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Abstract:  

In this paper, we specify and test a model of how the aggregate skill supply is shaped by institutions 

and social peer groups. First, we exploit a universal policy reform signaling less importance of 

advanced math-science in high school. We show how it amplified the fall in skill supply in peer groups 

with a stronger math-science norm. We also document a gender convergence in math-science skills. 

This is mainly triggered by boys strongly crowding in the policy reform as they face a higher social 

cost of not conforming. Second, we analyze the underlying mechanism by estimating causal sibling 

peer effects in the math-science choice. We exploit quasi-experimental variation stemming from a pre-

reform pilot scheme. The pilot induced some older siblings to choose advanced math-science at a lower 

cost, while not directly affecting the course choices of younger siblings. Therefore, any influences of 

the pilot scheme on the younger siblings may be attributed to the peer influence of the older sibling. 

Our results suggest that peer effects among siblings are strongest among closely spaced siblings, in 

particular brothers. We argue that competition is likely the driving force behind younger siblings 

conforming to their older siblings’ choices. 
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1. Introduction 

Social interactions may play an important role in the formation of skills. Peer groups may either 

transmit information about particular educational investments or carry social norms and identity 

concerns influencing an individual’s educational decision. Social interactions may reinforce or 

counteract the direct effect of economic shocks or policy interventions. As a consequence, social 

interaction effects may have contributed to increased inequality and the sluggish skill development in 

terms of slowing down both college preparedness and college enrollment (Goldin and Katz, 2008). 

In this paper, we focus on social interactions within the family. We contribute to the emerging 

research trying to unravel the role of the family in skill formation and human development more 

generally.1 We document that sibling spillovers are possibly large and we provide a framework for 

understanding the plausible mechanisms. Our results have implications for understanding equality of 

opportunity, inequality, and intergenerational mobility where the importance of family background for 

educational investments has long been recognized and sibling correlations in schooling have recently 

been examined.2 In this paper, we recognize that family background is multifaceted and we go beyond 

simple sibling correlations and estimate causal effects in order to understand the large and widespread 

consequences of the complex family component that siblings share. 

We focus on the role of institutions in skill formation and contribute to the scarce literature on the 

nature of social interaction effects in education. In their seminal paper, Akerlof and Kranton (2002) 

provide a review of the sociology of education literature and incorporate the ideas in an economic 

framework. They highlight that a main motivation for educational investments is the identity utility 

gain from fitting into a social group. Empirical evidence of the relevance of these mechanisms is 

scarce, but pivotal for better understanding how economic shocks and policy interventions influence 

educational decisions. 

The main contribution of this paper is twofold. First, we specify and test a model of how aggregate 

skill supply is shaped by institutions and their interactions with the social environment in which 

individuals make their educational decisions. Second, we investigate the underlying mechanisms by 

estimating causal spillover effects at the sibling pair level. 

We set up a model of how individual educational choices are determined by not only extrinsic 

incentives (material costs and benefits), but also intrinsic incentives (social norms or identity) and their 

 
1 See e.g. Becker and Tomes (1979, 1986), Cunha and Heckman (2007), Cunha et al. (2010) for a theoretical framework. 

Heckman and Mosso (2014) provide a recent review. 
2 See e.g. Solon (1999) and Black and Devereux (2010) for reviews on intergenerational correlations and Mazumder (2008), 

Björklund and Salvanes (2010) and Björklund and Jäntti (2012) for sibling correlations. 
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interaction. This model builds on the theoretical framework of two recent papers by Benabou and 

Tirole (2011) and Jia and Persson (2014) where complementarity is not imposed, but conformity arises 

endogenously in equilibrium as individuals infer the social norm from their peers’ educational 

choices.3 Extrinsic incentives depend on the monetary payoff as well as prizes, laws, or curricula which 

not only impact costs of educational choices directly, but also send signals about the values of schools 

and society. Intrinsic incentives may depend on individuals’ social environment; primarily, siblings 

and parents, but also schoolmates. Younger siblings get a utility gain (loss) of (not) conforming to their 

older sibling and the identity utility gain depends on how many conformers are in their peer group. We 

derive two testable predictions of how responses to changes in extrinsic incentives (in our case school 

curricula) vary based on their interaction with (i) the strength of social norms and (ii) intrinsic 

incentives. We test these two predictions on Danish administrative data, where individuals are linked 

with their siblings, parents, schoolmates, as well as their schoolmates’ siblings and parents. We focus 

on the choice of advanced coursework in mathematics and science in high school, which is a 

prerequisite for increasing the supply of college graduates in science, technology, engineering, and 

mathematics (STEM). The major high school reform in Denmark in 1988 loosened up the bundling of 

advanced math and science courses, and the number of students opting for these advanced skills 

dropped significantly. We exploit this reform as an exogenous decrease in extrinsic incentives and test 

how choices differentially respond to the universal policy change depending on the strength of the 

STEM norm in the peer group and their intrinsic incentives of conforming to their sibling’s choice. 

We find strong empirical support for both model predictions. First, we find that extrinsic incentives 

are more strongly crowded in for younger brothers and sibling pairs where the older sibling chose 

advanced math and science. This means that a curriculum change – signaling school values and 

lowering the costs of opting for math and science – will cause larger changes in behavior in 

environments with a stronger STEM norm and will also be more strongly amplified among boys. 

Second, we find that boys have a higher intrinsic cost of non-conforming to an older sibling who has 

chosen math and science. This could indicate that there is more social pressure on boys to choose math 

and science in the baseline, so when the choice set is loosened up and schools signal the lesser 

importance of this combination, it is more strongly crowded in by boys as the social-to-material payoff 

is higher for the marginal boy than the marginal girl.4 

 
3 In this respect, our model extends Akerlof and Kranton (2002). 
4 This is also consistent with Joensen and Nielsen (2014) who find that the baseline monetary payoff for the marginal girl 

to choose advanced math and science (when only 20% of girls in the high school cohort are choosing it) is substantial, 
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Having established how educational choice responses to policy changes systematically interact with 

social norms and intrinsic incentives, we turn to better understanding the underlying mechanisms by 

estimating causal sibling spillover effects. Estimating the causal effect of social interactions is 

challenging due to simultaneity, correlated unobservables, and endogenous peer group membership 

(Manski, 1993; 1995). We study naturally occurring peer groups and exploit exogenous variation in 

the cost of taking up advanced math and science in high school among a partial population (Moffitt, 

2001).5 We exploit the fact that some older siblings in Denmark in 1984-1987 were unexpectedly 

exposed to a pilot scheme after entering high school and investigate whether they influenced the course 

choices of their younger siblings. In previous work (Joensen and Nielsen, 2009; 2014) we employed 

this pilot scheme to investigate the impact on the individuals’ own educational choices, subsequent 

careers, and earnings. Those unexpectedly exposed to the pilot scheme got more advanced college 

degrees and substantially higher earnings. In this paper, we analyze whether there were spillover 

effects on younger siblings who were unexposed themselves. Any influence of this pilot scheme on 

younger siblings’ course choices can be interpreted as a causal peer effect, since the pilot scheme only 

directly reduced the cost of choosing advanced math and science for older siblings. The exogenous 

increase in extrinsic incentives for the older sibling is thus essentially an increase in intrinsic incentives 

for the younger sibling in the presence of identity concerns and utility costs of not conforming. We 

find that younger siblings are 3.5 percentage points more likely to choose math and science if their 

older sibling was exposed to the pilot scheme. Since the first-stage estimate is 7 percentage points, this 

implies a peer influence of older siblings on younger siblings of about 0.5. This means that by affecting 

the choice of the older sibling, about half of the effect is expected to spill over on the younger sibling’s 

choice. More generally, this suggests that knowledge about the social peer group is important to predict 

the total impact of education policies, and that policies targeted at influential peers (such as older 

siblings) would have more widespread effects. 

There are many reasons why siblings are influential peers. Siblings are the first peers one closely 

interacts with and for most parts they entail a lifelong relationship. Therefore, peer effects from close 

social interaction between siblings may be extremely important (Buhrmester, 1992). Rigorous 

economics research on the importance of social interactions among siblings is scarce. Butcher and 

Case (1994) find that the level of education among females decreases with the presence of any sister 

 

while it is lower (approaching zero) for the marginal boy (when more than 50% of boys choose advanced math and 

science). 
5
 Our study is thus methodologically similar to the study of social interaction effects in program participation by Dahl, 

Løken and Mogstad (2014), Avvisati, Gurgand, Guyon and Maurin (2014), and Dahl, Kostøl and Mogstad (2014). 
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in the sibship, and that this effect gradually vanishes for more recently born cohorts. They argue that 

the presence of a second daughter in the household changes the reference group of the first daughter. 

Qureshi (2013) and Adermon (2013) study education of sibling pairs in Pakistan and Sweden, 

respectively. Qureshi (2013) finds that the education of older sisters improves the education of younger 

brothers, and she argues that this result reflects improved quality of child care as the older sister takes 

care of younger siblings. Adermon (2013) finds no spillover effects among siblings from extending 

compulsory schooling laws in Sweden. Sibling spillover effects have also been documented in parental 

leave taking among brothers (Dahl, Mogstad and Løken, 2014), from newborn health to educational 

outcomes (Breining, Daysal, Simonsen and Trandafir, 2015), and adolescent smoking, drinking and 

marijuana use (Altonji, Cattan and Ware, 2013).  

We find strong positive correlations between math and science choices of siblings. Our results 

suggest that there is substantial heterogeneity in peer effects – both in terms of how strongly the older 

sibling responds to extrinsic incentives and how their choice spills over on the younger sibling through 

intrinsic incentives. The causal peer effects persist among closely spaced siblings, and the significance 

depends on the gender composition of the sibling pair. We find largest and most significant peer effects 

for relatively closely spaced brothers. First-born siblings are the most influential peers and parental 

education is also important for spillovers. We provide evidence that sibling competition is likely 

driving the peer effect as younger siblings are less likely to conform to their older sibling’s course 

choice if the older sibling is among the top performers. 

The remainder of the paper unfolds as follows: Section 2 specifies and tests the predictions of an 

economic model of educational choices and peer effects. Section 3 discusses identification of social 

interaction effects and presents the institutional background which our empirical strategy relies on. 

Section 4 describes the data, while section 5 presents the empirical analysis of social interaction effects 

in the choice of math and science in high school. Section 6 investigates mechanisms and heterogeneity 

in peer effects. Section 7 concludes the paper. 

2. A Framework Linking Educational Choices and Peer Effects 

In this section we lay out an economic model of how an individual makes educational choices 

conditional on the institutions and social environment. We derive two model predictions and test them 

empirically based on differential course choice responses to a major institutional reform across peer 

groups with different social norms and individuals facing different intrinsic incentives. 



 

5 

 

Our model describes how an individual’s choice can be determined by not only extrinsic incentives, 

but also intrinsic incentives and their interaction. Extrinsic incentives include monetary pay but also 

laws, prizes, and curricula which signal school values. Intrinsic incentives depend on the social 

environment. In this section we focus on how intrinsic incentives vary with older sibling’s choice, 

while we try to unravel heterogeneity in this intrinsic cost due to differences in the strength of ties and 

sibling interactions (e.g. competition and sibling rivalry) in Section 6. The model builds on Benabou 

and Tirole (2011) and Jia and Persson (2014). It illustrates how we can explain the falling trend in the 

number of individuals taking advanced math and science courses, and understand the role of the social 

environment in explaining this trend. Primarily, we analyze the first-order peer effect of how younger 

siblings’ intrinsic motivation to opt for math and science depends on older siblings’ choice of the same 

course combination. More broadly, we analyze how choices and incentive effects are affected by the 

social environment through other peers; including parents, schoolmates, and schoolmates’ older 

siblings and parents.  

Figure 1. Fraction of High School Cohort with advanced Math and Science. 

(a) Boys                                                                   (b) Girls 

 

Figure 1 shows the fall in the fraction of the high school cohort who acquired advanced math and 

science skills over the period 1980-2000 in Denmark. From the figure it is evident that two factors 

appear important: (i) older siblings’ course choices and (ii) school curricula. Individuals with an older 

sibling who chose math and science are more likely to also choose math and science. During the pilot 

period 1984-87 (explained in detail in Sections 3.2 and 3.3) the falling trend leveled off as an additional 

advanced math and science course package was introduced at pilot schools. The major reform in 1988 

that broke up the course bundling and gave students (as good as) free course choice caused a major 
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drop in the number of students opting for advanced math and science.6 The proportion of girls with 

advanced math and science stabilized around 8% after 1988, while the gradual decline continued for 

boys such that only half as many boys chose math and science in 2000 compared to 1980. The gender 

gap in these advanced skills thus fell by 57% over this 20-year period: from a 31 percentage point 

difference in 1980 to a 13 percentage point difference in 2000. 

We specify a model that highlights how this development can be explained by the interaction 

between extrinsic incentives and social multipliers across peer groups. We derive this model prediction 

in Section 2.1 and test it in Section 2.3 below. We show that the time patterns in Figure 1 can be 

explained by a stronger social multiplier for boys and for younger siblings with an older Math-Science 

sibling. A model without intrinsic motivation and social concerns would not be able to explain these 

time patterns without gender-biased changes in preferences or relative skill prices. In our framework, 

these predictions arise from simply allowing younger sibling’s course choice to depend on the 

institutional incentives and the social environment they face. We distinguish between two cases: (a) 

the older sibling does not choose Math-Science and (b) the older sibling chooses Math-Science.  

