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The spin-2 anisotropic Heisenberg antiferromagnet is studied at T = 0 on the triangular lattice via
numerical diagonalization for system sizes up to N = 36 sites. Extrapolation to the thermodynamic
limit suggests that the isotropic system possesses no, or very small, ~3 x ~3 magnetic order; no
helical or chiral order; and spin-spin correlations consistent with that of a critical phase. For A Y-like
anisotropy there is long-ranged ~3x ~3 magnetic order. In contrast to bipartite lattices, the standard
first- and second-order spin-wave theories are not quantitatively accurate. Excitation energy gaps
suggest that the lowest-lying excitations for the isotropic point are not spin-Rip excitations in the
thermodynamic limit. The results for the isotropic point appear to agree with recent series expansion,
large-N expansion, and the original resonanting valence bond picture of Anderson, although they
cannot be considered as conclusive evidence supporting any of these theories.

I. INTRODUCTION

The two-dimensional (2D) spin-2 Heisenberg antifer-
romagnet (HAF) has generated much interest in recent
years. The Hamiltonian of the model is

where the sum is over the nearest neighbor pairs, and
S, are spin-2 operators. The HAF on a square lattice
is believed to describe the undoped phase of the high-T,
superconductors2 and is often used to describe the spin
background of the doped phase, for example, in the t-J
model. Through various approaches it is now believed
that the ground state of the square HAF has Neel order-
ing with staggered magnetization equal to about 60% of
the classical value. It is well known that doping intro-
duces frustration to the spin background, and this raises
the possibility of describing the effect of doping by in-
troducing frustration to the HAF. One such model is the
frustrated HAF, in which one adds an antiferromagnetic
coupling (Jz) to the next-nearest-neighbors on the square
lattice. YVhen the frustration is weak, the ground state
still has Neel ordering. However, when the frustration is
strong, the system decouples into two sublattices, each
with Neel ordering. In the intermediate region, the sys-
tem is believed to lose its Neel order. Various exotic
states have been proposed, which include, among oth-
ers, spin liquid, s dirnerized (spin-Peierls), 4 twisted, s and
chiral-spin-liquid ' states. With frustration, it is difE-
cult to do numerical studies via quantum Monte Carlo
because of problems associated with minus signs. There-
fore, more reliable numerical results come from the exact
diagonalization study of finite clusters.

In addition to adding next-nearest-neighbor coupling,
one can add frustration to the HAF geometrically. One
example is the kagomi lattice. By far there is no can-
crete evidence that a spin liquid or other exotic state ex-
ists in the 2D HAF on any lattice, however, such states
are most likely to be found in highly frustrated systems
with large quantum fluctuations (small spin S and low

coordination number). The kagome HAF is attractive
in this respect because it is highly frustrated, has a low
coordination number and a large number of classically de-
generate states. In fact, it has been suggested that the
spin-2 kagomi HAF has a disordered ground state.
If so, then the kagome HAF is one example where geo-
metrical frustration alone can create a disordered ground
state, without next-nearest-neighbor interaction. The
triangular lattice also introduces frustration to the HAF.
However, besides having a larger coordination number,
it is well known that in the classical case the frustration
can be partially released by arranging the spins at 120'
to each other (v 3 x v 3 ordering), ~4 thereby retaining a
Neel-type spin order. As a result, it seems a less likely
candidate for having a disordered ground state. In fact,
spin-wave theory~s (SWT) supports Neel ordering on the
triangular lattice, but not on the kagorni. Nevertheless,
quite some time ago Anderson proposed the triangu-
lar HAF as a candidate for the resonating-valence-bond
(RVB) state, which is a disordered spin liquid. RVB-type
variational wave functions have been proposed and nu-

merical studies also lend support to a disordered
ground state. However, using a 120 Neel-type wave
function, Huse and Elser found that their variational
energy is lower than that of the RVB-type wave func-
tions. But recent work again points toward a dis-
ordered ground state, in particular, Singh and Huse
suggest the triangular HAF may be at, or at least very
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close to, the critical point of losing magnetic order.
We ask the following question: Is the frustration in the

spin-2 triangular HAF large enough to destroy the mag-
netic order'? If so, is the ground state a spin liquid, or
does it have some other form of long-range order (LRO)'?
In this paper, we study the triangular HAF using the ex-
act diagonalization approach. Since first-order SWT sup-
ports Neel-type ordering, we also study the second-order
SWT to see if the same conclusion holds and to compare
with our numerical results. As mentioned above, due to
the frustration, it is extremely difBcult to use numerical
methods like quantum Monte Carlo to study the trian-
gular HAF, whereas the exact diagonalization approach
gives numerically exact results for small finite clusters.
Since the results inevitably sufFer from finite-size efFects,
we have to study as large a system as we can and use
finite-size extrapolation to infer the results in the thermo-
dynamic limit. The largest system size we can diagonal-
ize consists of N = 36 sites. Since it has been suggested 2

that the triangular HAF may be in some sense critical,
we study a more general anisotropic Hamiltonian,

(1 2)

