
Spiking Neural P Systems
with Several Types of Spikes

Mihai Ionescu1, Gheorghe Păun2,3,
Mario J. Pérez-Jiménez3, Alfonso Rodŕıguez-Patón4

1 University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti, Romania
armandmihai.ionescu@gmail.com

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

4 Department of Artificial Intelligence, Faculty of Computer Science
Polytechnical University of Madrid, Campus de Montegancedo
Boadilla del Monte 28660, Madrid, Spain
arpaton@fi.upm.es

Summary. With a motivation related to gene expression, where enzymes act in series,
somewhat similar to the train spikes traveling along the axons of neurons, we consider
an extension of spiking neural P systems, where several types of “spikes” are allowed.
The power of the obtained spiking neural P systems is investigated and the modeling of
gene expression in these terms is discussed. Some further extensions are mentioned, such
as considering a process of decay in time of the spikes.

1 Introduction

The present note lies at the intersection of two active research branches of bio-
informatics/natural computing, namely, gene expression and membrane comput-
ing. Specifically, an extension of so-called spiking neural P systems (in short, SN
P systems) is considered, with motivations related to gene expression processes.

For the reader’s convenience, we shortly recall that an SN P system consists of
a set of neurons placed in the nodes of a graph and sending signals (spikes) along
synapses (edges of the graph), under the control of firing rules. Such a rule is
has the general form E/ac → ap; d, where E is a regular expression (equivalently,
we can consider it a regular language) and a denotes the spike; if the contents
of the neuron is described by an element of the regular language (identified by)

184 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

E, then the rule is enabled, c spikes are consumed and p are produced, and sent,
after a time delay of d steps, along the synapses leaving the neuron. There also
are forgetting rules of the form ac → λ, with the meaning that, if the neuron
contains exactly c spikes, then they can be removed (forgotten). One neuron is
designated as the output neuron of the system and its spikes can exit into the
environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by
considering the number of steps elapsed between consecutive spikes which exit the
output neuron, and the string corresponding to the sequence of spikes which exit
the output neuron.

These computing devices were introduced in [7] and then investigated in a
large number of papers; we refer to the corresponding chapter from [13] and to the
membrane computing website [16] for details.

In turn, gene expression is an important research area where various transcrip-
tion factors appears and, important for their activity, their frequency matters –
see, for instance, [1], [10], [12]. This means that a spiking like process is encoun-
tered, but with several “spikes”, the regulator proteins which bind to a promotor
depending on their concentration. In some sense we have here a communication
process in which a signal encoded in a concentration (the transcription factor) is
transduced to a frequency signal (the bursts of mRNA associated to the bindings
of the transcription factor with the promotor) and again transduced back to a con-
centration (the level of protein produced). Thus, conceptually, we can approach
this process in terms of theoretical machineries developed for spiking neurons –
with the necessity of considering a variety of spikes, not only one as in the neural
case. This is also suggested in [1]: ”...we anticipate that frequency-modulated reg-
ulation may represent a general principle by which cells coordinate their response
to signals.”

Starting from these observations, we relate here the two research areas, intro-
ducing SN P systems with several types of spikes. Such a possibility was somehow
forecasted already from the way the definition in [7] is given, with an alphabet,
O, for the set of spikes, but with only one symbol in O; up to now, only a second
type of spikes was considered, in [11], namely anti-spikes, which, when introduced,
are immediately annihilated, in pairs with usual spikes. This extension to several
types of spikes is natural also in view of the fact that all classes of P systems
investigated in membrane computing work with arbitrary alphabets of objects.

As expected, having several types of spikes helps in proofs; in particular, we
obtain the universality of the SN P systems with several types of spikes for systems
with a very reduced number of neurons – remember that for systems with only
one type of spikes the proofs do not bound the number of neurons (but such a
bound can be found due to the existence of universal SN P systems, hence with a
fixed number of neurons, but used in the computing mode, having both an input
and an output). Three ways to define the result of a computation are considered:
as the number of objects inside a specified neuron, as the number of objects sent

SN P Systems with Several Types of Spikes 185

out by the output neuron, and as the distance in time between the first two spikes
sent out during the computation.

