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1

Introduction

The aim of this chapter is to introduce several elementary notions of neuroscience,
in particular the concepts of action potentials, postsynaptic potentials, firing thresh-
olds, and refractoriness. Based on these notions, a first phenomenological model
of neuronal dynamics is built that will be used as a starting point for a discussion
of neuronal coding. Due to the limitations of space we cannot – and do not want
to – give a comprehensive introduction into such a complex field as neurobiology.
The presentation of the biological background in this chapter is therefore highly
selective and simplistic. For an in-depth discussion of neurobiology we refer the
reader to the literature mentioned at the end of this chapter. Nevertheless, we try
to provide the reader with a minimum of information necessary to appreciate the
biological background of the theoretical work presented in this book.

1.1 Elements of neuronal systems

Over the past hundred years, biological research has accumulated an enormous
amount of detailed knowledge about the structure and function of the brain. The
elementary processing units in the central nervous system are neurons which are
connected to each other in an intricate pattern. A tiny portion of such a network
of neurons is sketched in Fig. 1.1 which shows a drawing by Ramón y Cajal, one
of the pioneers of neuroscience around 1900. We can distinguish several neurons
with triangular or circular cell bodies and long wire-like extensions. This picture
can only give a glimpse of the network of neurons in the cortex. In reality, cortical
neurons and their connections are packed into a dense network with more than 104

cell bodies and several kilometers of “wires” per cubic millimeter. In other areas
of the brain the wiring pattern may look different. In all areas, however, neurons of
different sizes and shapes form the basic elements.

The cortex does not consist exclusively of neurons. Beside the various types of
neuron there is a large number of “supporter” cells, so-called glia cells, that are

1



2 Introduction

Fig. 1.1. This reproduction of a drawing of Ramón y Cajal shows a few neurons in the
mammalian cortex that he observed under the microscope. Only a small portion of the
neurons contained in the sample ofcortical tissue have been made visible by the staining
procedure; the density of neurons is in reality much higher. Cellb is a nice example of a
pyramidal cell with a triangularly shaped cell body. Dendrites, which leave the cell laterally
and upwards, can be recognized by their rough surface. The axons are recognizable as thin,
smooth lines which extend downwards with a few branches to the left and right. From
Raḿon y Cajal (1909).

required for energy supply and structural stabilization of brain tissue. Since glia
cells are not directly involved in information processing, we will not discuss them
any further. We will also neglect a few rare subtypes of neuron, such as analog
neurons in the mammalian retina. Throughout this book we concentrate on spiking
neurons only.

1.1.1 The ideal spiking neuron

A typical neuron can be divided into three functionally distinct parts, called
dendrites, soma, and axon; see Fig. 1.2. Roughly speaking, the dendrites play the
role of the “input device” that collects signals from other neurons and transmits
them to the soma. The soma is the “central processing unit” that performs an
important nonlinear processing step. If the total input exceeds a certain threshold,
then an output signal is generated. The output signal is taken over by the “output
device”, the axon, which delivers the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that a
neuron sends a signal across a synapse. It is common to refer to the sending neuron
as the presynaptic cell and to the receiving neuron as the postsynaptic cell. A single
neuron in vertebrate cortex often connects to more than 104 postsynaptic neurons.
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Fig. 1.2. A. Single neuron in a drawing by Ramón y Cajal. Dendrite, soma, and axon
can be clearly distinguished. The inset shows an example of a neuronal action potential
(schematic). The action potentialis a short voltage pulse of 1–2 ms duration and an
amplitudeof about 100 mV.B. Signal transmission from a presynaptic neuronj to a
postsynaptic neuroni . The synapse is marked by the dashed circle. The axons at the lower
right end lead to other neurons (schematic figure).

Many of its axonal branches end in the direct neighborhood of the neuron, but the
axon can also stretch over several centimeters so as to reach to neurons in other
areas of the brain.

1.1.2 Spike trains

The neuronal signals consist of short electrical pulses and can be observed by
placing a fine electrode close to the soma or axon of a neuron; see Fig. 1.2. The
pulses, so-called action potentials or spikes, have an amplitude of about 100 mV
and typically a duration of 1–2 ms. The form of the pulse does not change as the
action potential propagates along the axon. A chain of action potentials emitted by
a single neuron is called a spike train – a sequence of stereotyped events which
occur at regular or irregular intervals. Since all spikes of a given neuron look
alike, the form of the action potential does not carry any information. Rather, it
is the number and the timing of spikes which matter. The action potential is the
elementary unit of signal transmission.

