes, 

which can lead to an increase in power consumption as the 

structure of the SNN becomes deeper and larger. These 

characteristics may not be suitable for edge computing in 

terms of power-efficiency and device endurance. In addition, 

many analog synaptic devices, including RRAM, show severe 
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variation issues when operating with a small current density 

[6]. Thus, in order to build SNNs that are robust to variation, 

a synaptic device with a large current density should be used. 

Further, in order to obtain power-efficiency when using large 

current synaptic devices, it is necessary to study a network that 

uses only a small number of spikes for inference. 

Another candidate for the encoding method is temporal 

encoding, in which the input values are converted to the arrival 

times of the spikes. An input neuron that accepts an input value 

larger than a small input value fires earlier. The input data is 

only represented by a single spike - regardless of the intensity 

of the input data; thus, sparse spikes are used in the inference 

process. In temporal coding, input data can be expressed in the 

order of firing time of the input nodes (rank-order) [7] or the 

arrival time of the spikes (time to first spike) [8]-[13]. 

To train the SNN encoded by the time-to-first-spike  

(TTFS), the conventional training method for the rate-encoded 

network is not suitable. The relationship between the input and 

output of each layer needs to be newly defined, and the 

modified method must be applied accordingly. Several 

previous works have been reported regarding training methods 

suitable for the TTFS-SNN [8]-[13]. However, the system of 

Rueckauer et al. (2018) [8] is more similar to the pulse width 

encoding system, because the integrated charge is affected by 

the pulse width rather than the arrival time of the input pulse. 

In Comsa et al. (2020) [9] and Zhang et al. (2020) [10], an 

alpha function was used as a synaptic current model, which 

may require more burden to be implemented in hardware. The 

network of Mostafa et al. (2017) [11] was successfully trained 

by defining a piece-wise linear relationship between the input 

and output of each layer, and a number of studies are followed, 

such as implementing a simple network in hardware by 

Billaudelle S et al. (2019) [12]. 

The contributions of our work are as follows: 

1) A TFT-type flash device is fabricated and investigated as 

a synaptic device with nonvolatile memory function. 

Each device presents 32 states and is operated in the 

saturation region to ensure stable operation against drain-

side noise or voltage changes. 

2) We use the TTFS-encoded SNN model and training 

method proposed in prior work [11]. We newly implement 

the exponentially decaying synaptic current model in 

hardware by reading the device with triangle pulses in the 

subthreshold region. 

3) We also propose a method of inference by operating a 

synaptic device in a saturation region to keep the network 

stable against unexpected variation. To do this, we use 

rectangular pulses instead of triangle pulses in the 

inference process and compare the accuracy, energy 

consumption, and latency with those of the rate-encoded 

network. 

4) The sensitivity of the network’s accuracy in regard to 

synaptic variability is analyzed by taking into account the 

operation region of the synapse for reading. We finally 

propose a stable and power-efficient method using an SNN. 

II. Methods 

A. Fabrication and Synaptic Operation of The TFT-type 
Flash Device 

Fig. 1 shows a schematic view and TEM image of a TFT-

type flash synapse device. The device has the structure of a 

FET with a charge trap layer and is applied to an AND-type 

array architecture. The thicknesses of the SiO2 / Si3N4 / SiO2 

stack are 30 / 56 / 88 Å, respectively. The length (L), width 

(W), and thickness of the channel (tch) are 0.5 μm, 0.5 μm, and 

15 nm, respectively. The device was fabricated with 

conventional CMOS process technology. First, an insulator 

layer and an n+ doped poly-Si layer were sequentially 

deposited on the wafer, and then the poly-Si is patterned for 

the source and drain. Subsequently, a 15-nm-thick amorphous 

Si layer is deposited and then poly-crystallized through 

annealing. Finally, a charge trap layer and n+ doped poly-Si 

are deposited, and the gate is formed. 

The ID-VGS characteristics of the synapse device are shown 

in Fig. 2 (a). The 𝑉th of the synaptic device increases when 

applying VPGM (VG = 0 V, VS = -9.5 V, tpulse = 100 μs) to the 

gate and source. The operation characteristics of the synaptic 

device are different depending on the read bias of the device. 