What is not investigated is the case of generating strings, in the sense of [3],
[4], or even in the distributed case of [8]. Other open problems are mentioned in
the rest of the paper and in the final section of it.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [14] and [15], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V ; the empty string is denoted by λ, and the set of all nonempty strings over V
is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and
a+ instead of {a}∗, {a}+. For a language L, we denote by sub(L) the set of all
substrings of strings in L.

As usual in membrane computing, the multisets over a finite universe set U are
represented by strings in U∗ (two strings equal modulo a permutation represent
the same multiset). If u, v ∈ U∗, we write the fact that u is a submultiset of v in
the form u ⊆ v, with the understanding that there is a permutation of v having u
as a substring (this can be formally formulated also in terms of Parikh mapping,
but we do not enter into details). Similarly, we write u ∈ sub(L) for a multiset u
and a set L of multisets, meaning that u is a submultiset of a multiset in L.

A register machine (in the non-deterministic version) is a construct M =
(m,H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labeling an ADD instruction), lh is the halt label (as-
signed to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M . Without loss of generality we may assume that in the halting
configuration all other registers are empty. It is known that register machines
generate all sets of numbers which are Turing computable – we denote this family

186 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

with NRE (RE stands for “recursively enumerable”). By NFIN we denote the
family of finite sets of natural numbers.

In the following sections, when comparing the power of two computing devices,
number 0 is ignored (this corresponds to the fact that when comparing the power
of language generating or accepting devices, the empty string λ is ignored).

3 Spiking Neural P Systems with Several Types of Spikes

We directly introduce the type of SN P systems we investigate in this paper;
although somewhat far from the idea of a spike from the neural area, we still call
the objects processed in our devices spikes.

A spiking neural P system with several types of spikes (abbreviated as SN+ P
system, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0), where:

1. O is the alphabet of spikes (we also say objects);
2. σ1, . . . , σm are neurons, of the form σi = (wi, Ri), 1 ≤ i ≤ m, where:

a) wi ∈ O∗ is the initial multiset of spikes contained in σi;
b) Ri is a finite set of rules of the forms

(i) E/u → a, where E is a regular language over O, u ∈ O+, and a ∈ O
(spiking rules);

(ii) v → λ, with v ∈ O+ (forgetting rules) such that there is no rule
E/u → a of type (i) with v ∈ E;

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/u → a is applied as follows. If the neuron σi contains a multiset
w of spikes such that w ∈ L(E) and u ∈ sub(w), then the rule can fire, and its
application means consuming (removing) the spikes identified by u and producing
the spike a, which will exit immediately the neuron. In turn, a rule v → λ is
used if the neuron contains exactly the spikes identified by v, which are removed
(“forgotten”). A global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized.

If a rule E/u → a has E = {u}, then we will write it in the simplified form
u → a.

The spike emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn.
If several rules can be used at the same time in a neuron, then the one to be

applied is chosen non-deterministically.
Using the rules as described above, one can define transitions among configu-

rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

SN P Systems with Several Types of Spikes 187

There are many possibilities to associate a result with a computation, in the
form of a number. Three possibilities are considered here: the number of objects
in the output neuron in the halting configuration, the number of spikes sent to
the environment by the output neuron, and the number of steps elapsed between
the first two steps when the output neuron spikes. In the first two cases only
halting computations provide an output, in the last case we can define the output
also for ever going computations – but in what follows we only work with halting
computations also for this case.

We denote by Nα(Π) the set of numbers generated as above by an SN+ P
system Π with the result defined in the mode α ∈ {i, o, d}, where i indicate the
internal output, o the external one (as the number of spikes), and d the fact that
we count the distance between the first two spikes which exit the system. Then,
NαSN+Pm is the family of sets of numbers Nα(Π), for SN+ P systems with at
most m ≥ 1 neurons. As usual, the subscript m is replaced by ∗ if the number of
neurons does not matter.