Action potentials in a spike train are usually well separated. Even with very
strong input, it is impossible to excite a second spike during or immediately after a
first one. The minimal distance between two spikes defines the absolute refractory
period of the neuron. The absolute refractory period is followed by a phase of
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relative refractoriness where it is difficult, but not impossible, to excite an action
potential.

1.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite
(or soma) of a postsynaptic cell is the synapse. The most common type of synapse
in the vertebrate brain is a chemical synapse. At a chemical synapse, the axon
terminal comes very close to the postsynaptic neuron, leaving only a tiny gap
between pre- and postsynaptic cell membranes, called the synaptic cleft. When
an action potential arrives at a synapse, it triggers a complex chain of biochemical
processing steps that lead to the release of neurotransmitter from the presynaptic
terminal into the synaptic cleft. As soon as transmitter molecules have reached the
postsynaptic side, they will be detected by specialized receptors in the postsynaptic
cell membrane and open (either directly or via a biochemical signaling chain)
specific channels so that ions from the extracellular fluid flow into the cell. The
ion influx, in turn, leads to a change of the membrane potential at the postsynaptic
site so that, in the end, the chemical signal is translated into an electrical response.
The voltage response of the postsynaptic neuron to a presynaptic action potential
is called the postsynaptic potential.

Apart from chemical synapses neurons can also be coupled by electrical
synapses, so-called gap junctions. Specialized membrane proteins make a direct
electrical connection between the two neurons. Not very much is known about
the functional aspects of gap junctions, but they are thought to be involved in the
synchronization of neurons.

1.2 Elements of neuronal dynamics

The effect of a spike on the postsynaptic neuron can be recorded with an intracel-
lular electrode which measures the potential differenceu(t) between the interior
of the cell and its surroundings. This potential difference is called the membrane
potential. Without any spike input, the neuron is at rest corresponding to a constant
membrane potential. After the arrival of a spike, the potential changes and finally
decays back to the resting potential, cf. Fig. 1.3A. If the change is positive, the
synapse is said to be excitatory. If the change is negative, the synapse is inhibitory.

At rest, the cell membrane already has a strong negative polarization of about
−65 mV. An input at an excitatory synapse reduces the negative polarization of the
membrane and is therefore called depolarizing. An input that increases the negative
polarization of the membrane even further is called hyperpolarizing.
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Fig. 1.3. A postsynaptic neuroni receives input from two presynaptic neuronsj = 1,2.
A. Each presynaptic spike evokes an excitatory postsynaptic potential (EPSP) that can be
measured with an electrode as a potential differenceui (t) − urest. The time course of the
EPSP caused by the spike of neuronj = 1 isεi1(t− t ( f )1 ).B. An input spike from a second
presynaptic neuronj = 2 that arrives shortly after the spike from neuronj = 1 causes a
second postsynaptic potential that adds to the first one.C. If ui (t) reaches the thresholdϑ ,
an action potential is triggered. As a consequence, the membrane potential starts a large
positive pulse-like excursion (arrow). On the voltage scale of the graph, the peak of the
pulse is out of bounds. After the pulse the voltage returns to a value below the resting
potential.
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1.2.1 Postsynaptic potentials

Let us formalize the above observation. We study the time courseui (t) of the
membrane potential of neuroni . Before the input spike has arrived, we have
ui (t) = urest. At t = 0 the presynaptic neuronj fires its spike. Fort > 0, we
see at the electrode a response of neuroni

ui (t)− urest = εi j (t) . (1.1)

The right-hand side of Eq. (1.1) defines the postsynaptic potential (PSP). If
the voltage differenceui (t) − urest is positive (negative) we have an excitatory
(inhibitory) PSP or short EPSP (IPSP). In Fig. 1.3A we have sketched the EPSP
caused by the arrival of a spike from neuronj at an excitatory synapse of neuroni .

1.2.2 Firing threshold and action potential

Consider two presynaptic neuronsj = 1,2, which both send spikes to the
postsynaptic neuroni . Neuron j = 1 fires spikes att (1)1 , t (2)1 , . . . , similarly neuron
j = 2 fires att (1)2 , t (2)2 , . . . . Each spike evokes a PSPεi1 or εi2, respectively. As long
as there are only few input spikes, the totalchange of the potential is approximately
the sum of the individual PSPs,

ui (t) =
∑
j

∑
f

εi j (t − t ( f )j )+ urest, (1.2)

i.e., the membrane potential responds linearly to input spikes; see Fig. 1.3B.
However, linearity breaks down if too many input spikes arrive during a short

interval. As soon as the membrane potential reaches a critical valueϑ , its trajectory
shows a behavior that is quite different from a simple summation of PSPs: the
membrane potential exhibits a pulse-like excursion with an amplitude of about
100 mV, viz., an action potential. This action potential will propagate along the
axon of neuroni to the synapses of other neurons. After the pulse the membrane
potential does not directly return to the resting potential, but passes through a
phase of hyperpolarization below the resting value. This hyperpolarization is called
“spike-afterpotential”.

