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Motivated by the mechanism of inhibitory synapses, a new kind of spiking neural P (SNP) system
rules, called inhibitory rules, is introduced in this paper. Based on this, a new variant of SNP systems
is proposed, called spiking neural P systems with inhibitory rules (SNP-IR systems). Different from the
usual firing rules in SNP systems, the firing condition of an inhibitory rule not only depends on the state
of the neuron associated with the rule but also is related to the states of other neurons. Moreover, from
the perspective of topological structure, the new variant is shown as a directed graph with inhibitory
arcs, and therefore seems to have more powerful control. The computational completeness of SNP-
IR systems is discussed. In particular, it is proved that SNP-IR systems are Turing universal number
accepting/generating devices. Moreover, we obtain a small universal function-computing device for
SNP-IR systems consisting of 100 neurons.

1. Introduction

Membrane computing is a class of distributed parallel com-
puting systems initiated by Gheorghe Păun [1], abstracted from
the structure and functioning of biological cells as well as the
cooperation of cell populations in tissues, organs, and biological
neural networks [2]. These computing systems are known as P
systems or membrane systems. Inspired by different biological
mechanisms or by combining mathematical methods and/or ideas
in computer science, a variety of P systems have been proposed
in the past two decades [3–11]. These can be roughly classified
as cell-like, tissue-like, and neural-like P systems. It has been
proved that many P systems and variants are Turing complete
(equivalent to a Turing machine) and effective (capable of solv-
ing NP-hard problems in a feasible time). Moreover, they have
been applied to solve real-world problems [12,13], such as in
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machine learning [14–17], image- and signal-processing [18–24],
robots [25,26], ecology, and system biology [27–29].

1.1. Related work

As one of the main forms of neural-like P systems, spik-
ing neural P (SNP) systems, as proposed by Ionescu et al. [30],
were abstracted from the biological fact that neurons handle
and exchange spikes with each other along synapses. From the
perspective of topological structure, an SNP system can be ex-
pressed as a directed graph, where the neurons are the nodes
of the graph and the synapses correspond to the arcs between
them. In addition to its topological structure, an SNP system
contains two important components: data and firing rules. The
data (denoted by a configuration vector) are used to describe the
states of neurons, while the rules (spiking and/or forgetting rules)
are used to characterize the dynamic behavior of the system.
The firing rules have the form E/ac → ap, where E denotes the
regular expression. The semantics of the firing rule E/ac → ap

can be explained as follows. Suppose that a neuron where the
firing rule resides has n spikes. If an ∈ L(E) and n ≥ c , then
the rule is enabled and the neuron fires. Note that L(E) denotes
the set of languages generated by the regular expression E. When
the firing rule is applied, c spikes are removed from the neuron
(hence n − c spikes remain) and p new spikes are generated.
Then the generated p spikes are sent to its consequent neurons.
If p = 0, then the rule is known as a forgetting rule, written as
E/ac → λ, where λ denotes the empty string. As described above,
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a firing rule E/ac → ap in a neuron has a firing condition: an ∈
L(E). It is important to point out that the firing condition is only
related to the state of the neuron, and does not depend on the
states of other neurons. Neurons work in parallel, so SNP systems
are distributed parallel computing models. Nondeterminism is
an interesting characteristic of SNP systems: when two or more
spiking rules in a neuron can be applied at the same time, one is
nondeterministically chosen and applied. Moreover, SNP systems
can work in three modes: generating, accepting, and computing.

A variety of SNP systems have been proposed. Motivated by
the inhibitory and excitatory influence of astrocytes on synapses,
Păun [31] and Pan et al. [32], discussed two SNP systems with as-
trocytes. Pan et al. [33] discussed SNP systems with anti-spikes by
introducing anti-spikes that abstract from inhibitory impulses. In-
spired by the biological fact that a synapse has one or more chem-
ical channels, Peng et al. [34] presented SNP systems with mul-
tiple channels. Considering that the rules are placed in synapses
instead of neurons, SNP systems with rules on synapses have been
discussed by Song et al. [35], and another spike-consumption
strategy was adopted by Peng et al. [36]. Chen et al. [37] inves-
tigated an axon P system where nodes were arranged in a linear
structure and each only sent spikes to two neighbors. Inspired by
the fact that every neuron has a positive or negative charge, SNP
systems with polarizations have been discussed [38]. The struc-
tural dynamism of biological synapses inspired Cabarle et al. [39]
to present an SNP system with scheduled synapses. Considering
a new communication strategy among neurons, Pan et al. [40]
discussed SNP systems with communication on request. With the
limitation that at most one neuron works at each step, several
sequential SNP systems were investigated by Ibarra et al. [41]
and Zhang et al. [42]. Wang et al. [43] discussed an SNP system
in which weights like those in artificial neural networks were
introduced on synapses. Dynamic threshold neural P systems and
coupled neural P systems were discussed by Peng et al. [44,45].
Moreover, using the thresholds instead of the original regular ex-
pression, Zeng et al. [46] proposed SNP systems with thresholds.
Note that in SNP systems with thresholds, the firing condition is
changed as n ≥ T . A global clock is usually assumed in SNP sys-
tems, so they are synchronized. However, Cavaliere et al. [47] and
Song et al. [48] investigated two asynchronous SNP systems. By
integrating fuzzy logic in SNP systems, several fuzzy SNP systems
have been developed, such as fuzzy reasoning SNP systems [49],
weighted fuzzy SNP systems [50], and interval-valued fuzzy SNP
systems [51].