Before passing to investigate the size of the previously defined families, let us
mention that we have introduced here SN P systems of the standard type in what
concerns the rules, i.e., producing only one spike, and without delay; extended rules
are natural (E/u → v, with both u and v multisets), but this is a too general case
from a computability point of view, corresponding to cooperating P systems. It is
important also to note that the rules we use have both additional powerful features
– context sensitivity induced by the existence of the control regular language E,
and strong restrictions – the produced spike (only one) should leave immediately
the neuron, it cannot be further used in the same place without being sent back
by the neighboring neurons. These features are essentially present in the proofs
from the next section.

4 The Power of SN+ P Systems

We start by considering the case when the result is counted inside the system (like
in general P systems, hence somewhat far from the style of SN P systems).

Lemma 1. NRE ⊆ NiSN+P3.

Proof. Let us consider a register machine M = (n,H, l0, lh, I). We construct the
following SN+ P system

Π = (O, σ1, σ2, σ3, syn, 1), with:
O = {ai | 1 ≤ i ≤ n} ∪ {l, l′, l′′ | l ∈ H},
σ1 = (l0, R1),
R1 = {O∗/li → l′i | (li : ADD(r), lj , lk) ∈ I}

∪ {O∗arO∗/liar → l′′j , (O∗ −O∗arO∗)/li → l′′k | (li : SUB(r), lj , lk) ∈ I}
∪ {lh → λ},

188 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

σ2 = (λ,R2),
R2 = {l′i → lj , l′i → lk | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → l | l ∈ H},
σ3 = (λ,R3),
R3 = {l′i → ar | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → λ | l ∈ H},

syn = {(1, 2), (1, 3), (2, 1), (3, 1)}.

The functioning of this system can be easily followed. The contents of register r is
represented by the number of copies of object ar present in the system. There are
also objects associated with the labels of M .

Initially, we have only the object l0 in neuron σ1. In general, in the presence of
a label li of an instruction in I, the instruction is simulated by the system Π. For
the ADD instructions, the change of labels is done with the help of neuron σ2 and
the addition of a further object ar is done in neuron σ3. For the SUB instructions,
the check for zero is performed by means of the regular language associated with
the rules in R1. The computation continues as long as the work of the machine M
continues. When the label lh is introduced – by the neuron σ2 – the computation
stops after one further step, when this object is removed from the output neuron,
σ1. Thus, in the end, this neuron only contains copies of object a1, hence their
number represents the value present in the first register of M in the end of the
computation. Thus, N(M) = Li(Π). ut
Theorem 1. NFIN = NiSN+P1 = NiSN+P2 ⊂ NiSN+P3 = NRE.

Proof. The inclusions NiSN+P1 ⊆ NiSN+P2 ⊆ NiSN+P3 are obvious from the
definitions. The inclusion NiSN+P3 ⊆ NRE is straightforward (we can also invoke
for it the Turing-Church thesis).

In an SN+ P system with two components, the number of spikes present inside
the two neurons cannot be increased (each spiking rule consumes at least one
spike and produces only one spike, while there is no duplication of spikes because
of multiple synapses which exit a neuron), hence we have NiSN+P2 ⊆ NFIN .

On the other hand, NFIN ⊆ NiSN+P1. Indeed, consider a finite set of num-
bers, F = {n1, n2, . . . , nk}; assume that 1 ≤ n1 < n2 < . . . < nk (remember that
we ignore the number 0). We construct the system

Π = ({a}, (ank+1, {ank+1/ank+1−ni → a | 1 ≤ i ≤ k}), ∅, 1).

We have Li(Π) = F : each computation has only one step, which non-
deterministically uses one of the rules in R1. Each such rule just consumes a
number of spikes, passing from the initial nk + 1 spikes to any number ni ∈ F ,
which cannot be further processed.

Together with Lemma 1, this concludes the proof of the theorem. ut
Let us note in the construction from the proof of Lemma 1 that all neurons

spike a large number of times (related to the length of the computation), not
directly related to the number computed in the first register of M . This makes

SN P Systems with Several Types of Spikes 189

difficult to imagine a system with only three neurons which is universal when the
result is defined as the number of spikes sent out. However, one additional neuron
suffices in such a case.