Single EPSPs have amplitudes in the range of 1 mV. The critical value for spike
initiation is about 20–30 mV above the resting potential. In most neurons, four
spikes – as shown schematically in Fig. 1.3C – are thus not sufficient to trigger an
action potential. Instead, about 20–50 presynaptic spikes have to arrive within a
short time window before postsynaptic action potentials are triggered.
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1.3 A phenomenological neuron model

In order to build a phenomenological model of neuronal dynamics, we describe the
critical voltage for spike initiation by a formal thresholdϑ . If ui (t) reachesϑ from
below we say that neuroni fires a spike. The moment of threshold crossing defines
the firing timet ( f )i . The model makes use of the fact that action potentials always
have roughly the same form. The trajectory of the membrane potential during
a spike can hence be described by a certain standard time course denoted by
η(t − t ( f )i ).

1.3.1 Definition of the model SRM0

Putting all elements together we have the following description of neuronal dy-
namics. The variableui describes the momentary value of the membrane potential
of neuroni . It is given by

ui (t) = η(t − t̂i )+
∑
j

∑
f

εi j (t − t ( f )j )+ urest, (1.3)

where t̂i is the last firing time of neuroni , i.e., t̂i = max{t ( f )i | t ( f )i < t}. Firing
occurs wheneverui reaches the thresholdϑ from below,

ui (t) = ϑ and
d

dt
ui (t) > 0 	⇒ t = t ( f )i . (1.4)

The term εi j in Eq. (1.3) describes the response of neuroni to spikes of a
presynaptic neuronj . The termη in Eq. (1.3) describes the form of the spike and
the spike-afterpotential.

Note that we are only interested in the potentialdifference, viz., the distance from
the resting potential. By an appropriate shift of the voltage scale, we can always set
urest = 0. The value ofu(t) is then directly the distance from the resting potential.
This is implicitly assumed in most neuron models discussed in this book.

The model defined in Eqs. (1.3) and (1.4) is called SRM0 where SRM is short for
Spike Response Model (Gerstner, 1995). The subscript zero is intended to remind
the reader that it is a particularly simple “zero order” version of the full model
that will be introduced in Chapter 4. Phenomenological models of spiking neurons
similar to the models SRM0 have a long tradition in theoretical neuroscience (Hill,
1936; Stein, 1965; Geisler and Goldberg, 1966; Weiss, 1966). Some important
limitations of the model SRM0 are discussed below in Section 1.3.2. Despite the
limitations, we hope to be able to show in the course of this book that spiking
neuron models such as the SR Model are a useful conceptual framework for the
analysis of neuronal dynamics and neuronal coding.
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i

Fig. 1.4. In formal models of spiking neurons the shape of an action potential (dashed line)
is usually replaced by aδ pulse (vertical line). The negative overshoot (spike-afterpotential)
after the pulse is included in the kernelη(t − t (1)i ) (thick line) which takes care of “reset”

and “refractoriness”. The pulse is triggered by the threshold crossing att (1)i . Note that we
have seturest = 0.

Example: formal pulses

In a simple model, we may replace the exact form of the trajectoryη during an
action potential by, e.g., a square pulse, followed by a negative spike-afterpotential,

η(t − t ( f )i ) =




1/t for 0 < t − t ( f )i < t

−η0 exp

(
− t − t ( f )i

τ

)
for t < t − t ( f )i

(1.5)

with parametersη0, τ,t > 0. In the limit oft → 0 the square pulse approaches
a Diracδ function; see Fig. 1.4.

The positive pulse marks the moment of spike firing. For the purpose of the
model, it has no real significance, since the spikes are recorded explicitly in the
set of firing timest (1)i , t (2)i , . . . . The negative spike-afterpotential, however, has an
important implication. It leads after the pulse to a “reset” of the membrane potential
to a value below threshold. The idea of a simple reset of the variableui after each
spike is one of the essential components of the integrate-and-fire model that will
be discussed in detail in Chapter 4.

