

Heriot-Watt University
Research Gateway

Spiking Neural P Systems with Learning Functions

Citation for published version:
Song, T, Pan, L, Wu, T, Zheng, P, Wong, MLD & Rodríguez-Patón, A 2019, 'Spiking Neural P Systems with
Learning Functions', IEEE Transactions on NanoBioscience, vol. 18, no. 2, pp. 176-190.
https://doi.org/10.1109/TNB.2019.2896981

Digital Object Identifier (DOI):
10.1109/TNB.2019.2896981

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on NanoBioscience

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1109/TNB.2019.2896981
https://doi.org/10.1109/TNB.2019.2896981
https://researchportal.hw.ac.uk/en/publications/439429cd-03b8-45ec-a762-dfda2ec61986

IEEE TRANSACTIONS ON NANOBIOSCIENCE 1

Spiking Neural P Systems with Learning Functions
Tao Song, Senior Member, IEEE, Linqiang Pan, Member, IEEE, Tingfang Wu, Pan Zheng, Senior

Member, IEEE, M. L. Dennis Wong Senior Member, IEEE, Alfonso Rodrı́guez-Patón

Abstract—Spiking neural P systems, namely SN P systems,
are a class of distributed and parallel neural-like computing
models, inspired from the way neurons communicate by means of
spikes. In this research, a new variant of the systems, called SN P
systems with learning functions, is introduced. Such systems can
dynamically strengthen and weaken connections among neurons
during the computation. A class of specific SN P systems with
simple Hebbian learning function is constructed to recognize
English letters. The experimental results show that the SN P
systems achieve average accuracy rate 98.76% in the test case
without noise. In the test cases with low, medium and high
noise, the SN P systems outperform Back Propagation (BP)
neural networks and probabilistic neural networks. Moreover,
comparing with spiking neural networks, SN P systems perform
a little better in recognizing letters with noise. The result of
this study is promising in terms of the fact that it is the first
attempt to use SN P systems in pattern recognition after many
theoretical advancements of SN P systems, SN P systems exhibit
the feasibility for tackling pattern recognition problems.

Index Terms—Bio-inspired computing, Membrane computing,
Spiking neural P system, Learning, Letter classification

I. INTRODUCTION

Bio-inspired computing, short for biologically inspired com-
puting, is a major subfield of natural computation, whose
aim is to abstract computing ideas from biological systems
to construct efficiency computing models and algorithms. The
abstract computing ideas include data structures, information
encoding/decoding strategy, operations with data, ways to
control operations, computing intelligence, etc. Membrane
computing is a new branch of bio-inspired computing, which
seeks to discover new computational models from the study of
biological cells, particularly of the cellular membranes [1], [2].

This work was supported by National Natural Science Foundation of
China (61320106005, 61502535, 61772214 and 61873280), the Innova-
tion Scientists and Technicians Troop Construction Projects of Henan
Province (154200510012), Key Research and Development Program of
Shandong Province (2017GGX10147), and research project TIN2016-81079-
R (AEI/FEDER, Spain-EU) and grant 2016-T2/TIC-2024 from Talento-
Comunidad de Madrid, project TIN2016-81079-R (MINECO AEI/FEDER,
Spain-EU) and and InGEMICS-CM project (B2017/BMD-3691, FSE/FEDER,
Comunidad de Madrid-EU). Asterisk indicates corresponding author.

T. Song with the College of Computer and Communication Engineer-
ing, China University of Petroleum, Qingdao 266580, Shandong, China. L.
Pan∗ and T. Wu are with the Key Laboratory of Image Processing and
Intelligent Control of Education Ministry of China, School of Automation,
Huazhong University of Science and Technology, Wuhan 430074, Hubei,
China; and School of Electric and Information Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450002, Henan, China (e-mail:
lqpan@mail.hust.edu.cn). Pan Zheng is with Department of Accounting and
Information Systems, University of Canterbury, Christchurch 8041, New
Zealand. M.L.D. Wong is with School of Engineering & Physical Sciences,
Heriot-Watt University (Malaysia), Kuala Lumpur, Malaysia. Alfonso Ro-
drı́guez-Patón is with Department of Artificial Intelligence, Faculty of Com-
puter Science, Polytechnical University of Madrid, Campus de Montegancedo,
Boadilla del Monte 28660, Madrid, Spain.

The obtained models are distributed and parallel computing
devices, usually called P systems.

In 2006, spiking neural P systems, namely SN P systems,
were proposed by mimicking the way neurons communicate
via electrical impulses (spikes) [3]. SN P systems are a class
of neural-like models [2], which is a subject of investigation
for developing powerful neural-like computing models.

Biological neurons’ spiking is powerful in doing compu-
tation and communication with temporal information coding
in spikes [4], [5]. A neural network can be achieved by
connecting a number of neurons, among which information
(encoded in form of spikes or real numbers) can be sent
from one neuron to another [6], [7], [8], [9]. During the
past decades, neural-like computing models have gained their
popularity for their learning capability [10], [11], [12], [13],
[14] and applications in solving realistic problems [15], [16],
[17], [18], [19]. Spiking neural networks (SNNs) represent a
class of the most bio-plausible candidate(s) in neural network
models [20]. In addition to neuronal and synaptic state, SNNs
incorporate the concept of time into their operating model.
The neuron in the SNN cannot fire at each propagation cycle,
but only when a membrane potential reaches a specific value.
When a neuron fires, it generates a signal which travels to other
neurons which, in turn, increase or decrease their potentials in
accordance with this signal [5]. In order to increase the level
of realism in a neural simulation, the spiking rule, denoted
in form of production in grammar of formal languages, is
used to describe the neuron’s spiking behaviour in SN P
systems, which determine the conditions of triggering spiking,
the number of spikes consumed, and the number of spikes
emitting to the neighboring neurons. The spikes from different
neurons can be accumulated in the target neuron for further
spiking [3].

It is formulated in [5], [20] that candidates in the third
generation of neural neural networks have some common
features.

• The concept of time is incorporated into neuron’s spiking.
• Neurons do not fire at each propagation cycle, but rather

fire only when a membrane potential or the stack of spikes
reaches a specific value.

• Various coding methods exist for interpreting the outgo-
ing spike train as a real-value number, either relying on
the frequency of spikes, or the timing between spikes, to
encode information.

In terms of features of models, SN P systems fall into the third
generation of neural network models.

Researchers have made efforts leading to many significant
contributions to SN P systems. Notably, SN P systems can
generate and accept the sets of Turing computable natural
numbers [3], generate the recursively enumerable languages

2 IEEE TRANSACTIONS ON NANOBIOSCIENCE

[21] and compute the sets of Turing computable functions
[22]. Inspired by different biological phenomena and math-
ematical motivations, lots of variants of SN P systems have
been proposed, such as SN P systems with anti-spikes [23],
[24], asynchronous SN P systems [25], asynchronous SN P
systems with local synchronization [26], SN P systems with
weight [27], SN P systems with astrocyte [28], homogeneous
SN P systems [29], [30], sequential SN P systems [31],
SN P systems with rules on synapses [32], [33], [34]. For
applications, SN P systems are used to design logic gates,
logic circuits [35] and operating systems [36], perform basic
arithmetic operations [37], solve combinatorial optimization
problems [38], diagnose fault in electric power systems [39],
and SN P system for image skeletonizing [40]. SN P systems
with neuron budding and division and space-time trade-off
strategy can theoretically solve computationally hard problems
in a feasible (polynomial or linear) time [41], [42], [43].

The resource (here, in terms of the number of neurons)
needed for constructing Turing universal computing neural-
like computing has been heavily investigated. For conventional
artificial neural networks, it was shown that 886 sigmoid
function based processors are needed to achieve Turing univer-
sality [44], but 10 neurons (improved from 49 neurons [22])
are needed for SN P systems to achieve Turing universality
[45]. The comparison result shows that SN P systems have a
“desired” computational powerful while using less resource.
Instead of using sigmoid function to imitate biological neu-
ron’s spiking in artificial neural networks, SN P systems
use spiking rules, in form of formal grammar production,
to describe the neuron’s spiking behaviour. A neuron can
contain multiple rules (describing the ability to select spiking
conditions), and can send out different numbers of spikes by
consuming different numbers of spikes. From the analysis
above and known contributions to SN P systems, it is believed
that SN P systems potentially offer better performance in doing
computation.

During the past decades, neural-like computing models with
learning strategies [4], [12], [17] have gained their popularity
for their applications in pattern recognition [15], [16], [46],
particularly for image classification and recognition [47], [48],
[49]. Also, the heavily investigated deep learning methods
have been applied to recognize specific objects [50], [51].