Computational properties of variants of SNP systems have
been investigated. As function-computing, natural number-
generating, and language-generating devices, most have been
proved to be Turing universal [52–55]. Furthermore, SNP systems
have been applied to (theoretically) solve a number of computa-
tionally hard problems in a feasible (polynomial or linear) time.
Application of SNP systems in some real-world problems, such as
fault diagnosis [56–59], image processing [60], and combinatorial
optimization [61], has recently received much attention.

1.2. Motivation

As mentioned above, data (i.e., states) and rules (firing and
forgetting rules) are two important components in SNP systems
and their variants. The firing condition an ∈ L(E) is only related
to the state of the neuron with which the firing rule is associated.
Hence whether a neuron fires depends solely on its current state
and has nothing to do with the states of other neurons. Therefore,
the behavior of each neuron in an SNP system is controlled only
by its state (the number of spikes). From this, an interesting idea
emerges: can the firing of a neuron be controlled by the states
of other neurons? Is there a biological fact that can support this
interesting idea?

Two scientific findings in biological nervous systems [62,63]
are related to this idea.

(1) Excitatory synapse [64]
The excitatory synapse transfers the excitation of presy-
naptic to postsynaptic. Once the action potential at the
end of presynaptic fiber is reached, the excitatory synapse
chemically or electrically passes it to the postsynaptic neu-
rons and produces excitatory postsynaptic potentials. Ex-
citatory postsynaptic potential is a depolarizing potential
change that can be summed up by the activity of multiple
excitatory synapses, and action potential is generated when
it exceeds the threshold.

(2) Inhibitory synapse [65]
Presynaptic excitatory transmission has an inhibitory effect
on postsynaptic excitation. When the excitatory (action)
potential reaches the tip of the presynaptic fiber, it is trans-
ferred chemically or electrically to the postsynaptic neuron,
where the inhibitory postsynaptic potential is produced. In-
hibitory postsynaptic potential reduces the depolarization
of the excitatory postsynaptic potential and thus inhibits
action potential because of the short-circuit effect caused
by hyperpolarization and increased ion permeability.

In SNP systems, spikes received by a neuron from other neu-
rons are accumulated to update the state of the neuron, and if
the firing condition is satisfied, then some new spikes will be
generated. Therefore, the functioning of an excitatory synapse is
basically consistent with the firing mechanism in SNP systems
and their variants. However, the functioning of an inhibitory
synapse is not reflected in these systems. The main motivation
of this paper is to develop an inhibitory rule based on the func-
tioning of inhibitory synapses and then to propose a new model
of SNP systems, SNP systems with inhibitory rules (SNP-IRs).

An inhibitory rule has the form (Een, Ein)/a
c → ap, where Een

is called enable regular expression, while Ein is called inhibitory
regular expression. The semantics of inhibitory rules will be ex-
plained in detail later. The new firing condition can be written as
an1 ∈ L(Een) ∧ an2 ̸∈ L(Ein), where n1 is the number of spikes
in the neuron where the inhibitory rule resides, and n2 is the
number of spikes in its preceding neuron (called an inhibitory
neuron). Therefore, the firing condition indicates that the firing
of an inhibitory rule in a neuron not only depends on its state
but also is related to the state of other (inhibitor) neurons, which
corresponds to the functioning of an inhibitory synapse.

The new variant differs from SNP systems in the following
ways.

(1) The new variant introduces an inhibitory rule, inspired by
the functioning of an inhibitory synapse.

(2) In the new variant, the firing of rules depends on both
a neuron’s state and those of other (inhibitor) neurons.
However, the firing of rules in an SNP system is only related
to a neuron’s state. Therefore, the new variant seems to
have more powerful control than an SNP system.

(3) Topologically, the new variant can be expressed as a di-
rected graph with inhibitory arcs, which do not appear in
standard SNP systems.

In summary, the novelty of the work is to abstract an inhibitory
rule inspired by the functioning of an inhibitory synapse and to
propose SNP systems with inhibitory rules.

The remainder of this paper is arranged as follows. Section 2
defines SNP-IR systems and provides an illustrative example.
Section 3 studies the computational completeness of SNP-IR sys-
tems as number-generating/accepting and function-computing
devices. Conclusions are drawn and further work is suggested in
Section 4.



2. SNP-IR systems

To define SNP-IR systems more clearly, some notions and
notations related to both SNP systems and formal language theory
are briefly reviewed. Further details can be found in [2,66].

Let Σ be an alphabet. The set of all of the finite strings over
Σ is denoted by Σ∗, the empty string is written as λ, and the set
of all of the nonempty strings over Σ is denoted by Σ+. Usually,
if Σ = {a}, then {a}∗ and {a}+ can be simply written as a∗ and
a+, respectively.

A regular expression over Σ is defined recursively: (i) λ and
every a ∈ Σ are regular expressions; (ii) if E1, E2 are two regular
expressions over Σ , then (E1)(E2), (E1)∪(E2), and (E1)

+ are regular
expressions over Σ; (iii) nothing else is a regular expression over
Σ . A language L(E) can be associated with regular expression E

over Σ as follows: (i) L(λ) = λ and ∀ a ∈ Σ , L(a) = {a}; (ii) for
any two regular expressions E1, E2, L((E1) ∪ (E2)) = L(E1) ∪ L(E2),
L((E1)(E2)) = L(E1)L(E2), and L((E1)

+) = (L(E1))
+.