If η0 � ϑ then the membrane potential after the pulse is significantly lower
than the resting potential. The emission of a second pulse immediately after the
first one is therefore more difficult, since many input spikes are needed to reach the
threshold. The negative spike-afterpotential in Eq. (1.5) is thus a simple model of
neuronal refractoriness.
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Example: formal spike trains

Throughout this book, we will refer to the moment when a given neuron emits an
action potential as the firing time of that neuron. In models, the firing time is usually
defined as the moment of threshold crossing. Similarly, in experiments firing times
are recorded when the membrane potential reaches some threshold valueϑ from
below. We denote firing times of neuroni by t ( f )i where f = 1,2, . . . is the label
of the spike. Formally, we may denote the spike train of a neuroni as the sequence
of firing times

Si (t) =
∑
f

δ(t − t ( f )i ), (1.6)

whereδ(x) is the Diracδ function withδ(x) = 0 for x = 0 and
∫∞
−∞ δ(x)dx = 1.

Spikes are thus reduced to points in time.

1.3.2 Limitations of the model

The model presented in Section 1.3.1 is highly simplified and neglects many
aspects of neuronal dynamics. In particular, all postsynaptic potentials are assumed
to have the same shape, independently of the state of the neuron. Furthermore, the
dynamics of neuroni depends only on its most recent firing timet̂i . Let us list the
major limitations of this approach.

(i) Adaptation, bursting, and inhibitory rebound

To study neuronal dynamics experimentally, neurons can be isolated and stimulated
by current injection through an intracellular electrode. In a standard experimental
protocol we could, for example, impose a stimulating current that is switched at
time t0 from a valueI1 to a new valueI2. Let us suppose thatI1 = 0 so that
the neuron is quiescent fort < t0. If the currentI2 is sufficiently large, it will
evoke spikes fort > t0. Most neurons will respond to the current step with a spike
train where intervals between spikes increase successively until a steady state of
periodic firing is reached; cf. Fig. 1.5A. Neurons that show this type of adaptation
are called regularly firing neurons (Connors and Gutnick, 1990). Adaptation is a
slow process that builds up over several spikes. Since the model SRM0 takes only
the most recent spike into account, it cannot capture adaptation. Detailed neuron
models which will be discussed in Chapter 2 describe the slow processes that lead
to adaptation explicitly. To mimic adaptation with formal spiking neuron models
we would have to add up the contributions to refractoriness of several spikes back
in the past; cf. Chapter 4.

Fast-spiking neurons form a second class of neurons. These neurons show no
adaptation and can therefore be well approximated by the model SRM0 introduced
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A

B

C

D

0

0

0

0

2I

I2

I2

I1 t0

Fig. 1.5. Response to a current step. InA–C, the current is switched on att = t0 to a value
I2 > 0. Regular-spiking neurons (A) exhibit adaptation of the interspike intervals whereas
fast-spiking neurons (B) show no adaptation. An example of a bursting neuron is shown in
C. Many neurons emit an inhibitory rebound spike (D) after an inhibitory currentI1 < 0
is switched off. Schematic figure.

in Section 1.3.1. Many inhibitory neurons are fast-spiking neurons. Apart from
regular-spiking and fast-spiking neurons, there are also bursting neurons which
form a separate group (Connors and Gutnick, 1990). These neurons respond to
constant stimulation by a sequence of spikes that is periodically interrupted by
rather long intervals; cf. Fig. 1.5C. Again, a neuron model that takes only the most
recent spike into account cannot describe bursting. For a review of bursting neuron
models, the reader is referred to Izhikevich (2000).

Another frequently observed behavior is postinhibitory rebound. Consider a step
current with I1 < 0 and I2 = 0, i.e., an inhibitory input that is switched off at
time t0; cf. Fig. 1.5D. Many neurons respond to such a change with one or more
“rebound spikes”: even the release of inhibition can trigger action potentials. We
will return to inhibitory rebound in Chapter 2.

(ii) Saturating excitation and shunting inhibition

In the model SRM0 introduced in Section 1.3.1, the form of a postsynaptic potential
generated by a presynaptic spike at timet ( f )j does not depend on the state of the
postsynaptic neuroni . This is of course a simplification and reality is somewhat
more complicated. In Chapter 2 we will discuss detailed neuron models that
describe synaptic input as a change of the membrane conductance. Here we simply
summarize the major phenomena.
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(f )t
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Fig. 1.6. The shape of postsynaptic potentials depends on the momentary level of depolar-
ization.A. A presynaptic spike that arrives at timet ( f ) at an inhibitory synapse has hardly
any effect on the membrane potential when the neuron is at rest, but a large effect if the
membrane potentialu is above the resting potential. If the membrane is hyperpolarized
below the reversal potential of the inhibitory synapse, the response to the presynaptic input
changes sign.B. A spike at an excitatory synapse evokes a postsynaptic potential with an
amplitude that depends only slightly on the momentary voltageu. For large depolarizations
the amplitude becomes smaller (saturation). Schematic figure.