It is natural extension, but still remains an open research
problem, to use SN P systems to do image recognition [52].
Recently, SNNs have been used to recognize English letters
and symbols, and most of the characters were recognized
uniquely in the sense that either a unique neuron fired or
the firing times of the same neuron were different. But,
Letters having the same number of pixels in there character
representations may have non-unique representations [48]. It
is of interests to investigate the power of recognizing letters by
spiking neural network models. The number of spikes repre-
senting different letters may be non-unique, which sometimes
bring extra difficulty in identifying the letters by spikes. So,
the number of spikes is not sufficient to represent a letter,
but the spiking frequency is considered to be useful. In SN P
systems, besides spikes, spiking rules are also powerful, which
can be used as a “selector” to control the spiking neuron and

information emitted, which provides a natural way of dealing
with the information encoded by spikes from different letters.

In this work, SN P systems, a new variant of SN P systems,
namely SN P systems with learning functions, is introduced,
and then a specific class of SN P systems with simple Hebbian
learning functions are constructed and applied to recognize
digital English letters. The main contribution of this research
is that this is the first attempt to apply SN P systems in
pattern recognition after many theoretical advancements of SN
P systems. The results show that SN P systems are potentially
powerful models for tackling pattern recognition problems.

II. SPIKING NEURAL P SYSTEMS WITH LEARNING
FUNCTION

In this section, we start by recalling some basic notions in
formal language [2], which are helpful in understanding SN
P systems, and then SN P system with learning functions is
introduced. Given an alphabet V , V ∗ denotes the set of all
finite strings of symbols from V . λ stands for empty string,
and the set of all nonempty strings over V is denoted by V +.
When V = {a}, it is called a singleton, then {a}∗ and {a}+
can be simply written as a∗ and a+, respectively.

A regular language is a formal language that can be ex-
pressed using a regular expression [55], [53], [54]. With each
regular expression E, a regular language L(E) is associated.
The formal definition of regular language over an alphabet V
is as follows, which can be referred to [55].

An SN P system with learning functions of degree m ≥ 1
is a construct of the form

Π = (O, σ1, . . . , σm, syn0, f, Iin, Iout),where

• O = {a} is a alphabet with single symbol, where a
denotes a spike;

• σi = (ni, Ri), 1 ≤ i ≤ m, are neurons, where
1) ni is the number of spikes initially contained in

neuron σi when the system starts its computation;
2) Ri is a finite set of rules of the following two forms,

by which each neuron can process the information
inside encoded in form of spikes:
– Spiking rule: E/ac → a; d, where E is a regular

expression over O, c ≥ 1 and d ≥ 0. (If
L(E) = ac, it can be simplified as ac → a; d;
if d = 0, it can be simply as E/ac → a.) At
certain moment t, if neuron σi contains k spikes
and ak ∈ L(E), k ≥ c, then rule E/ac → a; d
can be applied. The neuron fires consuming c
spikes (k − c spikes remaining in neuron σi)
and sending one spike to each of its neighboring
neurons after d time units, during which it
cannot receive new spikes. This corresponds to
the refractory period from neurobiology. In the
step t+d, neuron σi becomes again open so that
it can receive spikes and apply its rule in step
t+ d+ 1.

– Forgetting rule: as → λ, for some s ≥ 1, with
restriction that as /∈ L(E) for any spiking rule
E/ac → a; d from Ri. The forgetting rule can

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 3

be applied only if the neuron contains exactly
s spikes, by which s spikes are removed out of
the neuron. In any neuron if a spiking rule is
applicable, then no forgetting rule is enable to
use, and vice versa.

• synt is the set of synapses at a computation step t,
whose element is of the form (i, j, wij). It means there
is a synapse (i, j) connecting neurons σi and σj and the
weight on synapse (i, j) is wij ∈ Z+. (The function of
the weights is to amplify the spikes (signal) passing along
the associated synapses. Suppose that neuron σi emits
one spike to neuron σj along synapse (i, j, wij) ∈ synt,
neuron σj will receive 1×wij spikes.) The initial set of
synapses syn0 indicates the initial topological structure
of the system, including the connection among neurons
and the weights on the synapses.

• Iin, Iout ⊂ {σ1, σ2, . . . , σm} with Iin ∩ Iout = ∅
indicates the sets of input and output neurons. The system
reads input information from the environment in the form
of spike trains through input neurons. Suppose at a step
t, an input neuron begins to read spike trains. If the ith
bit of the spike train is 1, then the input neuron receives
one spike at step t + i; otherwise, no spike enters into
the input neuron. For all input neurons, they can read
spike trains from the environment in a parallel manner.
The system emits spikes into the environment from the
output neurons.

• Learning function f is used to rebuild, strengthen or
weaken the connections among neurons during the com-
putation. Mathematically, synt = f(synt−1), which
means at step t, the synapse set synt can be obtained
from synt−1 with learning function f .

Note that, in each time unit, if a neuron σi can use one
of its rules, then a rule from Ri must be used on the tick of
the clock, for all neurons at the same time. Hence, the work
of each neuron is sequential: only one rule can be applied in
each time unit, but different neurons can operate in parallel.

The “state” of the system at a computation step is de-
scribed by the number of spikes present in each neuron,
the open-close status represented by the time delayed for
spiking of the neurons, and the set of synapses at that
moment. At any moment t, the configuration of the system
is ⟨(q1, d1), (q2, d2), . . . , (qm, dm), synt⟩, where qi, di ≥ 0
indicating neuron σi contains qi spikes and after di steps it
becomes open again. With this notation, the initial configu-
ration of the system is ⟨(n1, 0), (n2, 0), . . . , (nm, 0), syn0⟩.
It is allowed that different neurons hold different number of
spikes initially. If a neuron initially has some spikes inside,
when the computation of the system starts, the neuron can
become active (fire) immediately without receiving any spikes
from its neighboring neurons. Using the rules and learning
function described above, one can define transitions among
configurations. Any series of transitions starting from the
initial configuration is called a computation. A computation
is successful if it reaches a configuration, where no rule can
be applied in any neuron (i.e., the SN P system has halted).
The result of a computation is a vector recording the number

of spikes sent to the environment by the output neurons, when
the system halts.

In what follows, SN P systems with learning functions will
be given graphically, which may be easier to understand than
in a symbolic way. Rounded rectangles are used with the
initial number of spikes and the set of rules inside to represent
a neuron, and a directed graph to represent the structure of
the system: the neurons are placed in the nodes of the graph
and the edges represent the synapses; the input/output neurons
have inputing/outgoing arrows, suggesting their communica-
tion with the environment.

III. SN P SYSTEMS WITH SIMPLE HEBBIAN LEARNING
FUNCTIONS

A class of SN P systems with simple Hebbian learning
functions are constructed to recognize English letters (in form
of spike trains). Each system has two modules, which are Input
and Recognize modules. At a computation step t, the set of
synapses of the system is denoted by synt=synt

Input∪synt
Rec,

where synt
Input is the set of synapses of the Input module

and synt
Rec is the set of synapses of the Recognize module.

The Hebbian learning function f is defined as Equation 1, by
which the synapse between the two neurons in the Recognise
module will be incremented by 1 whenever the neuron at the
start of the synapse fires.

With the Hebbian learning function defined in Equation 1,
the weights of synapses in the Input module will keep fixed,
that is, they cannot change during the computation. When a
neuron in the Recognize module fires at certain moment, the
weights on the synapses starting from it will be increased by
one.

The Input module shown in Figure 1
The Input module consists of 72 neurons, whose function

is to read spike trains of English letters from the environment
into the system. (Each letter is represented by a spike train
of length 35, which is to be discussed in detail in Subsection
IV-A.) Suppose a spike train v = v1v2 . . . v35 with vi ∈ {0, 1}
is to be read. The process of reading spike train v by the
Input module is as follows. Initially, all the neurons in the
Input module have no spike inside, with the exception that
start neuron σstart has one spike. At step 1, neuron σstart

fires by using spiking rule a → a, sending one spike to neuron
σS1 . At the same moment, input neuron σInput read the first
bit of v (v1) from the environment.

– If v1 = 1, neuron σInput receives one spike from the en-
vironment at step 1. With this spike inside, neuron σInput

fires immediately by using spiking rule a → a, sending
one spike to each of neurons σIi , i = 1, 2, . . . , 35.
Meanwhile, presynaptic neuron σS1 fires sending one
spike to each of neurons σI1 and σS2 . Having two spikes
inside, neuron σI1 will fire at step 2, and one spike is sent
to neuron σR1 . The spike in neurons σIi , i = 2, 3 . . . , 35
will be removed by using forgetting rule a → λ. In this
case, neuron σR1 receives one spike, representing v1 = 1.