and attempt to observe any change of behavior as J, —+ l.
J, = 0 corresponds to the triangular 2CY antiferrornag-
net (TXYAF), and J, = 1 is the triangular Heisenberg
antiferromagnet (THAF). Our results are consistent with
the scenario that the system has ~3 x v 3 twisted mag-
netic LRO at J, = 0, which decreases rapidly as J, in-
creases, and at J, = 1 the LRO vanishes. This same
pattern holds for the long-range helicity order parame-
ter. For all 0 & J, & 1 there appears to be no chiral
LRO. At J, = 1 (THAF) the spin-spin correlation func-
tion are consistent with power-law decay 1/r* with
x = 1, which agrees with the statement that this system
may be nearly critical. ' The results of energy-gap cal-
culations up to system size N = 27 are also consistent
with the picture that the THAF is marginally losing its
magnetic order. Summarizing, our results seem to imply
that the THAF has a disordered ground state, and we
did not find other kinds of LRO. As a result, they are
consistent with the picture that the ground state of the
THAF is a spin liquid with no broken symmetry
(although we have not fully explored the possibility of
long-range dimer order). However, we must caution that,
due to small system-size limitations, we cannot rule out
the. possibility of the THAF havmg weak magnetic order.
Indeed, it is difficult to rule out even 20% of the classical
Neel value. The finite-size effect is especially serious in
the energy-gap calculations, since we are not able to cal-
culate the lowest-lying energy gaps of the N = 36 system.
This paper is organized as follows. In Sec. II, we dis-
cuss the exact diagonalization method as applied to the
present system under study. We interpret first the results
for the spin-spin correlations in Sec. IIA. Section IIB
contains our results for the twisted and sublattice magne-
tization long-range orders, followed by an interpretation
of them in terms of the spin-wave theory in Sec. IIC.
Further physical properties are discussed in the follow-

ing sections: helicity long-range order (Sec. II D), chiral
long-range order (Sec. II E), and energy gaps (Sec. II F);
and, finally, Sec. III contains our conclusions.

II. NUMERICAL DIACONALIZATION

We calculate the ground states of the TXYAF and
THAF on triangular lattices of sizes N = 9, 12, 21, 27,
and 36 using the Lanczos algorithm. zs All lattices used
are hexagonal in shape with periodic boundary condi-
tions (shown in Fig. 1), and the nearest-neighbor distance
is 1. Where necessary, translational, C6, and spin reHec-
tion symmetries are used to reduce the number of basis
states. More precisely, the C6„operations we used are the
three 3 rotations, and the reHections about the x and
y axis, which together reduce the basis set roughly by a
factor of 12. For even N, the ground state has S, , &

——0,
zero momentum and is symmetrical under all the C6„
operations (A.i symmetry) and spin reflection. For odd
N, the ground state has S;, &

——
2 (or —2) and mo-

rnentum ( s, 0), is degenerate with positive and negative
parities with respect to y reHection, and is symmetrical
under all other C6 operations. Using all the above sym-
metries, the N = 36 system has 10524036 states. The
ground-state energies are tabulated in Table I. Assuming
the finite-size correction for the energy goes as the linear
SWT prediction (i.e. , 1/Ns~2), we find from N = 12 and
36 the ground-state energy per site~4 for the TXYAF to
be E/N = —0.4066, and for the THAF, E/N = —0.5485.
Note, however, that the SWT picture may not be valid
for the THAF (see below in Secs. IIB and IIC). It is
dificult to estimate the error in such an extrapolation.
Using N = 9 and 27 yields values different from the
above by 0.5% for the TXYAF and 1.0% for the THAF.
We note that the extrapolationz for the (unfrustrated)
square lattice HAF and AY model using N = 16 and
36 yields the exact answer to better than 0.1%. The val-
ues for the first-order (second-order) Holstein-Primakov
SWT (Ref. 26) are —0.3992 (—0.4042) for the TXYAF
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I IG. 1. The system sizes studied in this work. The filled
symbols denote the triangular lattice sites of the system, while
the open symbols are redundant and related to filled ones via
cell translation vectors. The open symbols are included to
illustrate the hexagonal shape of each cell.
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TABLE I. Ground-state energies for the triangular antiferromagnets for various system sizes N
and J,. The last row is the ground-state energy per site in the thermodynamic limit obtained by
extrapolating the N =12 and 36 data.

9
12
21
27
36

E/N

J =0.0
—3.81703
—5.15024
—8.66998

—11.11577
—14.79446

—0.40661

J =0.5
—4.44191
—6.15600

—10.00912
—12.84395
—17.11317
—0.46640

J,=0.75

—4.82743
—6.72558

—10.84375
—13.92086
—18.56203

—0.50492

J =0.90
—5.07723
—7.08164

—11.39494
—14.63012
—19.51156
—0.53051

J =1.00
—5.25000
—7.32396

—11.78091
—15.12597
—20.17344
—0.54847

and —0.5388 (—0.5468) for the THAF, and, therefore,
our extrapolated values are quite close ( 0.5%%uo) to the
second-order spin-wave predictions. We plot the first-
and second-order spin-wave predictions along with our
(even N) extrapolated values as a function of J, in Fig. 2.
The first few excited states can also be found using the
Lanczos algorithm~7 and will be discussed in Sec. II F.

In the following sections, we will study the Boite-size
behavior of different order parameters. One difficulty of
estimating finite-size corrections on the triangular anti-
ferromagnet is that due to the limited system size and
shape one can use, we have to use both even and odd
N. We expect the even and odd results to extrapolate
differently, although they should extrapolate to the same
value in the thermodynamic limit. As a result, the num-
ber of data points we can use is rather small. Although
we can do up to N = 36, we only have three data points
for odd N and two for even N. This problem is less
serious for quantities that extrapolate to "large" finite
values, as in the case of the ground-state energy, but the
problem is serious in those cases that extrapolate to very
small values like some of the LRO parameters to be dis-
cussed in the following sections. For this reason, we do
not attempt to fit our data to complicated and several-
parameter functional forms as in Ref. 19. Instead, we

I I I I I I I I I I I I I I I I I I I I

—0.50

I I I I I I I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

shall mostly concentrate on deciding whether the ther-
modynamic limit is most likely zero or finite.

behaves with increasing distance r. Spin-spin correla-
tions for the triangular antiferromagnets are tabulated in
Tables II and III. Results to be discussed in the following
sections suggest the THAF does not have any magnetic
LRO, which would imply C'(r) decays to zero at large
r. If the THAF is a critical phasei2, then it is expected
to be in the same universality class as the 3D stacked
triangular lattice of classical Heisenberg spins, where the
criticality is thermally driven and has been studied by
Kawamura. For this D = 3 system, g 0, and there-
fore,

Cz(r) 1/ D 2+q—
1 T. (2.2)

We take C'(~3) from N = 12 and C'(3) from N = 36,
each correspond to one of the extreme distances in the re-
spective system size. Assuming the form C'(r) 1/r*,
we find x = 0.96, which is indeed close to 1. Perhaps
this is evidence that the THAF is close to criticality. We
remark that if the same procedure is used to fit to an
exponential decay, C (r) exp( —r/(), one finds a corre-
lation length ( = 2.2, which, although large for quantum
spin systems, is not so large as to rule out this form.
Larger system sizes could, of course, be used to distin-
guish between exponential and power-law behavior, but
that probably will not be possible soon unless a quan-
tum Monte Carlo scheme is developed to overcome the
frustration minus sign problem for N 100 —200.