2.1. Definition

Definition 1. An SNP-IR system of degree m ≥ 1 is a tuple:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

(1) O = {a} denotes a singleton alphabet (a is known as the
spike);

(2) σ1, σ2, . . . , σm are m neurons, denoted by σi = (ni, Ri), 1 ≤
i ≤ m, where:

(a) ni ≥ 0 denotes the number of spikes stored initially
in neuron σi;

(b) Ri denotes the finite set of rules of two types:

(i) usual firing rules, of the form E/ac → ap;

(ii) inhibitory rules, of the form (Een, Ein(i,j))/a
c →

ap,

where E, Een, Ein(i,j) are the regular expressions over
O, and c ≥ 1, p ≥ 0, and c ≥ p;

(4) syn = {(i, j)} ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) ̸∈
syn ∀1 ≤ i ≤ m (synapse connections);

(5) in, out ∈ {1, 2, . . . ,m}, respectively, distinguish input and
output neurons.

From the perspective of a topological structure, the SNP-IR
system is presented as a directed graph with inhibitory arcs,
where m neurons are the nodes of the graph, and the synapses
correspond to the arcs between the nodes. Specifically, if the
system Π works in generative mode, then input neuron σin is
removed from the system; by contrast, in accepting mode, output
neuron σout is omitted.

As usual, the state of a neuron at time t is denoted by the num-
ber of spikes, while the state of the whole system at that time is
characterized by the configuration vector Ct = (n1(t), n2(t), . . . ,
nm(t)), where ci(t) is the number of spikes in neuron σi, 1 ≤
i ≤ m. Thus the initial configuration is C0 = (n1, n2, . . . , nm). As
a result, a transition from one configuration to another can be
defined. Usually, such a sequence of transitions starting from the
initial configuration is known as a computation. If a configuration
where no rule can be applied is attained in a computation, then
it halts.

There are two types of rules in SNP-IR systems: usual firing
rules and inhibitory rules. As in SNP systems, usual firing rules
have the form E/ac → ap. Suppose that a firing rule E/ac → ap is

in neuron σi, and the neuron has ni(t) spikes. If a
ni(t) ∈ L(E) and

Fig. 1. Rules: (a) inhibitory rule, and (b) extended inhibitory rule.

ni(t) ≥ c , then the neuron fires and c spikes are removed from
the neuron (ni(t)− c spikes are retained), and then p new spikes
are generated. The generated spikes are sent to its succeeding
neurons. If q = 0 in the rule, then it can written as E/ac →

λ, which is known as a forgetting rule. If the forgetting rule is
applied, then c spikes are removed but no spike is generated.

Inhibitory rules are of the form (Een, Ein,(i,j))/a
c → ap, as shown

in Fig. 1(a). Each inhibitory rule has two regular expressions to
control the firing of a neuron: an enable regular expression Een
and an inhibitory regular expression Ein,(i,j). Suppose that the

inhibitory rule (Een, Ein,(i,j))/a
c → ap is associated with neuron

σi. The enable regular expression Een is only related to neuron σi,
and its firing condition is ani(t) ∈ L(Een). For the inhibitory regular
expression Ein,(i,j), its firing condition is anj(t) ̸∈ L(Ein,(i,j)), since it is
only related to the state of neuron σj. Thus the firing condition of
neuron σi can be denoted by a Boolean expression, ani(t) ∈ L(Een)∧

anj(t) ̸∈ L(Ein,(i,j)). Note that in Ein,(i,j), the subscript (i, j) indicates

that there is an arc, called an inhibitory arc, between neurons σi

and σj. An inhibitory arc that corresponds to an inhibitory synapse
is denoted by an arc with a solid circle, as shown in Fig. 1(a),
and neuron σj is therefore called the inhibitory neuron of σi. A
directed arc with an arrow corresponds to an excitatory synapse.
For neurons σi and σj, the following assumptions are given:

(1) If neurons σi and σj have an inhibitory arc, then there is no
usual arc between them.

(2) If neuron σj is an inhibitory neuron of neuron σi, then
neuron σj cannot send a spike to neuron σi. Moreover, the
number of spikes in neuron σj cannot be changed even if
some inhibitory rule in neuron σi is applied. Therefore, for
neuron σi, neuron σj only plays the role of controlling the
firing.

A neuron may have more than one inhibitory neuron; for ex-
ample, neuron σi in Fig. 1(b) has s inhibitory neurons, σj1, σj1, . . . ,

σjs. The inhibitory rule of the form (Een, Ein,(i,j1), . . . , Ein,(i,js))/a
c →

ap is called an extended inhibitory rule, whose firing condition
can be denoted by ani(t) ∈ L(Een)∧a

nj1(t) ̸∈ L(Ein,(i,j1))∧· · ·∧a
njs(t) ̸∈

L(Ein,(i,js)).
Based on the above firing mechanism, the state of neuron σi

at time t + 1 can be computed as

ni(t + 1) =

{

ni(t)− c + n, if rule is used;
ni(t)+ n, otherwise,

(1)

where n is the number of spikes retrieved from other neurons.
Note that whether a firing rule or inhibitory rule is applied, c
spikes are removed from neuron σi.

In every computing step, if a neuron σi can use one of its
rules, then a rule from Ri must be used. The firing conditions of
two rules in a neuron may be satisfied simultaneously, such as



Fig. 2. An illustrative example.

two usual firing rules, two inhibitory rules, or a usual firing rule
and an inhibitory rule. In either case, one of these enabled rules
will be chosen nondeterministically. Consequently, the rules are
applied sequentially in every neuron, whereas neurons work in
parallel.