– If v1 = 0, neuron σInput receives no spike from the
environment at step 1, and keeps inactive. At step 2, the
spike in presynaptic neuron σI1 (received from neuron

4 IEEE TRANSACTIONS ON NANOBIOSCIENCE

synt+1 = f(synt)


(i, j, wij), if (i, j, wij) ∈ synt

Input;

(i, j, wij), if (i, j, wij) ∈ synt
Rec and σi doesn’t fire at step t;

(i, j, wij + 1), if (i, j, wij) ∈ synt
Rec and σi fires at step t.

(1)

σS1) will be removed. In this case, no spike is emitted
to dendrite neuron σR1 . Neuron σR1 receives no spike,
representing v1 = 0.

Using the Input module, spike train v can read one by one
bit and store one spike (or no spike) in neuron σRi with i =
1, 2, . . . , 35. Specifically, if vi = 1, then neuron σRi

will store
one spike inside; if vi = 0, then neuron σRi will receive no
spike. When the Input module finishes reading a spike train, a
spike goes back to the neuron σstart by passing along the path
of neurons σS1 , σS2 , . . . , σS35 , which indicates Input module
returns to the initial configuration and is ready to read the next
spike train. In this way, the Input module can read multiple
spike trains one by one, and store a specific number of spikes
in neurons σRi with i ∈ {1, 2, . . . , 35}. The initial values of
the weights on the synapse in the Input module are 1, and will
not change during the process of reading spike trains (with
learning function f defined in Equation 1.)

The Recognize module shown in Figure 2
The topological structure of the Recognize module is ob-

tained with the following considerations.
– Since every English letter is represented by 7× 5 pixels

and each pixel is associated with a neuron, 35 neurons
in total, labeled with σRi , i = 1, 2, . . . , 35are needed in
Recognize module. Four output dendrite neurons labelled
σoutputj , j = 1, 2, 3, 4 collect the spikes emitting from
the system of four directions, up, down, left and right.
Thus, the Recognize module has 39 neurons.

– The spiking rule in each neuron is used to process the
information inside the neuron encoded by the number
of spikes. The spiking rule in any neuron is of the
form a∗/a → a. The rule has the function of slowing
the passing speed of the spikes but will not lose any
information. For example, if a neuron receives k spikes
at some moment, then as described in basic notions of
SN P systems, the spiking rule a∗/a → a will be applied
for k times in k steps. In each time of spiking, the neuron
emits one spike to its neighboring neurons, thus emitting
in total k spikes to each of its neighboring neurons.

– The connections among the neurons are based on the idea
of transmitting the input information from the innermost
layer to the outermost layer. With this consideration, a
three layer topological structure, including the innermost
layer, middle layer and the outermost layer is obtained.
Each layer needs to emit spikes to four directions, so the
neurons in each layer are divided into four parts. The
neurons in the same direction have a full connection to
the neurons in its upper layer. Specifically, neurons in
the middle layer have full connections to the neurons in
the same direction of the outermost layer, and neurons
in the innermost layer have full connections to each
of the neurons in the middle layer. But, no connection
exits among the neurons in the middle and the outermost

layers in different directions. In this way, the topological
structure shown in Figure 2 is obtained.

In general, the architecture of the SN P system follows
the observation that biological spiking neural networks tend
to operate from the innermost to the outermost neurons. The
architecture of the SN P system is inspired from the biological
motivation of liquid state machine (LSM), which is a particular
kind of spiking neural network. An LSM consists of a large
collection of units (called nodes, or neurons). Each node
receives spikes from external sources (the inputs) as well
as from neighboring nodes. The word “liquid” comes from
the analogy of information transmitting in the network like
dropping a stone into a still body of water or other liquid.
The falling stone will generate ripples in the liquid. The input
(motion of the falling stone) has been converted into a spatio-
temporal pattern of liquid displacement (ripples).

In our SN P system, each neuron in Recognize module can
receive spikes from the neuron in input module, as well as
can receive spikes from its neighboring neurons. The neurons
in Recognize module are arranged in three layers, which are
the innermost, middle and outermost layers. Such architecture
is the analogy of information transmitting in neural networks
like dropping a stone into liquid. The spikes emitting from
the four edges by four outputting neurons are collected as the
computational result of the system.

In the system, neurons σR13 , σR18 and σR23 in red are
three central neurons in the innermost layer, having full
connections with the neurons in the middle layer (σRi , i =
7, 8, 9, 12, 14, 17, 19, 22, 24, 27, 28, 29). Neurons in the middle
and outermost layers, are divided into four groups, colored
in Gray, Black, Green and Yellow. Each neuron of the outer
layer connects to 5 neurons in the outmost layer (marked in
the same color). There are 20 neurons in the outmost layer,
in which 5 neurons are labeled with Gray, Black, Green or
Yellow, respectively. Four output neurons are used to read
information of a letter of pixel array from 4-directions, left,
right, up and down.

The neuron in the Recognize module works as follows. If
neuron σRi holds k spikes (these spikes come from neuron σIi

in the Input module), then spiking rule a∗/a → a can be used,
consuming one spike and emitting one spike to its neighboring
neurons. The number of spikes in neuron σRi becomes k− 1.
Neuron σRi fires for the second time in the next step. In this
way, neuron σRi will fire for k times in k steps, emitting k
spikes in total to its neighboring neurons, one spike in each
step.

The weights of the synapses in the Recognize module are
initially associated with value 1. During the computation, the
weights of the synapses in the Recognize module are updated
by learning function f . Specifically, suppose at a step t, it
has (Ri, Rj , wRi,Rj) ∈ synt

Rec. If neuron σRi fires at step t
sending one spike to neuron σRj , the weight of the synapse

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 5

a
a → a

start

a → a

S1

a → a

S2

a → a

S5

a → a

S6

a → a

S10

a → a

S31

a → a

S35

.

a → a

input

a2 → a
a → λ

I1

a2 → a
a → λ

I2

a2 → a
a → λ

I5

a2 → a
a → λ

I6

a2 → a
a → λ

I10

a2 → a
a → λ

I31

a2 → a
a → λ

I35

.

R1 R2 R5 R6 R10 R31 R35

.

1

Fig. 1. The structure of the Input module

Fig. 2. The structure of the Recognize module

will be increased by one; otherwise, the weight of the synapses
keeps unchanged. The output neurons σoutputj , j = 1, 2, 3, 4
have spiking rule a∗/a → a, and can emit its spikes to the
environment. The number of spikes emitted by each output
neuron is counted, and then a 4-dimensional vector can be
obtained.

IV. RECOGNIZING ENGLISH LETTERS BY SN P SYSTEM
WITH HEBBIAN LEARNING FUNCTION

This section starts by introducing the way to encode English
letters by spike trains, particularly in three levels of noise, and
then SN P systems with simple Hebbian learning functions are
constructed to recognize the letters.

A. Representing English letters by spike trains

Each English letter is represented by a black-white image
in the size of 7× 5 pixels. The representation of letter “B” in
Calibri, for example, is shown in Figure 3.

Fig. 3. Representing letter “B” in Calibri by a 7× 5 pixel array

6 IEEE TRANSACTIONS ON NANOBIOSCIENCE

The representations of English letters “A” to “Z” by black-
white images in the size of 7× 5 pixels are shown in Figure
4.

Fig. 4. Representing of all English letters by 7× 5 pixel arrays

Each black and white image can be represented by a
7 × 5 binary matrix, where each pixels is associated with a
corresponding element in the matrix. Specifically, the pixel at
the ith row and jth column corresponds to the element at the
ith row and the j column of the matrix; if the color of a pixel
is black, its value is 1; otherwise, its value is 0. With this
conversion, it is easy to obtain a binary string (spike train) by
concatenating the rows of the matrix one by one from top to
bottom. A letter can be represented by a spike train. Figure 5
shows an example of converting letter “B” to a spike train.

This type of spike train is considered as the standard form
of a spike train of a letter that contains no noise. Spike trains
of letters with noise are set by flipping some bits of standard
letter spike trains, i.e., changing a given number of bits from
0 to 1 or from 1 to 0. Test cases with three different levels
of noise are generated randomly. The three levels of noise are
specified as follows.

– Low noise case: 0–3 bits are flipped in a spike train of
the standard form.

– Medium noise case: 4–6 bits are flipped in a spike train
of the standard form.

– High noise case: 7 bits are flipped in a spike train of the
standard form.

B. The general process of recognizing English letters

For an English letter, an SN P system with Hebbian learning
function is associated. The process of recognizing an English
letter (represented by spike train) has four stages: Reading
Stage, Training Stage, Generating Standard Output and Rec-
ognizing Unknown Letters.