For J, ( 1, especially for small J„our results for the
zy plane staggered spin-spin correlation function C &(r)
at large r are strongly suggestive that magnetic LRO
exists. We define C*"(r) as

A. Spin-spin correlation function

A straightforward way to study the spin order is to
examine how the spin-spin correlation in the z direction,

FIG. 2. Ground-state energy per site as a function of
anisotropy parameter J for first-order spin-wave theory
(SW1), second-order spin-wave theory (SW2), and from the
extrapolation of the N = 12, 36 diagonalization results of the
present work ( ).

where

(2.3)

1 if ri, rq E same sublattice
~ ~—2 otherwise.
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TABLE II. Correlation functions (SoS ) for the triangular antiferromagnets.

0.00

0.50

0.75

0.90

1.00

9
12
21
27
36

9
12
21
27
36

9
12
21
27
36

9
12
21
27
36

9
12
21
27
36

—0.03876
—0.04878
—0.03527
—0.03521
—0.03518
—0.05383
—0.06135
—0.04951
—0.04975
—0.05028
—0.06G13
—0.06504
—0.05642
—0.05653
—0.05688
—0.06313
—0.06679
—0.06015
—0.06014
—0.06027
—0.06481
—0.06781
—0.06233
—0.06225
—0.06226

0.00517
0.02016
0.00139

—0.00195
0.00209

0.05037
0.04792
0.02371
0,02179
0.02152

0.06929
0.05706
0.04149
0.03762
0.03615

0.07827
0.06162
0.05247
0.04779
0.04533

0.08333
0.06434
0.05916
0.05414
0.05115

—0.00891
—0.00447
—0.00343
—G.00338

—0.01281
—0.00903
—0.00445
—0.00534

—0.01548
—0.01678
—0.01031
—0.01102

—0.01705
—0.02216
—0 ~ 01517
—0.01535

—0.01806
—0.02555
—0.01845
—0.01826

n= 4

—0.00400
—0.00298
—0.00208

—0.01457
—0.01100
—0.00752

—0.02393
—0.01906
—0.01430

—0.02953
—0.02426
—0.01903

—0.03288
—0.02750
—0.02214

—0.00136
—0.00129

0.00989
0.00879

0,02446
0.02208

0.03498
0.03158

0 ~ 04179
0.03787

n= 6

—0.00120

0.00921

0.02293

0.03268

0.03914

The factor n adjusts for the cos(120 ) = —1/2 between
difFerent sublattices. A plot of C "(r) for the TXYAF
is shown in Fig. 3, and one can see that the LRO is
apparent.

B. Magnetic ordering

S"=—-S + S"1 3"=2
2 ~

S.= S* ~S.1
3 22 2 j'

(2.6)

(2.7)

NI = ) S,*+) S,"+) S,",
jGA j GB jGC

where A, 8, and C denote the sublattices, and

(2.5)

A relevant order parameter for the v 3 x v 3 magnetic
order for the anisotropic triangular antiferromagnets is
the twisted magnetization 8 9 defined by

In,')=n( '+) (s,*s„*)—& -(s,*s,*) ~,

~eA' rqB
(2.8)

These quantities are spin projections along directions ro-
tated +120' from the x axis, and point along the direc-
tions of a classical Neel state. The mean square of the
twisted magnetization can be calculated from the two-

spin correlation functions,

TABLE III. Correlation functions (SOS ) for the triangular antiferromagnets.

0.00

0.50

0.90

9
12
21
27
36

9
12
21
27
36

9
12
21
27
36

9
12
21
27
36

—0.07069
—0.07153
—0.06881
—0.06862
—0.06849
—0.06880
—0.07016
—0.06706
—0.06685
—0.06666
—0.06685
—0.06902
—0.06491
—0.06473
—0.06461
—0.06562
—0.06830
—0.06337
—0.06325
—0.06321

0.12241
0.09695
0.11070
0.10832
0.10722

0.09982
0.07381
0.08293
0.07857
0.07515

0.09036
0.06820
0.06928
0.06421
0.06060

0.08586
Q.06573
0.06268
0,05756
0.05433

n=3

—0.03924
—0.05389
—0.05167
—0.05136

—0.02282
—0.03831
—G.03307
—G.03201

—0.01975
—G.03088
—0.02420
—0.02341

—0.01862
—0.02738
—0.02031
—0.01992

—0.05490
—0.05291
—0.05105

—0.04327
—0.03900
—0.03458

—0.03756
—0.03239
—0.02713

—0.03458
—0.02920
—0.02384

0.10321
0.10131

0.06945
0.06507

0.053Q3
0.04846

0.04555
0,04138

0.06570

0.04970

0.04269
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0.15 I I I I I I I I I I I I

0.10—

0.05

x N=9

o N=12

N=21

+ N=27 J,=O. O

p pp
0 1 2 3 4

FIG. 3. Spin-spin correlation function C "(r) vs r for the
TXYAF at various system sizes.

where site 0 is taken to be in sublattice A, and A'
means sublattice A excluding site 0. Nishimori and
Nakanishiis (NN) calculated the twisted magnetization
for the TXYAF and THAF for system sizes up to N = 27.
They concluded that the twisted magnetization LRO de-
cays by a power law for the TXYAF and decays expo-
nentially for the THAF, in other words, neither system
has magnetic ordering as N —+ oo. However, they did
remark that their system sizes were too small to draw
definite conclusions about the nonexistence of LRO in
the THAF.