In this paper, the SNNs with synapses read in the subthreshold 

(VGS < Vth) or saturation (0 < VGS - Vth < VDS) regions were 

analyzed. Fig. 2 (b) and (c) show the ID-VDS characteristics of 

the synaptic device when VGS is 1.5 and 2.5 V, corresponding 

to the subthreshold and saturation region, respectively. For the 

 
FIGURE 1.  (a) Schematic cross-sectional view of the TFT flash-
based synaptic device. (b) Cross-sectional SEM image of the 
fabricated device. 
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reliable operation of the network, the synapse current should 

not change—even with unexpected changes in bias applied to 

the drain of the synapse device, such as noise [14] or an IR 

drop issue [15]. Hence, the drain bias is set to be larger than 

(VGS - Vth) when reading the device. Fig. 2 (d) shows the 

change in the conductance of the device by the number of 

program spikes. The circle and square symbols are the results 

of reading in the subthreshold (VGS = VDS = 1.5 V) and 

saturation regions (VGS = VDS = 2.5 V), respectively. Each 

weight trained by the ANN is represented as the difference in 

conductance of the two synaptic devices [16]. The 

measurement results for the 32 states of one synaptic device 

are shown in Fig. 2 (a) to (c); so the weights can be quantized 

with 63 steps. Fig. 2 (e) shows the change in conductance as a 

function of the number of erase pulses. The device's 

conductance can be increased by increasing the number of 

applied erase pulses, so the weights of devices in the array can 

be updated. 

Fig. 3 shows the Vth shift by program pulses. Obviously, as 

the amplitude or width of the program pulse increases, the 

value of ΔVth also increases, which means that the device can 

be used over a larger dynamic range. Also, since the 

programmed charges interfere with the additional charge 

being programmed, the value of ΔVth gradually decreases. 

 

B. Training of Temporally Encoded Data 

 

FIGURE 2.  (a) Measured ID-VGS curve and program condition of the synaptic device. Measured ID-VDS characteristics of the synaptic device read (b) 
before threshold voltage (VGS= 1.5 V) and (c) after threshold voltage (VGS = 2.5 V). (d) The change of the normalized conductance as a parameter of 
the number of program pulses. The inset shows the voltage scheme for reading and programming the synaptic device in the subthreshold and 
saturation region. (e) Drain current change with respect to the number of pulses as a parameter of erase condition. 
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FIGURE 3. Vth and normalized conductance shift with respect to (a) 
the amplitude (the width is fixed at 100 μs) and (b) the width of the 
program pulses (the amplitude is fixed at 10 V). ΔVth and ΔG / Gmax as 

a function of (c) the amplitude and (d) the width of the program 
pulses.  
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The input data is encoded using the TTFS method. As 

shown in Fig. 4 (a), the arrival time of the spike of input neuron 

i is inversely proportional to the input value as follows:  

 

where Ymax is the maximum value of input data, and Yi is the 

input value of the ith input neuron. Tmax represents the number 

of time steps. In this paper, it is assumed that the synaptic 

current decays exponentially in the time-domain, as follows: 

 

where H(x) is a Heaviside step function, whose value is zero 

for negative arguments and one for positive arguments. In (2), 

Iij represents the current value at the arrival time of the pulse 

between input i and output j. Also, 𝑡i(l) is a firing time of ith 

input neuron in lth layer. 

As shown in Fig. 4 (b), the output neuron integrates the 

input spike train, and when the membrane voltage reaches the 

neuron threshold, the neuron sends a spike to the next layer. 

Since it is assumed that the TTFS-SNN has each neuron spike 

once at most, the already fired neurons enter the refractory 

period so that no more charge is integrated into the neuron. 

The membrane potential over time is given by: 

 

where wij represents the membrane voltage integrated by the 

jth output neuron by the pulse of the ith input neuron, which is 

obtained by dividing Iij by the membrane capacitance. 𝑉mem 

in (3) is implemented by the membrane charge of a neuron. 

Since neurons integrate synaptic current by performing the 

integrate-and-fire (IF) operation, (3) can be obtained by 

integrating (2) over t. In previous studies, the neuron circuits 

for IF operation was implemented in hardware [17-19], and 

the operation of synapse array and neuron circuits was verified 

in circuit-level simulation [20]. Only the input neurons that 

have already fired at the firing time of the jth output neuron 

influence the jth membrane voltage; so, this is called a causal 

set Cj. The time when the jth membrane voltage reaches the 

neuron threshold voltage (𝑉th) is expressed as   𝑡𝑗(𝑙+1), which 

is the firing time of the jth neuron. The membrane voltage at 𝑡𝑗(𝑙+1) is expressed as:  

 

Hence, the relationship between input and output firing time is 

represented as: 

 

As expressed in (5), the exponential form of the input and 

output spike times of a layer has a piecewise-linear relation.  