Reading Stage
For an English letter, first, a set of spike trains associated

with the letter at a certain level of noise is generated. The spike
trains are generated by flipping randomly a certain number of

bits from a spike train of the standard letter form. The number
of bits to be flipped is determined by the level of noise. The
generated spike trains are to be read into the system through
the Input module (the input neuron) from the environment.

Training Stage
The input neuron σinput can read spike trains one by

one, sending spikes to neuron σIi . When neuron σIi receives
spikes from neuron σSi , it can fire by using spiking rule
a∗/a → a, emitting spikes to neuron σRi . When neurons σRi

has spikes, it fires, emitting spikes to its neighbor neurons.
During this process, the weights of the synapses between
each pair of neurons will be updated by learning function
f . Output neurons can emit spikes into the environment, but
will be ignored. When the system halts, it forms a specific
topological structure by processing the input information. For
26 English letters, 26 “trained” SN P systems will be obtained.
The obtained “trained systems” have their topological structure
fixed and will be used to recognize unknown letters.

Note that, it is necessary to impose a bound to the weights
on the synapses with a Hebbian learning strategy in neural
network models. Since the size of the training set of each
letter used in this work is not more than a finite number m,
the weight on each synapse will not be bigger than m. It
is considered as an inherent bound for the synapse from the
working principle of SN P systems. In the worst case, if the
weight on synapses are m, it will produce outputs in form of
O(m3) spikes (when spikes pass from the core layer to the
output neurons, they can be amplified for three times, each
time amplified by m). Large output values will be simplified
using the variance to generate the difference between known
and unknown letters.

Generating Standard Output
For an English letter, a spike train from the set of spike

trains used in Reading Stage is randomly chosen and read
into the “trained system”. With the spike train, each “trained
system” starts its computation, and when the system halts, a 4-
dimensional vector (stan1, stan2, stan3, stan4) is generated
to record the numbers of spikes emitted by the four output
neurons σoutput1 , σoutput2 , σoutput3 , σoutput4 . The vector is
called the standard outputting vector of the letter. Note that
learning function f is only used to update the weights of
synapses in the above training stage.

Recognizing Unknown Letters
The spike train of an unknown English letter is read into

each of the “trained systems”. With the spike train, each
“trained system” starts it computation, and when it halts,
a 4-dimensional vector (out1, out2, out3, out4) is generated
recording the numbers of spikes emitted by the four output
neurons. It calculates the variance between the outputting
vector of the unknown letter and standard outputting vectors.
Specifically, the variance is calculated by

var =

√√√√ 4∑
i=1

(outi − stani)2,

where (out1, out2, out3, out4) is the outputting vector of the
unknown letter and (stan1, stan2, stan3, stan4) is the stan-
dard outputting vector of a certain letter. The one with the

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 7

Fig. 5. Representing letter “B” by a spike train

lowest value of the variance is considered to represent the
unknown letter.

V. EXPERIMENTAL RESULTS

In this section, experimental results of recognizing letters
by SN P systems with simple Hebbian learning function are
shown. Furthermore, comparison with BP neural networks in
four flavors (gradient descent with momentum, gradient de-
scent with adaptive learning, Levenberg-Marquardt and scaled
conjugate gradient), probabilistic neural networks (PNN) and
spiking neural networks (SNN) are done for test cases with
different levels of noise [56], [57].

The reason why BP neural networks, PNN, and SNN
are chosen for comparison is that they are well known and
classical artificial neural network models, which have been
deeply investigated and widely applied in solving real-world
problems. The purpose of comparing SN P systems with
BP neural networks, PNN, and SNN is not to show SN P
systems can can replace or improve upon the performance of
existing significant neural-like models, but to indicate that SN
P systems can be used in letter recognition with acceptable
performance relative to these other neural-like computing
models. These results may provide some potential applications
or hints to solve real-life problems in some scenarios by SN
P systems.

The The recognition accuracy rate is mathematically defined
as

∑m
i=1 Ti, where if the letter is correctly recognized by its

associated neural network and also by another n networks,
then Ti = 1

n+1 ; otherwise, Ti = 0, and m is the number
trials.

A. Performances of SN P systems with Hebbian learning
functions

For every English letter, the size of its training set is 100,
that is, 100 spike trains of the letter are input to train the
system. Spike trains in different levels of noise are generated
randomly by flipping d bits of the standard ones, where
d = 0, 1, 2, 3, . . . , 7. The number of bit to be flipped is based
on the assumption that less than 20% of the bits is incorrect
in different level of noise. There are in total 5× 7 bits, whose
20% are 7 bits at most for flipping. And it is find that there
are some letters with less than 4 bit in difference, so if the
number of flipping bits increased, it would be very hard to
recognize the letters correctly. Given a letter and value of
d, recognition experiments are carried out for 100 trials. The
actual implementation of the SN P systems is done with C++.

Experimental results show that SN P systems with Heb-
bian learning functions generally perform well in recognizing
English letters. In the test case with no noise, the average
recognition accuracy rate is 98.76%. Notably, the recognition
accuracy rate for 13 of the 26 English letters is 100% (corre-
sponding to the case of d = 0 in Table I).

In case d = 0, most of the letters can be recognized by SN
P system with accuracy rate above 97%, except for letters “H”,
“N” and “Q” having accuracy rates 96%. In case d = 1, five
letters have recognition accuracy rate of 100%, which are “F”,
“R”, “X”, “Y” and “Z”. In case d = 4, SN P system recognizes
letters “D”, “M”, “N” and “O” with accuracy rate below 80%,
but can recognize another 11 letters, “A”, “B”, “C”, “E”, “F”,
“K”, “L”, “Q”, “S”, “T” and “W”, with accuracy rates no
less than 90%. In the test cases with low level of noise, SN
P system recognizes 21 letters, “A”, “C”, “D”, “E”, “F”, “I”,
“J”, “K”, “L”, “O”, “P”, “Q”, “R”, “S”, “T”, “V”, “W”, “X”,
“Y”, “Z” and “W”, with accuracy rates above 95%. In the
high noise case, recognition accuracy rates for 13 letters, “A”,
“F”, “H”, “I”, “J”, “K”, “L”, “Q”, “S”, “T”, “U”, “W” and
“X”, are above 80%, performs extremely well in recognizing
letters “A”, “L”, “J” and “S”, which achieve accuracy rates
above 85%.

Referring to the pixel arrays shown in Figure 4, the differ-
ences occur at only two pixels for letters “M” and ”N”, hence
their spike trains have only two distinguishing bits. If the two
different bits are exactly chosen to be flipped in noisy cases,
then it is typically hard to recognize the letter correctly. This
might be the reason why it is difficult to distinguish “M” from
“N” when the value of d becomes large. Similar case happens
to letters “D” and “O”, whose accuracy rate are less than or
equal to 65% with d = 7, reducing greatly with the increment
of d.

B. Comparison results to BP neural networks

For comparison, BP neural network experiments to recog-
nize English letters in form of spike trains with low, medium
and high noise are implemented.

For each letter, a BP neural network is built using method
from [56], [57] to recognize it. It is suggested in [57] that the
number of input neurons should be related to the image to be
recognized. We use a mapping of 1 : 1 pixel to neuron, so
35 input neurons are needed to read 35 binary bits of a letter.
There are 20 neurons in hidden layer, which is obtained by
experience from [56]. The number of neurons in the output
layer is determined by the number of classes to be classified.
For each letter, the associated BP neural network needs to

8 IEEE TRANSACTIONS ON NANOBIOSCIENCE

TABLE I
THE ACCURACY RATE OF RECOGNITION FOR ENGLISH LETTERS WITH 0–7 BIT(S) FLIPPING IN THE SPIKE TRAINS

XXXXXXXXCharacter
d 0 1 2 3 4 5 6 7

A 100% 98% 96% 95% 97% 94% 93% 91%
B 100% 96% 96% 93% 91% 90% 88% 76%
C 100% 99% 97% 95% 91% 88% 87% 75%
D 100% 98% 97% 96% 79% 76% 69% 63%
E 100% 99% 98% 97% 92% 89% 86% 72%
F 100% 100% 99% 96% 90% 84% 82% 83%
G 98% 96% 95% 93% 84% 76% 69% 71%
H 96% 92% 92% 91% 89% 85% 79% 80%
I 100% 99% 98% 98% 89% 84% 84% 83%
J 98% 98% 98% 97% 89% 86% 85% 86%
K 100% 98% 99% 98% 93% 89% 86% 82%
L 99% 99% 99% 99% 95% 96% 91% 88%
M 97% 98% 95% 91% 79% 76% 68% 71%
N 96% 98% 94% 92% 78% 71% 69% 72%
O 97% 98% 95% 95% 78% 78% 76% 65%
P 98% 97% 97% 98% 89% 82% 79% 74%
Q 96% 97% 97% 96% 91% 86% 82% 82%
R 100% 100% 100% 98% 89% 86% 79% 76%
S 99% 98% 98% 98% 91% 89% 87% 85%
T 97% 99% 99% 98% 93% 86% 81% 81%
U 98% 98% 94% 92% 81% 76% 79% 82%
V 99% 98% 95% 95% 84% 80% 76% 73%
W 100% 99% 99% 98% 93% 85% 80% 82%
X 100% 100% 99% 99% 86% 86% 86% 82%
Y 100% 100% 99% 98% 85% 81% 74% 73%
Z 100% 100% 100% 99% 84% 80% 75% 74%

output the recognition result, whether positive or negative. The
result is represented by a two-dimensional vector [out1; out2]
with out1, out2 ∈ {0, 1}, where the positive one is denoted
by [1; 0], and negative one is [0; 1].