We calculate the twisted magnetization for J~ = 0, 0.5,
0.75, 0.9, and 1. The results are plotted in Fig. 4, where
the abscissa was selected based on linear spin-wave the-
ory, in which case the quantity (NI)/N2 would fall in
a straight line, for large N. For J, = 0 (TXYAF), it
is obvious that the even and odd N results follow dif-
ferent curves. If we assume that both converge to the
same value as N —+ oo, it is clear that this value is finite,

C(r) = —) n(R, , K+ r)(S~ S~+„), (2 9)

where n(R, B,+r) is defined in Eq. (2.4). The staggered
magnetization mt can be calculated from

roughly 0.04 to 0.045. This implies that the TXYAF
has magnetic LRO, and with a value consistent with a
series-expansion calculation. ss Although we cannot say
what the exact form of extrapolation should be, the fi-
nite value is in sharp contrast with NN. ~ We believe
that it is dangerous to fit to functional forms with a few
parameters when the number of data points is limited.
By taking into account the even N points (N = 12 and
36), we believe that the twisted magnetization has finite
ordering. The above value corresponds to a twisted mag-
netization equal to 82% + 3%%uo of the classical 120' Neel
state, and should be contrasted with the linear spin-wave
theory prediction of 90%%uo (see below). As J, increases,
the extrapolated value decreases rapidly. Furthermore,
the even and odd N results seem to collapse to a single
curve as J, approaches l. At J, = 1 (THAF), all the data
points almost fall on a straight line. The even and odd N
results may still have different curvatures for these small
N, although they are both small. If we extrapolate the
two points N = 12 and 36 linearly in I/v N to N = oo,
we get —0.0018. This small negative value suggests that
the twisted magnetization is zero for the THAF in the
thermodynamic limit. Note that if the THAF is criti-
cal, then C (r) ~ I/r from Sec. II A, and we expect the
quantity (NI)/N to scale as the inverse of the linear
dimension, that is to say, also I/JN. The fact that
the THAF N = 12 and 36 points extrapolate linearly to
a value close to zero is consistent with the critical phase
correlation functions. Nevertheless, we cannot say con-
clusively that (NI)/N for the THAF does not take on
a small value as N —+ oo.

In analogy with the square lattice HAF, one can define
the staggered magnetization mt for the THAF, which is
also a relevant order parameter for the ~3 x v3 mag-
netic order. It can be defined in terms of the asymptotic
behavior of the staggered spin-spin correlation

0 10

+ J,=O.OO

I I I I I I I I I I I

mt = C(r „), (2.10)
0 08 o J =050

o J,=0.75
o J,=0.90
x J,=1.00

0.04—

0.02—

o.oo
0.0 0. 1

O
o o
o &

N=36

0.2
1/VN

I I I I I I

0.3 0.4

m, =C(r ),

m2 = C(rb)

(2.11a)

(2.lib)

We can define two other estimates for mt, one in terms
of the sublattice magnetization

(2.1lc)

where r „ is the maximum separation in the hexagonal
cell with periodic boundary conditions. Since there are
two distinct extreme distances r and rg in a hexagonal
cell, we define two estimates for mt in terms of C(r),

FIG. 4. The size dependence of the twisted magnetization
LRO parameter for the various J, .

and the other one by removing the self term in
Eq. (2.11c),



5866 P. W. LEUNG AND KARL J. RUNGE 47

3 Sz Sz
(N/3 —1) )- (2.11d)

All of these quantities are, of course, directly related to
the twisted magnetization: LRO in one implies LRO in
the others. These quantities can be calculated easily from
Tables II and III. We plot them in Fig. 5. The linear
SWT resulti of 48% of the classical value is also shown
in the graph. We note that for m3, the even and odd
N results also lie on a single line. Extrapolation of the
N = 12 and 36 results gives —0.0036. This small nega-
tive value again indicates that the infinite-size staggered
magnetization is very close to zero. While the other esti-
mates may converge to larger values, their even and odd
N results lie on very diferent curves, thus making the ex-
trapolation difBcult. One would need a very large system
size to see those trends clearly. These results emphasize
the subtlety of extracting the thermodynamic limit of mt
from the N & 36 data for the THAF.

In the anisotropic case we define the sublattice mag-
netization as

(2.12)

since no LRO is expected in the (S;S~') correlations. The
finite-size dependence of this quantity is shown in Fig. 6.

C. Spin-wave theory comparison

Over the last several years, a large body of
work 3 has revealed the somewhat surprising re-
sult that in two-dimensions (and higher) and for all spins
the standard spin-wave theory '33 is a remarkably ac-
curate theory for the energy and LRO parameter of bi-
partite lattice Heisenberg antiferromagnets. This also
holds for anisotropic ferromagnetsss (including the non-
bipartite triangular lattice2s). For example, the spin-&,

0.4

+ J,=O.OO

o J,=0.50
0,3 o J,=0.75

J,=O. BO

0.1

0
o o
0
H

0 0
0.0 0. 1 0.2

1/v'N

I I I I I I

0.3

FIG. 6. The finite-size extrapolation of the sublattice
magnetization LRO parameter for the various J, .

square lattice HAF second-order spin-wave predictions
are within 0.15% and 1.3% of the "exact" results for the
ground-state energy and LRO parameter, respectively. s7

The agreement is even better for the spin-2 XY ferro-
magnet. One might guess that the good quantitative
agreement will result for nonbipartite lattices as well;
however, we feel this is not the case and believe that
frustration effects (geometrical or otherwise) play an im-
portant role in spoiling the accuracy of the theory. We
shall show this below for the case of the nearest-neighbor
triangular antiferromagnets.