The most complex part of the above-mentioned SNN is 

implementing the exponentially decaying synaptic current 

model in hardware. In several previous works, TTFS data was 

trained on the network using the unconventional current model, 

but most models [21] were too complex to implement in 

hardware. In this paper, we propose a method for reading FET-
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FIGURE 4.  (a) Schematic of the TTFS-SNNs. (b) Integrate and fire 
behavior of neuron circuits. (c) Two methods (Rate coding and 
Temporal coding) for encoding analog data to SNN 
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type synaptic devices in the subthreshold region using triangle 

pulses expressed as: 

 

 

where Vo is the maximum value of the read voltage, and T is 

the time width of triangle pulse. By the triangle gate voltage 

in the subthreshold region, the current has the form of 

 

where A and B represent the coefficients of the current 

equation in the subthreshold region, and B’ is a coefficient 
dependent on the subthreshold swing of the synapse device. 

When a triangle pulse that decreases linearly in the time-

domain is applied to the gate of the device, the subthreshold 

current can effectively represent an exponentially decaying 

model. Fig. 5 shows the transient measurement results of a 

TFT type flash synaptic device in the time-domain. Even 

after programming the device, the synaptic current is fitted 

to the same equation. Then, by the equations (2) to (5), the 

relationship between input and output values is defined as 

follows:  

 

When we set exp(𝐵′ 𝑡i(l)𝑇 ) to 𝑧i(l), the input and output values 

of the network are in the form of a piecewise-linear function 

in the z-domain as follows: 

For training this network, we use the cross-entropy loss 

function, given by: 

where g and i represent the indexes of the target neuron and 

other top neurons, respectively. The training aims to minimize 

the loss function, thus maximizing the difference between the 

firing times of the target class neuron and the other output 

neurons in the top layer.  In order to use the architecture of the 

network more efficiently, it is recommended to remove useless 

neurons that do not participate in data propagation. In other 

words, it is desirable to eliminate dormant neurons that are not 

fired by any input data. Hence, we add the term expressed by: 

 

where K1 is a hyper-parameter for network, and i and j 

represent the input and output indexes of each layer, 

respectively. This term ensures that an output neuron spikes if 

all input neurons spike. In addition, L2-norm regularization is 

used to avoid overfitting due to excessively large weight 

values. No other regularization skills are applied. 

In this study, the arrival time of the spike is set linearly to 

facilitate hardware implementation. Therefore, if the 

distribution of input data set is expressed as: 

 

the firing time of each input neuron is expressed as: 

 

Then, the input data set of ANN given by 

 

is expressed as an exponential distribution. 

In this paper, the Adam optimizer from the PyTorch 

framework with a floating-point operation is used to train the 

ANN with the input-output relation shown in (9). Then, 

trained weights are transferred to the SNN, and the inference 

process is performed in the time-domain. The learning rate 

starts at 10-3 and exponentially decays to 10-6 as the epoch 

increases. The coefficient K1 in (11) is 100, and L2-norm 

regularization coefficient is 10-4. The value of 𝐵′, calculated 

from the subthreshold swing of our synaptic device shown in 

Fig. 2 (a) is 6.3. Lastly, the membrane threshold of the 

neuron is assumed to be 1 V. 
 

III. Results 

A. Approximation of Synaptic Current Model in Inference 
Process 

For the inference process in hardware-based SNN, it is 

important to develop a training method for the ANN to 

achieve a good performance, but it is also necessary to ensure 

the inference process is performing reliably on chip. The 

SNN described in the previous section should be operated in 

the subthreshold region due to the exponentially decaying 

current model, which is very sensitive to unexpected device 

variations and noise. Besides, there is a hardware burden of 

adding the triangle pulse generator to each neuron model 

used in a conventional SNN. Hence, we propose an 

approximated inference process using rectangle pulses for a 

more stable operation in hardware. The use of a rectangle 

pulse allows operating the synaptic device in the saturation 

region, making it more robust against realistic problems such 

as noise or synaptic variation. 