(a) Non-Math-Science older sibling ( ���ℎ����	��
�� = 0 ) 

If the older sibling does not choose Math-Science, then the younger sibling’s utility of choosing 

Math-Science is given by: 

             �� = � � − �
��� − � � ���ℎ����	���
��� + � �� � � ���ℎ����	���
���                           (1) 

where b denotes extrinsic incentives, which may vary across schools and time; e.g. due to variation in 

monetary pay, college access, or curriculum design. The term �
��
! + �  denotes intrinsic costs of 

deviating from the choice of the older sibling. The component �
��
! ≡ �#���ℎ����	��
��$  for 

���ℎ����	��
�� = % ∈ '0,1* depends on the older sibling’s course choice whereas the component, �, is 

unrelated to the older sibling’s particular course choice. �
��
!

 is the average intrinsic cost for younger 

siblings who choose differently than their older sibling. This intrinsic cost is the same for everyone in 

the same peer group, but may vary across peer groups. The primary source of heterogeneity is �, which 

captures deviations from the average intrinsic cost. �������ℎ����	���
���  is the truncated mean over 

� for everyone in the peer group making the same Math-Science choice, and it determines the costs to 

the identity of the relevant course choice.7 We define the gain in identity by conforming with the older 

 
6 The reform may be viewed as a movement towards a “Shopping Mall High School” as first described by Powell, Farrar 

and Cohen (1985) and discussed by Akerlof and Kranton (2002). This reform is explained in detail in Section 3.4. 
7 Note we choose to use the term identity throughout, but this social factor can be thought of more broadly as a social norm, 

social reputation, social esteem, or self-image. 
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sibling’s choice to be ∆= ��� � ���ℎ����	���
��� = 0   – ��� � ���ℎ����	���
��� = 1  , where the first 

term is the pride of conforming with the older sibling and the second term is the prejudice of choosing 

a Math-Science identity not conforming with the older sibling.8 � is the weight placed on identity, 

which may vary with the strength with which social norms are held. Particularly, the weight on identity 

varies across different peer groups. We define the relevant peer group to be the students in the same 

cohort at the same school.9  

The model implies that the younger sibling chooses ���ℎ����	���
��� = 1   if and only if � <
��∗��, �
��� , ��, where ��∗��, �
��� , �� defines the cut-off below which younger siblings choose advanced 

Math-Science as a function of extrinsic and intrinsic incentives, and the weight placed on identity. 

Optimizing younger siblings thus balance the net extrinsic and intrinsic motivation of Math-Science 

with the net gains in identity of choosing the same as their older sibling: 

                                           � − �
��� − ��∗��, �
��� , �� = � ∆#��∗$                                                                 (2)                      

where ∆#��∗$ = �/� 0� > ��∗ 2 – �/� 0� < ��∗ 2  is the equilibrium gain in identity. We assume that 

�/�2 = 0, which means that ∆#��∗$ is positive by definition as the first pride-term is positive and the 

second prejudice-term is negative.10 The fraction of sibling pairs where the younger sibling chooses 

Math-Science and does not conform with his or her older sibling is given by 3 4��∗#�, �
��� , �$5, as 

those with � < ��∗��, �
��� , �� choose Math-Science. We label these non-conformers; see Figure A1. 

The sign of the derivative of conformity, 
6∆#7$

67 , is crucial for the properties of equilibrium and 

comparative statics. If the cut-off, �∗, increases so more younger siblings choose Math-Science, then 

both the pride and the prejudice term increase. We can determine which one increases more (i.e. sign 

the derivative of conformity) under the following mild distributional assumptions: continuously 

differentiable cumulative distribution function (CDF), 3#�$, and a symmetric unimodal probability 

density function (pdf), 8#�$. This implies that ∆#�$ has a unique interior minimum at � = 0.11 Thus 

6∆#7$
67 < 0 for low values of �∗, while 

6∆#7$
67 > 0 for high values of �∗. This means that Math-Science 

 
8 We choose the terms pride (prejudice) throughout, but they can be interpreted more broadly as honor (stigma) or virtue 

(guilt). These terms were also adopted by Ellingsen and Johannesson (2008) who provide a related model where some 

agents have identity concerns and its value depends on the principal. In our model, identity concerns instead depend on 

the educational choices of the peer group in equilibrium. 
9 Alternatively, we define the relevant peer group to be the students of the same gender in the same school-cohort, as social 

comparisons within classrooms tend to be made within gender (Jalava et al., 2014).  
10 Over the whole peer group, however, the gain in identity is a zero-sum game. Since younger siblings do not know ε 

before they make course choices, the ex-ante expected value is zero, �� � � ���ℎ����	���
���   = 0. This is seen by 

integrating over all individuals in equilibrium: 9 ��� �� < �0∗   :��0∗
;< + 9 ��� �� > �0∗   :�<

�0∗ = 0. 

11 See Jewitt (2004) for a proof and Figure A2 in Appendix A for an illustration. 



 

8 

 

choices for siblings are strategic complements (i.e. reinforcing one another) when few choose Math-

Science as the prejudice increases by more than the pride. Therefore, the gain in identity from 

conforming with the older non-Math-Science sibling decreases and more younger siblings become 

non-conformers by choosing to opt for Math-Science. Conversely, choices are strategic substitutes (i.e. 

offsetting one another) when many choose Math-Science. The reputational return is lowest when 

choosing Math-Science is the modal choice. This is illustrated in Figure A2 in Appendix A. 

(b) Math-Science older sibling ( ���ℎ����	��
�� = 1 ) 

If the older sibling chooses Math-Science then the younger sibling’s utility is given by: 

 �= = ���ℎ����	���
���� − �1 − ���ℎ����	���
������
��= + � �  − � �� � � ���ℎ����	���
���       (3) 

where �
��= + � denotes the intrinsic cost of choosing differently than the older sibling. We assume that 

all other parameters and the distribution of the ex-ante unknown intrinsic cost, �, are the same for all 

younger siblings. Symmetry of the distribution of �  means that the younger sibling chooses 

���ℎ����	���
��� = 1  if and only if � < �=∗#�, �
��= , �$, where �=∗��, �
��= , �� denotes the cut-off value 

below which the younger sibling chooses Math-Science – just like their older sibling. Again the 

younger sibling balances net gains such that: 

                                                     � + �
��= + � ∆#�=∗$ =  �=∗��, �
��= , ��.                                                 (4) 

where ∆#�=∗$ = �/� 0� < �=∗ 2 – �/� 0� > �=∗ 2  is defined as equilibrium conformity to an older Math-

Science sibling, and analogously to before, the first term is the pride of choosing Math-Science like 

the older sibling and the second term is the prejudice of not conforming. The fraction of sibling pairs 

where both the younger and older sibling choose Math-Science is thus given by 34�1∗ #�, �>?:1 , �$5. We 

label these conformers. 

From the decision rules (2) and (4) emerges the immediate prediction that more younger siblings 

choose Math-Science when their older siblings also chose Math-Science. As the cut-off is higher when 

the older sibling has Math-Science �=∗��, �
��= , �� > ��∗��, �
��� , ��  it also implies that more younger 

siblings choose Math-Science conforming with their older siblings, 34�1∗ #�, �>?:1 , �$5 >

34�0∗#�, �>?:0 , �$5 . That is, there are relatively more conformers than non-conformers among the 

younger siblings choosing Math-Science. This prediction is consistent with the data (presented in detail 

in Section 4) and Figure 1: 28% of younger siblings choose Math-Science conforming to their older 

siblings, while only 14% are non-conformers and choose Math-Science even if their older siblings did 

not. The intuition behind this result is that younger siblings receive both extrinsic benefits and 

additional intrinsic benefits when conforming to their older siblings. The social norm could further be 



 

9 

 

strengthened by having more Math-Science peers; for example, parents with a STEM field education 

or schoolmates with more Math-Science tradition in their families. This variation will also be exploited 

in the empirical analysis.  

The gender of the older sibling seems to matter for younger sisters, as 21% conform to an older sister 

while only 14% conform to an older brother. 42% of younger brothers are conformers, independently 

of their older sibling’s gender.12 These patterns might suggest that the intrinsic costs of not conforming 

are higher for boys than for girls, and we will show that this might explain why the abovementioned 

curriculum changes have a different impact for boys than girls. As we move to the left in Figures A1-

A2 and Math-Science becomes a rarer choice, the prejudice becomes even stronger if having a non-

Math-Science older sibling and the pride becomes even stronger when having and older Math-Science 

sibling. As gender is a salient part of identity (Akerlof and Kranton, 2002; Bertrand, 2010; Bertrand et 

al., 2013) and Math-Science choices vary by gender (Joensen and Nielsen, 2014; Buser, Niederle and 

Oosterbeek, 2014) the model also predicts that the identity concerns vary by gender. To shed light on 

these issues and to understand how they relate to potential gender stereotypes (Steele, 1997; Babcock 

and Laschever, 2009) of Math and Science, we derive and test model predictions in the following three 

subsections. 

2.1. Effects of Extrinsic Incentives 

First, we investigate how an increase in extrinsic benefits, b, influences the fraction of younger 

siblings choosing Math-Science. The slope of aggregate Math-Science high school graduate supply:  

                          
@3 4�%∗��, �>?:

% , ��5
@� = 8 4�%∗��, �>?:

% , ��5 1

1 + � @∆ 4�%∗��, �>?:
% , ��5

@�
> 0                    #5$ 

implies that increasing extrinsic benefits increases the fraction of younger siblings choosing Math-

Science independently of their older sibling’s choice. The last term denotes the social multiplier.13 

Since it is less likely that a younger sibling is a non-conformer when having a non-Math-Science older 

 
12 The numbers referred to may be found in Table B3 and Figure A1 in Appendix A. 
13 Benabou and Tirole (2006) show that the equilibrium of this model is uniquely determined if the denominator of the 

social multiplier is positive. That is, if 1 + � 6∆B7C∗4D,EFGH
C ,I5J

67 > 0. This guarantees that � is not large enough to create 

multiple equilibria when Math-Science choices are strategic complements. 
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sibling (13-14%) than when having a Math-Science older sibling (72%), 14  it is the case that: 

84�0∗ #�, �>?:0 , �$5 < 84�1∗ #�, �>?:1 , �$5. Moreover, 

                                               
@∆4�0∗ #�, �>?:0 , �$5

@� <
@∆4�1∗#�, �>?:1 , �$5

@�                                                     #6$ 

the marginal non-Math-Science older sibling (���ℎ����	��
�� = 0) is in a region where fewer younger 

siblings choose Math-Science, compared to those with a Math-Science older sibling 

(���ℎ����	��
�� = 1$. This is illustrated in Figure A2 and means that the marginal non-Math-Science 

older sibling is a strategic complement rather than substitute. If both are strategic complements, then 

the complementarity is stronger for the marginal non-Math-Science older sibling. Extrinsic incentives 

are crowded in by identity when choices are strategic complements, 
6∆#7$

67 < 0, and crowded out by 

identity when choices are strategic substitutes, 
6∆#7$

67 > 0. Thus extrinsic incentives for younger siblings 

are more likely to crowd in (rather than crowd out) intrinsic incentives when having a non-Math-

Science older sibling. However, it is ambiguous whether increasing extrinsic incentives, b, will lead 

to a smaller (or larger) increase in the probability of choosing Math-Science for younger siblings with 

a non-Math-Science older sibling as their first term in (5) is lower even if the second term is larger. 

Overall, when Math-Science is rarer than the modal choice for both groups, then the model does not 

deliver strong predictions on whether the fraction of conformers or non-conformers will increase more 

in response to stronger extrinsic incentives. 

In general, the way responses to extrinsic incentives change with the social multiplier has 

implications for how Math-Science choices will be differentially affected across peer groups and 

schools depending on the predetermined choices of the older siblings.15 Even if all schools are subject 

to the same curriculum and experience the same curriculum change, they will not experience the same 

change in the fraction of students choosing Math-Science. A unique feature of our institutional setting 

allows us to test the prediction that as 
6∆#7$

67  monotonically increases from being negative when 

L#���ℎ����	���
��� = 1$ is small to being positive when the probability to choose Math-Science is 

large; i.e. the social multiplier is smaller for conformers than for non-conformers. The social multiplier 

is thus smaller if ���ℎ����	��
�� = 1 than if ���ℎ����	��
�� = 0. This implies that the same increase 

 

14 More specifically, these refer to the conditional probabilities L����ℎ����	���
��� = 1����ℎ����	��
�� = 0�  and 

L����ℎ����	���
��� = 0����ℎ����	��
�� = 1� for the non-conforming younger siblings; see Figure A1 in Appendix 

A. Table B3 reveals that 7% (4%) of younger sisters and 28% (21%) of younger brothers are non-conformers when having 

a non-Math-Science older sister (brother), while 79% (86%) of younger sisters and 58% (58%) of younger brothers are 

non-conformers when having a Math-Science older sister (brother). 
15 This prediction extends to all peers affecting intrinsic incentives; e.g. parents, family, friends, and friends’ family. 
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in extrinsic incentives leads to a smaller increase in Math-Science take-up of younger siblings with 

Math-Science older siblings. That is, when a higher fraction of younger siblings are choosing Math-

Science, there is more crowding out (or less crowding in) via identity (or social reputation) 

mechanisms. Testing this prediction requires enough variation in the cut-off, �!∗ , which we have 

because of the phase-in of the pilot-scheme in place for the older siblings who entered high school 

during the pre-reform years 1984-87.16 If we find a positive peer effect, then the pilot scheme can be 

exploited as an exogenous increase in �∗ as it induced younger siblings to choose Math-Science by 

having induced their older siblings to opt for Math-Science. Sections 5 and 6 are devoted to analyzing 

these mechanisms in detail. 

The 1988 high school reform can be seen as signaling that combining advanced Math and Science 

courses is less essential. They do not necessarily need to be bundled together, as post-1988 students 

can freely combine their advanced courses. It can also be seen as a lowering of the cost of acquiring 

advanced Math as it does not necessarily have to be combined with advanced Physics or Chemistry. 

The model thus predicts that this lowering of extrinsic costs (increase in extrinsic benefits) will have 

a larger effect on the Math-Science choices for younger siblings with Math-Science older siblings.  

2.2. Effects of Intrinsic Incentives 

Intrinsic incentives, �, are here modeled as primarily varying with older sibling’s Math-Science 

choice. However, intrinsic incentives can also vary by gender or with the strength in social ties. Here 

we also assume 
6M∆B�%∗4�,�>?:

% ,�5J
67C∗M > 0, which implies that the social multiplier decreases when the cut-off 

increases. Examining the interaction between changes in extrinsic and intrinsic incentives:  

                                 
@3 4�%∗��, �>?:

% , ��5
@� @�>?:

% =
@3 4�%∗��, �>?:

% , ��5
@� @�%∗

@�%∗��, �>?:
% , ��

@�>?:
%                                       #7$ 

where the second term is negative, since a higher intrinsic cost means fewer choose Math-Science and 

the cut-off is lowered. The sign of the first term depends on the change in the density, 
6OB�%∗4�,�>?:

% ,�5J
6�%∗

, 

which is positive for values below the unimodal value, 8#0$, and negative for values above. Thus the 

first term in (7) is positive (negative) when the cut-off is low (high). This implies that the interaction 

 
16 Jia and Persson (2014) present a similar model to explain child identity choices of minority couples in China. They 

primarily exploit exogenous time-series variation in extrinsic incentives induced by the one-child policy, but do not have 

enough exogenous variation shifting the cut-off in the cross-section and rely on regional variation instead. We rely on 

time and cross-sectional variation across high schools caused by the policy changes detailed in Section 3. 
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effect between extrinsic and intrinsic incentives is negative if the share of non-conformers choosing 

Math-Science is small, 34�0∗ #�, �>?:0 , �$5, but less negative (or even positive) when this share is large. 