In spin-wave theory (SWT) one expands about the
S = oo (or classical) limit, which for the triangular lat-
tice antiferromagnets is the 120 Neel state. We take
the LRO to lie in the zy plane. Following Miyake
we define a spatially varying coordinate system x', y',
z', with z' pointing along the local 120' Neel direction
and y' pointing along the old z direction. o~, o,". , u,' will
be the spin operator components along x', y', z', respec-
tively. Specifically,

I I I I I I I I I I I I I I I I

X

, --,'s,* —~s,"
if i e A

if x g B
ifi gC,

(2.13)

where the o.~, o.,".
, o,' are spin S operators, that is to say,

they obey the standard angular momentum commutation
relations and (o ) + (o &) + (o ) = S(S + 1).

The Hamiltonian may now be exactly expressed as

0.1—
SWT

0.0 0. 1 0.2 0.3
1/VN

p p I I I I I I I I

0.4

H = ——) o,'o,'+o,*cr,* + J, ) o.,"o,"
() ' ' ()

+) sin(P, z) o,*o —o, o*
('j)

= Hi+ H&+ H3,

(2.14)

(2.15)

FIG. 5. The size dependence of the various estimates for
the staggered magnetization of the THAF. The symbols are
(0) mi, ( ) m2, (x) m3, and (+) m4. The spin-wave theory
(SWT) result is also shown.

where P,z is the difference in classical Neel angles between
sites i and j: sin(P, z) = +v 3/2 for nearest neighbors.
Note that on bipartite lattices, sin(P, ~.) = 0, and so the
third "currentlike" term H3 is absent: Its presence above
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is entirely due to geometrical frustration. The term Hi
is the standard ferromagnetic one, although due to frus-
tration its amplitude is reduced by

~
cos((t;~)

~

= 1/2.
In the Holstein-Primakov transformation one expresses

the spin operators o in terms of site magnon deviation
operators:

a,'= S —n, ,

o.~+ = /2S —n, a, ,

~;. = a! +2S —n, ,

(2.16)

(2.17)

(2.18)

1 t'v'2SI' ) (a, + a, )(a,.+& + a,+~), (2.19)),- ' ' '+'

2

H~ = ——'
! ) (a, —a,)(a, ~

—a,+b), (2.20)() &. «2S&,

(i) v 2S
Hs = — ) sin(t, q(a, + a, )n,+q, (2.21)

where v = 6 is the number of nearest neighbors, and b

denotes the nearest neighbors of site i. Note that H&
also includes the "zeroth-order" term —(Nv/4)Sz, which
is the energy of the classical 120' Neel state. It is also
useful to add a term that couples the 120' Neel magne-
tization (= P, cr,') to a field h, which we write as

where o,+ = o, 6 io',", n, = aIa, , and a, ,a, are boson
creation and annihilation operators. The transformation
in Eq. (2.13) is convenient in that it avoids the introduc-
tion of different magnon operators for each of the three
sublattices. One next expands the square roots in the
operators under the assumption that the "magnon de-
viations" (n, /2S) are small and collects the terms in a
power series in 1/S. The lowest-order contributions are

S + —Sv) n,
Nv 2 1

1 2

THAF. In the latter case, we regain the results of Ref. 15,
which were obtained in a more complicated manner that
does not utilize the transformation in Eq. (2.13).

Note that the three magnon "geometrical-frustration"
term H& does not contribute at first order. Since the
coefficient of Hs( ) is v S, one might first guess that it
provides an energy correction of order ~S; however this
is not so because the three magnon expectation value
in the ground state of Hswi vanishes (see the discussion
below). We feel it has not been stressed enough in the lit-
erature that the first-order spin-wave (SWl) predictions
for triangular (and other frustrated) antiferromagnets is
equivalent to the same treatment of a ferromagnet iiiith
AO H3 term. That is to say, it is equivalent to the first-
order spin-wave calculation applied to the Hamiltonian3

H' = —1/2) o.,'o +o,*o,* + J, ) o,"cr,". . (2.24)

Thus for the frustrated TXYAF (i.e. , J, = 0) the SW1
results are precisely the same as for the completely un-
frustrated triangular lattice XY ferromagnet. Within
spin-wave theory, the difference between the two sys-
tems only arises at second order and beyond. The spin-2
triangular lattice XY ferromagnet has been shown by
quantum Monte Carlo 5 and series expansions to have
LRO parameter mt within I%%uo of the SWl (and second-
order spin-wave theory) predictions, while the result for
the TXYAF found in the present work (81%%uo) appears
distinct from the SWl (90%%uo) prediction. We feel the
difference increases as J, —+ 1, since the frustration ef-
fect increases. Evidence for the trend is displayed in
Fig. 7, where we plot the finite-size (N = 12, 36) ex-
trapolations of the sublattice magnetization [Eq. (2.12)]
for J, = 0.0, 0.5, 0.75, and 0.90 along with the spin-wave
theory results. Prom the figure, the discrepancy between
the finite N extrapolated value and the SW1 result evi-
dently increases with J,.