The training process starts by reading input samples, and
then adjusts the weights and biases of the networks with
purpose to make the output and expected output to be as close
as possible. When the sum of the square error is less than the
specified error, the training process is completed.

The specific steps are as follows:

Step 1. Initialization, the weights and thresholds are
initialized randomly;
Step 2. The output of each unit in hidden layer and output
layer is calculated by the given input and output mode;
Step 3. Calculate the new weights and threshold;
Step 4. Select the next input mode and return to Step 2,
repeatedly training, until the output error of the network
achieves the required value, then end the training.

The size of the training set for the BP neural network is
50, where 20 spike trains are used for learning and 30 spike
trains are used to verify the model.

Four learning strategies, gradient descent with adaptive
learning rate, gradient descent with momentum backpropa-
gation, Levenberg-Marquardt and scaled conjugate gradient
method are chosen to train BP neural networks in recognizing
English letters. We briefly recall the basic notions of the
four training strategies, and for details one can refer to the
corresponding references.

– In gradient descent with adaptive learning rate, backprop-
agation is used to calculate derivatives of performance
perf with respect to the weight and bias variables X .

Each variable is adjusted according to gradient descent:
dX = lr ∗ dperf/dX , see [58].

– In gradient descent with momentum back-propagation,
back-propagation is used to calculate derivatives of per-
formance perf with respect to the weight and bias vari-
ables X . Each variable is adjusted according to gradient
descent with momentum, dX = mc∗dXprev+ lr ∗ (1−
mc) ∗ dperf/dX . More details can be found in [58].

– With the Levenberg-Marquardt training strategy, a net-
work training function updates weight and bias values
according to Levenberg-Marquardt optimization [58]. It
is fast and usually used as a first-choice supervised
algorithm.

– The scaled conjugate gradient method is used to train
any network as long as its weight, net input, and transfer
functions have derivative functions. Backpropagation is
used to calculate derivatives of performance with respect
to the weight and bias variables based on conjugate
directions [59].

For every letter in the test cases with low, medium and
high noise, its data experiment is repeated for 100 times. The
simulation is implemented with Matlab BP-Neural Network
Tool, where the values of involved parameters are shown in
Table II.

The meaning of the parameters involved in the BP neural
network for recognizing English letters in form of spike trains
is as follows.

– Max iterations: the maximal number of training steps;
if the training process reaches the maximal number of
steps, the training will stop.

– Mean square error: the square of the difference between

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 9

the real output and target output; if this value is less the
initially set one, then the training of BP neural network
is stopped.

– Learning step: also known as learning speed, which
means the unit of variation of weights in each time
update.

– Step length: after how many steps it needs to show the
variation on curve.

The value of parameters of Mean square error, Learning
step, Step length are obtained with the empirical formulae
from from [57].

TABLE II
VALUES OF PARAMETERS IN BP NEURAL NETWORKS

Max iterations Mean square error Learning step Step length
10000 0.002 0.05 100

The comparisons of accuracy rates for BP neural networks
and SN P systems with test cases in low, medium and high
noise are shown in Figures 6, 7 and 8. In the figures, the BP
neural network with gradient descent with adaptive learning
rate is labelled by da, gradient descent with momentum
backpropagation is labelled with dm, Levenberg-Marquardt
method is labelled with lm, and scaled conjugate gradient
method is labelled by scg, respectively.

Experimental results in the test case of low noise by BP
neural networks are shown in Figure 6. It is found that the BP
neural network with scaled conjugate gradient (scg) performs
a little better than than the other three training strategies. The
BP neural network with scaled conjugate gradient method can
recognize 8 English letters with accuracy rates above 90%, 18
English letters with accuracy rates above 80%, and the average
recognition accuracy rate is 84.78%.

In the test case of medium noise (shown in Figure 7), the
BP neural network with scaled conjugate gradient method
performs better than the other three training strategies, but
the average accuracy rate of recognition reduces to 43.01%.
The BP neural network with scaled conjugate gradient method
recognize 2 letters with accuracy rates above 60%, 17 letters
with accuracy rates above 40% and 7 letters with accuracy
rates below 40%. The average accuracy rate of recognition
of SN P system is 83.89%, which is typically better than BP
neural networks. SN P system can recognize 2 letters with
accuracy rate above 90% and 20 letters with accuracy rate of
recognition above 80%. Moreover, the recognition accuracy
rates for letters “M” and “N” are the lowest, which are 74.3%
and 74.23%, respectively.

In the test case with high noise, the average recognition
accuracy rate by BP neural networks is further reduced to
30.94%, while the average accuracy rate by SN P system is
77.92%. SN P system can recognize 11 letters with accuracy
rates above 80%, and 22 letters with accuracy rates above
70%. The two letters with the lowest accuracy rates are “D”
and “O”, whose accuracy rates are 63% and 65%, respectively.

C. Comparison results to probabilistic neural networks

For the probabilistic neural network experiments, every
letter, in the form of a spike train, is associated with a

probabilistic neural network (PNN).

Fig. 9. The topological structure of the PNN used to recognize letter “A”

The topological structure of PNN is obtained by the princi-
ple for building PNN to solve pattern classification problems
from [60]. There are four layers, which are Input layer, Pattern
layer, Summation layer, and Output layer. Input layer has 35
neurons, each of which reads one bit of the spike train. Each
neuron in Input layer has a connection to the neurons in Pattern
layer. It is suggested in [60] that “A PNN consists of a node in
layer one for each of the N training samples.” We use here 200
training samples, so Pattern layer contains 200 neurons. There
are 26 neurons labeled with SA, SB , . . . , SZ in Summation
layer, since in total 26 letters need to be classified. The top
100 neurons in Pattern layer have connections to each neuron
Sα with α ∈ {A,B, . . . , Z}.

For the remaining 100 neurons in the Pattern layer, each
four successive neurons are selected to connect each neuron
Sβ , β ∈ {A,B, . . . , Z}−α in alphabetic order respectively. In
the Output layer, there is an output neuron to record the result
by 0 (negative) or 1 (positive). For example, the topological
structure of PNN for recognizing letter “A” is shown in Figure
9.

The values of Max iterations, Mean square error, Learning
step, Step length, and Spread are set by empirical formula
introduced in [60]. We use function newpnn in Matlab prob-
abilistic neural networks Tool-Box to train the probabilistic
neural networks, which was developed in [61].

In the data experiments, the PNN is tested to recognize
English letters in low, middle, and high noise cases. The
size of the training set is 100. For any letter in the low,
medium, or high noise cases, recognition experiments are
repeated 100 times. The simulation is implemented by using
Matlab probabilistic neural networks Tool, where the values
of parameters are set by empirical formula from [60], which
are shown in Table III.

Comparison results with the PNN in the low, medium, and
high noise cases are shown in Figures 10, 11 and 12. The
parameters in Table III have the same meaning as in Table II.

In the test case with low noise, the average recognition

10 IEEE TRANSACTIONS ON NANOBIOSCIENCE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.5

0.6

0.7

0.8

0.9

1

1.1

Low noisy case (flipping 0~3 bits)

A
c
c
u
ra

c
y
 R

a
te

SNP vs BPNN

da

dm

lm

scg

SNP

Fig. 6. Comparison results of BP neural networks in the test case with low noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Medium noisy case (flipping 4~6 bits)

A
c
c
u

ra
c
y
 R

a
te

SNP VS BPNN

da

dm

lm

scg

SNP

Fig. 7. Comparison results of BP neural networks in the test case with medium noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

High noisy case (flipping 7 bits)

P
re

c
is

io
n
 R

a
te

SNP vs BPNN

da

dm

lm

scg

SNP

Fig. 8. Comparison results of BP neural networks in the test case with high noise

TABLE III
VALUES OF PARAMETERS IN PROBABILISTIC NEURAL NETWORKS

Max Mean Learning Step Spread Number
iterations square error step length of neurons

10000 0.002 0.05 100 1.5 106

accuracy rate of SN P systems is 97.64%, which is better
than PNN with accuracy rate 86.62%. SN P system performs

better in recognizing 21 letters, but PNN performs better than
SN P systems in recognizing letters “A”, “K”, “Q”, “S”, and
“Y”.