These predictions can be tested by exploiting the fact that the pilot scheme shocked younger siblings’ 

intrinsic incentives indirectly by shocking their older siblings’ extrinsic incentives, while the 1988 

reform changed their extrinsic incentives directly. We therefore assess the magnitude of this interaction 

effect by examining younger siblings’ Math-Science choices and how they are affected by the social 

interaction effects with their older siblings.  

The model also has strong predictions for gender differences. Math-Science is a more common 

choice for boys than for girls. If boys have a higher intrinsic cost of not conforming to their older 

sibling’s Math-Science choice or a higher weight put on identity (e.g. because of stereotyping), then 

the 1988 reform was also a differential shock to intrinsic incentives by gender. Since younger siblings 

could choose advanced Math without also choosing another advanced Science (i.e. Physics or 

Chemistry), this may lead to less stereotypical choices. 

2.3. Measurement and Empirical Tests  

In this section, we empirically test the predictions derived in Sections 2.1 and 2.2. To assess their 

empirical importance, we quantify how responses to changes in extrinsic incentives vary based on their 

interaction with (i) the strength of social norms and (ii) intrinsic incentives.  

High school curricula can be seen as an extrinsic incentive (or a law) that also sends a signal about 

school values and the benefits that different course choices are likely to encounter. The pilot scheme 

rolled out in Danish high schools 1984-87 and the major reform of the curriculum in 1988 can thus be 

seen as shocks to extrinsic incentives, �, for the exposed cohorts. In this section, we test the model 

predictions by analyzing the differential impacts of the major 1988 reform. 

Intrinsic incentives primarily vary with older sibling’s Math-Science choice, �
��
!

, but their social 

impact on the Math-Science choice may also vary with social ties. Here we simply measure intrinsic 

cost differences by the gender of the younger sibling, but in Sections 5 and 6 we further assess 

heterogeneity by sibling age-difference, gender-composition of sibship, size of sibship, birth-order, 

family and parental background. In Sections 4-6, we corroborate and exploit how the pilot scheme in 

1987-84 exogenously changed younger siblings’ intrinsic motivation by exogenously changing older 

sibling’s extrinsic incentives.  

The weight placed on identity, �, varies over peer groups proxied by the Math-Science choices of 

parents, schoolmates, and schoolmates’ older siblings and parents. We obtain exogenous variation in 
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the number of schoolmates taking advanced Math-Science through variation in how many of their 

older siblings chose Math-Science and were exposed to the pilot scheme. This way of measuring the 

social norm should minimize the reflection problem (Manski, 1993, 1995) as older siblings’ and 

parents’ relevant educational choices were made years earlier. 

The outcomes and educational choices are thus measured at the individual level, while extrinsic 

incentives are measured at the school-cohort level (1984-87 pilot) and cohort level (1988 reform), and 

the social environment is measured both at the sibling, family, and school-cohort level. 

To test the prediction in Section 2.1, we need to measure extrinsic incentives and the strength of 

social norms in the peer group. We measure the fall in extrinsic incentives by the indicator, 

P/� ≥ 19882, which measures how the choice set was universally changed for all high school cohorts 

entering high school after 1988. The model predicts that the impact of this reform will vary based on 

the strength of the social norm in the peer group. We cannot observe the cut-off values, �∗, but proxy 

them by the fraction of school-cohort-mates’ older siblings choosing Math-Science: 

���ℎ��T�	��UUUUUUUUUUUUUUUUU
��,V,W, where s denotes high school and t denotes cohort of the younger sibling.17 Figure 

2 presents difference-in-differences coefficient estimates, αε∗ , on the interaction between whether this 

fraction is higher than a cut-off value, �∗, ranging from 5% to 50%. That is, the coefficient on the 

interaction term: P����ℎ��T�	��UUUUUUUUUUUUUUUUU
��,V,W ≥ �∗ ∗ P/� ≥ 19882  in a regression also controlling for 

whether the younger sibling enters high school after the major reform in 1988, P/� ≥ 19882, high 

school Pilot status, high school fixed effects, and cohort fixed effects plotted against the cut-off, �∗. 

Each regression coefficient, αε∗, thus measures the difference in the impact of the extrinsic incentives 

post 1988 between high schools above and below the cut-off, �∗. The reform caused a large decline in 

the fraction of students choosing Math-Science, and was essentially a decrease in extrinsic incentives 

as it signals less importance to bundling these advanced courses. That is, a positive regression 

coefficient, αε∗> 0, means a negative derivative, 
6∆#7$

67 < 0, of reputational returns. Figure 2 shows how 

the derivative 
6∆#7$

67  goes from being negative when Math-Science is a rare choice in the peer group to 

being positive when it is a more common choice. Furthermore, a comparison of panels (a) and (b) 

shows a steeper slope when the older sibling chose Math-Science. This means that the change in the 

social multiplier is larger and there is more crowding in of the weaker extrinsic incentives for the 

younger siblings who can conform to their older sibling by choosing Math-Science as they face 

 
17 We get very similar results if we instead proxy the peer group norm by the fraction of school-cohort-mates’ older siblings 

at a Pilot school or by the fraction of school-cohort-mates’ parents with a STEM education. 



 

14 

 

stronger intrinsic incentives. Panels (c) and (d) show that this is driven by stronger crowding in for 

younger brothers than for younger sisters. In a model without intrinsic motivation and identity 

concerns, we would expect identical individuals to respond identically to universal curricula change 

independently of their peer group. 

Figure 2. Crowding in of Extrinsic Incentives. 

(a) ααααε∗ε∗ε∗ε∗, ���ℎ����	��>?: = 0                                       (b) ααααε∗ε∗ε∗ε∗, ���ℎ����	��>?: = 1 

 

(c) ααααε∗ε∗ε∗ε∗, ���ℎ����	��>?: = 0 by gender                     (d) ααααε∗ε∗ε∗ε∗, ���ℎ����	��>?: = 1 by gender 

 

Note: The figure displays the regression coefficient, αε∗, and 95% confidence intervals (vertical axis) by the fraction of 

school-cohort-mates’ older siblings with Math-Science, ���ℎ��T�	��UUUUUUUUUUUUUUUUU
��,V,W (horizontal axis) as a proxy for the variation in 

the cut-off value, �∗, for whether younger siblings are indifferent between choosing Math-Science or not. All estimates are 

displayed separately by older siblings’ Math-Science choice and by gender in panels (c) and (d), where the light solid line 

with squares denotes boys and the dark dashed line with diamonds denotes girls. 

To test the prediction in Section 2.2 we also need to measure the intrinsic cost. As argued 

previously, we hypothesize that the intrinsic cost of not conforming is higher for boys, since gender is 

a salient feature of identity and boys may face stronger social pressure to conform as math and science 

are stereotypical male choices. We find that the drop in Math-Science skill supply after the 1988 reform 

is 8.7 percentage points larger for boys than for girls.  
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Overall, this section has shown how the interplay between changes in extrinsic incentives and their 

interactions with intrinsic costs and social norms across peer groups have substantially contributed to 

the continuous fall in the Math-Science skill supply. Over the period 1980-2000, this advanced skill 

supply has decreased by 50% among boys and the gender gap has closed by 57% as the social pressure 

to take advanced math and science in high school tends to have been particularly strong for boys. 

In order to better understand why we observe more crowding in for boys and younger siblings facing 

a stronger STEM norm, we turn to better understanding the underlying mechanisms by estimating 

causal sibling spillover effects. These are essential for understanding how strongly social multipliers 

may amplify or dampen impacts of education policies depending on the composition of the peer group. 

3. Identification of Peer Effects Using a High School Pilot Scheme 

We exploit some unique features and changes in institutions in Denmark to identify the peer effects 

in sibling interactions. This section describes our identification strategy and the educational 

environment of the Danish high school. In the first subsection, we briefly explain the empirical 

challenge of identifying peer effects and how we exploit the unique institutional setup to identify social 

interaction effects from older to younger siblings. Then we describe the two relevant high school 

regimes, which form the basis for our identification strategy. The second and third subsections, concern 

the high school regime and the pilot scheme that provides us with exogenous variation in the cost of 

acquiring advanced math and science courses for the older siblings. The fourth subsection, concerns 

the high school regime forming the basis for the math and science choices of their younger siblings. 

3.1. Identifying Peer Effects 

Peer (or social interaction) effects occur when the choice of one individual affects the choices of 

other individuals in the same peer (or social) group. In this paper, we are interested in how math and 

science choices of an older sibling affect whether his or her younger sibling pursues advanced math 

and science courses. The general challenge of identifying peer effects lies in the empirical issues of: 

(i) endogenous group membership, (ii) simultaneity (the reflection problem), and (iii) correlated 

unobservables in the peer group.18 These identification issues can be illustrated in a model which is 

 
18 Manski (1993; 1995) provides a more complete and general analysis of the identification of peer effects (or more 

generally endogenous effects), while Moffitt (2001) introduces the conceptual framework we adopt here. In a more 

recent contribution, Angrist (2014) discusses the identification challenges. 
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linear in the peer effect. We assume, without loss of generality, that there are only two individuals in 

each peer group - an older sibling and a younger sibling.19 

     ���ℎ����	��
�� = X� + X=���ℎ����	���
��� + XYZ
�� + X[Z�
��� + X\�O + �
��,O             (8) 

     ���ℎ����	���
��� = ]� + ]=���ℎ����	��
�� + ]YZ
�� + ][Z�
��� + ]\�O + ��
���,O         (9) 

where ���ℎ����	��^ denotes whether sibling i chose advanced math with an advanced science course 

in high school, Z^  denotes observable characteristics of sibling i, �O  denotes sibling pair specific 

characteristics like family background, gender composition, and age difference. Finally, �^,O denotes 

other unobserved factors affecting the MathScience choice of individual i in sibling pair f. 

Our objective is to estimate a causal effect of the older sibling’s ���ℎ����	��
��  choice on the 

younger sibling’s ���ℎ����	���
��� choice. To be able to give a causal interpretation of the parameter 

estimate of ]= in (9) we need to address the empirical issues (i)-(iii) mentioned above. The third issue 

of correlated unobservables is naturally a big concern in our setting, since siblings share many common 

social and genetic influences; including common genes, family background, neighborhood, and 

schools. All these common influences shape both siblings’ preferences and abilities and could lead 

them to making similar high school course choices. Omitted variables bias due to contextual effects 

arises if we are not able to observe all these relevant sibling pair specific (�O) and individual variables 

(Z^). The first and the second issues are presumably minor in our setting: (i) siblings are born into the 

same family thus do not choose each other based on each other’s characteristics and choices, and (ii) 

given the timing of high school course choices it seems plausible that the older sibling’s course choice 

is independent of the younger sibling’s choice (X= = 0) since the older sibling makes this choice years 

before the younger sibling. This exclusion restriction overcomes the reflection problem, as we 

postulate that the direction of the sibling effect goes from the older sibling to the younger sibling.20 

Nevertheless, this is not a necessary exclusion restriction as our empirical strategy addresses all these 

three empirical concerns, since the exogenous variation in the cost of acquiring advanced math and 

science for the older sibling is independent of both sibling pair specific factors and individual sibling 

characteristics.  

More specifically, our identification strategy exploits exogenous variation in the cost of acquiring 

advanced math and science stemming from a pilot scheme, where some older siblings unexpectedly 

 
19 It is straightforward to generalize this setting to larger peer groups. Brock and Durlauf (2001) discuss identification in 

nonlinear peer effects models. 
20 The developmental psychology literature supports that the direction of behavioral influence goes from the older sibling 

to the younger sibling (Buhrmester, 1992). Altonji et. al (2013) also corroborate this assumption and impose it as an 

identifying assumption to estimate causal sibling influences on adolescence substance use. 
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got the option of a more flexible course combination. Let L�?>�P	�_>
�� = 0 for older siblings in a 

traditional high school, where advanced math and science could only be achieved in a package of 

advanced math, advanced physics and intermediate chemistry. Let L�?>�P	�_>
�� = 1 for older siblings 

in a pilot high school, where advanced math and science could also be achieved in a package of 

advanced math, advanced chemistry, and intermediate physics. This additional course package option 

was introduced unexpectedly just before the older sibling made the choice of advanced high school 

courses. The pilot scheme thus provides us with exogenous variation in the cost of acquiring advanced 

math and science for the older sibling (captured by L�?>�P	�_>
��) that does not directly influence the 

younger sibling and is independent of any sibling pair specific (�O) and individual variables (Z^). 

Substituting this into (8) and (9) we get: 

     ���ℎ����	��
��      = X� + `L�?>�P	�_>
�� + XYZ
�� + X[Z�
��� + X\�O + �
��,O                   (10) 

     ���ℎ����	���
��� = ]� + ]=���ℎ����	��
�� + ]YZ
�� + ][Z�
��� + ]\�O + ��
���,O         (11) 

Younger siblings attend high school in a regime, where they have an even more flexible curriculum as 

advanced math and science courses can be combined as they like - the main requirement is that they 

choose at least two (and at most three) optional advanced courses. This particular institutional setting 

thus provides us with a unique quasi-experiment for identifying peer effects in math and science - 

going from the older sibling’s course choice to the younger sibling’s course choice. We can thus 

interpret the IV estimate of ]= in the structural equation (11) as capturing this causal peer effect when 

the first-stage equation (10) includes L�?>�P	�_>
��  as an instrument for ���ℎ����	��
��  which 

endogenously affects ���ℎ����	���
��� , because the instrument only affects the older sibling 

directly and the younger one merely through endogenous social interaction. 21  The identifying 

assumptions are corroborated in Joensen and Nielsen (2009, 2014) showing that L�?>�P	�_>
��  is 

independent of predetermined individual, family, and school characteristics for the students entering 

high school in 1984-87. This implies that older siblings are as good as randomly assigned to high 

schools which unexpectedly introduce the pilot scheme when they are enrolled in their second high 

school year. Furthermore, the instrument has a strong influence on the choice of math and science 

courses for the older sibling. We return to these empirical issues in Section 5. The following 

subsections describe the educational environment of the two relevant high school regimes: The Pre-

1988 High School with restrictive course packages that the older siblings attended and the Post-1988 

High School with much more flexible course choices for their younger siblings. 