In Fig. 1.6 we have sketched schematically an experiment where the neuron is
driven by a constant currentI0. We assume thatI0 is too weak to evoke firing so
that, after some relaxation time, the membrane potential settles at a constant value
u0. At t = t ( f ) a presynaptic spike is triggered. The spike generates a current pulse
at the postsynaptic neuron (postsynaptic current, PSC) with amplitude

PSC∝ u0 − Esyn (1.7)

whereu0 is the membrane potential andEsyn is the “reversal potential” of the
synapse. Since the amplitude of the current input depends onu0, the response of
the postsynaptic potential does so as well. Reversal potentials are systematically
introduced in Section 2.2; models of synaptic input are discussed in Chapter 2.4.

Example: shunting inhibition and reversal potential

The dependence of the postsynaptic response upon the momentary state of the
neuron is most pronounced for inhibitory synapses. The reversal potential of
inhibitory synapsesEsyn is below, but usually close to, the resting potential.
Input spikes thus have hardly any effect on the membrane potential if the neuron
is at rest; cf. Fig. 1.6A. However, if the membrane is depolarized to a value
substantially above rest, the very same input spikes evoke a pronounced inhibitory
potential. If the membrane is already hyperpolarized, the input spike can even
produce a depolarizing effect. There is an intermediate valueu0 = Esyn – the
reversal potential – at which the response to inhibitory input “reverses” from
hyperpolarizing to depolarizing.

Though inhibitory input usually has only a small impact on the membrane po-
tential, the local conductivity of the cell membrane can be significantly increased.
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Fig. 1.7. The shape of postsynaptic potentials (dashed lines) depends on the timet− t̂i that
has passed since the last output spike current of neuroni . The postsynaptic spike has been
triggered at timêti . A presynaptic spike that arrives at timet ( f )j shortly after the spike of
the postsynaptic neuron has a smaller effect than a spike that arrives much later. The spike
arrival time is indicated by an arrow. Schematic figure.

Inhibitory synapses are often located on the soma or on the shaft of the dendritic
tree. Due to their strategic positiona few inhibitory input spikes can“shunt” the
whole input that is gathered by the dendritic tree from hundreds of excitatory
synapses. This phenomenon is called “shunting inhibition”.

The reversal potential for excitatory synapses is usually significantly above the
resting potential. If the membrane is depolarizedu0 � urest the amplitude of an
excitatory postsynaptic potential is reduced, but the effect is not as pronounced as
for inhibition. For very high levels of depolarization a saturation of the EPSPs can
be observed; cf. Fig. 1.6B.

Example: conductance changes after a spike

The shape of the postsynaptic potentials does not only depend on the level of
depolarization but, more generally, on the internal state of the neuron, e.g., on the
timing relative to previous action potentials.

Suppose that an action potential has occurred at timet̂i and that a presynaptic
spike arrives at a timet ( f )j > t̂i . The form of the postsynaptic potential depends

now on the timet ( f )j − t̂i ; cf. Fig. 1.7. If the presynaptic spike arrives during or
shortly after a postsynaptic action potential it has little effect because some of the
ion channels that were involved in firing the action potential are still open. If the
input spike arrives much later it generates a postsynaptic potential of the usual size.
We will return to this effect in Section 2.2.
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Fig. 1.8. Spatio-temporal pulse pattern. The spikes of 30 neurons (A1–E6, plotted along
the vertical axes) are shown as a function of time (horizontal axis, total time is 4000 ms).
The firing times are marked by short vertical bars. From Krüger and Aiple (1988).

Example: spatial structure

The form of postsynaptic potentials also depends on the location of the synapse
on the dendritic tree. Synapses that are located at the distal end of the dendrite
are expected to evoke a smaller postsynaptic response at the soma than a synapse
that is located directly on the soma; cf. Chapter 2. If several inputs occur on the
same dendritic branch within a few milliseconds, the first input will cause local
changes of the membrane potential that influence the amplitude of the response
to the input spikes that arrive slightly later. This may lead to saturation or, in the
case of so-called active currents, to an enhancement of the response. Such nonlinear
interactions between different presynaptic spikes are neglected in the model SRM0.
A purely linear dendrite, on the other hand, can be incorporated in the model as we
will see in Chapter 4.