Any computing can correspond to a spike train consisting
of zeros and ones, which describe the behavior of the output
neuron: write 1 when the output neuron excites the spikes, and
write 0 when the output neuron fires. Hence the number of steps
between the first two spikes excited by the output neuron is
regarded as the computational result. Let N2(Π ) be the set of
numbers computed by Π . N2SNP

n
m denotes the families of all sets

N2(Π ) computed by an SNP-IR system, consisting of at most m

neurons and at most n rules in every neuron. Note that if one of
m and n is not limited, then the symbol ‘‘*’’ is used to substitute
it.

We can execute the SNP-IR system Π under the accepting
mode: the spikes are received by an input neuron from the
environment, and the output neuron is ignored. The system starts
by importing the spike train from the environment, and then it
stores the number n to a specified neuron in the form of 2n spikes.
When the system halts, n is known as the number accepted by it.
Denote by Nacc(Π ) the set of numbers accepted by the system Π ,
in which the subscript acc identifies that the system works in the
accepting mode. NaccSNP

n
m denotes the family of all sets Nacc(Π )

accepted by an SNP-IR system consisting of at most m neurons
and at most n rules in every neuron.

2.2. An illustrative example

An example that can generate a string of zeros and ones is
provided to clarify the working mechanism of SNP-IR systems.
Suppose an SNP-IR system has three neurons, σ1, σ2, and σ3, as
shown in Fig. 2. Note that out = 3, i.e., neuron σ3 is an output
neuron.

Initially, neurons σ1 and σ2 each have two spikes, while neu-
ron σ3 has no spike. Therefore, the initial configuration is C0 =

(2, 2, 0).
At time 1, since neuron σ1 has two spikes, rule a+/a→ a can

be applied. After applying the rule, a spike will be consumed and a
new spike will be generated and sent to neuron σ3. Note that even
if neuron σ2 has two spikes that satisfy a2 ∈ L(a+), two spikes

in neuron σ1 can inhibit the rule (a+, aa+)/a → a in neuron σ2

because a2 ∈ L(aa+), so no rule is enabled in neuron σ2. Similarly,
no rule is enabled in neuron σ3. Therefore, C1 = (1, 2, 1).

At time 2, with a spike in neuron σ3, rule a+/a→ a is applied
to send a spike to the environment. With a spike in neuron σ1,
rule a+/a → a is applied to send a spike to neuron σ3. Since
neuron σ2 has two spikes and neuron σ1 has one spike, the firing

condition of rule (a+, aa+)/a → a is satisfied, i.e., a2 ∈ L(a+) ∧
a2 ̸∈ L(aa+), hence the rule is applied to send a spike to neuron
σ3. After neurons σ1 and σ2 fire, neuron σ3 will receive two spikes.
Thus C2 = (0, 1, 2).

At time 3, due to two spikes in neuron σ3, rule a+/a → a

is applied to send a spike to the environment. Since neuron σ2

has a spike and neuron σ1 has no spike, rule (a+, aa+)/a → a

and rule a → λ are enabled simultaneously. Therefore, one of

the two rules is nondeterministically chosen and applied, and the

following two cases are considered:

(1) If rule (a+, aa+)/a → a is applied, then neuron σ2 sends

a spike to neuron σ3. Thus C3 = (0, 0, 2). At time 4, rule

a+/a → a in neuron σ3 is applied to send a spike to the

environment. Then neuron σ3 again sends a spike to the

environment. Therefore, the spike train generated by the

system is ‘‘01111’’.

(2) If rule a → λ is applied, then the spike in neuron σ2 is

consumed by rule a → λ. Thus C3 = (0, 0, 1). At time 4,

rule a+/a → a in neuron σ3 is applied to send a spike to

the environment. Therefore, the spike train generated by

the system is ‘‘0111’’.

3. Computation completeness

In this section, we will discuss the universality of SNP-IR

systems as devices for number generating, number accepting, and

function computing. The universality of SNP-IR systems will be

proven by the simulation of register machines, by which all recur-

sively enumerable sets of numbers can be generated/accepted by

SNP-IR systems. Moreover, a small universal function-computing

device can be constructed.

A register machine is given as a tuple, M = (m,H, l0, lh, I),

where m indicates the number of registers, H is the set of instruc-

tion labels, l0 is the start label, lh is the halting instruction label,

and I is the set of instructions. Each instruction in I is associated

with a label in H . I has three types of instructions:

(1) li : (ADD(r), lj, lk) (add 1 to register r and then nondeter-

ministically move to one of the instructions with labels lj,

lk).

(2) li : (SUB(r), lj, lk) (if register r is nonzero, then decrement it

by 1 and move to the instruction with label lj; otherwise,

move to the instruction with label lk).

(3) lh : HALT (halting instruction).

3.1. SNP-IR systems as number generating devices

A number n can be computed by a register machine working

in the generating mode. Starting from the instruction with label

l0 and with all of the empty registers, the machine constantly

applies instructions as distinguished by labels until it halts; at this

moment, the number contained in the first register is known as

the result computed by M . As we know, the family NRE can be

characterized by register machines.

Theorem 1. N2SNP
2
∗ = NRE

Proof. Because N2SNP
2
∗ ⊆ NRE is straightforward, it is only

necessary to prove the inclusion NRE ⊆ N2SNP
2
∗ . Hence a register

machine M = (m,H, l0, lh, I) working in the generative mode is

considered. In general, all of the registers different from register 1

are assumed to be empty in the halting configuration, and during

the computation, register 1 is never decremented.

To simulate register machine M , an SNP-IR system Π1 is

designed, which contains modules of three types: an ADD module

to simulate the ADD instruction (Fig. 3), a SUB module to simulate

the SUB instruction (Fig. 4), and a FIN module to output the

computational result (Fig. 5).