 
21 Moffitt (2001) labels this type of identification strategy as a partial-population policy intervention. 
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3.2. The Pre-1988 High School 

In the period 1961-1988, the Danish high school system was a "branch-based" high school regime 

in which courses were bundled into restrictive course packages.22 We focus on the cohorts entering 

high school in 1984-87. The main reason to focus on this period is that the supply of course packages 

provides us with relevant exogenous variation in the cost of acquiring advanced math and science for 

the older siblings.  

This regime implied that students upon high school graduation would have achieved one of three 

math levels available: advanced, intermediate, or basic level. The difference between the three levels 

is reflected in the number of lessons per week, as well as in the content of the courses. For instance, 

the extent of geometry and algebra increases as the level becomes more advanced. In the empirical 

analysis, we focus on whether students choose advanced math and science, meaning that the 

intermediate and basic level courses are lumped together. The decision about which package to opt for 

is taken at the end of the first year in high school. The only way to obtain advanced math and science 

was the package consisting of advanced math, advanced physics and intermediate chemistry, unless 

the student was enrolled at a pilot school, where the package could be adjusted to include advanced 

chemistry and intermediate physics instead. It is exactly this increased course flexibility which some 

students were unexpectedly exposed to that constitutes the quasi-experiment we exploit in this paper. 

3.3. The Pilot Scheme 

The pilot scheme was implemented as an experimental curriculum at about half of the high schools 

prior to the 1988-reform. The purpose of the pilot scheme was to test the impact of increased flexibility 

prior to the 1988-reform. Figure 3 illustrates the consequences of the pilot scheme on the course 

packages of the high school youth. Prior to the pilot scheme, the fraction choosing advanced math and 

science declined and went below 25% in 1983. The pilot scheme counteracted this declining trend by 

attracting youth to the alternative course package with a higher weight on chemistry and a lower weight 

on physics. 

Table 1 gives an overview of the gradual implementation of the pilot scheme from 1984-87. The 

table is divided by types of high schools: schools with no pilot scheme (PilotSchool=0), schools where 

the pilot scheme was introduced after enrollment of the relevant cohort (PilotSchool=0, PilotIntro=1), 

 
22 Available course packages were labelled: Social Science and Languages, Music and Languages, Modern Languages, 

Classical Languages, Math-Social Science, Math-Natural Science, Math-Music, Math-Physics, and Math-Chemistry. 

The additional course package introduced at pilot schools was the Math-Chemistry option. 
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and schools where the pilot scheme was implemented prior to enrollment of the relevant cohort 

(PilotSchool=1, PilotIntro=0). 

Figure 3. Fraction of High School Cohorts Choosing Math-Science, by School Type 

 
Note: Pilot schools include all schools with pilot status at any point in time during 1984-87; i.e. 64 schools in total. 

 

Schools were not randomly assigned to become pilot schools. Instead, from 1984-86, they could 

apply to the Ministry of Education for permission to adopt the experimental curriculum, whereas in 

1987 the high school principals could make this decision without approval from the ministry.23 It is 

not possible to directly test whether the pilot schools represent a sample of schools which is essentially 

random with respect to math ability, but we corroborate that this is a reasonable assumption. 

It is clear, however, that students with a particular preference for chemistry may self-select into 

schools that are known to offer the pilot program before entrance. This is why we distinguish between 

students at pilot schools where the pilot scheme was unexpectedly introduced after they had enrolled 

high school (PilotSchool=0, PilotIntro=1) and those who knew that the school was a pilot school 

before they applied for entering the school (PilotSchool=1, PilotIntro=0). 

 
23 The schools which introduced the program in 1987 tend to be slightly negatively selected in terms of the students’ math 

abilities, while no similar concerns are raised regarding the other cohorts. However, to maintain a large number of sibling 

pairs, we include the 1987 cohort of older siblings in the study, while checking the sensitivity of our results to leaving 

out this cohort. 
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Table 1. Introduction of the Pilot Scheme 

 
Note: The table illustrates the introduction of the pilot scheme. For each of the affected cohorts, 1984-86, the table displays the number 

of schools who are traditional high schools only offering advanced Math with advanced Physics (PilotSchool=0), who are unexpectedly 

introducing the pilot scheme combining advanced Math with advanced Chemistry (PilotSchool=0, PilotIntro=1) and who already have 

adopted the pilot scheme (PilotSchool=1, PilotIntro=0). 

The instrumental variable strategy exploits the fact that the pilot scheme reduces the psychological 

cost of choosing advanced math and science since the students exposed to the scheme are free to choose 

either advanced physics and intermediate chemistry or advanced chemistry and intermediate physics.24 

Hence, first-year high school students enrolled at a school when it decided to introduce the pilot 

scheme were exposed to an unexpected exogenous cost shock, which induced more students to choose 

advanced math and science compared to students at non-pilot schools. If the selection of newly 

participating schools is exogenous with respect to student ability, the pilot scheme provides exogenous 

variation in students' math and science skills without influencing the outcome(s) of interest except 

through the effect on math and science choices. 

The instrumental variable, PilotIntro, is equal to one if the individual enrolled in a high school which 

then introduces the experimental curriculum for the first time, and it takes the value zero otherwise. 

This instrument is valid if the pilot scheme is randomly assigned to schools and if individuals are 

randomly distributed across schools that have not yet decided to introduce the experimental 

curriculum. This assumption is violated if the school decides to participate in the program based on 

the math abilities of local students. In Section 4 below, we test for similarities of student and parent 

characteristics across school status, and we find almost no significant differences in characteristics 

determined prior to high school. The assumption is also violated if schools change as a consequence 

of the scheme: if the school develops an expertise in science or if the quality of teachers changes as a 

consequence of the pilot scheme. Such effects would influence the younger siblings if they attend the 

same high school as their older siblings, and the effects could confound the sibling peer effects. 

 
24 Traditionally, the opportunity cost of attending high school is interpreted as forgone earnings from unskilled work. We 

use a broader interpretation associated with time allocation across courses as well as between studies, leisure, and 

unskilled work. If students choose course combinations optimally given their preferences and abilities, then a more 

flexible choice set reduces the cost of taking a given course as there is a higher probability of a good match between 

feasible course combinations and the students' preferences and abilities. 

Cohort N MathScience Schools N MathScience Schools N MathScience Schools N MathScience Schools

1984 12,758 0.2482 122 3,145 0.3253 22 0 0.0000 0 15,903 0.2634 144

1985 10,645 0.2330 107 1,802 0.3330 15 3,069 0.3271 22 15,516 0.2632 144

1986 8,997 0.2120 91 1,749 0.3116 15 4,969 0.3490 37 15,715 0.2664 143

1987 8,297 0.1899 78 1,505 0.2811 12 7,553 0.3311 52 17,355 0.2593 142

Total 40,697 0.2243 8,201 0.3159 15,591 0.3360 64,489 0.2630

Pilot School = 0
Pilot School = 0 Pilot School = 1

AllHigh School
Pilot Intro = 1 Pilot Intro = 0
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However, Figures 1 and 3 showed that the pilot scheme was introduced following a declining trend in 

the fraction choosing advanced math and science, and therefore qualified teachers would most likely 

be available. Furthermore, the relevant compliers would switch from intermediate chemistry and 

intermediate math to advanced chemistry and advanced math which would require only 5-6 additional 

weekly lectures for one class per cohort per school. 

In the empirical analysis we investigate to what extent the spillover effects may be going through 

the high school rather than through sibling interactions. We find that the bulk (at least 60%) of the 

spillover effect goes through social interactions among siblings.  

Table 2 presents placebo tests to support instrument exogeneity. The table presents first-stage 

estimates (falsely) assuming that the pilot scheme was introduced two, three, or four years, 

respectively, prior to when it was actually introduced. The first specification assumes that the pilot 

scheme was implemented for the cohorts who were in their third and final year when the pilot was 

actually adopted, while the last two specifications assume that it was implemented for recently 

graduated cohorts. Neither of these cohorts should be affected, since they should already have made 

their final course choices before the pilot scheme was adopted. We find a small significantly negative 

effect of the pilot schemes for the first placebo test. This suggests that the schools introducing the pilot 

in 1984-85 had slightly (1.5 percentage points) fewer students choosing math and science before the 

school adopted the pilot program. The coefficient is small and the picture is consistent with what is 

also seen in Figure 3. However, in the two last specifications where the distance to the actual reform 

is longer, the effect is smaller and insignificant. We therefore conclude that there existed only minor, 

if any, systematic prior differences in choices at schools which adopted the pilot scheme, and if 

anything, they should work in the opposite direction of the pilot. 

The instrument is strong if the unexpected introduction of the pilot scheme induces students to 

choose advanced math and science, which is directly tested and validated in Section 4. The instrument 

satisfies the monotonicity (or uniformity) condition if individuals who chose advanced math and 

science when required to do advanced physics and intermediate chemistry would also have chosen 

advanced math and science if they unexpectedly got the option of replacing advanced physics with 

advanced chemistry and replacing intermediate chemistry with intermediate physics. We are confident 

that the monotonicity assumption is reasonable in our application, since all options available at non-

pilot schools were also available at schools introducing the pilot scheme. 

Our instrument exploits the exogenous variation in the exposure of students to the option of 

switching the levels of physics and chemistry. Hence, the treatment of the older sibling that we 

investigate is the combined treatment of advanced math with advanced chemistry and intermediate 
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physics. We cannot separately identify the effect of math and science courses from the potential 

synergy between them.  

Table 2.  Placebo Tests on Pre-Pilot Cohorts 

 
Note: Parameter estimates and (standard errors) of the placebo pilot scheme introduction are displayed for first-stage 

OLS regressions of MathScience choice. The columns differ in which cohorts the placebo pilot introduction is assumed for 

and which schools are included in the sample. Column (1) leads PilotIntro two cohorts by assuming it was implemented 

for those who are graduating from the relevant school in the year it was actually implemented. Columns (2) and (3) lead 

PilotIntro three and four cohorts, respectively, by assuming it was implemented for those who have already graduated from 

the relevant school in the year it was actually implemented. The full set of cohort and parental background control variables 

is included. Significance at a 1%-, 5%-level and 10%-level are indicated by ***, ** and *, respectively. 

3.4. The Post-1988 High School 

In 1988 there was an extensive structural reform of the Danish High School, which was the most 

fundamental high school reform since 1903. The reform abolished the “branch based” regime and 

substituted it with a “choice based” regime, where the main distinction is between mathematical and 

linguistic track students. The reform implied an extended choice set in the form of more flexible 

opportunities to combine optional courses.25 In particular, the mathematical students have the option 

of combining advanced math with any other advanced course; for example physics, chemistry, biology, 

social science, or a language course. This is the regime within which the younger siblings in our sample 

make their educational choices. We focus on the younger siblings’ choice of advanced math with 

advanced physics and/or advanced chemistry, since these are comparable to the relevant course 

combinations for the older sibling attending high school in the pre-1988 regime.  

 
25 The reform also implied more weight on the high schools’ role of preparing students for college, more required readings, 

more written assignments, more stringent non-attendance regulation, more grading, and more hours of instruction 

allocated to the compulsory courses. 

(1) (2) (3)

Placebo PilotIntro -0.015 ** 0.002  -0.005

(0.006) (0.006) (0.005)

Pilot Intro cohort (actual)

Pilot Intro cohort (placebo)

Pre-pilot placebo period

Number of Individuals

Parameter Estimates

(Standard Errors)

First-stage:  MathScience 

1984-1985 1984-1986 1984-1987

35,870 54,018 70,771

1982-1983 1981-1983 1980-1983

t-2 t-3 t-4
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In the post-1988 high school regime, students choose either the mathematical or the linguistic track 

upon entry. Each course is either common to all students on the chosen track (compulsory courses), 

compulsory for some and optional for others, or exclusively optional. The optional courses can be 

obtained at either advanced or intermediate level reflecting the complexity of the content, the number 

of lessons per week and the intensity of exams (written and/or oral).  

All students are required to follow at least two (and at most three) optional advanced courses, and 

for the mathematical students there was a minimum required amount of math-science content, while 

for the linguistic students there was a minimum required amount of language content. The first year of 

high school consists only of compulsory courses (common as well as track-specific courses) taught in 

classes of at most 28 students. The second and third year of high school added at least three and at 

most four optional courses.26. In addition to the requirements of at least two advanced optional courses, 

there were some bonds between some courses in order to preserve the possibility for the courses to 

complement each other.  

We follow younger siblings in this high school regime until the entry cohort of 1997. We focus on 

the younger siblings’ choice of advanced math with either advanced physics or advanced chemistry, 

since these are comparable to the relevant pre-1988 regime course combinations of the older siblings.27 

Thus ���ℎ����	���
��� in equation (8) is an indicator for whether the younger sibling chooses to 

combine advanced math with either advanced physics or advanced chemistry.  

4. Data Description 

4.1. Sample Selection 

For our empirical analysis we use a panel data set comprising the population of individuals starting 

high school from 1984 and onwards. The data are gathered from administrative registers and 

administered by Statistics Denmark. The data include basic demographic information such as date of 

birth, place of residence, and gender. What is crucial for this study is that we observe which schools 

offered the pilot scheme when, and we can identify which school the individual attended as well as the 

 
26 The compulsory courses common to all students are advanced Danish and history, intermediate English and basic 

physical education, biology, geography, religion, music, (visual) art, and ancient history. Track-specific compulsory 

courses for mathematical students comprise intermediate math and physics, basic chemistry, and a second foreign 

language. For the linguistic students the track-specific compulsory courses are basic natural sciences (including math) 

and Latin, as well as two other foreign languages. Commonly available optional intermediate courses comprise: biology, 

geography, chemistry, technical science, business and economics, drama, sports, and movie science, while optional 

advanced courses include all feasible continuations of the intermediate courses. 
27 Some curriculum changes are introduced with the reform, e.g. a historical dimension was incorporated into the math 

course while some advances in the experimental direction were incorporated into the physics course. 
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chosen course package. Furthermore, we have information about the dates for entering and exiting a 

high school education, along with an indication of whether the individual completed the education 

successfully, dropped out, or is still enrolled as a student. We augment this data with background 

information about the parents; including educational achievement and gross income. This information 

is recorded when the individual was 15-years old, which is prior to enrolling in high school. 