Theorem 2. NFIN = NoSN+P1 ⊂ NoSN+P2 ⊆ NoSN+P3 ⊆ NoSN+P4 =
NRE.

Proof. Again, the inclusions NoSN+P1 ⊆ NoSN+P2 ⊆ NoSN+P3 ⊆
NoSN+P4 ⊆ NRE are obvious from the definitions.

The inclusion NRE ⊆ NoSN+P4 can be obtained by a slight extension of the
construction in the proof of Lemma 1: we replace the rule lh → λ from R1 with
the rule

a+
1 lh/lha1 → lh.

We also add a neuron σ4, considered as output neuron, linked by synapses (1, 4),
(4, 1) to the neuron σ1 and containing the unique rule

lh → lh.

When the computation of M stops, hence lh is introduced in σ1, this object
remove one by one the objects a1 and moves to the output neuron. This neuron
both sends lh out and back to σ1, hence the number of copies of lh sent out is
equal with the number stored in the first register of M .

This time, an SN+ P system with two components can compute an arbitrarily
large number, by sending out an arbitrarily large number of spikes. For instance,

Π = ({a}, (a, {a → a}), (aa, {aa/a → a, aa → a}), {(1, 2), (2, 1)}, 2),

has Lo(Π) = {1, 2, . . .} (neuron σ2 spikes step by step, until using the rule aa →,
when only one spike remains in the system and the computation halts).

If we have only one neuron, the computation can last as may steps as many
spikes are initially inside, hence NoSN+P1 ⊆ NFIN .

On the other hand, NFIN ⊆ NiSN+P1. Indeed, consider again a finite set of
numbers, F = {n1, n2, . . . , nk} such that 1 ≤ n1 < n2 < . . . < nk and construct
the system

Π = ({a}, σ1, ∅, 1), with
σ1 = (ank+1, R1),
R1 = {ank+1/ank+1−ni+1 → a | 1 ≤ i ≤ k}

∪ {ar/a → a | 1 ≤ r ≤ nk − 1}.
We have Li(Π) = F : each computation starts with a step which uses non-
deterministically a rule ank+1/ank+1−ni+1 → a, which decreases the number of
spikes from the initial nk + 1 to some ni − 1; at this time, one spike was sent
out. From now on, we use deterministically rules of the form ar/a → a, for all
r = 1, 2, . . . , ni − 1, hence for ni − 1 steps, always sending out one spike. Thus, in
total, we send out ni spikes, for each ni ∈ F .

Combining all these remarks, we have the theorem. ut

190 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

It is an open problem whether or not the inclusions NoSN+P2 ⊆ NoSN+P3 ⊆
NoSN+P4 are proper.

Theorem 3. NFIN = NdSN+P1 = NdSN+P2 ⊂ NdSN+P3 ⊆ NdSN+P4 =
NRE.

Proof. As above, the inclusions NdSN+P1 ⊆ NdSN+P2 ⊆ NdSN+P3 ⊆
NdSN+P4 ⊆ NRE are obvious from the definitions.

The inclusion NFIN ⊆ NdSN+P1 is already proved for SN P systems with
only one type of spikes. Like in that case, we also obtain the inclusion NdSN+P2 ⊆
NFIN : in order to generate an arbitrarily large number, the output neuron should
not spike for an arbitrarily large number of steps, but this is not possible in a
system with only two neurons, because if only one neuron is working, it can perform
only a number of steps bounded by the number of spikes initially present in it.

The fact that NdSN+P3 contains infinite sets of numbers is also known for
standard SN P systems.

What remains to prove is the inclusion NRE ⊆ NdSN+P4 and this can again
be obtained by an extension of the construction in the proof of Lemma 1; because
this extension is not immediate, we give the construction in full details.

We consider a register machine M = (n,H, l0, lh, I) and construct the SN+ P
system Π as indicated in Figure 1 – this time we do not give the system formally,
but we represent it graphically, in the way usual in the SN P systems area.

The work of this system is identical to that in the proof of Lemma 1, until
producing the object lh (the objects which arrive in the output neuron σ4 from all
other neurons remain here unused).