Fig. 6 (a) shows the integration of the membrane voltage 

(or membrane charge) of a neuron by one input voltage pulse. 
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When the integration by two types of pulses with the same 

width is compared in the time-domain, the membrane 

voltage before the pulse arrives (region[1]) and after the 

pulse ends (region[3]) is the same. On the other hand, there 

is a difference when the membrane capacitor integrates the 

pulse (region(2)), which is the cause of an error in the 

approximation of replacing a triangle pulse with a rectangle  

pulse. In other words, input nodes with weighted sum values 

distorted by approximation are subsets of D = {i : max(0, t – 

T) < ti < t} at time t. We call this set of input spikes the 

‘distorted set’. We propose a method to minimize the number 

of affected input neurons by reducing the pulse width 

compared to the total time step. For instance, if the pulse 

width decreases from 64 steps to 4 steps, the number of input 

neurons included in the distorted set {i : max(0, tfire – T) < ti 

< tfire} of an output neuron decreases stochastically, as shown 

in Fig. 6 (b). As a result, the distortion of the membrane 

voltage due to the approximation can be reduced. Fig. 6 (c) 

shows the simulated membrane voltage of the top-layer 

neurons from the randomly picked MNIST image. The tfire of 

the top neuron in the two types of inference becomes almost 

the same as the pulse width decreases sequentially with 128, 

16, and 1 step. Therefore, it is shown that it can be 

approximated more accurately using a short pulse width.  
 Fig. 7 shows a simulated inference accuracy of the two-

layer SNN using triangle and rectangle pulses in the 

inference process as a parameter of the pulse width. The 

accuracy of the SNN clearly increases as the number of 

hidden neurons increases. Furthermore, even if the inference 

process is performed using a triangle pulse, it is shown that 

the accuracy gradually drops as the pulse width decreases. 

This tendency is attributed to the dataset 𝑧𝑥 shown in (14). If 

the pulse width is shortened, the deviation in the data set 

between the minimum and maximum values grows 

    
FIGURE 6.  (a) Dynamics of 𝑽𝒎𝒆𝒎 in response to single triangle (black) and rectangle (red) pulses. The table shows the expression of the 
membrane voltage in time-domain. (b) Comparison of 𝑽𝒎𝒆𝒎 − 𝒕 plots by two-type pulses from input neurons 1,2,3. 𝑽𝒎𝒆𝒎 is compared for two-type 
networks (each of the pulse widths is 4 or 64 in 256 total time steps). (c) 𝑽𝒎𝒆𝒎 dynamics of the top layer neurons by randomly picked MNIST 

image. The solid line and dotted line represent the 𝑽𝒎𝒆𝒎 dynamics by the triangle and the rectangle pulses, respectively. 
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exponentially, making it more difficult to train an ANN of 

the same structure. In addition, if the pulse width is large, the 

inference with the rectangle pulse causes a large distortion, 

which decreases accuracy. However, as the pulse width 

becomes smaller and approaches 1 step, there is little 

difference in the performance of the two networks. Indeed, 

in a two-layer MLP with 512 hidden neurons, the accuracy 

decreases from 97.94 % to 97.36 % as the pulse width is 

reduced from 128 steps to 1 step. The gap between the 

accuracy of the SNN using the triangle and rectangle pulses 

was 0.27 % when the pulse width was 128 steps, but it 

reduced to 0 % as the pulse width decreases to 1 step. We 

also trained a simple SCNN structure of SCNN(5,32,2)-

SCNN(5,16,2)-FC(10). Here, SCNN(5,32,2) means SCNN 

layer with 32 5 x 5 kernels and stride 2. FC(10) means FC 

layer with 10 output neurons. We obtained an accuracy of 

98.88% on the SCNN, which is slightly lower than that of 

SCNN of the same size by Zhou et al [22]. This is because 

we set the input data set of ANN (z-domain) in an 

exponential (more difficult) form to facilitate hardware 

implementation in SNN (t-domain).  

B. Comparison with Rate-Encoded Network  

 Fig. 8 shows a comparison of the characteristics between 

the conventional rate-encoded SNN and TTFS-SNN. The 

synaptic devices constructing the SNNs of Fig. 8 (a) and (b) 

operate in the subthreshold (𝑉𝐺𝑆  = 1.5 V, V𝐷𝑆  = 1.5 V) and 

saturation (V𝐺𝑆 = 2.5 V, V𝐷𝑆 = 2.5 V) regions, respectively. In 

addition, it is assumed that the TTFS-SNNs shown in (a) and 

(b) use triangle and rectangle pulses, respectively. 

The accuracy depicted by the solid lines in Fig. 8 is slightly 

lower for the TTFS-SNN compared to the rate-SNN. The 

slight difference in the accuracy of the two networks is due to 

the nature of TTFS networks making early judgments. The 

index of the top neuron fired first is the result predicted by the 

SNN, so input nodes with firing times later than tfire cannot 

affect the prediction. Therefore, a relatively small number of 

neurons participate in the inference task, and the accuracy 

slightly decreases. 