The sample consists of individuals who are directly influenced by the quasi-experimental variation 

due to the gradual introduction of the pilot scheme for cohorts entering high school 1984-1987. From 

this sample, we select high school graduates who finished in three years and have a younger sibling 

who entered high school after 1987 and finished in three years.28 In our main analysis, we focus on a 

homogeneous sample of relatively closely spaced sibling pairs (cohorts 1988-91, age gap ≤ 4 years).29
 

4.2.  Outcome and Control Variables 

The outcome of interest is whether the post-reform peers choose to combine advanced math and 

science or not. Table B3 reveals a strong correlation in the choice of this course package across 

siblings:  28 % (14 %) of younger siblings chose this course package when the older sibling did (did 

not) choose this package, and the correlation varies across gender composition of the sibship. 

Table B4 shows variation in the choice of advanced math and science when we distinguish between 

whether the older sibling was exposed to the pilot scheme or not. The proportion of younger siblings 

who chose this course package is 18% when the older sibling was not exposed (PilotSchool=0, 

PilotIntro=0) and 21.6% when the older sibling was unexpectedly exposed to the pilot scheme 

(PilotSchool=0, PilotIntro=1). The relationship appears to be very strong among pairs of brothers.  

We also include entry cohort fixed effects, sibling gender composition, parental background, and 

high school specific controls. Parental background includes a set of mutually exclusive indicator 

variables for the level of highest completed education of the mother and father, respectively, and their 

income as observed at the end of the year before the individual started high school. We leave out post-

graduation control variables and thus estimate the total effect of advanced math and science. 

Table B5 in Appendix B shows descriptive statistics of background variables across pilot school 

status. From this table it is evident that the students whose older siblings entered high schools which 

 
28 About 40% of a birth cohort attended the academic high school track at this point in time; hereof 10% do not complete 

in three years. The main part of drop out takes place before the choice of advanced math and science course packages. 

For older as well as younger siblings, dropout is uncorrelated with pilot school status. 
29 An overview of the sample selection is given in Table B1 in Appendix B. An overview of the distribution of sibling pairs 

across the older siblings’ exposure to the pilot scheme for each high school cohort of younger siblings is given in Table 

B2 in Appendix B. 
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had already adopted the pilot program (PilotSchool=1, PilotIntro=0) previous to their entry are 

potentially non-randomly selected, while those whose older siblings were unexpectedly exposed to the 

program (PilotSchool=0, PilotIntro=1) are not systematically different from students at schools 

without the pilot program (PilotSchool=0, PilotIntro=0). This lends further support for the validity of 

PilotIntro as an instrument for older siblings’ course package choice. 

5. Estimates of Sibling Peer Effects 

Table 3 presents the main results from the empirical analysis of how an increase in extrinsic 

incentives for the older sibling spill over on their younger sibling through increasing their intrinsic 

motivation. We present the results from OLS and 2SLS while the main results are similar for 

alternative methods.30 The OLS regressions indicate a strong positive association between math and 

science course choices of older and younger siblings. The reduced form estimates suggest that there 

are spillover effects from the introduction of the pilot scheme to the younger siblings, while the IV 

estimates suggest that the effect goes through the older siblings’ course choices. However, the effects 

are only statistically significant when the age distance between the siblings is less than four years.31 

When the age distance is less than four years, the magnitude of the estimates ranges from 0.35-0.52, 

which suggests a very strong peer effect.  

Including additional control variables does not significantly affect the point estimates, lending 

additional support to the exclusion restriction and exogeneity of PilotIntro which is imperative for the 

causal inference based on the IV estimates. Columns (3) and (6) add explanatory variables related to 

high schools: an indicator variable for whether the siblings attended the same high school and 

predetermined high school means of parents’ highest completed education and income. These mean 

variables are thought to approximate permanent high school specific effects such as the quality of 

science teachers or the expertise in science teaching. In Table B8 in Appendix B we further investigate 

 

 
30 We report the results from employing the bivariate probit estimator in Table B6 in Appendix B. Our main results are 

broadly robust and the first-stages are literally unchanged. Conclusions from the bivariate probit model appear slightly 

stronger; particularly in the subgroup analysis. However, an assessment along the lines of Altonji, Elder and Taber 

(2005) reveals that primarily the parametric assumptions, and not the exogenous variation, drive identification when 

covariates are included in the bivariate probit model. Therefore, we have chosen to report the results from linear 

probability models as our main results. However, the disadvantage from using linear probability models is that a fraction 

of the predicted outcome probabilities are negative (around 20%). In addition, we have used the semi-parametric 

estimator by Abadie (2003) as a robustness check. The second stage estimate without control variables is almost identical 

to the bivariate probit (marginal effect 0.384 vs. 0.360). 
31 Table B7 in Appendix B presents the results when the maximum age difference is held constant and the cohorts are 

allowed to vary. These results confirm that the results vary with age difference and not with cohorts. This is consistent 

with sibling pairs with an age difference of five years or more being considers separate sibships (Adams, 1972). 
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Table 3. Estimates of Peer Effects: Main Results 

 
Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively.  

whether the spillover works through the school rather than the sibling. We present results from a 

placebo test where we randomly match only children from entry cohorts 1984-87 with only children 

N (1) (2) (3) (4) (5) (6)

  PilotIntro 0.068 *** 0.071 *** 0.065 ***

  Younger Sibling 1988-91, ≤4y 7,786 (0.017) (0.016) (0.017)

  PilotIntro 0.065 *** 0.070 *** 0.067 ***

  Younger Sibling 1988-92, ≤5y 10,571 (0.015) (0.014) (0.014)

  PilotIntro 0.060 *** 0.067 *** 0.063 ***

  Younger Sibling 1988-93, ≤6y 12,717 (0.013) (0.013) (0.013)

  PilotIntro 0.067 *** 0.073 *** 0.069 ***

  Younger Sibling 1988-97, ≤10y 17,691 (0.011) (0.010) (0.011)

  PilotIntro 0.036 ** 0.032 ** 0.023

  Younger Sibling 1988-91, ≤4y (0.015) (0.014) (0.014)

  PilotIntro 0.020 * 0.017 0.01

  Younger Sibling 1988-92, ≤5y (0.012) (0.012) (0.012)

  PilotIntro 0.017 0.013 0.067

  Younger Sibling 1988-93, ≤6y (0.011) (0.011) (0.011)

  PilotIntro 0.010 0.009 0.006

  Younger Sibling 1988-97, ≤10y (0.009) (0.009) (0.009)

  Older Sibling MathScience 0.140 *** 0.147 *** 0.145 *** 0.523 ** 0.447 ** 0.346

  Younger Sibling 1988-91, ≤4y (0.009) (0.010) (0.010) (0.231) (0.205) (0.221)

  Older Sibling MathScience 0.145 *** 0.151 *** 0.150 *** 0.314 0.241 0.149

  Younger Sibling 1988-92, ≤5y (0.008) (0.008) (0.008) (0.192) (0.168) (0.177)

  Older Sibling MathScience 0.142 *** 0.149 *** 0.147 *** 0.276 0.193 0.106

  Younger Sibling 1988-93, ≤6y (0.007) (0.007) (0.007) (0.183) (0.155) (0.168)

  Older Sibling MathScience 0.139 *** 0.146 *** 0.144 *** 0.143 0.121 0.084

  Younger Sibling 1988-97, ≤10y (0.006) (0.006) (0.006) (0.133) (0.118) (0.127)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling pair gender composition + + + +

  Sibling pair in same High School + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + +

  HS Mean of Highest Completed Education and Income + +

Parameter Estimates                                                         

(Standard Errors)                   

OLS 2SLS

First-stage:  Older Sibling MathScience 

Outcome:  Younger Sibling MathScience

Reduced-form:  Younger Sibling MathScience
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from entry cohorts 1988-91. At the left hand side of the table we match the children randomly and at 

the right hand side we randomly match only children attending the same high school. No matter how 

we match the children, there is no correlation between their course choices. When we match only 

children attending the same high schools, the reduced-form coefficient and the 2SLS coefficients are 

larger than when they are randomly matched. However, the estimates are 40% smaller compared to 

the main results in Table 3 and insignificant. When high school specific variables are added (columns 

(6) and (8)) they are even smaller. We conclude that it is important to account for the high school 

specific variables in order to rule out that the spillover effect goes through the school.32 

The IV point estimates are larger than the OLS estimates, although not significantly so. However, it 

suggests that older siblings who are at the margin of choosing math science are more influential for 

their younger siblings than others. This would be consistent with sibling competition: if the older 

sibling is an always taker (“a math-science star”), the younger sibling would be more reluctant to 

compete than if the older sibling is on the margin of choosing math science. 

The fact that the peer effect is stronger when the age difference is limited to four years than 

otherwise, could suggest that a smaller age difference implies closer ties. However, it could also reflect 

more sibling rivalry or stronger role model effects among closely spaced siblings. Unfortunately, the 

data does not allow us to draw more detailed inference about the importance of sibling spacing closer 

than 4 years, but we examine heterogeneity in detail to inform potential mechanisms in the next section. 

6. Understanding Heterogeneity in Sibling Interactions 

In this section, we seek to better understand heterogeneity in peer effects. We examine which older 

siblings respond more (or less) to changes in extrinsic incentives, as well as when the shock to the 

younger sibling’s intrinsic motivation matters more (or less). That is, for which sibling pairs the peer 

effect is stronger (or weaker). We explore differences in complier characteristics and peer effects 

across gender, sibship composition, ability, parental background, and strength of ties. These 

heterogeneous effects lead towards inference about plausible causal mechanisms.  

Our theoretical framework in Section 3 showed how educational choices are shaped by peers and 

the social environment, but was general enough to encompass a variety of underlying mechanisms. 

The student may gain utility from behaving similarly to an older sibling who inspires academic 

 
32 It should be noted that only children attending the same high school may know each other and socially interact through 

extra-curricular activities like sports clubs. This direct social interaction is less likely if their age difference is larger. 

When we leave out the placebo siblings within the same high school with an age difference of less than two years, then 

the unconditional reduced form coefficient in (5) further falls to insignificant 0.014. Likewise, the 2SLS estimate is also 

insignificant and 60% smaller compared to our main estimates in Table 3. 
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aspirations, and the student may compete with the older sibling in terms of academic achievements in 

order to improve his or her reputational return in the peer group. The social environment may also 

allow for information sharing in which case a student with an older sibling who pursued math and 

science faces less uncertainty about the difficulty and joy of this course package and about the future 

prospects compared to other students. Another possible influence of the environment may be 

productivity spillover effects in which case a student with an older sibling who did math and science 

may be able to perform better in school due to assistance with homework and learning. Finally, there 

may be externalities due to joint leisure in which case a student with a peer sharing his or her passion 

for math and science would be able to share public goods with this peer (e.g. nerdy jokes and movies) 

or to perceive the academic culture as relatively more welcoming. 

In order to shed light on which mechanism is more important, we draw upon psychological and 

sociological literature on the social interactions among siblings. This literature focuses on gender 

composition, birth spacing and birth order as fundamentally important characteristics explaining the 

nature of social interaction between siblings. 

The importance of birth order was first mentioned by Adler (1927) and has been found for education 

and cognitive outcomes (Black et al., 2005; Björklund and Jäntti, 2012). Adams (1972) suggests that 

second and middle children would often try to catch up with the first child and thus compete, but the 

youngest child less so. Conley (2000) stressed that same-sex sibling ships are more competitive and 

achievement-oriented than other sibships, and in particular if they consist of two boys. Grose (1991) 

states that two closely spaced brothers produce the most rivalry. Adams (1972) suggests that siblings 

who are less than five years apart are more competitive, while siblings who are more than five years 

apart tend to behave like separate sibships. Thus, it seems plausible that sibling rivalry and competition 

is a common denominator which may be particularly important among closely spaced pairs of brothers. 

High school course choices may reflect competitive actions. Various characteristics of math, in 

particular, but to some extent also science, suggest that it is a competitive discipline (Niederle and 

Vesterlund, 2010). In the discipline of math, answers are either right or wrong, which makes it easier 

to claim victory. Furthermore, math skills are strong predictors of future performance, which means 

that the monetary gains from excellent performance may be sizeable.33 The math discipline attracts 

more males who are known to be attracted to competition, while females tend to shy away from mixed-

sex competition and to do worse in high-stake mixed-sex competition (Niederle and Vesterlund, 2007). 

Buser et al. (2014) estimate that around 20% of the gender difference in the choice of an academic 

 
33 See e.g. Altonji (1995), Joensen and Nielsen (2009, 2014), Cortes et al. (2014), and Falch et al. (2014). 
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math and science high school track is explained by gender differences in competitiveness. Therefore, 

MathScience course choice may be a battle field characterized by competition and sibling rivalry. To 

investigate the importance of sibling rivalry, and other potential mechanisms, we study heterogeneity 

of effects across subgroups divided by sibship gender composition and ability.  

6.1. Ability and Gender Composition of Sibship 

Table 4 presents estimates separately by gender of the older and younger sibling, respectively. The 

first stage results show that older brothers are much more likely to comply with the instrument than 

older sisters, and older siblings in sibships with younger brothers are also more likely to comply with 

the instrument than those with younger sisters. The pilot scheme inducing adolescents to choose 

advanced math and science thus influenced students in sibships containing boys more than others. For 

example, the relative likelihood that a complier is an older brother is around 1.5 and given by the ratio 

of the first-stage coefficient on PilotIntro for the subsample of older brothers relative to the estimate 

for the full sample. This means that older brothers are around 50% more likely to comply to the 

unexpected introduction of the pilot scheme. The reduced-form estimates reveal a very strong effect 

on younger brothers: when their older sibling was unexpectedly exposed to the pilot, younger brothers’ 

probability of taking up advanced math and science increased by 5-6 percentage points. The sibling 

spillover effects also differ by gender: the point estimates are larger for older brothers and for younger 

brothers. This may support a hypothesis of sibling rivalry typically found to be systematically stronger 

among pairs of brothers.34 In addition, it may be interpreted as evidence against parental involvement 

driving the findings. One would think that parents would not systematically influence sons differently 

than daughters, unless they have a stereotypical mindset. We investigate this further in subsection 6.3. 