Fig. 3. ADD module, simulating the ADD instruction li : (ADD(r), lj, lk).

Assume that every register r is associated with a neuron σr .
We can code the number in register r: if register r stores the num-
ber n ≥ 0, then neuron σr has 2n spikes. We associate a neuron
σl with every instruction l in H , and we introduce some auxiliary
neurons to these modules. Assume that each auxiliary neuron
initially has no spike, and each neuron σli that is associated with li

contains two spikes. Due to two spikes in neuron σli , the system

Π1 starts the simulation of the instruction li : (OP(r), lj, lk) (OP
identifies one of the operations ADD and SUB). Starting from
the activation of neuron li, the simulation deals with neuron σr

as identified by OP, and two spikes are introduced in one of
the neurons σlj and σlk . The computation in M is continually

simulated until neuron σlh fires. During the computation, the
spikes are sent into the environment twice, at times t1 and t2,
and the computational result is the value t2 − t1 associated with
the number contained in register 1.

To illustrate that the register machine M is correctly simulated
by the system Π1, we will discuss how ADD and SUB modules
simulate ADD and SUB instructions, and how the computational
result is exported by the FIN module.

(1) ADD module (Fig. 3) - simulating an ADD instruction li :
(ADD(r), lj, lk).

The system Π1 starts from the simulation of instruction l0,
which is an ADD instruction. Assume that an ADD instruction
li : (ADD(r), lj, lk) is simulated at time t . At this moment, neuron
σli has two spikes. Hence, rule a2 → a2 is used to send two spikes
to neurons σc1 and σr . Neuron σr receives two spikes, meaning
that register r is incremented by 1. At time t + 1, with two
spikes in neuron σc1 , rules a2 → a2 and a2 → a can be applied
simultaneously. Therefore, one of the two rules in neuron σc1 is
chosen nondeterministically. There exist the following two cases:

(i) At time t+1, if rule a2 → a2 is used, then neuron σc1 sends
two spikes to each of neurons σc2 , σc3 , and σc4 . At time

t + 2, since neuron σc3 has two spikes, rule (a2, a)→ a2 in

neuron σc2 is enabled, but rule (a, a2)→ a in neuron σc4 is
inhibited. At time t+3, neuron σlj receives two spikes from
neuron σc2 , meaning that the system Π1 starts to simulate
instruction lj. Simultaneously, two spikes in neurons σc3

and σc4 are consumed by rule a2 → λ.

(ii) At time t+1, if rule a2 → a is used, then neuron σc1 sends a
spike to neurons σc2 , σc3 , and σc4 . At time t+2, since neuron

σc3 has a spike, rule (a, a2) → a in neuron σc4 is enabled,

but rule (a2, a)→ a2 in neuron σc2 is inhibited. At this time,

rule a→ a in neuron σc3 is enabled. At time t + 3, neuron

σlk receives two spikes in total from neurons σc3 and σc4 ,

Fig. 4. SUB module, simulating the SUB instruction li : (SUB(r), lj, lk).

Fig. 5. FIN module.

meaning that the system Π1 starts to simulate instruction
lk. Simultaneously, the spike in neuron σc2 is consumed by
rule a→ λ.

Therefore, the ADD module can correctly simulate the ADD
instruction: when neuron σli receives two spikes, the number of
spikes in neuron σr is increased by two, and one of the neurons
σlj and σlk is nondeterministically chosen.

(2) SUB module (Fig. 4) - simulating a SUB instruction li :
(SUB(r), lj, lk).

Suppose that a SUB instruction li : (SUB(r), lj, lk) is simulated
at time t . At this moment, neuron σli has two spikes, hence its

rule a2 → a is used to send a spike to neurons σr and σc1 . At
time t + 1, rule a → a in neuron σc1 is used to send a spike to

neuron σc3 . Based on the number of spikes in neuron σr , there

exist the following two cases:

(i) At time t+1, if neuron σr contains 2n+1 (≥ 3) spikes (be-

cause the number in register r is n), then rule a(aa)+/a3 →
a2 is used to send two spikes to neurons σc2 , σc3 , and
σc4 . At time t + 2, since neuron σc3 has three spikes, rule

(a2, a2)/a2 → a2 in neuron σc2 is applied to send two

spikes to neuron σlj , but rule (a, a3)/a → a in neuron σc4

is inhibited. Moreover, three spikes in neuron σc3 and two
spikes in neuron σc4 are consumed. Hence neuron σlj has
two spikes, meaning that the system Π1 starts to simulate
instruction lj.

(ii) At time t+1, if neuron cr has only a spike (since the number
in register r is still zero), rule a → a is applied and a
spike is sent to each of neurons σc2 , σc3 , and σc4 . At time

t + 2, since neuron σc3 has two spikes, rule (a, a3)/a → a
in neuron σc4 is applied to send a spike to neuron σlk , but

rule (a2, a2)/a2 → a2 in neuron σc2 is inhibited. Moreover,



due to two spikes in neuron σc3 , a
2 → a is applied to send a

spike to neuron σlk , and a spike in neuron σc2 is consumed
by rule a → λ. Thus neuron σlk has two spikes, meaning
that the system Π1 starts to simulate instruction lj.

Consequently, the SUB instruction can be correctly simulated by
the SUB module: the system starts from neuron σli receiving two
spikes, and ends with the sending of two spikes to neuron σlj (if
the number in register r is greater than 0), or sending two spikes
to neuron σlk (if the number in register r is 0).