On the other hand, an integrated membrane charge, shown 

as bars in Fig. 8, is calculated by integrating the synaptic 

currents of the entire network during the time t. This parameter 

indicates the energy consumed by the synapse array, which 

accounts for a very high percentage of the consumed energy 

in the entire network [20]. One image is encoded with 256 

time steps, and a single time step is assumed to be 1 μs. The 

TTFS-SNN consumes very little energy compared to the rate-

SNN due to the smaller number of spikes and shorter 

prediction time. As the pulse width becomes shorter, the 

power-efficiency of the SNN is further improved, but the 

accuracy drops due to the wide deviation in the input data. The 

error rate, the latency, and the integrated charge values are 

compared in Tables I, II, and III. Indeed, in the 2-layer MLP 

(512 hidden neurons, operated in the saturation region, pulse 

width of 128), the TTFS-SNN has 0.61% less accuracy and 

2.28 times less energy consumption than the rate-encoded 

SNN. When the pulse width is reduced to 1 time step, the 

accuracy drop reaches 0.93%, but the consumed energy 

decreases 83.0 times. 

Another important advantage in the TTFS encoding method 

is low-latency. The rate-encoded network can only make a 

 

FIGURE 7.  Accuracy - pulse width plots as a parameter of the 
number of hidden neurons. The solid and dotted lines indicate the 
performance of the network using triangle and rectangle pulses, 
respectively. 
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decision at the last time step after all input pulses arrive. On 

the other hand, the TTFS encoding method enables quick 

prediction because the inference process ends when one 

neuron in the top layer is fired. As shown in Table III, in the 

2-layer MLP (512 hidden neurons, operated in the saturation 

region, pulse width of 1), TTFS coded network has improved 

latency by 3.9 times compared to the rate-coded network. 

Networks with triangle pulses show lower latency than those 

with rectangle pulses. This is because the triangle pulse takes 

a shorter time to reach the same membrane voltage as shown 

in Fig. 6 (a). The results depicted in Fig. 8 and Table I-III were 

obtained by system simulation. 

C. Analysis on Variability of Synaptic Array 

The biggest obstacle in inferring data on chip using pre-

trained ANN weights is managing the variability of the 

conductance of the synaptic array [23], [24]. The weights of 

the SNN can change when it is transferred to the synaptic array 

or due to the Vth shift of the synaptic device over time. Also, 

noise caused by neurons may affect the operation of the 

synapse devices. Even though the synapse device is operated 

TABLE I 

THE SUMMARY OF SNN (784 – 128 – 10) 

Operation 

Region 

Encoding 

Rule 

Error 

Rate 

(%) 

Latency 

Integrated 

Charge 

( 10-10 C) 

Subthreshold 

(Triangle) 

Rate 2.56 256.0 96.2 

TTFS 

(PW = 128) 
2.78 84.47 3.37 

TTFS 

(PW = 1) 
3.47 73.95 0.0581 

Saturation 

(Rectangle) 

Rate 2.49 256.0 523 

TTFS 

(PW = 128) 
3.0 187.7 146 

TTFS 

(PW = 1) 
3.49 75.7 2.40 

 
TABLE II 

THE SUMMARY OF SNN (784 – 256 – 10) 

Operation 

Region 

Encoding 

Rule 

Error 

Rate 

(%) 

Latency 

Integrated 

Charge 

( 10-10 C) 

Subthreshold 

(Triangle) 

Rate 1.95 256.0 173 

TTFS 

(PW = 128) 
2.43 85.22 11.4 

TTFS 

(PW = 1) 
2.94 68.84 0.195 

Saturation 

(Rectangle) 

Rate 1.95 256.0 941 

TTFS 

(PW = 128) 
2.67 192.8 308 

TTFS 

(PW = 1) 
2.95 70.74 5.73 

 
TABLE III 

THE SUMMARY OF SNN (784 – 512 – 10) 

Operation 

Region 

Encoding 

Rule 

Error 

Rate 

(%) 

Latency 

Integrated 

Charge 

( 10-10 C) 

Subthreshold 

(Triangle) 

Rate 1.85 256.0 261 

TTFS 

(PW = 128) 
2.06 87.86 26.1 

TTFS 

(PW = 1) 
2.64 62.13 0.497 

Saturation 

(Rectangle) 