In Table 5 we split the sample by high school GPA of the older sibling. Unfortunately, we do not 

have any measures of ability (such as test scores or grades) before the students entered high school. 

Therefore, we define the subgroups based on GPA as measured at the end of high school. We caution 

that this measure may be affected by the course choice but it is the best we can do with the available 

data. We distinguish three groups: below 50th percentile, between 50th-90th percentile, and above 90th 

percentile in the GPA distribution. The results show that the first-stage is sizable for the older siblings 

with the highest ability, while the sibling spillover turns negative (but insignificant) in this case. This 

pattern of results supports the hypothesis of sibling competition. If the older sibling performs very well  

 

 
34 When we divide the sample into four subgroups (brother-brother, brother-sister, sister-brother, sister-sister), we find that 

the causal peer effect is largest and only significantly positive for brother-brother pairs. 



 

 

Table 4. Estimates of Peer Effects: Heterogeneity by Gender  

 
Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.105 *** 0.103 *** 0.095 *** 0.046 ** 0.045 ** 0.041 ** 0.080 *** 0.087 *** 0.077 *** 0.058 ** 0.056 ** 0.051 **

(0.027) (0.027) (0.028) (0.020) (0.020) (0.020) (0.026) (0.024) (0.025) (0.023) (0.022) (0.023)

Relative to overall first-stage 1.544 1.451 1.462 0.676 0.634 0.631 1.176 1.225 1.185 0.853 0.789 0.785

PilotIntro 0.047 ** 0.046 ** 0.033 0.026 0.020 0.013 0.062 ** 0.062 ** 0.047 * 0.007 0.005 0.001

(0.022) (0.021) (0.021) (0.020) (0.019) (0.019) (0.025) (0.025) (0.026) (0.015) (0.015) (0.015)

Older Sibling MathScience 0.452 ** 0.442 ** 0.352 0.577 0.440 0.310 0.777 ** 0.716 ** 0.607 * 0.123 0.092 0.021

(0.216) (0.212) (0.226) (0.462) (0.436) (0.471) (0.366) (0.324) (0.354) (0.250) (0.256) (0.291)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + +

  Sibling pair gender composition + + + + + + + +

  Sibling pair in same High School + + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + + + + + +

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs 3,673 4,113 3,490 4,296

Parameter Estimates                                                                                                                   

(Standard Errors)                                                                                                                     

Older Sibling Younger Sibling

Brother Sister Brother Sister

Outcome:  Younger Sibling MathScience

0.483 0.189 0.343 0.316

0.194 0.186 0.310 0.091

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience



 

 

Table 5. Estimates of Peer Effects: Heterogeneity by Ability 

 
Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively 

(is a “superstar”) the younger sibling would rather not compete with this top performance and chooses 

another course combination. However, the younger sibling does conform to and compete with an older 

sibling with more moderate ability.35 

6.2. Birth Order and Size of Sibship 

In Table 6 we investigate heterogeneous effects by birth order and size of the sibship. We find that 

first-born older siblings respond less strongly to the introduction of the pilot program and influence 

their younger sibling more strongly than later-born older siblings. For pairs where the young sibling is 

also the last-born in the sibship, the old sibling responds more strongly to the pilot program, and he or 

she influences the younger sibling more than in other sibships. This latter finding is not entirely 

consistent with the predictions from the psychological literature, that middle children compete more 

with first borns, while last borns do not. Our results reveal no difference between families with two 

siblings versus three or more siblings. 

 
35 We have also run these regressions separately by gender, which reveals the same patterns, but the samples of high-ability 

students are only around 400 students in these cases and the estimates consequently imprecise. 

 

(1) (2) (3) (4) (5) (6)

PilotIntro 0.086 *** 0.068 *** 0.040 0.050 * 0.135 ** 0.149 **

(0.023) (0.023) (0.028) (0.027) (0.061) (0.060)

Relative to overall first-stage 1.265 1.046 0.588 0.769 1.985 2.292

PilotIntro 0.035 * 0.020 0.059 ** 0.039 * -0.051 -0.027

(0.019) (0.019) (0.024) (0.024) (0.051) (0.051)

Older Sibling MathScience 0.408 * 0.291 1.452 0.785 -0.376 -0.181

(0.238) (0.281) (1.069) (0.562) (0.440) (0.357)

Control Variables:

  Entry Cohort Fixed Effects + + +

  Sibling pair gender composition + + +

  Sibling pair in same High School + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + +

  HS Mean of Highest Completed Education and Income + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

Parameter Estimates                                                    

(Standard Errors)                                                      

Older Sibling

0.290 0.347 0.420

GPA < P50 P50 < GPA < P90 GPA > P90

First-stage:  Older Sibling MathScience 

0.170 0.208 0.210

3,768 3,142 876

Outcome:  Younger Sibling MathScience

Reduced-form:  Younger Sibling MathScience
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There are two competing hypothesis why first-borns influence younger siblings more than later-

borns: either they exert a stronger direct influence on all of the younger siblings, or they exert a stronger 

effect due to indirect snowball effects. In our set-up we analyze 1,842 sibships of three ("triplets") to 

identify the birth order effect without imposing additional parameter restrictions. Appendix C provides 

details on how we exploit the unique features of the institutional setup and the timing of the policy 

changes, which implies that some “triplets” have one and some have two older siblings exogenously 

affected by the pilot scheme. This allows us to separately identify both the direct effect of the first and 

of the second on the third sibling, without imposing additional parameter restrictions. We are thus able 

to estimate birth-order effect under more general conditions than the social multiplier conditions 

provided by Glaeser, Sacerdote and Scheinkman (2003) and the snowball effect conditions provided 

by Dahl, Løken and Mogstad (2014). We find a strong positive direct effect of the first- on the second-

born, but negative direct effects on the third-born. Our estimates of the direct effects are too noisy to 

draw strong inference, but consistent with Adams (1972) who suggests that second- and middle-born 

are more likely to conform to the first-born child, while the last-born is more likely to be a non-

conformer.  

6.3. Strength of Ties between Siblings 

The strength of ties relate to the nature and the duration of the relationship as well as the frequency 

and intensity of interactions. We explore heterogeneity in peer effects depending on whether the sibling 

pairs share both parents (98% of our sample) and whether the sibling pairs grew up together (96% of 

our sample). However, because these groups comprise most of the sample, the results are almost 

identical to the main results. Finally, we also examine heterogeneity by whether the sibling pair 

attended the same high school or not. Peer effects are only significant for siblings that attend different 

high schools. These results are shown in Table B9 in Appendix B. 

6.4. Parental Background 

Parents’ and children’s education are known to be strongly correlated for many reasons. One of the 

potential reasons is that parents’ level and field of education reflect their ability to assist their children 

with making compatible educational choices. Such assistance is highly relevant when it comes to 

choosing course packages in high school. 

We do not know to what extent parents are actually involved in course choice in our sample. 

However, we do know that at high school entrance when students are 16-20 years old, parents are still 

very closely involved in their educational decisions. Actually the family is ranked first when it comes 



 

 

Table 6. Estimates of Peer Effects: Heterogeneity by Birth Order and Sibship Size 

 

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.147 *** 0.143 *** 0.048 ** 0.043 ** 0.032 0.035 0.085 *** 0.078 *** 0.069 *** 0.052 ** 0.066 *** 0.075 ***

(0.037) (0.037) (0.019) (0.019) (0.031) (0.030) (0.021) (0.020) (0.025) (0.024) (0.024) (0.023)

Relative to overall first-stage 2.162 2.200 0.706 0.662 0.471 0.538 1.250 1.200 1.015 0.800 0.971 1.154

PilotIntro 0.016 0.007 0.041 ** 0.026 0.031 0.006 0.038 ** 0.029 * 0.033 0.021 0.038 * 0.020

(0.032) (0.031) (0.016) (0.016) (0.027) (0.026) (0.017) (0.017) (0.021) (0.020) (0.021) (0.020)

Older Sibling MathScience 0.107 0.051 0.839 * 0.613 0.988 0.160 0.449 ** 0.375 * 0.473 0.411 0.577 * 0.265

(0.213) (0.213) (0.434) (0.423) (1.174) (0.725) (0.216) (0.222) (0.316) (0.398) (0.347) (0.264)

Control Variables:

  Entry Cohort Fixed Effects + + + + + +

  Sibling pair gender composition + + + + + +

  Sibling pair in same High School + + + + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + + + +

  HS Mean of Highest Completed Education and Income + + + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

Older Sibling Younger Sibling Number of Siblings in Sibship

Not Oldest Oldest Not Youngest Youngest Nsibs = 2

Parameter Estimates                                                                                                                             

(Standard Errors)                                                                                                                                

0.177 0.193 0.198 0.186 0.190

0.295 0.337 0.325 0.329 0.343

5,297 3,764 4,022

Nsibs > 2

0.314

0.189

Reduced-form:  Younger Sibling MathScience

1,634 6,152

First-stage:  Older Sibling MathScience 

Outcome:  Younger Sibling MathScience

2,489



 

 

Table 7. Estimates of Peer Effects: Heterogeneity by Parental Education 

 
Note: The narrow definition of STEM fields follows the definition by the US Department of Homeland Security (DHS), which almost entirely includes Math, Engineering, 

Natural and Technical Sciences, while the broad definition follows the definition by the National Science Foundation (NSF), which also includes some social sciences and life 

sciences. Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PilotIntro 0.068 *** 0.048 0.067 *** 0.056 0.046 ** 0.136 *** 0.059 *** 0.184 ** 0.062 *** 0.097 0.061 *** 0.140 *

(0.019) (0.036) (0.019) (0.035) (0.019) (0.038) (0.017) (0.091) (0.017) (0.084) (0.017) (0.072)

Relative to overall first-stage 1.046 0.738 1.031 0.862 0.708 2.092 0.908 2.831 0.954 1.492 0.938 2.154

PilotIntro 0.009 0.056 * 0.015 0.038 0.012 0.066 ** 0.019 0.071 0.016 0.160 ** 0.013 0.181 **

(0.016) (0.033) (0.016) (0.031) (0.016) (0.032) (0.014) (0.083) (0.014) (0.074) (0.015) (0.062)

Older Sibling MathScience 0.139 1.166 0.219 0.689 0.253 0.490 * 0.329 0.382 0.257 1.648 0.214 1.289 *

(0.225) (1.030) (0.234) (0.654) (0.344) (0.251) (0.248) (0.429) (0.231) (1.381) (0.237) (0.706)

Control Variables:

  Entry Cohort Fixed Effects + + + + + + + + + + + +

  Sibling pair gender composition + + + + + + + + + + + +

  Sibling pair in same High School + + + + + + + + + + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + + + + + + + + + +

  HS Mean of Highest Completed Education and Income + + + + + + + + + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

First-stage:  Older Sibling MathScience 

Outcome:  Younger Sibling MathScience

0 1 0 1 0 11 0 1 0 1 0

Reduced-form:  Younger Sibling MathScience

Parameter Estimates                                                                                                                           

(Standard Errors)                                                                                                                             

Father Mother

STEM (narrow) STEM (narrow) STEM (broad)STEM (broad) > 4-year college > 4-year college

0.323 0.323 0.352

5,984

0.428

0.262

1,802

0.302

0.172

5,828

0.168

0.298

0.186

7,309

0.242

1,958

0.322

0.183

5,958

0.347

0.210

1,828

0.185

7,412

0.425

0.283

374

0.406

0.213

554

0.398

0.245

477

0.326

0.188

7,232



 

 

Table 8. Estimates of Peer Effects: Heterogeneity by Parental Education and Gender 

 
Note: This table applies the narrow definition of STEM fields which follows the definition by the US Department of Homeland Security (DHS). Significance at a 1%, 5%, and 

10% level are denoted by ***, ** and *, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

PilotIntro 0.037 * 0.031 0.060 0.065 0.114 *** 0.103 *** 0.088 0.065

(0.021) (0.022) (0.044) (0.045) (0.031) (0.032) (0.054) (0.055)

Relative to overall first-stage 0.804 0.756 1.304 1.585 1.086 1.084 0.838 0.684

PilotIntro 0.027 0.008 0.009 0.014 0.026 0.014 0.114 ** 0.089 *

(0.021) (0.021) (0.045) (0.044) (0.024) (0.024) (0.047) (0.046)

Older Sibling MathScience 0.739 0.253 0.144 0.222 0.227 0.133 1.296 1.377

(0.671) (0.674) (0.743) (0.666) (0.209) (0.223) (0.864) (1.241)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling pair gender composition + + + +

  Sibling pair in same High School + + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + +

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

0.159 0.274 0.174 0.245

Parameter Estimates                                                                                   

(Standard Error)

Parent and Older Daughter Parent and Older Son

STEM = 0 STEM = 1 STEM = 0 STEM = 1

3,137 976 2,661 1,012

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience

0.164 0.268 0.451 0.567



 

 

to helping the students deciding what to do after compulsory school.36 A recent survey showed that 

79% of students in 9-10th grade answered that their parents were closely involved in their high school 

enrollment choice. We have no reason to believe that parental involvement is lower in our sample. 

This suggests that students discuss their educational choices with their parents across socio-economic 

status. However, for parents without a college degree, it may be difficult to give appropriate advice 

about course choices. Parents with a STEM degree may also be better at advising on courses in 

advanced math and science.  

Stinebrickner and Stinebrickner (2014) model students’ college major completion as the result of a 

learning process. They find that students tend to be particularly overoptimistic about whether they can 

complete a degree in math or science. The reason is that they have misperceptions about their ability 

to perform well in math or science. They suggest that such misperceptions are mainly prevalent among 

students who are less likely to have college-educated parents, because such students may be especially 

uninformed about what will take place during college. Arcidiacono, Aucejo, Fang and Spenner (2011) 

also find that students from ethnic groups who on average have less educated parents have more 

misperception about their graduation probabilities in natural sciences. We test whether a similar 

mechanism may play a role in advanced high school course choices. 