It is found that the PNN performs slightly (about 2%) better
on accuracy rate than the SN P systems in recognizing letters
“Q”, “S”, “Y” and “Z”. Meanwhile, in recognizing letters “K”,
“L” and “X”, SN P systems can achieve a little higher (on
average 1.5% higher) accuracy rate than PNN.

In the test case with medium noise, SN P systems have

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 11

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.5

0.6

0.7

0.8

0.9

1

1.1

Low noisy case (flipping 0~3 bits)

A
c
c
u

ra
c
y
 R

a
te

SNP vs PNN

PNN

SNP

Fig. 10. Comparison results of probabilistic neural networks in the test case with low noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.5

0.6

0.7

0.8

0.9

1

1.1

Medium noisy case (flipping 4~6 bits)

A
c
c
u

ra
c
y
 R

a
te

SNP vs PNN

PNN

SNP

Fig. 11. Comparison results of probabilistic neural networks in the test case with medium noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.2

0.4

0.6

0.8

1

High noisy case (flipping 7 bits)

A
c
c
u

ra
c
y
 R

a
te

SNP vs PNN

PNN

SNP

Fig. 12. Comparison results of probabilistic neural networks in the test case with high noise

average accuracy rate 83.89%, while average accuracy rate of
PNN reduces to 75.86%. SN P system performs better than
PNN in recognizing 21 letters, except for letters “M”, “N”,
“O”, “P” and “R”. In the test case with high noise, SN P
systems have average accuracy rate 77.92%, which is better
than PNN, whose average accuracy rate reduces quickly to
36.72%.

D. Comparison results to spiking neural networks

In this subsection, comparison results with spiking neural
network (SNN) are given. The SNN model is from [63] with
spike time dependent plasticity (STDP). The main idea of

STDP is that when the stimulus (in form of a constant current)
is presented as input, the output should be in the form of
a series of spikes, which represents a similar information
processing strategy to spiking rule a∗/a → a in SN P system.
This is the reason why such a model is selected to compare
with SN P system for recognizing English letters.

To make the paper self-contained, the SNN model from [63]
are briefly recalled, but for more details one can refer to [63],
[65], [64].

Active-Dendrites-and-Dynamic-Synapses (ADDS) neuron
proposed in [64] is used here, which is defined as follows.
The neuron can receive input via spike(s) through a set of

12 IEEE TRANSACTIONS ON NANOBIOSCIENCE

its presynaptic neurons. For any synapse i with strength wi

(denoted by weight wi) to an active dendrite, the total post-
synaptic current Iid is defined by

τ id
dIid(t)

dt
= −Iid(t) +Ri

dw
iδ(t− tif),

where tif is the set of pre-synaptic spike times filtered as Dirac
δ pulses. The time constant τ id and resistance Ri

d define the
active properties of the artificial dendrite as a function of the
synaptic strength, and are defined as

τ id = τmax − |wi|(Tmax − Tmin), |wi| ≤ 1.

It is not hard to see from the above equation that for high
weights, τ id is closer to Tmin, while for low weights, τ id is
closer to Tmax. Thus, as the time constant is low for stronger
synapses, we have an earlier and steeper increase of the soma
potential as compared to weaker synapses.

The resistance Ri
d is given by

Ri
d =

τ idθ

Rm
(
τm
τ id

)
τm

τm−τi
d ,

where θ is the neuron’s firing threshold, Rm is the somatic
resistance, and τm is the soma time constant. The above
equation for Ri

d ensures that the maximum value of the
membrane potential change is proportional to the neuron’s
firing threshold θ.

The other influence to an output neuron is from the somatic
synapses feeding directly or close to the soma. These lateral or
inhibitory connections enforce the winner-take-all mechanism
as the synaptic activity of the neurons which are not the first
to spike is inhibited. The equation governing the post-synaptic
current is

τi
dIi(t)

dt
= −Ii(t) +

∑
i

wiδ(t− tif).

Combining the contributions from the dendritic connections
and the synapses feeding directly to the soma, the equation
obtained for the total soma membrane potential um is

τm
dum(t)

dt
= −um(t) +Rm(Id(t) + Im(t)),

where Id(t) =
∑

i I
i
d(t) is the total dendritic current, τm is

the soma time constant, and Rm is the somatic resistance.
When the membrane potential reaches the threshold value

θ, it produces a spike, and the membrane potential is reset
to a value ureset = −1mV . After this event, the membrane
potential recovers to the resting potential value.

The general STDP learning rule is as follows.

∆w =

{
A+ e

∆t

τ+ , if ∆t < 0;
A− e

∆t

τ+ , if ∆t > 0;

where ∆t = tpre − tpost. The weights can be updated by

wnew =

{
wold + η∆w(wmax − wold), if ∆w ≥ 0;
wold + η∆w(wold − wmin), if ∆w < 0;

where η is the learning rate. For excitatory synapses, wmin =
0 and wmax = 1, whereas for inhibitory synapses, wmin = −1

and wmax = 0. If there is no pre-synaptic spike, the weight
decays with a rate ηdecay.

The SNN associated with each letter has two layers: input
layer and output layer. Input layer has 35 neurons, which is
equal to the number of pixels in the image. The number of
output neurons is the number of characters to be trained, that
is, 26 output neurons. Input layer has simple leaky integrate
and fire neurons, which receives constant or zero input current,
corresponding to “on” or “off” state to the input pixels. Output
layer consists of active dendrite neurons, each of which is
connected to all of the neurons in the previous layer. As well,
every output neuron is connected to the other output neurons
via inhibitory lateral connections, reflecting the competition
among the output neurons.

The values of parameters in SNN are shown in Table IV
The size of the training set is 100 for each letter, and the
simulation is performed by SNN simulator BRIAN [66], [67].
For any letter in the low, medium, or high noise cases, data
experiments are repeated for 100 times. Comparison results
of SN P systems with SNN in low, medium, and high noise
cases are shown in Figures 13, 14 and 15, respectively.

From Figures 13, 14 and 15, it is found that the SN P system
performs better than SNN in recognizing most of the letters.
The results have some accordance with the result obtained
in [63] that for letters having the same number of pixels in
their character representations, SNN fails to recognize them.
This is the reason why SNN performs poorly in recognizing
English letters in noisy cases, particularly in the medium
and high noise cases. The spikes representing different letters
may be non-unique, which sometimes bring extra difficulty in
identifying the letters by spikes. But for SN P systems, spiking
rules can be used as a intelligent “selector” to choose a spiking
pattern for a neuron when it reads the same number of spikes
but at a different time, which can deal with the information
encoded by indistinguishable spikes from different letters at
different moments.

VI. CONCLUSION AND DISCUSSION

A new variant of SN P systems, called SN P system with
learning function, is introduced in this work. With learning
function, the weights on synapses can be modified during
the computation, which represents the change of the strength
of the connection between neurons. Furthermore, a class of
SN P systems with simple Hebbian learning function are
constructed to recognize English letters with three different
levels of noise. The experiments show that the SN P systems
achieve average accuracy rate 98.76% in the test cases without
noise. In the test cases with low, medium and high noise, SN P
systems outperform BP neural networks and PNN. Moreover,
by comparison with SNN, SN P systems perform a little better
in recognizing letters with noise. The results of this study are
promising given that it is the first attempt to use SN P systems
in pattern recognition after many theoretical advancements of
SN P systems. SN P systems demonstrate a feasible approach
for tackling pattern recognition problems.