1.4 The problem of neuronal coding

The mammalian brain contains more than 1010 densely packed neurons that are
connected to an intricate network. In every small volume of cortex, thousands of
spikes are emitted each millisecond. An example of a spike train recording from 30
neurons is shown in Fig. 1.8. What is the information contained in such a spatio-
temporal pattern of pulses? What is the code used by the neurons to transmit that
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information? How might other neurons decode the signal? As external observers,
can we read the code and understand the message of the neuronal activity pattern?

The above questions point to the problem of neuronal coding, one of the
fundamental issues in neuroscience. At present, a definite answer to these questions
is not known. Traditionally it has been thought that most, if not all, of the relevant
information was contained in the mean firing rate of the neuron. The firing rate is
usually defined by a temporal average; see Fig. 1.9. The experimentalist sets a time
window of, say,T = 100 ms orT = 500 ms and counts the number of spikes
nsp(T) that occur in this time window. Division by the length of the time window
gives the mean firing rate

ν = nsp(T)

T
(1.8)

usually reported in units of s−1 or Hz.
The concept of mean firing rates has been successfully applied during the last

80 years. It dates back to the pioneering work of Adrian (Adrian, 1926, 1928) who
showed that the firing rate of stretch receptor neurons in the muscles is related
to the force applied to the muscle. In the following decades, measurement of
firing rates became a standard tool for describing the properties of all types of
sensory or cortical neurons (Mountcastle, 1957; Hubel and Wiesel, 1959), partly
due to the relative ease of measuring rates experimentally. It is clear, however,
that an approach based on a temporal average neglects all the information possibly
contained in the exact timing of the spikes. It is therefore no surprise that the firing
rate concept has been repeatedly criticized and is the subject of an ongoing debate
(Bialek et al., 1991; Abeles, 1994; Shadlen and Newsome, 1994; Hopfield, 1995;
Softky, 1995; Rieke et al., 1996; Oram et al., 1999).

During recent years, more and more experimental evidence has accumulated
which suggests that a straightforward firing rate concept based on temporal aver-
aging may be too simplistic to describe brain activity. One of the main arguments
is that reaction times in behavioral experiments are often too short to allow long
temporal averages. Humans can recognize and respond to visual scenes in less than
400 ms (Thorpe et al., 1996). Recognition and reaction involve several processing
steps from the retinal input to the finger movement at the output. If, at each
processing step, neurons had to wait and perform a temporal average in order to
read the message of the presynaptic neurons, the reaction time would be much
longer.

In experiments on a visual neuron in the fly, it was possible to “read the neural
code” and reconstruct the time-dependent stimulus based on the neuron’s firing
times (Bialek et al., 1991). There is evidence of precise temporal correlations
between pulses of different neurons (Abeles, 1994; Lestienne, 1996) and stimulus-
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Fig. 1.9. A. Definition of the mean firing rate via a temporal average.B. Gain function,
schematic. The output rateν is given as a function of the total inputI0.

dependent synchronization of the activity in populationsof neurons (Eckhorn et al.,
1988; Gray and Singer, 1989; Gray et al., 1989; Engel et al., 1991a; Singer, 1994).
Most of these data are inconsistent with a naı̈ve concept of coding by mean firing
rates where the exact timing of spikes should play no role.

In the following sections, we review some potential coding schemes and ask:
what exactly is a pulse code – and what is a rate code? The question of neuronal
coding has important implications for modeling, because pulse codes require a
more detailed description of neuronal dynamics than rate codes. Models of neurons
at different levels of detail will be the topic of Part I of the book.

1.5 Rate codes

A quick glance at the experimental literature reveals that there is no unique and
well-defined concept of “mean firing rate”. In fact, there are at least three different
notions of rate which are often confused and used simultaneously. The three
definitions refer to three different averaging procedures: an average over time, an
average over several repetitions of the experiment, or an average over a population
of neurons. The following three subsections will reconsider the three concepts. An
excellent discussion of rate codes is given elsewhere (Rieke et al., 1996).

1.5.1 Rate as a spike count (average over time)

The first and most commonly used definition of a firing rate refers to a temporal
average. As discussed in the preceding section, this is essentially the spike count
in an interval of durationT divided byT ; see Fig. 1.9. The lengthT of the time
window is set by the experimenter and depends on the type of neuron recorded
from and the stimulus. In practice, to get sensible averages, several spikes should
occur within the time window. Typical values areT = 100 ms orT = 500 ms, but
the duration may also be longer or shorter.



16 Introduction

This definition of rate has been successfully used in many preparations, par-
ticularly in experiments on sensory or motor systems. A classic example is the
stretch receptor in a muscle spindle (Adrian, 1926). The number of spikes emitted
by the receptor neuron increases with the force applied to the muscle. Another
textbook example is the touch receptor in the leech (Kandel and Schwartz, 1991).
The stronger the touch stimulus, the more spikes occur during a stimulation period
of 500 ms.