(3) FIN module (Fig. 5) — outputting the computation result.
Assume that neuron σlh has two spikes at time t , meaning that

M halts, and neuron σ1 contains 2n spikes (i.e., register 1 contains
the number n). Due to two spikes in neuron σlh , rule a2 → a2 is

applied to send two spikes to neuron σc1 . At time t + 1, neuron
σc1 sends a spike to neurons σc2 , σout , and σ1. At time t + 2, due
to a spike in neuron σout , rule a → a is applied to send the first
spike into the environment. Note that neuron σ1 is an inhibitory
neuron of neuron σc2 . Since neuron σ1 has (2n + 1) ≥ 3 spikes,

rule (a, a(aa)+)/a→ a in neuron σc2 is inhibited. Moreover, two

spikes in neuron σ1 are consumed by rule a(aa)+/a2 → λ. The
process is repeated until neuron σ1 has only a spike.

At time t + n + 1, since neuron σ1 has only a spike, rule
(a, a(aa)+)/a → a in neuron σc2 is applied to send a spike to

neuron σout . At this time, the spike in neuron σ1 is removed by
rule a → λ. At time t + n + 2, neuron σout sends a spike to the
environment. Consequently, the interval between the two spikes
sent to the environment by the system is (t+n+2)− (t+2) = n,
which indicates exactly the number in register 1 when M halts.

From the discussion above, the system Π1 correctly simulates
the register machine M working in generating mode, in which
each neuron contains two rules at most. Therefore, the theorem
holds. □

3.2. SNP-IR systems as number accepting devices

The number n can usually be accepted by a register machine
working in the accepting mode as follows. The machine first reads
a spike train that codes a number from the environment and
stores it in the first register, and all of the registers are assumed
to be empty. Then, starting from the instruction with label l0, the
machine continually uses the instructions as identified by labels.
When the halting instruction is reached, the number is said to be
accepted by M .

Theorem 2. NaccSNP
2
∗ = NRE

Proof. An SNP-IR system Π2 working in accepting mode is
designed to simulate the deterministic register machine M =

(m,H, l0, lh, I). The proof will be described by a modification of
the proof of Theorem 1. The system Π2 contains modules of three
types: a deterministic ADD module, a SUB module, and an INPUT
module.

Fig. 6 shows the INPUT module. Neuron σin is used to read
spike train 10n−11 from the environment, where the interval
between the two spikes in the spike train is (n + 1) − 1 = n,
which is the number to be accepted.

Suppose that at time t , neuron σin reads the first spike from
the environment. At time t+1, rule a→ a in neuron σin is applied
to send a spike to neurons σc1 , σc2 , and σc3 . Note that neuron σc3

is the inhibitory neuron of neurons σc2 and σc1 . At time t + 2,

because neuron σc2 contains only a spike, rule (a, a2)/a → a in
neurons σc2 and σc1 is enabled. Neurons σc2 and σc1 send a spike
to neuron σ1, and they exchange a spike with each other. As a
result, neuron σ1 receives two spikes, and a spike is still retained
in each of neurons σc2 and σc1 . The process is repeated until the

Fig. 6. INPUT module.

Fig. 7. ADD module, simulating li : (ADD(r), lj).

second spike arrives at neurons σc1 , σc2 , and σc3 . During each step,
neurons σc2 and σc1 exchange a spike with each other, and two
spikes are added to neuron σ1.

At time t + n − 1, neuron σin reads the second spike from
the environment. At time t + n, neuron σin sends a spike to
neurons σc1 , σc2 , and σc3 . At time t + n + 1, since neurons σc1

and σc2 each have two spikes, the spikes are removed by rule

(a2, a)/a2 → λ. Moreover, neuron σc3 sends two spikes to neuron
σl0 . Consequently, from time t + 2 to time t + n + 1, neuron σ1

contains 2n spikes in total (i.e., the number of spikes in register
1 is n), and due to two spikes in neuron σl0 , the system starts to
simulate the initial instruction, l0.

In the case of accepting mode, deterministic ADD instructions,
of the form li : (ADD(r), lj), are used in the register machine,
as shown in Fig. 7. Note that there is no inhibitory neuron in
this module. Suppose that two spikes are received by neuron σli

at time t . At time t + 1, due to two spikes in neuron σli , rule

a2 ← a2 is applied to send two spikes to neurons σlj and σr . Hence

neuron σr has two spikes, meaning that register r is incremented
by 1. With two spikes in neuron σlj , the system starts to simulate
instruction lj.

Module SUB remains unchanged, as shown in Fig. 4. Module
FIN is ignored, but neuron σlh remains in the system. When
neuron σlh has two spikes, this indicates that halting instruction
lh is reached, and register machine M stops.

From the discussion above, the SNP-IR system correctly sim-
ulates the register machine working in accepting mode, where
each neuron contains two rules at most. Therefore, the theorem
holds. □

3.3. SNP-IR systems as function computing devices

A small universal SNP-IR system will be constructed to com-
pute functions. The register machine M = (m,H, l0, lh, I) used
to compute the function f : Nk → N can be illustrated as
follows. Initially, k arguments are introduced in k special registers
(usually, the first k registers are used), and all of the registers are
assumed to be empty. The machine starts from instruction l0, and
it executes constantly until the halting instruction lh is reached.
At this moment, the function value of f is the number stored
in another special register, rt . Denote by (ϕ0, ϕ1, . . .) a fixed
admissible enumeration of the unary partial recursive functions.



Fig. 8. The small universal register machine M ′u .

Fig. 9. General design of universal SNP-IR system Π3 .