Rate 1.72 256.0 1420 

TTFS 

(PW = 128) 
2.33 173.6 622 

TTFS 

(PW = 1) 
2.64 64.43 17.1 

 

  
FIGURE 9. Sensitivity of the network performance due to unexpected 
variation of Vov of synaptic array operating in (a) subthreshold and 
(b) saturation regions. (c) Strength and weakness of SNN as a 
parameter of the data encoding method and the operation region of 
the synaptic device. 
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in the saturation region—so it is robust to the noise on the 

drain—the gate noise directly affects the synapse current. We 

investigate the sensitivity of the non-ideal characteristics of 

the synaptic array on the performance of the network. It is 

assumed that the change in threshold voltage has a normal 

distribution in the synaptic array [25], and the synaptic devices 

are operated in the subthreshold and saturation regions, 

respectively. 

In the subthreshold region, the current has an exponential 

relationship to the overdrive voltage; so, the small changes of 

the threshold voltage affects the current exponentially as 

follows: 

where 𝐼D,real  and 𝐼D,ideal  represent the device currents with 

and without synaptic variability, respectively. If the variation 

of the threshold voltage is assumed in the form: 

 

the conductance considering the synaptic variability is 

expressed as: 

 

where Gideal is the conductance value without any variation 

in the synaptic array. On the other hand, in the saturation 

region, the change in threshold voltage affects the synaptic 

current as follows: 

 

Hence, the conductance considering the synaptic variability is 

expressed as: 

 

Fig. 9 (a) and (b) shows the simulated inference accuracy of 

the network applying the variation model described in (17) and 

(19). It is assumed that the pulse width used for inference is 1 

step, and the result is expressed as error bars after 10 iterations. 

As shown in Fig. 9 (a), if a FET-type synapse device is read 

in the subthreshold region, it is very vulnerable to variation. If 

the subthreshold swing of the device becomes steeper (larger 

B in (15)), the variation of the synaptic device is greater. In 

contrast, if a synaptic device with a large subthreshold swing 

is used to reduce the effect of this variation, the on/off ratio of 

the device is reduced, resulting in serious degradation in 

standby power. On the other hand, in the case of operating in 

the saturation region, the network is robust even with severe 

variations in the overdrive voltage. In addition, as the number 

of hidden neurons increases, the network becomes more 

resistant to variation. 

Fig. 9 (c) shows the strength and weakness of the SNN as a 

parameter of the data encoding method and the operation 

region of the synaptic device. In summary, if a synaptic device 

is operated in a subthreshold region, it is very vulnerable to 

variation, which makes it difficult to construct an SNN. On the 

other hand, if the device is operated in the saturation region, 

the synaptic current is very large, so it is appropriate to use 

only a few spikes with the TTFS encoding method. 

 

IV. Conclusion 

In this paper, we have implemented an exponentially 

decaying synaptic current by reading a fabricated TFT-type 

synaptic device with a triangle pulse in the subthreshold region. 

An SNN was trained using TTFS-encoded data, and it reached 

an accuracy of 97.94% in a two-layer MLP (512 hidden 

neurons), which is higher than the results of previous work [11] 

encoded with TTFS data. We also proposed a method to read 

FET-type synaptic devices using a rectangular pulse in the 

saturation region (VGS = 2.5 V, VDS = 2.5 V) rather than the 

subthreshold region to keep the operating devices in a stable 

condition against unexpected external variability. The 

distortion of the weighted sum resulting from this 

approximation is minimized by using a short pulse width. As 

a result, an accuracy of 97.36% was obtained under stable 

operating conditions. The accuracy was reduced by 0.92% 

when compared to that of the rate-encoded SNN of the same 

size. However, the energy used for inference was reduced by 

83.04 times, and the prediction time of the network was 

improved by 3.97 times. Finally, we investigated the 

sensitivity of the accuracy to synaptic variation as a parameter 

of the synaptic device operating region, and the FET-type 

synaptic device was found to be required to operate in the 

saturation region. 

As the synapse current increases, the voltage drop across the 

parasitic resistance in the metal line increases, and the drain 

voltage of the synaptic devices in the array is position-

dependent. In addition, if a large current flows through the 

current mirror in the neuron circuit, the summation of the 

current can be distorted due to fan-out issues. Hence, the TTFS 

encoding method, which uses only a small number of spikes 

to infer data, is foreseen to be a competitive candidate in 

neuromorphic systems targeting edge computing. 
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