The second-order spin-wave (SW2) contributions (of

H4 = H4 ——h) (S —cr,') = h) n, ,

since the LRO parameter is then given by

mt = S- —'
N Bh'

(2.22)

(2.23)

0.4

where E is the ground-state energy of the system.
The first-order spin-wave results are readily obtained

by diagonalizing the quadratic Hamiltonian Hs~j
H~ + H2 + H4 via, the standard Bogoliubov
transformation. 3 This yields the coefBcient of order S
of the ground-state energy, and m~ is then found by
differentiating with respect to h. The resulting expres-
sions for E and mt are straightforward sums over the
Brillouin zone. For spin-2, one can easily Gnd that the
energy is E( )/N = —0.3992 and the LRO parameter
mt(i) = 0.4485 (= 90%%uo) for the case of the TXYAF, and
E( )/N = —0.5388 and mt( ) = 0.2387 (- 48%%uo) for the

0. 1

0.0
0.0 0.2 0.6 O. B 1.0

FIG. 7. Comparison of the N = 12, 36 extrapolated mt
of the present work (&) to the first- and second-order spin-
wave results (SWl and SW2, respectively) as a function of
anisotropy J, .
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~E(2) ) - I((nk) IHs" l(0)) I'
(2.25)

order Se in the energy) arise from two sources: (1) the
standard second-order piece from H' defined above and

(2) the contribution from Hs . We will call these con-

tributions 6'E(i+2) and 6'Es i respectively. We discuss(2} (2}

the bE(si contribution, since it is somewhat unfamiliar. ss

The product of three magnon operators means the expec-
tation value of H3 vanishes in the Boboliubov ground
state: (SWl~Hs ~SW1) = 0, so it must be treated in
higher-order perturbation theory. The second-order per-
turbation result is

plaquette, which we call helicity. Classically, it is found

that helicity LRO exists at zero temperature, and gives

rise to a Kosterlitz-Thouless type of phase transition at
finite temperature. 4e For S = 2, such a transition seems

to be suppressed, perhaps by quantum fluctuations. It
is interesting to see if quantum Buctuations destroy the
helicity LRO in the ground state.

Following Fujiki and Betts, we define the helicity op-

erator for each triangle as

(Si x S2+ Sz x Ss+ Ss x Si)'
3

1
. l(si S2 —Si+S2 ) + (Sz Ss —S2 Ss )

3$

where ](nk j) is an eigenstate of the quadratic (i.e. , SW1)
Hamiltonian with magnon occupation numbers denoted
by (nk). E((nk)) is the corresponding energy and is

given by Qk(nk + 1/2)%uk. ](0)) denotes the ground
state with no magnons present, and 5~k is the SW1
magnon spectrum given by

+(s;s+ —s+s;)],

where the sites 1, 2, and 3 are taken in a clockwise sense
around the triangle. The eigenvalues of H, are +1 and
0. To investigate the long-range helicity order, we define
the quantity

~~k = 2&s [(1 rk)(1 + 2''yk)] (2.26)
(2.28)

[where pk = (1/v) p& exp(ik 6)] when the applied mag-

netic field h is zero. Note that, since H3 is proportional
to ~S and u)k is proportional to S, the contribution

bE& is indeed of order S . The primary contribution
in Eq. (2.25) is from states with three magnons present
and reduces to a double sum over the Brillioun zone.

The calculation of mt within SW2 for the THAF has
only recently appeared in the literature. There it was
found that the SW2 correction actually slightly increases
the value of mi' from 48% to 50%. We have verified
and applied Miyake's formula to the case J, & l.
For the TXYAF we find mt is reduced slightly from
m~~ } = 0.4485 to mt( } = 0.4367, and so makes up
some, but evidently not all, of the diagonalization es-
timate m~ = 0.405 + 0.02. We note in passing that the
SW2 correction to m~ is about 40 times smaller for the
triangular spin-2 XY ferromagnet than for the TXYAF,
and, hence, the H3 contribution is the dominate one for
the TXYAF. As seen in Fig. 7, the deviation of the spin-
wave results from the diagonalization predictions grows
quickly with J, .

D. Helicity

It is well known that the classical ~3x ~3 structure has
an Ising-like variable associated with each triangular

where the sum is over the upright triangles. NN (Ref. 19)
calculated the helicity (they called it "chirality") LRO
for the TXYAF and THAF up to N = 27. They con-
cluded that the helicity LRO decays by a power law for
the TXYAF, and decays exponentially for the THAF,
and so, once again, they predict no such LRO as N ~ oo
for either system.

Our helicity results are tabulated in Table IV and plot-
ted in Fig. 8. For the TXYAF, the even and odd N results
seem to follow diferent curves with opposite curvature.
If we assume that both extrapolate to the same value
as N —+ oo, they obviously extrapolate to a finite value,
which is about 0.58. This again contradicts the results
of NN. is For the THAF, the even and odd N results al-
most fall on the same curve, which seems to extrapolate
to zero or a small number as N —+ oo. Thus we believe
that the TXYAF has helicity LRO, while the THAF does
not.

E. Chirality

As discussed before, the nature of the ground state of
the THAF has generated much controversy. Kalmeyer
and Laughlin have proposed a RVB state that breaks
chiral symmetry as the ground state for the THAF. It

TABLF, 1V. Hei&city LRO (H )/N for various system sizes N and anisotropies J~.

0.00
0.50
0.75
0.90
]..00

0.69462
0.60890
0.54895
0.51485
0.49383

0.58122
0.45870
0.41983
0.40069
0.38926

0.61427
0.46442
0.36202
0.30575
0.27391

%=27
0.59703
0.42159
0.30971
0.25233
0.22156

0.58781
0.38498
0.26801
0.21371
0.18536
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1.0 II I I I

+ J =0.00
o J.=Q.5Q

o J,= Q. "75

o J,=0.90
x J,= 1.00

I I I I I I

X',. =—v 2[Si (Sz x S3) Sz ' (S4 x S3)].
(-) =— (2.3O)

The normalizations are chosen such that the maximum
magnitudes of the eigenvalues are 1 in both cases. The
uniform chirality X+ and the staggered chirality X are
defined as

0.2—

00
x, —= ) x,"',

x =) x!'.
(2.31)

(2.32)

0 0 I I I

0.0 0. 1 0.2
1 /v'N

I I I I I I

0.4

FIG. 8. The size dependence of the helicity LRO parame-
ter for TXYAF (+) and THAF (x), and intermediate J, (see
legend).

The results are tabulated in Table V. The uniform chi-
ral LRO parameter of both the TXYAF and THAF are
plotted in Fig. 10. Both appear to extrapolate to zero,
in agreement with Ref. 43, where a diferent kind of ex-
trapolation scheme is used. The staggered chiral LRO
of the THAF are plotted in Fig. 11. They are much
smaller than the uniform one and seem to suggest zero
as N —+ oo.