A register machine is said to be universal only if there exists a
recursive function g such that ϕx(y) = Mu(g(x), y) holds for all
natural numbers x, y.

Korec [67] introduced a well-known small universal register
machine for computing functions: Mu = (8,H, l0, lh, I). The reg-
ister machine Mu has 23 instructions and 8 registers (labeled 0
through 7). By importing two numbers g(x) and y in registers
1 and 2, respectively, any ϕx(y) can be computed by the reg-
ister machine Mu; when the machine halts, the function value
is stored in register 0. An SNP-IR system will be designed to
simulate the register machine Mu. For simplicity, we modify the
register machine Mu by adding a new register 8 and replacing
the original halting instruction by l22 : (SUB(0), l23, lh), l23 :
(ADD(8), l22), lh : HALT . Denote by M ′u the modification of Mu, as
shown in Fig. 8. Therefore, register machine M ′u contains 24 ADD
and SUB instructions, 9 registers, and 25 labels.

Theorem 3. There exists a small universal SNP-IR system having

100 neurons for computing functions.

Proof. We design an SNP-IR system Π3 to simulate the universal
register machine M ′u. The SNP-IR system Π3 includes an INPUT

module, an OUTPUT module, and several ADD and SUB modules
to simulate the ADD and SUB instructions, respectively, of M ′u.
The INPUT module is used to import a spike train from the
environment, and the OUTPUT module exports the computational
result.

Fig. 9 shows the general design of the universal SNP-IR system
Π3. Each register r in M ′u corresponds to a neuron σr , and if

register r stores the number n ≥ 0, then neuron σr has 2n
spikes. Moreover, neuron σli in Π3 corresponds to instruction li

Fig. 10. INPUT module.

in M ′u. When neuron σli receives two spikes, it starts to simulate

the instruction li. Once neuron σlh receives two spikes, M ′u is

completely simulated by the system Π3. Finally, the first two

spikes sent to the environment by the output neuron σout are

regarded as the computational result (stored in register 8). In the

initial configuration, assume that all of the neurons are empty.

Fig. 10 shows the INPUT module, which is used to read the

spike train 10g(x)10y1 from the environment, where 2g(x) spikes

are stored in neuron σ1 and 2y spikes are placed in neuron σ2.

Assume that at time t1, neuron σin receives the first spike from

the environment. Similar to the analysis of the INPUT module in

the proof of Theorem 2, at time t1 + 1, rule a→ a in neuron σin

is applied to send a spike to neurons σc1 , σc2 , and σc3 . Note that

neuron σc3 is the inhibitory neuron of neurons σc2 and σc1 . At time

t2+2, because neuron σc3 contains only a spike, rule (a, a3)/a→ a

is enabled in neurons σc1 and σc2 and applied to send a spike to

neurons σc4 and σc5 , and they exchange a spike with each other.

Note that neuron σc3 is also the inhibitory neuron of neurons

σc4 and σc5 . At time t2 + 3, with a spike in neuron σc3 , rule

(a2, a2)/a2 → a2 in neuron σc4 is enabled, but neuron σc5 is

inhibited. Neuron σc4 sends two spikes to neuron σ1, and two

spikes in neuron σc5 are consumed by rule (a2, a2)/a2 → λ. The

process is repeated until the second spike arrives at neurons σc1 ,

σc2 , and σc3 . During each step, two spikes in neuron σc4 are added

to neuron σ1. Therefore, from time t1 + 3 to time t1 + g(x) + 2,

neuron σ1 receives in total 2g(x) spikes (i.e., the number of spikes

in register 1 is g(x)).

Assume that neuron σin receives the second spike at time t2
(in fact, t2 = t1 + g(x) + 2). Similarly, at time t2 + 1, rule

a → a in neuron σin is applied to send a spike to neurons σc1 ,

σc2 , and σc3 . At this time, neurons σc1 , σc2 , and σc3 each have

two spikes. At time t1 + 2, since neuron σc3 has two spikes, rule



Fig. 11. OUTPUT module.

(a2, a3)/a2 → a2 is enabled in neurons σc1 and σc2 and applied to
send two spikes to neurons σc4 and σc5 , and they exchange two
spikes with each other. At time t1+3, due to two spikes in neuron
σc3 , rule (a4, a)/a4 → a2 in neuron σc5 is enabled, but neuron
σc4 is inhibited. Neuron σc5 sends two spikes to neuron σ2, and

four spikes in neuron σc5 are consumed by rule (a4, a2)/a4 → λ.
The process is repeated until the third spike arrives at neurons
σc1 , σc2 , and σc3 . During each step, two spikes in neuron σc5 are
constantly added to neuron σ2. Hence, from time t2 + 3 to time
t2 + y+ 2, neuron σ2 receives in total 2y spikes (i.e., the number
of spikes in register 2 is y). Since neuron σ3 has three spikes, it
fires to send two spikes to neuron σl0 , meaning that the system
starts to simulate the initial instruction l0.

From Fig. 8, we can observe that all of the ADD instructions
have the form li : (ADD(r), lj). Consequently, a deterministic ADD
module, whose working principle was discussed in the proof of
Theorem 2, can be used in the simulation of the ADD instruction,
as shown in Fig. 7.

The SUB module in Fig. 4 is used in the simulation of SUB
instruction li : (SUB(r), lj, lk). The working principle of the SUB
module was described in the proof of Theorem 1.

Suppose that M halts now, i.e., the instruction lh is reached.
The computational result is contained in register 8, and it never
decreases during the computation. The computational result is
exported by an OUTPUT module, as shown in Fig. 11.