SN P systems, BP neural network, PNN, and SNN perform
well in recognizing letters in the low noise case (flipping 0–3

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 13

TABLE IV
VALUES OF RUNNING PARAMETERS IN SPIKING NEURAL NETWORKS FROM [63]

Rm θ τs, τmin τm, τmax η ηdecay A+ A− τ− τ− time step
80 10mv 2ms 30ms 0.1 0.05 0.1 -0.105 1ms 1ms 0.2ms

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.8

0.85

0.9

0.95

1

1.05

Low noisy case (flipping 0~3 bits)

SNP vs SNN

SNN

SNP

Fig. 13. Comparison results of SNN in the test case with low noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.6

0.7

0.8

0.9

1

Medium noisy case (flipping 4~6 bits)

A
c
c
u
ra

c
y
 R

a
te

SNP VS SNN

SNN

SNP

Fig. 14. Comparison results of SNN in the test case with medium noise

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0.2

0.4

0.6

0.8

1

High noisy case (flipping 7 bits)

A
c
c
u
ra

c
y
 R

a
te

SNP vs SNN

SNN

SNP

Fig. 15. Comparison results of SNN in the test case with high noise

bits randomly). This is due to the fact that most of the bits
of the spike train associated with a letter remain unchanged
and are input for recognition. In medium and high noise cases,
more than 3 bits of the spike trains associated with letters are
randomly flipped, imposing additional difficulty in classifying
the letters having less than 3 distinct binary bits in their spike
trains. For example, letters “M” and “N” have two distinct
binary bits. It is possible that in medium and high noise cases,
the two bits of “M” that distinguish it from “N” are selected
and flipped, while the distinguishing two bits of letter “N”
remain unchanged, making it hard to recognize them correctly.

In the high noisy case, 28 spikes (after flipping 7 bits) of a
letter can be used as correct input pixels, which helps SN P
systems to to overcome BPNN, PNN, and SNN in recognizing
letters in this case.

The number of neurons used in SN P systems for recog-
nizing the letters is 76. The Input module has 37 neurons
including 35 regular neurons, one start neuron and one input
neuron. The Recognize module has 39 neurons, including 4
output neurons and 35 regular neurons. In BPNN, it has 35
input neurons for each pixel of the letter, 20 neurons in the
hidden layer and 2 output neurons. It needs 57 neurons for

14 IEEE TRANSACTIONS ON NANOBIOSCIENCE

BPNN recognizing the letters. In PNN, we need 35 neurons
as input neurons, 200 neurons in pattern layer, 26 neuron with
each letter in summation layer and one output neuron, which
is in total 262 neurons in PNN. The SNN with each letter has
two layers, where input layer has 35 neurons and output layer
is with 26 neurons. It has (35 + 26) × 26 = 1586 neurons.
The number of neurons used in SN P systems, BPNN, PNN
and SNN is shown in Table V.

TABLE V
THE NUMBER OF NEURONS USED IN SN P SYSTEMS, BPNN, PNN AND

SNN

SN P systems BPNN PNN SNN
Number of neurons 76 57 262 1586

There are some research topics in SN P system with learning
function for future work. In our model, spike trains, indicating
the spiking frequency are used to represent letters, and the
noise is imposed by randomly mutating/flipping a predefined
numbers of bits in the spike trains of the standard letter. The
way of representing information by spikes could be a topic of
interests, such as by spiking vectors or time related spiking
behaviours. In addition, the training performance has a close
relationship to the architecture of the SN P system, which
makes it difficult to recognize the letters having fewer different
bits in their standard spike trains. One possible way to solve
the problem is to design new architectures of SN P systems
(similar job has been done in neural network design theory)
or develop a new strategy to represent letters by binary strings
such that for any two letters, they have at least 3 distinguished
bits. From the simulation results, it appears that in some sense
SN P systems have a stochastic resonance-like effect. This
should be studied for a theoretical point of view in the near
future.

The relative distributions of possible distorted characters
relative to the different levels of noise (low, medium, and high
noise cases) deserves further research. The distributions will
provide quantitative measures of how likely it would be that
two different letters with relatively small differences in their
undistorted spike trains would overlap after noise. Quantitative
measures have potential applications in information communi-
cations involving transmitting text in different noisy environ-
ments, as well as in the design of decoding strategies when
English letters are transmitted by spike trains in information
exchange. It would be interesting to consider expanding the
capability of SN P systems with learning function to recognize
non-English alphabets.

It is an interesting research direction to consider decay or
saturation mechanism in SN P systems to avoid the indefinite
increase of weights, which will result in possibly very big
weights indeed in long computations. Additionally, a learning
function is a general notion first introduced into SN P system
in this work. It is worthy to investigate the way of defining
sophisticated learning functions. In our system, only one
neuron is used to read spike trains. As a further research
topic, SN P systems should be considered with multiple input
neurons, by which Input module can read spike trains in a
parallel manner. It would be interesting to construct SN P

system which can learn to construct its structure by reading
input information.

In the systems constructed in Subsection III, the weights on
synapses can only be strengthened during the computation. It
is desired to have a mechanism that is able to both strengthen
and weaken weights of synapses during the computation, and
evaluate the performance on some real life pattern recognition
problems.

SN P systems with learning function/capabiliy may become
a new direction. Learning strategies and feedback mechanism
have been intensively studied and investigated in conventional
artificial neural networks. It is worthy to look into these
techniques and transplant these ideas into SN P systems so
that more complex real life problems might be solved by SN P
systems. How to design SN P systems for pattern recognition
is also an open problem in this field. A possible way is to
design SN P systems by learning some experienced methods
from “Neural Network Design Theory” from artificial neural
network.

In research of artificial neural networks to recognize digital
English letters, database MNIST (Mixed National Institute
of Standards and Technology database) is widely used for
training various letter recognition systems [68], and for train-
ing and testing in the field of machine learning [69]. For
further research, SN P systems can be trained with a data
set of handwritten digits and the system used to recognize
handwritten letters.

REFERENCES

[1] G. Păun, “Computing with membranes,” Journal of Computer and
System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[2] G. Păun, G. Rozenberg, and A. Salomaa, The Oxford Handbook of
Membrane Computing. Oxford University Press, 2010.

[3] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,”
Fundamenta Informaticae, vol. 71, no. 2, pp. 279–308, 2006.

[4] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, 2002.

[5] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[6] G. Deco and B. Schürmann, “The coding of information by spiking
neurons: an analytical study,” Network: Computation in Neural Systems,
vol. 9, no. 3, pp. 303–317, 1998.

[7] C. W. Eurich and S. D. Wilke, “Multidimensional encoding strategy of
spiking neurons,” Neural Computation, vol. 12, no. 7, pp. 1519–1529,
2000.

[8] M. Gong, J. Liu, H. Li, Q. Cai, and L. Su, “A multiobjective sparse
feature learning model for deep neural networks,” IEEE transactions on
Neural Networks and Learning Systems, vol. 26, no. 12, pp. 3263–3277,
2015.

[9] Y.T. Liu, Y.Y. Lin, S.L. Wu, C.H. Chuang, and C.T. Lin, “Brain dynamics
in predicting driving fatigue using a recurrent self-evolving fuzzy neural
network,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 27, no. 2, pp. 347–360, 2016.

[10] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[11] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on
the dual critic network design,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 6, pp. 913–928, 2013.

[12] N. K. Kasabov, “Neucube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data,”
Neural Networks, vol. 52, pp. 62–76, 2014.

[13] H. Zhang, Z. Wang, and D. Liu, “A comprehensive review of stability
analysis of continuous-time recurrent neural networks,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 25, no. 7, pp.
1229–1262, 2014.

T. SONG et al.: SPIKING NEURAL P SYSTEMS WITH LEARNING FUNCTIONS 15

[14] X. Zhong, H. He, H. Zhang, and Z. Wang, “A neural network based
online learning and control approach for markov jump systems,” Neu-
rocomputing, vol. 149, pp. 116–123, 2015.

[15] G. A. Carpenter, “Neural network models for pattern recognition and
associative memory,” Neural Networks, vol. 2, no. 4, pp. 243–257, 1989.

[16] D. V. Buonomano and M. Merzenich, “A neural network model of
temporal code generation and position-invariant pattern recognition,”
Neural Computation, vol. 11, no. 1, pp. 103–116, 1999.

[17] F. Ponulak and A. Kasinski, “Supervised learning in spiking neural
networks with resume: sequence learning, classification, and spike
shifting,” Neural Computation, vol. 22, no. 2, pp. 467–510, 2010.

[18] S. Roy, P. P. San, S. Hussain, L. W. Wei, and A. Basu, “Learning spike
time codes through morphological learning with binary synapses,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 27, no. 7,
pp. 1572–1577, 2016.

[19] A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embedded streaming
deep neural networks accelerator with applications,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 27, no. 7, pp. 1572–
1577, 2016.

[20] W. Maass and C. M. Bishop, Pulsed neural networks. MIT press, 2001.
[21] T. Song, X. Liu, Y. Zhao, X. Zhang, “Spiking Neural P Systems with

White Hole Neurons,” IEEE Trans on Nanobioscience, vol. 15, no. 7,
pp. 666–673, 2016.

[22] A. Păun and G. Păun, “Small universal spiking neural P systems,”
BioSystems, vol. 90, no. 1, pp. 48–60, 2007.

[23] L. Pan and G. Paun, “Spiking neural P systems with anti-spikes,”
International Journal of Computers, Communications & Control, IV (3),
pp. 273–282, 2009.