When σ2 introduces the object lh, it is sent to all other neurons. It waits
unused in σ4, but in σ1 and σ3 it is reproduced in each step, hence these two
neurons feed repeatedly each other with one copy of lh. In σ1, each use of the
rule a+

1 lh/a1lh → lh removes one copy of a1. In the end of step 1 (we count here
only the steps after having lh in the system, hence for the phase when the output
is produced), neuron σ4 contains three copies of lh. Thus, in step 2, this neuron
spikes.

From now on, neurons σ1, σ3 spike repeatedly, exchanging copies of lh, σ4 al-
ways forgets the two copies of lh received from σ1, σ3 (while σ2 just accumulates
copies of lh, which cannot be processed here). When the last copy of a1 is removed
from σ1 (if m copies of a1 were present here when lh was introduced, then this
happens in step m, after having lh in the system), this is the last step when σ4

receives two spikes. In the next step (m + 1) it receives only the spike produced
by σ3, which is used (in step m + 2) by the rule lh → lh in σ4. The computation
stops. The number of steps between the two spikes sent out by the output neuron
is (m + 2) − 2 = m, hence the number computed by the register machine in its
first register.

The proof of the theorem is now complete. ut
It is an open problem whether or not the inclusion NgSN+P3 ⊆ NgSN+P4 is

proper.

SN P Systems with Several Types of Spikes 191

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

-

6

?

6

?

6

¢
¢
¢
¢
¢¢̧ 6

-

1

l0

O∗/li → l′i,

for (li : ADD(r), lj , lk) ∈ I

O∗arO∗/liar → l′′j ,

(O∗ −O∗arO∗)/li → l′′k ,

for (li : SUB(r), lj , lk) ∈ I)

a+
1 lh/a1lh → lh

2

l′i → lj ,

l′i → lk,

for (li : ADD(r), lj , lk) ∈ I

l′′ → l, for l ∈ H
3

l′i → ar,

for (li : ADD(r), lj , lk) ∈ I)

l′′ → λ, for l ∈ H

lh → lh

4

c

cl3h → lh

l2h → λ

lh → lh

Fig. 1. The SN+ P system from the proof of Theorem 3

5 Final Remarks

In gene expression it is also the case that the enzymes have a time dependency of
their reactivity, which can be captured in terms of SN P systems by considering
decaying spikes, in the sense of [6]. For instance, we can associate an age with
each produced spike, by using rules of the form E/u → (a, t), where t ≥ 1 is the
“duration of life” of this spike. If the spike is not used in a step, then its life is
decreased by one unit (this is like having rewriting rules (a, s) → (a, s − 1), used
in parallel for all spikes not used in spiking or forgetting rules), until reaching the
state (a, 0), when a rule (a, 0) → λ is assumed to be applied. This feature remains
to be further investigated.

Let us close by recalling the fact that besides the synchronized (sequential in
each neuron) mode of evolution, there were also introduced other modes, such as
the exhaustive one, [9], and the non-synchronized one, [2], which also deserve to
be considered for SN P systems with several types of spikes.

192 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. L. Cai, C.K. Dalal, M.B. Elowitz: Frequency-modulated nuclear localization bursts
coordinate gene regulation. Nature, 455 (25 September 2008).

2. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352–2364.

3. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162.

4. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

5. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages with
spiking neural P systems with extended rules. Romanian J. Information Sci. and
Technology, 9, 3 (2006), 151–162.

6. R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with decaying
spikes and/or total spiking. Intern. J. Found. Computer Sci., 19 (2008), 1223–1234.

7. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

8. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: T. Yokomori: Spiking neural dP systems.
Proc. Ninth Brainstorming Week on Membrane Computing, Sevilla, 2011, RGNC
Report 01/2011.

9. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

10. E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden: Reg-
ulation of noise in the expression of a single gene. Nature Genetics, 31 (May 2002).

11. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Intern. J. Computers,
Comm. Control, 4, 3 (2009), 273–282.

12. J. Paulsson: Models of stochastic gene expression. Physics of Life Reviews, 2 (2005),
157-175.

13. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

14. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

15. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
16. The P Systems Website: http://ppage.psystems.eu.