These classic results show that the experimenter as an external observer can
evaluate and classify neuronal firing by a spike count measure – but is this really
the code used by neurons in the brain? In other words, is a neuron that receives
signals from a sensory neuron only looking at and reacting to the number of spikes
it receives in a time window of, say, 500 ms? We will approach this question
from a modeling point of view later on in the book. Here we discuss some critical
experimental evidence.

From behavioral experiments it is known that reaction times are often rather
short. A fly can react to new stimuli and change the direction of flight within
30–40 ms; see the discussion in Rieke et al. (1996). This is not long enough for
counting spikes and averaging over some long time window. The fly has to respond
after a postsynaptic neuron has received one or two spikes. Humans can recognize
visual scenes in just a few hundred milliseconds (Thorpe et al., 1996), even though
recognition is believed to involve several processing steps. Again, this does not
leave enough time to perform temporal averages on each level. In fact, humans can
detect images in a sequence of unrelated pictures even if each image is shown for
only 14–100 ms (Keysers et al., 2001).

Temporal averaging can work well in cases where the stimulus is constant or
slowly varying and does not require a fast reaction of the organism – and this
is the situation usually encountered in experimental protocols. Real-world input,
however, is hardly stationary, but often changing on a fast time scale. For example,
even when viewing a static image, humans perform saccades, rapid changes of
the direction of gaze. The image projected onto the retinal photoreceptors changes
therefore every few hundred milliseconds.

Despite its shortcomings, the concept of a firing rate code is widely used not
only in experiments, but also in models of neural networks. It has led to the idea
that a neuron transforms information about a single input variable (the stimulus
strength) into a single continuous output variable (the firing rate); cf. Fig. 1.9B.
The output rateν increases with the stimulus strength and saturates for large
input I0 towards a maximum valueνmax. In experiments, a single neuron can be
stimulated by injecting with an intracellular electrode a constant currentI0. The
relation between the measured firing frequencyν and the applied input current
I0 is sometimes called the frequency–current curve of the neuron. In models, we
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Fig. 1.10. Definition of the spike density in the peri-stimulus-time histogram (PSTH) as an
averageover several runs of the experiment. Taken from Gerstner (1998) with permission.

formalize the relation between firing frequency (rate) and input current and write
ν = g(I0). We refer tog as the neuronal gain function or transfer function.

From the point of view of rate coding, spikes are just a convenient way to
transmit the analog output variableν over long distances. In fact, the best coding
scheme to transmit the value of the rateν would be by a regular spike train with
intervals 1/ν. In this case, the rate could be reliably measured after only two spikes.
From the point of view of rate coding, the irregularities encountered in real spike
trains of neurons in the cortex must therefore be considered as noise. In order to
get rid of the noise and arrive at a reliable estimate of the rate, the experimenter (or
the postsynaptic neuron) has to average over a larger number of spikes. A critical
discussion of the temporal averaging concept can be found elsewhere (Shadlen and
Newsome, 1994; Softky, 1995; Rieke et al., 1996).

1.5.2 Rate as a spike density (average over several runs)

There is a second definition of rate which works for stationary as well as for
time-dependent stimuli. The experimenter records from a neuron while stimulating
with some input sequence. The same stimulation sequence is repeated several times
and the neuronal response is reported in a peri-stimulus-time histogram (PSTH);
see Fig. 1.10. The timet is measured with respect to the start of the stimulation
sequence andt is typically in the range of one or a few milliseconds. The number
of occurences of spikesnK (t; t+t) summed over all repetitions of the experiment
divided by the numberK of repetitions is a measure of the typical activity of the
neuron between timet and t + t . A further division by the interval lengtht
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yields the spike density of the PSTH

ρ(t) = 1

t

nK (t; t +t)

K
. (1.9)

Sometimes the result is smoothed to get a continuous “rate” variable. The spike
density of the PSTH is usually reported in units of Hz and often called the (time-
dependent) firing rate of the neuron.

As an experimental procedure, the spike density measure is a useful method for
evaluating neuronal activity, in particular in the case of time-dependent stimuli.
The obvious problem with this approach is that it cannot be the decoding scheme
used by neurons in the brain. Consider for example a frog which wants to catch a
fly. It cannot wait for the insect to fly repeatedly along exactly the same trajectory.
The frog has to base its decision on a single “run” – each fly and each trajectory is
different.