In Table 7, we investigate heterogeneity of the incentive effects by parents’ education. We define 

indicators for whether the mother or the father, respectively, has completed at least a 4-year college 

degree. Similarly, we construct indicator variables for whether the mother or the father has completed 

a STEM field education. We use a narrow definition of STEM fields which follows the definition by 

the US Department of Homeland Security (DHS), which almost exclusively 

includes Math, Engineering, Natural and Technical Sciences, while the broad definition follows the 

definition by the National Science Foundation (NSF), which also includes some social sciences and 

life sciences. 

We find that the older sibling tends to respond more to the pilot scheme when either of the parents 

has completed a college education or when the mother has completed a STEM field education. If the 

father has completed a STEM field education, the older sibling does not significantly react to the 

introductions of the pilot scheme. This is most likely because the potential is exhausted as 42.8% 

(narrow definition) and 40.6% (broad definition) of the high school students in such families already 

choose math and science (see the bottom panel of Table 7). When we divide by gender of the older 

sibling in Table 8, it is evident that older daughters respond more strongly to extrinsic incentives in 

 
36 See Ministry of Education (2013). 
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families where at least one of the parents has a STEM field education. This is again because there is a 

large pool of unexploited talent because only 27% of the girls in such families choose math and science 

(see the bottom panel of Table 8) and the marginal monetary payoff for them is thus expected to be 

high.37 On the other hand, older sons are less likely to be compliers if at least one of their parents are 

in a STEM field, but this is again likely to be because these sons are very likely to be always-takers 

(57% of them choose math and science) and do accordingly not face a high expected marginal 

monetary payoff (Joensen and Nielsen, 2014). These results are even stronger if we single out fathers 

and older sons (not tabulated). We interpret the complier analysis across parental education as 

suggestive evidence that information sharing in the family is important for course choices, but does 

not drive the intrinsic sibling spillover. 

The estimates of the spillover effects are rarely significant in the subsamples, but the point estimates 

are systematically higher when the parents have a college degree or a STEM field education. It is not 

evident that this necessarily reflects that peer effects are higher in these instances. It may reflect that 

the parents are deeply involved in the course choice of both siblings. If the parents assist the older 

sibling with the course choice, they may transfer their acquired knowledge about the contents and the 

demand of the courses to the younger sibling, and then the social interaction partly goes through the 

parents. This result also means that it is unlikely that the peer effect embodies the older siblings being 

path-breakers by providing information on course content. 

7. Conclusion 

We find evidence that social interactions among siblings are important for skill formation. Older 

siblings’ educational choices causally influence younger siblings’ choices. Younger siblings are 3.5% 

more likely to choose advanced math and science in high school if their older siblings could 

unexpectedly opt for this course choice at a reduced cost. This implies a sizeable peer effect of almost 

50 percentage points which varies across subgroups. We argue that the pattern of the results across 

gender, ability, birth spacing and birth order implies that the most likely mechanism is competition 

and sibling rivalry.  

We provide a framework for understanding the mechanisms behind the large peer effects among 

siblings which focuses on the interplay between extrinsic and intrinsic incentives. We show that the 

combination of a major reform where course choices are made extremely flexible (extrinsic incentives) 

and positive peer effects (intrinsic incentives and identity concerns), may lead to a continuously 

 
37 This is analyzed in detail in Joensen and Nielsen (2014). 
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declining supply of advanced math and science skills in social environments with a strong math-

science norm and high intrinsic costs of not conforming. We argue that this is what caused the fall in 

math-science skill supply and the gender convergence in Denmark since the major high school reform 

in 1988. This exemplifies how skill supply is shaped by institutions and their interactions with the 

social environment. 

Our results imply that social interactions in the family exacerbate the inequality across households. 

First, the presence of possibly large sibling peer effects in educational choices reveals that the strong 

sibling correlations conceal influential interactions among siblings. Second, we find systematically 

larger sibling spillover effects in families where either of the parents has a college education or a STEM 

field education. This suggests that parents are closely involved in the educational decision and a part 

of the social environment in which these decisions are made. However, more hard evidence is needed 

about the role of the family and siblings in human development more generally. 
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Appendix A.  Model Figures 

Figure A1.  Distribution of Intrinsic Incentives and Math-Science cut-offs. 

(a) All 

 

(b) Boys 

 

(c) Girls 

 

  

ε⋆0

MathScienceyoung = 0

f (ε)

ε⋆1

MathScienceyoung = 1

72%14%

ε⋆0

MathScienceyoung = 0

f (ε)

ε⋆1

MathScienceyoung = 1

58%21− 28%

ε⋆0

MathScienceyoung = 0

f (ε)

ε⋆1

MathScienceyoung = 1

79− 86%4− 7%



 

42 

 

Figure A2.  Non-Conformity and Reputational Returns. 

(a) All 

 

 

Note: Figure A2 shows that the reputational return is lowest when choosing Math-Science is the modal choice. It further 

shows that as we move to the left and Math-Science becomes a more rare choice, then the pride will become even stronger 

when having and older Math-Science sibling and the prejudice even stronger if having a non-Math-Science older sibling.  
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Appendix B.  Additional Descriptive Statistics and Results 

Table B1. Overview of Sample Selection 

 

 

  

N MathScience

All high school entry cohorts 1984-87 79,681 0.2192

who graduates within 3 years at ages 18-22 64,489 0.2594

with younger siblings

    sibling pairs 55,734 0.2655

    accounting for older siblings once 38,273 0.2706

with younger siblings in high school

    sibling pairs 28,509 0.3008

    accounting for older siblings once 23,046 0.2991

with younger siblings in high school*

    sibling pairs 24,116 0.3075

    accounting for older siblings once 20,016 0.3055

with younger siblings in high school cohorts 1988-97*

    sibling pairs 18,780 0.3088

    accounting for older siblings once 16,313 0.3074

and age difference < 10 years*

    sibling pairs 17,691 0.3115

    accounting for older siblings once 15,420 0.3102

with younger siblings in high school cohorts 1988-91*

    sibling pairs 12,157 0.3201

    accounting for older siblings once 11,610 0.3183

and age difference < 4 years*

    sibling pairs 7,786 0.3279

    accounting for older siblings once 7,496 0.3280

* Graduated with in 3 years at ages 18-22.
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Table B2. Summary of Older Siblings’ Course Choice  

By their Exposure to the Pilot Scheme and by High School Cohort of Younger Sibling 

 

Note: The table displays the number of younger siblings and the fraction of their older siblings choosing advanced Math 

with advanced Physics or Chemistry. The numbers are displayed by younger siblings’ high school entry cohort and type 

of high school attended by the older sibling: traditional high schools only offering advanced Math with advanced Physics 

(PilotSchool=0, PilotIntro=0), schools who unexpectedly introduced the pilot scheme combining advanced Math with 

advanced Chemistry (PilotSchool=0, PilotIntro=1) for the older sibling, and schools who already had adopted the pilot 

scheme (PilotSchool=1, PilotIntro=0). The two rows at the bottom summarize information for younger sibling entering 

high school in the cohorts 1988-97 (age gap ≤ 10 years) and the cohorts 1988-91 (age gap ≤ 4 years). 

  

Younger Sib 

High School

Cohort

N MathScience old N MathScience old N MathScience old N MathScience old

1988 2,160 0.2815 443 0.3341 689 0.3614 3,292 0.3053

1989 2,192 0.2810 431 0.3364 953 0.4292 3,576 0.3272

1990 1,788 0.2768 331 0.4018 819 0.4371 2,938 0.3356

1991 1,384 0.2724 257 0.2763 710 0.3972 2,351 0.3105

1992 1,023 0.2366 214 0.3131 500 0.3740 1,737 0.2855

1993 858 0.2669 155 0.3677 392 0.3648 1,405 0.3053

1994 669 0.2272 123 0.2764 326 0.3926 1,118 0.2809

1995 614 0.2492 115 0.3391 260 0.4154 989 0.3033

1996 452 0.2235 93 0.2796 222 0.3739 767 0.2738

1997 391 0.2532 73 0.3014 143 0.2727 607 0.2636

Total 11,531 0.2664 2,235 0.3320 5,014 0.3961 18,780 0.3088

1988-1997 10,733 0.2679 2,097 0.3348 4,861 0.3979 17,691 0.3115

1988-1991 4,463 0.2772 865 0.3457 2,458 0.4138 7,786 0.3279

Older Sibling            

Pilot School = 0

Pilot Intro = 0

Older Sibling           

Pilot School = 0

Older Sibling           

Pilot School = 1 All

Pilot Intro = 1 Pilot Intro = 0



 

45 

 

Table B3. Descriptive Statistics by Course Choice of Older Sibling. 

 
Note: The table displays math-science course choices of younger siblings, by sibling pair 

gender composition and by older sibling’s math-science choice. 

 

 

Table B4. Descriptive Statistics by Pilot School Status of Older Sibling. 

 

Note: The table displays math-science course choices of younger siblings. The numbers are displayed by 

sibling pair gender composition and type of high school attended by the older sibling: traditional high 

schools only offering advanced Math with advanced Physics (PilotSchool=0, PilotIntro=0), schools who 

unexpectedly introduced the pilot scheme combining advanced Math with advanced Chemistry 

(PilotSchool=0, PilotIntro=1) for the older sibling, and schools who already had adopted the pilot scheme 

(PilotSchool=1, PilotIntro=0).  

Gender Course Choice N Mean N Mean N Mean

All MathScience 5,233 0.1439 2,553 0.2832 7,786 0.1896

Brother MathScience 863 0.2063 847 0.4227 1,710 0.3135

Sister MathScience 1,035 0.0444 928 0.1390 1,963 0.0891

Brother MathScience 1,430 0.2804 350 0.4171 1,780 0.3073

Sister MathScience 1,905 0.0672 428 0.2103 2,333 0.0934

Older Brother

Older Sister

Younger Sibling
Older Sibling     

MathScience = 0

Older Sibling     

MathScience = 1
All

All

Gender Course Choice N Mean N Mean N Mean N Mean

All MathScience 4,463 0.1804 865 0.2162 2,458 0.1969 7,786 0.1896

Brother MathScience 1,001 0.3027 189 0.3915 520 0.3058 1,710 0.3135

Sister MathScience 1,094 0.0804 204 0.0882 665 0.1038 1,963 0.0891

Brother MathScience 1,005 0.2955 212 0.3349 563 0.3179 1,780 0.3073

Sister MathScience 1,363 0.0858 260 0.0923 710 0.1085 2,333 0.0934

Older Sister

Younger Sibling

Older Sibling    

Pilot School = 0

Older Sibling     

Pilot School = 0

Older Sibling     

Pilot School = 1 All

Pilot Intro = 0 Pilot Intro = 1 Pilot Intro = 0

All

Older Brother
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Table B5. Descriptive Statistics by Pilot School Status of Older Sibling. 

 

Note: Bold and italics indicate that the mean is significantly different from the mean for Pilot School=0 & Pilot Intro=0 

at the 5 % and the 10% level, respectively. 

 

 

 

Younger Sibling Mean Std.Dev. Mean Std.Dev. MeanDiff Mean Std.Dev. MeanDiff

Male 0.4495 0.4975 0.4636 0.4990 -0.0141 0.4406 0.4966 0.0089

High school cohort

1988 0.4098 0.4919 0.4324 0.4957 -0.0226 0.2738 0.4460 0.1360

1989 0.3274 0.4693 0.3110 0.4632 0.0164 0.3515 0.4775 -0.0241

1990 0.1927 0.3945 0.1746 0.3798 0.0181 0.2433 0.4292 -0.0506

1991 0.0701 0.2554 0.0821 0.2746 -0.0119 0.1314 0.3379 -0.0613

Father

log(earnings) 10.1093 4.5365 10.1125 4.5967 -0.0032 10.2757 4.4347 -0.1664

Primary school only 0.1214 0.3267 0.1422 0.3495 -0.0208 0.1098 0.3128 0.0116

High school only 0.0432 0.2034 0.0497 0.2175 -0.0065 0.0439 0.2050 -0.0007

Vocational training 0.2543 0.4355 0.2509 0.4338 0.0034 0.2327 0.4226 0.0216

Short higher education 0.0356 0.1854 0.0451 0.2076 -0.0095 0.0374 0.1898 -0.0018

Medium higher education 0.2642 0.4409 0.2474 0.4318 0.0168 0.2628 0.4403 0.0014

Long higher education 0.2252 0.4178 0.2116 0.4087 0.0136 0.2604 0.4389 -0.0352

STEM field (narrow) 0.2229 0.4163 0.2370 0.4255 -0.0141 0.2449 0.4301 -0.0220

STEM field (broad) 0.2389 0.4264 0.2532 0.4351 -0.0143 0.2738 0.4460 -0.0349

Mother

log(earnings) 9.5384 4.3456 9.5306 4.3265 0.0078 9.6555 4.2569 -0.1171

Primary school only 0.1499 0.3570 0.1526 0.3598 -0.0027 0.1318 0.3384 0.0181

High school only 0.0379 0.1909 0.0347 0.1831 0.0032 0.0391 0.1938 -0.0012

Vocational training 0.3034 0.4598 0.3179 0.4659 -0.0145 0.3096 0.4624 -0.0062

Short higher education 0.0614 0.2401 0.0751 0.2638 -0.0138 0.0736 0.2612 -0.0122

Medium higher education 0.3424 0.4746 0.3306 0.4707 0.0117 0.3393 0.4736 0.0031

Long higher education 0.0726 0.2595 0.0578 0.2335 0.0148 0.0732 0.2606 -0.0006

STEM field (narrow) 0.0471 0.2118 0.0439 0.2051 0.0031 0.0513 0.2206 -0.0042

STEM field (broad) 0.0596 0.2368 0.0497 0.2175 0.0099 0.0683 0.2524 -0.0087

Older sibling

Male 0.4694 0.4991 0.4543 0.4982 0.0151 0.4821 0.4998 -0.0127

Older sibling Math Science 0.2772 0.4477 0.3457 0.4759 -0.0685 0.4138 0.4926 -0.1366