(+) 2
X,+ = [Si (S3 x S3)+S2 (S4 x S3)], (2.29)

is known that nonzero expectation values of the oper-
ator Si . (S3 x S3) implies chiral symmetry breaking.
Baskaran4~ has shown that chiral symmetry breaking
should be enhanced by next-nearest-neighbor interaction.
However, a numerical study by Imada did not show ev-

idence of chiral symmetry breaking for the THAF with
nearest-neighbor interaction, consistent with recent pre-
diction based on large-N expansion. i3 A finite-size study
(N = 21) by Deutscher et al.44 did not show enhance-
ment in the chiral order parameter even in the presence
of next-nearest-neighbor interaction.

Consider a plaquette of four spins as shown in Fig. 9,
we define the uniform chiral operator X,+ and the stag-

gered chiral operator X,~ for plaquette i to be

F. Energy gaps for the THAF

Energy gaps can be important in studying long range
order. For the THAF, we consider the magnetic order,
where the appropriate energy gap is the spin-flip gap.
Those excitations generated by spin-flip operations have
higher St t~~ than the ground state. If these excitations
are gapless, i.e. , the lowest-energy state with higher St q ~

is degenerate with the ground state in the thermody-
namic limit, then magnetic LRO should exist. In the
thermodynamic limit, the ground state is a singlet and
the lowest spin-flip excitation is a triplet. Therefore, one
should consider the singlet-singlet gap (the energy dif
ference between the ground state and the first excited
singlet state) and the singlet-triplet gap (the energy dif-
ference between the ground state and the lowest triplet
state). It is well known that in the square HAF, both the
singlet-singlet gap and the singlet-triplet gap go to zero
in the thermodynamic limit, with, however, the singlet-
triplet gap much smaller than the singlet-singlet gap,
i.e. , the lowest-lying excitations are spin-flip excitation .
Andersonis conjectured that in the THAF the singlet-
triplet gap is finite, while the singlet-singlet gap is zero.
However, numerical results of Suto and Fazekas45 sug-
gested that both singlet-triplet and singlet-singlet gaps
vanish in the thermodynamic limit. Therefore, both sin-
glet and triplet low-lying excitations are present.

TABLE V. Chirality LRO for the TXYAF and THAF for
various system sizes N.

FIG. 9. A plaquette of four spins on which the uniform
and staggered chiral operators are defined.

9
12
21
27
36

TXYAF
(~+)/N'
0.05534
0.07905
0.02526
0.01998
0.01502

THAF
(X+)/N'

0.07128
0.10246
0.03815
0.03149
0.02465

(A )/N
0.05238
0.00008
0.00872
0.00548
0.00280
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0 12 TABLE VI. Ground states and the first few excited states
of the THAF for various system sizes N.

x J,=1

0.08 + J,=O

0.06

V
0.04

0.02

0.00 I I I I I I

0.0 0. 1 0.2 0,3
1/v'N

0,4

FIG. 10. The size dependence of the uniform chirality
LRO parameter for TXYAF (+) and THAF (x).

12

21

27

Energy
—5,2500
—3.7500
—3.7500
—3.7500
—7.3240
—6.4608
—6.4272
—6.3700

—11.7809
—11.0785
—11.0628
—11.0606
—15.1260
—14.6117
—14.5298
—14.5235

iStotal

1/2
3/2
3/2
1/2

0
1
1
0

1/2
3/2
3/2
1/2

1/2
1/2
3/2
3/2

Momentum

(4vr/3, 0)
(0, 0)

(4n/3, 0)
(2m/3, 27r/3 v 3)

(0, 0)
(4vr/3, 0)

(0, 0)
(0, 0)

(4~/3, 0)
(0, 0)

(47r/3, 0)
(4vr/7, —8vr/7v 3)

(4~/3, 0)
(8vr/9, 0)

(o o)
(4vr/3, 0)

Since some of the small clusters we are dealing with
have odd N, singlet and triplet states do not exist, and we
have to study the doublet-doublet and doublet-quartet
gaps in those cases. In Table VI we tabulate the first few
lowest-energy states for the THAF up to N = 27. For
N = 9, the ground state is a doublet. The first excited
doublet state is degenerate with the lowest quartet state.
For both N = 12 and 21, the first excited state is the
spin-flip state, i.e. , having a higher Sq~t, ~l than the ground
state. The first excited state, which has the same St t j as
the ground state, is the third excited state. For N = 27,
the spin-flip excitation is no longer the lowest excited
state. There is a doublet state between the ground state
and the lowest quartet state. This level crossing of the
first excited state with system size shows the complex
nature of the excitation spectrum as compared to the
unfrustrated square lattice HAF. In Fig. 12 we plot the
doublet and quartet gaps for odd N. The former is the
gap between the ground state (which is a doublet) and

the first excited doublet, and the latter is the gap between
the ground state and the lowest quartet. We find that
the smallest excitation gap (the smaller of the doublet
and quartet gap) appears to extrapolate linearly to zero,
while the spin-flip excitation gap (quartet gap) seems to
extrapolate to a small but finite value. If this scenario
is correct, namely, the spin-Hip excitation has a gap, and
the excitation with the same St t 1 as the ground state
is gapless, then the THAF does not possess magnetic
LRO (which agrees with our interpretations in Sec. II B),
and there may exist other kinds of LRO. But we have
to caution that the above speculation depends heavily
on the small N results and may also be influenced by the
fact that odd N has been used. As always, it is dangerous
to infer the large N behavior from a limited number of
data points at small ¹ Spin gaps for N = 36 will be

0 04
X

2.0 I I I I I I

+ doublet

0.03 1.5—
quartet

0.02—
I

V

0.01

0 00 I I I

0.0 0. 1

X
X

I I I I~ I I I

0.2 0.3
1/vN

0.0
0.00

I I I I I I I

0.05
1/N

0.10

FIG. 11. The size dependence of the staggered chirality
KRO parameter for THAF.