[24] T. Song, L. Pan, K. Jiang, B. Song, and W. Chen, “Normal forms for
some classes of sequential spiking neural P systems,” IEEE Transactions
on NanoBioscience, vol. 12, no. 3, pp. 255–264, 2013.

[25] M. Cavaliere, O. H. Ibarra, G. Păun, O. Egecioglu, M. Ionescu, and
S. Woodworth, “Asynchronous spiking neural P systems,” Theoretical
Computer Science, vol. 410, no. 24, pp. 2352–2364, 2009.

[26] T. Song, L. Pan, and G. Păun, “Asynchronous spiking neural P systems
with local synchronization,” Information Sciences, vol. 219, pp. 197–
207, 2012.

[27] J. Wang, H. J. Hoogeboom, L. Pan, G. Paun, and M. J. Pérez-Jiménez,
“Spiking neural p systems with weights,” Neural Computation, vol. 22,
no. 10, pp. 2615–2646, 2010.

[28] G. Păun, “Spiking neural p systems with astrocyte-like control.” Journal
of Universal Computer Science, vol. 13, no. 11, pp. 1707–1721, 2007.

[29] X. Zeng, X. Zhang, and L. Pan, “Homogeneous spiking neural P
systems,” Fundamenta Informaticae, vol. 97, no. 1, pp. 275–294, 2009.

[30] T. Song, P. Zheng D.M. Wong, X. Wang, “Design of logic gates using
spiking neural P systems with homogeneous neurons and astrocytes-like
control,” Information Sciences, vol. 372, pp. 380-391, 2016.

[31] O. H. Ibarra, A. Păun, and A. Rodrı́guez-Patón, “Sequential SNP systems
based on min/max spike number,” Theoretical Computer Science, vol.
410, no. 30, pp. 2982–2991, 2009.

[32] T. Song, L. Pan, and G. Păun, “Spiking neural P systems with rules on
synapses,” Theoretical Computer Science, vol. 529, pp. 82–95, 2014.

[33] T. Song and L. Pan, “Spiking neural P systems with rules on synapses
working in maximum spikes consumption strategy,” IEEE Transactions
on NanoBioscience, vol. 1, pp. 38–44, 2015.

[34] T. Song, L. Pan “Spiking neural P systems with rules on synapses
working in maximum spiking strategy,” IEEE Transactions on NanoBio-
science, vol. 4, pp. 465–477, 2015.

[35] M. Ionescu and D. Sburlan, “Several applications of spiking neural P
systems,” Fifth Brainstorming Week on Membrane Computing, Sevilla,
2007.

[36] A. Adl, A. Badr, and I. Farag, “Towards a spiking neural P systems
OS,” arXiv preprint arXiv:1012.0326, 2010.

[37] X. Zeng, T. Song, X. Zhang, and L. Pan, “Performing four basic
arithmetic operations with spiking neural P systems,” IEEE Transactions
on NanoBioscience, vol. 11, no. 4, pp. 366–374, 2012.

[38] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An optimization
spiking neural P system for approximately solving combinatorial opti-
mization problems,” International Journal of Neural Systems, vol. 24,
no. 05, 2014.

[39] T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M. J. Pérez-Jiménez,
“Fault diagnosis of electric power systems based on fuzzy reasoning
spiking neural P systems,” IEEE Transactions on Power Systems, vol. 30,
no. 3, pp. 1182–1194, 2014.

[40] T. Song, S. Pang, S. Hao, et al. “A parallel image skeletonizing method
using spiking neural P systems with weights,” Neural Processing Letters,
pp. 1-18, 2018.

[41] T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, and X. Zhang, “Deter-
ministic solutions to QSAT and Q3SAT by spiking neural P systems
with pre-computed resources,” Theoretical Computer Science, vol. 411,
no. 25, pp. 2345–2358, 2010.

[42] A. Leporati, G. Mauri, C. Zandron, G. Păun, and M. J. Pérez-Jiménez,
“Uniform solutions to SAT and Subset Sum by spiking neural P
systems,” Natural Computing, vol. 8, no. 4, pp. 681–702, 2009.

[43] L. Pan, G. Păun, and M. J. Pérez-Jiménez, “Spiking neural P systems
with neuron division and budding,” Science China Information Sciences,
vol. 54, no. 8, pp. 1596–1607, 2011.

[44] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” Journal of Computer and System Sciences, vol. 50, no. 1,
pp. 132–150, 1995.

[45] L. Pan and X. Zeng, “A note on small universal spiking neural P
systems,” Lecture Notes in Computer Science, vol. 5957, pp. 436–447,
2010.

[46] G. A. Carpenter and S. Grossberg, Pattern Recognition by Self-
Organizing Neural Networks. The MIT Press, 1991.

[47] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural networks
for eeg classification and epilepsy and seizure detection,” Integrated
Computer-Aided Engineering, vol. 14, no. 3, pp. 187–212, 2007.

[48] A. Gupta and L. N. Long, “Character recognition using spiking neural
networks,” in Proceedings of the International Joint Conference on
Neural Networks. IEEE, 2007, pp. 53–58.

[49] M. Kang and D. Palmer-Brown, “A modal learning adaptive function
neural network applied to handwritten digit recognition,” Information
Sciences, vol. 178, no. 20, pp. 3802–3812, 2008.

[50] Y. Lecun, Y. Bengio, G. Hinton. “Deep learning,” Nature, vol. 521, no.
7553, pp.436, 2015.

[51] B. Zhou, A. Lapedriza, J. Xiao J, et al. “Learning deep features for scene
recognition using places database,” Advances in Neural Information
Processing Systems, vol. 12, no. 1, pp 487-495, 2014.

[52] M. Gheorghe, G. Păun, M. J. Pérez-Jiménez, and G. Rozenberg,
“Chapter 13: Spiking neural P systems, research frontiers of membrane
computing: Open problems and research topics,” International Journal
of Foundations of Computer Science, vol. 24, no. 05, pp. 547–623, 2013.

[53] M. Sipser, Introduction to the Theory of Computation. Cengage
Learning, 2012.

[54] J. E. Hopcroft, Introduction to Automata Theory, Languages, and
Computation. Pearson Education India, 1979.

[55] R. Mitkov, The Oxford Handbook of Computational Linguistics. Oxford
University Press, 2005.

[56] J. S. Camacho, H. Li, P. Li, W. Zhang, “Machine printed character
recognition system using backpropagation neural network,” Computer
Knowledge and Technology, vol. 5, no. 19, pp. 5238–5241, 2009.

[57] F. Li, S. Gao, “Character recognition system based on back-propagation
neural network,” In Proceedings of IEEE 2010 International Conference
on the Machine Vision and Human-Machine Interface, IEEE, 2010, pp.
394–396, 2010.

[58] Hagan, M.T., H.B. Demuth, and M.H. Beale, Neural Network Design,
Boston, MA: PWS Publishing, 1996.

[59] Moller, ”A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, pp. 525–533, 1993.

[60] M. M. Ibrahiem, E. Emary, S. Ramakrishnan, “On the application
of various probabilistic neural networks in solving different pattern
classification problems,” World Applied Sciences Journal, vol. 4, no.
6, pp. 772–780, 2008.

[61] P. D. Wasserman, Advanced Methods in Neural Computing. John Wiley
& Sons, Inc., 1993.

[62] J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class
of neural networks: linear systems operating on a closed hypercube,”
IEEE Transactions on Circuits and Systems, vol. 36, no. 11, pp. 1405–
1422, 1989.

[63] A. Gupta and L. N. Long, ”Character recognition using spiking neural
networks,” In Proceedings of the International Joint Conference on
Neural Networks, IEEE, 2007, pp. 53–58.

[64] P. Christo, ”Temporal processing in a spiking model of the visual
system,” ecture Notes in Computer Science, vol. 4131, pp. 750–759,
2006.

[65] A. Delorme, S. J. Thorpe, “Face identification using one spike per
neuron: resistance to image degradations,” Neural Networks, vol. 14,
pp. 795–804, 2001.

[66] D. Goodman, R. Brette, “The Brian simulator”, Frontiers in Neuro-
science, vol 26, no. 3, 2009.

[67] M. Stimberg, D. Goodman, V. Benichoux, R. Brette, “Equation-oriented
specification of neural models for simulations,” Frontiers in Neuroinfor-
matics, vol. 8, no. 6, 2014.

16 IEEE TRANSACTIONS ON NANOBIOSCIENCE

[68] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167,
1998.

[69] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten
digit recognition: benchmarking of state-of-the-art techniques,” Pattern
Recognition, vol. 36, no. 10, pp. 2271–2285, 2003.