GPA 8.5817 0.9721 8.5032 0.9260 0.0784 8.5680 0.9679 0.0137

First born 0.7930 0.4052 0.8000 0.4002 -0.0070 0.7815 0.4133 0.0114

Second born 0.1667 0.3728 0.1607 0.3675 0.0060 0.1798 0.3841 -0.0131

Third born or later 0.0439 0.2049 0.0405 0.1972 0.0035 0.0419 0.2004 0.0020

Sibship

Sibship size =2 0.4779 0.4996 0.5017 0.5003 -0.0238 0.4870 0.4999 -0.0091

Sibship size =3 0.3477 0.4763 0.3561 0.4791 -0.0083 0.3657 0.4817 -0.0180

Sibship size=4+ 0.1743 0.3794 0.1422 0.3495 0.0321 0.1473 0.3545 0.0270

Full siblings 0.9736 0.1605 0.9792 0.1428 -0.0056 0.9837 0.1266 -0.0102

Grew up together 0.9590 0.1983 0.9618 0.1917 -0.0029 0.9699 0.1709 -0.0109

Pilot Intro = 0 Pilot Intro = 1 Pilot Intro = 0

Older Sibling              

Pilot School = 0

Older Sibling              

Pilot School = 0

Older Sibling              

Pilot School = 1



 

 

Table B6. Estimates of Peer Effects: Probit Estimators 

 

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6)

PilotIntro 0.203 *** 0.226 *** 0.203 ***

(0.046) (0.050) (0.051)

[0.072] [0.073] [0.065]

Older Sibling MathScience 0.493 *** 0.576 *** 0.572 *** 1.453 *** 0.937 *** 0.828 **

(0.034) (0.038) (0.039) (0.350) (0.309) (0.343)

[0.140] [0.153] [0.151] [0.360] [0.222] [0.195]

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling pair gender composition + + + +

  Sibling pair in same High School + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + +

  HS Mean of Highest Completed Education and Income + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

0.328

0.190

7,786

Outcome:  Younger Sibling MathScience

First-stage:  Older Sibling MathScience 

Parameter Estimates                                                

(Standard Errors)                                                   

[Average Marginal Effects]

Probit Normal Index Models

Probit Bivariate Probit



 

 

Table B7. Estimates of Peer Effects: Cohort Variation 

 

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

  

N (1) (2) (3) (4) (5) (6)

  PilotIntro 0.080 *** 0.079 *** 0.074 ***

  Younger Sibling 1988-90, ≤4y 7,079 (0.018) (0.017) (0.017)

  PilotIntro 0.068 *** 0.071 *** 0.065 ***

  Younger Sibling 1988-91, ≤4y 7,786 (0.017) (0.016) (0.017)

  PilotIntro 0.069 *** 0.072 *** 0.066 ***

  Younger Sibling 1988-92, ≤4y 7,873 (0.017) (0.016) (0.017)

  PilotIntro 0.070 *** 0.072 *** 0.066 ***

  Younger Sibling 1988-93, ≤4y 7,876 (0.017) (0.016) (0.017)

  PilotIntro 0.041 *** 0.037 ** 0.028 *

  Younger Sibling 1988-90, ≤4y (0.015) (0.015) (0.015)

  PilotIntro 0.036 ** 0.032 ** 0.023

  Younger Sibling 1988-91, ≤4y (0.015) (0.014) (0.014)

  PilotIntro 0.038 *** 0.034 ** 0.024 *

  Younger Sibling 1988-92, ≤4y (0.014) (0.014) (0.014)

  PilotIntro 0.038 *** 0.034 ** 0.024 *

  Younger Sibling 1988-93, ≤4y (0.014) (0.014) (0.014)

  Older Sibling MathScience 0.141 *** 0.148 *** 0.146 *** 0.510 ** 0.473 ** 0.376 *

  Younger Sibling 1988-90, ≤4y (0.010) (0.010) (0.010) (0.206) (0.197) (0.205)

  Older Sibling MathScience 0.140 *** 0.147 *** 0.145 *** 0.523 ** 0.447 ** 0.346

  Younger Sibling 1988-91, ≤4y (0.009) (0.010) (0.010) (0.231) (0.205) (0.221)

  Older Sibling MathScience 0.139 *** 0.145 *** 0.143 *** 0.540 ** 0.465 ** 0.367 *

  Younger Sibling 1988-92, ≤4y (0.009) (0.009) (0.009) (0.229) (0.203) (0.220)

  Older Sibling MathScience 0.139 *** 0.145 *** 0.143 *** 0.541 ** 0.465 ** 0.367 *

  Younger Sibling 1988-93, ≤4y (0.009) (0.009) (0.009) (0.229) (0.203) (0.219)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling pair gender composition + + + +

  Sibling pair in same High School + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + +

  HS Mean of Highest Completed Education and Income + +

Parameter Estimates                                                         

(Standard Errors)                   

OLS 2SLS

First-stage:  Older Sibling MathScience 

Reduced-form:  Younger Sibling MathScience

Outcome:  Younger Sibling MathScience



 

 

Table B8. Estimates of Peer Effects: Randomly Matched Sibling Pairs 

 

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. All only children who are 

enrolling in high school in 1984-91, graduating within three years, and are 18-22 years old at graduation are given a random 

number. First, they are matched based on the rank of their random number within the 1984-87 and 1988-91 cohorts; e.g. 

the only child with the lowest random number enrolling in 1984-87 is the matched older placebo sibling to the only child 

with the lowest random number enrolling in 1988-91. Just as for our main sample, we condition on placebo siblings having 

an age difference of mostly four years. These results are displayed in columns (1)-(4). Second, the placebo siblings are 

matched based on the rank of their random number within the same high school as this is a stronger test of whether the 

schools who were previously pilot schools may have developed an expertise in math and science. These results are 

displayed in columns (5)-(8). 

(1) (2) (3) (4) (5) (6) (7) (8)

PilotIntro 0.136 *** 0.118 *** 0.126 *** 0.066 **

(0.021) (0.030) (0.022) (0.031)

PilotIntro -0.002 0.014 0.022 0.001

(0.028) (0.028) (0.029) (0.029)

Older "Sibling" MathScience -0.016 -0.007 -0.019 0.115 0.021 0.016 0.357 0.017

(0.019) (0.020) (0.231) (0.234) (0.020) (0.021) (0.512) (0.433)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  "Sibling" pair gender composition + + + +

  "Sibling" pair in same High School + + + +

Parental variables (for mother and father):

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older "Sibling" MathScience

Mean of Younger "Sibling" MathScience

Number of Randomly Matched Sibling Pairs

Parameter Estimates                                                                 

(Standard Errors)                                                                    

Randomly Matched Only Children
Randomly Matched Only Children         

(Same High School)

OLS 2SLS OLS 2SLS

0.190 0.182

2,219 1,989

First-stage:  Older "Sibling" MathScience 

Reduced-form:  Younger "Sibling" MathScience

Outcome:  Younger "Sibling" MathScience

0.265 0.261



 

 

Table B9. Estimates of Peer Effects: Strength of Ties  

 

Note: Significance at a 1%, 5%, and 10% level are denoted by ***, ** and *, respectively. 

(1) (2) (3) (4) (5) (6) (7) (8)

PilotIntro 0.066 *** 0.061 *** 0.071 *** 0.066 *** 0.069 * 0.065 * 0.068 *** 0.062 ***

(0.018) (0.017) (0.018) (0.017) (0.040) (0.039) (0.019) (0.018)

Relative to overall first-stage 0.971 0.938 1.044 1.015 1.015 1.000 1.000 0.954

PilotIntro 0.033 ** 0.020 0.035 ** 0.022 0.082 ** 0.060 * 0.025 0.015

(0.015) (0.014) (0.015) (0.015) (0.032) (0.033) (0.016) (0.016)

Older Sibling MathScience 0.500 ** 0.333 0.490 ** 0.326 1.196 0.923 0.373 0.251

(0.241) (0.238) (0.224) (0.221) (0.784) (0.689) (0.245) (0.254)

Control Variables:

  Entry Cohort Fixed Effects + + + +

  Sibling pair gender composition + + + +

  Sibling pair in same High School + + + +

Parental variables (for mother and father):

  Age, Highest Completed Education, and Income + + + +

  HS Mean of Highest Completed Education and Income + + + +

Mean of Older Sibling MathScience

Mean of Younger Sibling MathScience

Number of Sibling Pairs

0.330 0.331 0.305 0.333

Parameter Estimates                                                                                      

(Standard Errors)                                                                                        

Older and Younger Sibling

Same High SchoolDifferent High SchoolSame HouseholdFull Siblings

First-stage:  Older Sibling MathScience 

Outcome:  Younger Sibling MathScience

Reduced-form:  Younger Sibling MathScience

0.196

7,610 7,496 1,439 6,347

0.191 0.191 0.163



 

 

Appendix C.  Direct and Indirect Birth-Order Effects 

There are two competing hypothesis why first-borns influence younger siblings more than later-

borns: either they exert a stronger direct influence on all of the younger siblings, or they exert a stronger 

effect due to indirect snowball effects. This Appendix supplements Section 6.2 by providing details 

on how we can identify all direct birth order effects without imposing additional parameter restrictions. 

We exploit unique features of the institutional setup and analyze the educational choices in sibships of 

three ("triplets").  

To illustrate, we simplify the linear projections (10) and (11) to exclude other characteristics: 

     ���ℎ����	��
�� = X� + `L�?>�P	�_>
��                         

     ���ℎ����	���
��� = ]� + ]=���ℎ����	��
��       

Assume there are three siblings, where the older siblings affect younger siblings. If only the oldest 

was affected by the pilot scheme, then we have the system of equations: 

���ℎ����	��= = X� + `L�?>�P	�_>=                    

���ℎ����	��Y = ]�Y + ]=Y���ℎ����	��=  

���ℎ����	��[ = ]�[ + ]=[���ℎ����	��= + ]Y[���ℎ����	��Y  

where 1 denotes the oldest sibling, 2 the middle, and 3 the youngest. Using exogenous variation from 

the cost of obtaining Math-Science for the oldest sibling, we could identify the reduced form 

parameters: 

6abWcde^E�eEM
6f^�
Wg�Wh
i

= ]=Y` = jY  

6abWcde^E�eEk
6f^�
Wg�Wh
i

 = #]Y[]=Y + ]=[$` = j[  

The total peer effect on the Math-Science choice of the younger sibling j is given by j! divided by the 

first-stage coefficient `. Comparing the estimated total effects across younger siblings in this setting, 

we could follow Dahl, Løken and Mogstad (2014) and assume that the direct effect of an older sibling 

on all younger siblings is identical: ]=Y = ]=[ = ]= and ]Y[ = ]Y, and then identify snowball effects: 

]Y]=. The second sibling identifies the direct effect, ]=, as jY divided by `. Subtracting off this direct 

effect, the snowball effect on the third sibling, ]Y]=, is given by the difference j[ − jY  divided by `.38 

 
38 More generally, they estimate a decay function to allow the direct effects to decay over time and assume the functional 

form of the decay function is the same for the same distance. 
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This is, however, an unreasonable assumption in our setting as the peer effect varies with sibling age 

difference. Alternatively Glaeser et al. (2003) identify social multipliers under the assumption that 

]=Y = ]Y[ = � and ]=[ = �l meaning that the effect on the immediate younger sibling is the largest 

and identical independent of birth order. This is, however, also an unreasonable assumption in our 

setting as age difference and sibling interactions (in terms of birth order and gender composition) 

matter for the strength of the peer effect.  

We exploit that we have variation in how many older siblings were exposed to the pilot scheme in 

order to avoid having to make unreasonable parametric restrictions. If the two oldest siblings were 

affected by the pilot scheme, then: 

���ℎ����	��= = X� + `L�?>�P	�_>                    

���ℎ����	��Y = ]�Y + ]=Y���ℎ����	��= + `L�?>�P	�_>  

���ℎ����	��[ = ]�[ + ]=[���ℎ����	��= + ]Y[���ℎ����	��Y  

                        =  ]�[ + ]=[#X� + `L�?>�P	�_>$ + ]Y[#]�Y + ]=Y#X� + `L�?>�P	�_>$ + `L�?>�P	�_>$ 

Exploiting the exogenous variation that some have one and some have two older siblings affected by 

the pilot scheme, we can separately identify both the direct effect of the first and of the second on the 

third sibling, without imposing additional parameter restrictions. Again, looking at the reduced form 

parameters: 

6abWcde^E�eEM
6f^�
Wg�Wh
 = #]=Y + 1$` = jY + ` = mY  

6abWcde^E�eEk
6f^�
Wg�Wh
 = #]Y[]=Y + ]Y[ + ]=[$` = j[ + ]Y[` = m[              

First, the reduced form for the second sibling identifies the direct effect of the first on the second 

sibling, ]=Y, as jY divided by ` (or alternatively as mY divided by ` minus one: ]=Y = nM
o = pM

o − 1). 

Second, we identify the direct effect of the second sibling on the third sibling, ]Y[, as m[ − j[ divided 

by ` : ]Y[ = pk;nk
o . Third, we identify the direct effect of the first on the third sibling, ]=[, as j[ 

divided by ` minus ]Y[]=Y. That is, ]=[ = nk
o − ]Y[]=Y. 

We can therefore identify the direct and indirect (multiplicative) average effects between all three 

siblings without additional parameter restrictions. 

To this end we exploit that we observe 1,842 triplets; 564 for which the two oldest siblings entered 

high school during the pilot period. The catch here is that we only observe two triplets for which both 
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older siblings were exposed to the unexpected pilot introduction, 90 where only the oldest, and 56 

where only the second was exposed. We therefore lump together all the pilot schools for this part of 

the analysis. This may entail a bias as some older siblings may have chosen high school based on the 

availability of the pilot. However, Joensen and Nielsen (2009) find that the high school choice is 

neither sensitive to distance to school nor its interaction with pilot status, and they find similar causal 

effects on earnings when not distinguishing between students who were unexpectedly exposed to the 

pilot and those who enrolled after the pilot status was announced. Our estimates of the direct effects 

are: ]=Y = 0.24, ]=[ = -0.23,  ]Y[ = -0.42, but too noisy to draw strong inference on direct and indirect 

birth-order effects. The pattern is consistent with Adams (1972) who suggests that second- and middle-

born are more likely to conform to the first-born child, while the last-born is more likely to be a non-

conformer.  