FIG. 12. The size dependence of the doublet (+) and
quartet (x) gaps for odd N for the THAF.
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much more convincing. Unfortunately, we are not able
to calculate the lowest-lying spin-flip gaps for N = 36
at the present time. However, it does seem possible from
our results that the spin-flip excitations are not the lowest
excitation at large N.

The THAF is in sharp contrast with the simple na-
ture of the excitation spectrum of the square HAF, where
the spin-flip excitation is gapless and therefore magnetic
LRO exists. This simple picture can be complicated by
adding frustration to the square HAF. From the finite
cluster study of the frustrated square HAF, it is found
that singlet states exist between the ground state and
the lowest triplet state for a certain range of J2jJi, and
the system does not possess antiferromagnetic LRO. Ge-
ometrical frustration in the THAF seems to produce the
same effect. The kagome HAF, which is another example
of geometrical frustration, also has a similar picture. The
lowest excitation of the kagome HAF has the same St, i ~

as the ground state. " We therefore believe that the geo-
metrical frustration in the triangular lattice is enough to
destroy the magnetic spin order. One difference between
the gap structures of the kagome and triangular HAF is
that the first excited states always have the same Si & ~ as
the ground state in the kagome HAF, whereas this does
not happen except for larger N in the THAF. This may
suggest that the kagome HAF loses its magnetic LRO in
a more drastic manner than the THAF, and may also
bolster the idea that the THAF is marginally close to
losing its magnetic LRO.

III. CONCLUSION

To summarize, we have calculated the ground states of
the TXYAF and THAF with system sizes N = 9, 12, 21,
27, and 36 by exact diagonalization. We study those
possible long-range orders, which are most often associ-
ated with the triangular antiferromagnets, namely, mag-
netic order, helicity and chirality. The kind of magnetic
order we look for is a Neel type ordering with v 3 x ~3
unit cells. Using finite-size extrapolations, we infer the
existence or nonexistence of these orderings in the ther-
modynamic limit. Due to the small number of system
sizes we have and the fact that even and odd K re-
sults often lie on different curves, precise extrapolation is
not feasible, and we are not always able to extract accu-
rate estimates for these quantities in the thermodynamic
limit. Finally, we study the spin gaps for magnetic order.

For the TXYAF, our results strongly suggest the exis-
tence of magnetic and helicity LRO, but not chiral LRO.
Thus we have shown that quantum fluctuations in the
ground state of the spin-2 system are not sufIicient to
destroy the magnetic and helicity LRO, which also ex-
ist in the classical ground state. This is contrary to NN
(Ref. 19) who studied the same quantities with the same
approach, but included system sizes up to N = 27 only.
By fitting their data to different functional forms, they
concluded that both the twisted magnetization and the
helicity LRO decayed to zero via power laws. By adding
the N = 36 results, we believe that we can rule out

their power-law fits in both cases. However, in a later
publication, is they did remark that their system sizes
are too small to draw definite conclusions. The LRO
that exists for the TXYAF should persist for a nonzero
range of J, about zero.

For the THAF, although we cannot definitely rule out
the existence of magnetic LRO, our results do suggest
that it does not exist. Of the four different estimates
for the staggered magnetization defined in Eqs. (2.lla)—
(2.lid), ms has the most obvious, and perhaps most re-
liable trend for extrapolation. Extrapolation of m sug-
gests that even if the staggered magnetization in the ther-
rnodynamic limit is not zero, it should be a good deal
smaller than the linear SWT result of 48%%uo of the classi-
cal value. This is in agreement with the series expansion
calculations of Singh and Huse. Similarly, the helicity
and chirality LRO are inferred not to exist. Spin-gap
calculations show that spin-flip excitations are not the
lowest-lying excitations for large N. Although this sup-
ports the picture that the THAF does not possess mag-
netic LRO, it is somewhat ambiguous because this is the
case for N = 27 only, and we are not able to do the same
for N = 36. It will be much more convincing if one can
show that the lowest-lying excitations for N = 36 are
not spin-flip excitations. By studying 0 & J, ( 1, we
found that the extrapolated twisted magnetization de-
creases rapidly with increasing J,. Spin-spin correlations
are consistent with the speculation that the THAF may
be in the critical phase of losing its spin order, which
was suggested from the series expansion work. Over-
all, our results seem to support the speculation that the
THAF is a spin-liquid with no broken symmetry, which is
consistent with the original RVB conjecture and large-
K expansion (for "sufficiently small" spin). is A recent
experiment also seems to imply that the THAF has no
magnetic order at low temperature. Although we must
admit that our results cannot be taken as conclusive ev-
idence for the above-mentioned picture, we believe that
they are enough to cast doubt on the belief that the
spin-2 THAF possesses Neel-type ordering. If one does
assume this conclusion, it immediately poses intriguing
questions: (1) Is the spin-2 THAF a spin-liquid, and, if
not, what is the form of the LRO? (2) What is the criti-
cal value of the spin S, () 1j2) at which the Neel order
is regained for the THAF'?

Finally, we remark that the 36-site system is the
biggest we can handle at present, yet it still seems too
small for performing finite-size extrapolation, especially
when the quantity we are studying may be zero in the
thermodynamic limit. This comes as no surprise: If the
THAF is really in the critical phase of losing its spin
order, i2 then one should expect very serious finite-size
effects. By looking at the scaling plots, one will be con-
vinced that even N = 48 results cannot add much in-
formation. The properties of that system are, however,
much more difIicult to obtain by diagonalization than the
N = 36 results, and we do not expect it to be possible
in the near future. Therefore, we feel that a quantum
Monte Carlo approach that can deal with the negative
sign problem is needed to draw more definite conclusion
to the present problem.
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