Nevertheless, the experimental spike density measure can make sense, if there
are large populations of independent neurons that receive the same stimulus.
Instead of recording from a population ofN neurons in a single run, it is
experimentally easier to recordfrom a single neuron and average overN repeated
runs. Thus, the spike density coding relies on the implicit assumption that there are
always populations of neurons and therefore leads us to the third notion of a firing
rate, viz., a rate defined as a population average.

1.5.3 Rate as a population activity (average over several neurons)

The number of neurons in the brain is huge. Often many neurons have similar prop-
erties and respond to the same stimuli. For example, neurons in the primary visual
cortex of cats and monkeys are arranged in columns of cells with similar properties
(Hubel and Wiesel, 1962, 1977; Hubel, 1988). Let us idealize the situation and
consider a population of neurons with identical properties. In particular, all neurons
in the population should have the same pattern of input and output connections. The
spikes of the neurons in a populationm are sent off to another populationn. In our
idealized picture, each neuron in populationn receives input from all neurons in
populationm. The relevant quantity, from the point of view of the receiving neuron,
is the proportion of active neurons in the presynaptic populationm; see Fig. 1.11A.
Formally, we define the population activity

A(t) = 1

t

nact(t; t +t)

N
= 1

t

∫ t+t
t

∑
j

∑
f δ(t − t ( f )j )dt

N
(1.10)

whereN is the size of the population,nact(t; t+t) the number of spikes (summed
over all neurons in the population) that occur betweent andt +t , andt a small
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Fig. 1.11.A. A postsynpatic neuron receives spike input from the populationm with
activity Am. B. The population activity is defined as the fraction of neurons that are active
in a short interval [t, t +t ] divided byt .

time interval; see Fig. 1.11. Eq. (1.10) defines a variable with units s−1 – in other
words, a rate.

The population activity may vary rapidly and can reflect changes in the stimulus
conditions nearly instantaneously (Gerstner, 2000; Brunel et al., 2001). Thus the
population activity does not suffer from the disadvantages of a firing rate defined by
temporal averaging at the single-unit level. A potential problem with the definition
(1.10) is that we have formally required a homogeneous population of neurons
with identical connections, which is hardly realistic. Real populations will always
have a certain degree of heterogeneity both in their internal parameters and in their
connectivity pattern. Nevertheless, rate as a population activity (of suitably defined
pools of neurons) may be a useful coding principle in many areas of the brain. For
inhomogeneous populations, the definition (1.10) may be replaced by a weighted
average over the population.

Example: population vector coding

We give an example of a weighted average in an inhomogeneous population. Let us
suppose that we are studying a population of neurons which respond to a stimulus
x. We may think ofx as the location of the stimulus in input space. Neuroni
responds best to stimulusxi , another neuronj responds best to stimulusx j . In
other words, we may say that the spikes for a neuroni “represent” an input vector
xi and those ofj an input vectorx j . In a large population, many neurons will be
active simultaneously when a new stimulusx is represented. The location of this
stimulus can then be estimated from the weighted population average

xest(t) =
∫ t+t
t

∑
j

∑
f x j δ(t − t ( f )j )dt∫ t+t

t

∑
j

∑
f δ(t − t ( f )j )dt

. (1.11)
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stimulus

Fig. 1.12. Time-to-first spike. The spike train of three neurons are shown. The third neuron
from the top is the first one to fire a spike after the stimulus onset (arrow). The dashedline
indicates the time course of the stimulus.

Both numerator and denominator are closely related to the population activity
(1.10). The estimate (1.11) has been successfully used for an interpretation of
neuronal activity in primate motor cortex (Georgopoulos et al., 1986; Wilson and
McNaughton, 1993). It is, however, not completely clear whether postsynaptic
neurons really evaluate the fraction (1.11). In any case, Eq. (1.11) can be applied
by external observers to “decode” neuronal signals, if the spike trains of a large
number of neurons are accessible.

1.6 Spike codes

In this section, we will briefly introduce some potential coding strategies based on
spike timing.

1.6.1 Time-to-first-spike

Let us study a neuron which abruptly receives a “new” input at timet0. For
example, a neuron might be driven by an external stimulus which is suddenly
switched on at timet0. This seems to be somewhat academic, but even in a
realistic situation abrupt changes in the input are quite common. When we look
at a picture, our gaze jumps from one point to the next. After each saccade, the
photoreceptors in the retina receive a new visual input. Information about the onset
of a saccade would easily be available in the brain and could serve as an internal
reference signal. We can then imagine a code where for each neuron the timing
of thefirst spike after the reference signal contains all information about the new
stimulus. A neuron which fires shortly after the reference signal could signal a
strong stimulation; firing somewhat later would signal a weaker stimulation; see
Fig. 1.12.