Assume that neuron σlh has two spikes at time t , meaning that
M halts, and neuron σ8 contains 2n spikes (indicating the number
n in register 8). At time t + 1, neuron σlh sends two spikes to
neuron σc1 . At time t + 2, neuron σc1 sends a spike to neurons
σ8, σc2 , and σc3 . Thus neuron σ8 receives a spike, and it contains

an odd number of spikes. Note that neuron σ8 is the inhibitory
neuron of neurons σc2 and σc3 . At time t + 3, rule (a, a)/a ← a

in neurons σc2 and σc3 is applied to send a spike to neuron σout ,

and they exchange a spike with each other. At this time, two
spikes are consumed in neuron σ8 (i.e., the number in register
8 is decremented by 1). At time t + 4, neuron σout sends the first
spike to the environment. The process is repeated until only one
spike is stored in neuron σ8, and neuron σout sends a spike to the
environment each time. At time t+n+3, because only one spike
is in neuron σ8, and neurons σc2 and σc2 each have a spike, rule

(a, a(aa)+)/a ← λ is enabled. Thus the spike in neurons σc2 and
σc2 is consumed. Consequently, from step t + 4 to step t + n+ 3,
neuron σout sends in total n spikes to the environment, which is
exactly the number contained in register 8 when M halts.

From the discussion above, the system Π3 correctly simulates
the register machine M ′u. In SNP-IR system Π3, we use a total
of 100 neurons: (i) six neurons for the INPUT module; (ii) four

Table 1

Comparison of different computing models in terms of small numbers of

computing units.

Computing models Number of neurons

SNP-IR systems 100

PSNP systems [38] 200

SNQ P systems with one type of spike [40] 181

Recurrent neural networks [68] 886

neurons for the OUTPUT module; (iii) 56 auxiliary neurons for 14
SUB instructions; (iv) nine neurons for nine registers; and (v) 25
neurons for 25 instructions. □

Theorem 3 shows a small number of computing units (i.e., neu-
rons) for SNP-IR systems as function-computing devices to
achieve Turing universality. To further evaluate the computa-
tional power of SNP-IR systems, Table 1 compares the proposed
variant with other computing models in terms of small numbers
of computing units. From Table 1, we can observe that recurrent
neural networks [68], PSNP systems [38], and SNQ P systems
with one type of spike [40] need 886, 200, and 181 neurons,
respectively, to achieve Turing universality for the computing
function, and SNP-IR systems need fewer neurons than all of
these.

4. Conclusions and further work

We have proposed a new model of SNP systems, SNP-IR sys-
tems, which introduce inhibitory rules. These are inspired by
the mechanism of inhibitory synapses, whereas usual firing rules
are related to the mechanism of the excitatory synapse. Differ-
ent from usual firing rules, the firing condition of an inhibitory
rule not only depends on the state of the neuron where the
rule resides, but also is related to the states of its inhibitory
neurons. Therefore, whether a neuron fires in SNP-IR systems
may be controlled by other neurons, i.e., its inhibitory neurons.
This interesting feature, which SNP systems lack, indicates that
SNP-IR systems have a stronger control ability. From the per-
spective of a directed graph, if neuron σj is an inhibitory neuron
of neuron σi, then there exists a special arc from neuron σj to
neuron σi, called an inhibitory arc. Different from usual arcs,
inhibitory arcs do not transmit spikes; they only play the role of
controlling a neuron’s firing. The computational power of SNP-IR
systems was investigated. The universality of SNP-IR systems as
number-accepting/generating devices was proved. Moreover, we
established a small universality result of SNP-IR systems for com-
puting functions: a small universal function-computing device
consisting of 100 neurons was constructed.

As stated in the existing SNP systems, some problems that
refer to SNP-IR systems will be discussed, such as language gen-
erator, and asynchronous and sequential modes. Moreover, it is
worth studying how to integrate other mechanisms or strategies
in SNP-IR systems, so as to propose more models.

As stated above, since inhibitory rule of the form (Een, Ēin)/a
c

→ ap is introduced SNP-IR systems, the firing of a neuron is
controlled by both its own state and the states of its inhibitory
neurons. However, the firing of a neuron in the existing SNP
systems is controlled only by its own state. Therefore, SNP-IR
systems can provide a stronger control ability than the existing
SNP systems. This is a new and interesting attribute, which makes
them more suitable for dealing with some practical application
problems, for example, supervisory control problems in discrete
event systems. The goal of supervisory control is to restrict the
behavior of a system to satisfy the desired control specifications,
such as deadlock avoidance or liveness enforcement in discrete
event system. However, when the existing SNP systems are used



to describe the discrete event system, they may suffer from the
state explosion problem. Due to inhibitory rules, SNP-IR systems
have a potential advantage to simplify the structure of model
and reduce the corresponding state space so as to achieve the
optimal supervisory control. Therefore, future work will address
the application of SNP-IR systems in supervisory control problems
in discrete event systems.

Acknowledgments

The authors thank the anonymous reviewers for providing
very insightful and constructive suggestions, which have greatly
help improve the presentation of this paper.

References

[1] G. Păun, Computing with membranes, J. Comput. Syst. Sci. 61 (1) (2000)

108–143, http://dx.doi.org/10.1006/jcss.1999.1693.

[2] G. Paun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane

Computing, Oxford University Press, Inc., 2010.
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[11] Z. Zhang, T. Wu, A. Pǎun, L. Pan, Numerical P systems with migrating

variables, Theoret. Comput. Sci. 641 (C) (2016) 85–108, http://dx.doi.org/

10.1016/j.tcs.2016.06.004.
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