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We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch
and Gulacsi [Europhys. Lett. 57, 852 (2002)] to quantum chemical Hamiltonians. This involves us-
ing a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of Ŝ2,
and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the
spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also im-
plement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E 61, 3199 (2000)] where we target
high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient
algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunc-
tions. We evaluate our developments with benchmark calculations on transition metal system active
space models. These include the Fe2S2, [Fe2S2(SCH3)4]2−, and Cr2 systems. In the case of Fe2S2,
the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very
closely spaced states. In [Fe2S2(SCH3)4]2−, we calculate particle and spin correlation functions, to
examine the role of sulfur bridging orbitals in the electronic structure. In Cr2 we demonstrate that
spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an or-
der of magnitude increase in computational efficiency. Overall, these calculations demonstrate the
potential of using spin-adaptation to extend the range of DMRG calculations in complex transition
metal problems. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695642]

I. INTRODUCTION

Since its introduction by White3, 4 and its first applica-
tion to quantum chemical systems,5 the density matrix renor-
malization group (DMRG) has been applied to a wide variety
of problems in quantum chemistry.6–11 After early attempts
to use the DMRG as a full configuration interaction (FCI)
method for small molecules,7, 10, 12–14 it was recognised that
DMRG is best used to describe non-dynamical correlation
in active spaces. The DMRG algorithm exhibits a cost scal-
ing of O(k3M3) + O(k4M2), where k is the number of active
space orbitals, and M is the number of renormalized many-
body states, which determines the accuracy of the method.
In non-1D systems, the number of states M required to ob-
tain a given error (relative to the FCI energy in the active
space) depends on the correlation length of the system with
the orbitals mapped onto an artificial 1D lattice, and this can
increase quite rapidly with k. In addition, the shape of the or-
bitals and the order in which they are arranged can drastically
affect the convergence of the DMRG.15, 16 Nonetheless, many
examples have demonstrated that in practical applications, the
DMRG describes active space correlations to high accuracy,
for orbital spaces beyond the reach of complete active space
non-dynamical correlation methods.

Transition metal chemistry typically involves partially
filled d orbitals and is a rich source of difficult active space
correlation problems. Increasing effort in recent times has
been devoted to applications of the DMRG to transition metal
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chemistry.8, 11, 17–21 Here, the ability to utilise spin symmetry
is an important advantage. This is because the large number of
unpaired electrons often leads to many low lying spin states in
a very narrow energy window, which can only be efficiently
resolved by targeting a specific spin sector. In addition, of
course, the correct use of spin symmetry can lead to signif-
icant computational efficiency gains.

Spin symmetry is associated with the non-Abelian SU(2)
Lie group. Spin adaptation in the DMRG can be achieved by
working with states and operators (multiplets and irreducible
tensor operators, respectively) that transform as irreducible
representations of SU(2). This formulation resembles quan-
tum chemistry approaches to spin adaptation which work di-
rectly in the configuration state function basis, rather than al-
ternatives based on the symmetric22, 23 or unitary groups.24–26

The first DMRG algorithm to exploit non-Abelian spin sym-
metry was the interaction-round-a-face DMRG (IRF-DMRG)
introduced by Sierra et al.2, 27 McCulloch and Gulacsi1, 28, 29

later proposed a highly efficient implementation of spin-
adapted DMRG. McCulloch’s algorithm relied on two im-
portant ingredients. The first was the use of a quasi-density
matrix to determine the renormalized DMRG basis. In gen-
eral, the density matrix of a subsystem does not commute
with the total spin operator of the subsystem, and thus the
usual DMRG prescription, to use the density matrix eigenvec-
tors as the many-body basis, is incompatible with spin adap-
tation. McCulloch and Gulacsi showed that the best states to
retain in the decimation step of the DMRG are eigenvectors
of a quasi-density matrix which commutes with the Ŝ2 opera-
tor. The second contribution was the use of the Wigner-Eckart
theorem to efficiently store and compute matrix elements of
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irreducible tensor operators. This leads to significant improve-
ments in the performance of DMRG. In this work, we closely
follow McCulloch and Gulacsi and extend their algorithm
to deal with the more complicated Hamiltonians in quantum
chemical systems. We also describe the extension to compute
one- and two-body density matrices, which are essential not
only for interpreting DMRG calculations (e.g., through the
analysis of correlation functions) but also in connecting the
DMRG to treatments of dynamic correlation, such as canon-
ical transformation theory, or perturbation theories.30, 31 We
note that earlier work on spin-adapted DMRG in the context
of quantum chemistry was carried out by Zgid and Nooijen.10

Zgid and Nooijen used quasi-density matrices to ensure the
proper spin symmetry of the renormalized states but did not
use the Wigner-Eckart theorem to evaluate matrix elements.
The cost of Zgid’s algorithm was therefore (essentially) iden-
tical to the original non-spin-adapted DMRG algorithm. As
we will show, while the Wigner-Eckart formulation compli-
cates the DMRG implementation significantly, it also results
in substantial performance gains.

We start with a brief summary of the DMRG algorithm in
Sec. II. We assume that the reader has some familiarity with
the DMRG algorithm as described in various articles,7, 11, 32, 33

thus we focus mainly on aspects of the DMRG that will be
modified when spin adaptation is introduced. In Sec. III, we
describe in some detail our implementation of spin adaptation
in DMRG. For completeness, we review some concepts re-
lated to spin symmetry, such as the Wigner-Eckart theorem,
Clebsch-Gordan coefficients, 6-j coefficients, and 9-j coeffi-
cients, although the reader will benefit from more detailed
expositions, for example, in Refs. 34 and 35. In Sec. IV,
we present our analysis of the main computational differ-
ences between the spin-adapted and non-spin-adapted algo-
rithms and describe the singlet embedding approach to high
spin states. In Sec. V, we present our algorithm to evaluate
the one- and two-body reduced density matrices of the con-
verged spin adapted wavefunctions. Finally in Sec. VI, we
present some benchmark calculations on transition metal sys-
tems that demonstrate the potential advantages of using the
spin-adapted DMRG algorithm. Here, we study the ability to
target very closely spaced spin states in Fe2S2, the compu-
tation of correlation functions in [Fe2S2(SCH3)4]2−, and the
timings and computational efficiency of the algorithm in Cr2.
Conclusions are presented in Sec. VII. The appendices sum-
marise some of the relevant formulae, describes spin adapta-
tion in the matrix product state (MPS) language, and gives
the explicit formulae for wavefunction transformation and the
tensor operator transposes.

II. A SUMMARY OF THE DMRG ALGORITHM

To place the spin-adapted algorithm in context, we start
with a description of the standard non-spin-adapted DMRG
algorithm, and the inclusion of Abelian symmetries. Our
later presentation of the spin-adapted algorithm and the han-
dling of non-Abelian symmetries will closely parallel this de-
scription, to allow a clear comparison between the different
steps.

FIG. 1. The one-dimensional arrangement of orbitals on a lattice and the
subdivision into blocks, in the “two-dot” configuration. In the forward sweep
the left block is termed the system block and the right block is termed the
environment block and the reverse is true in the backward sweep. At each
sweep iteration the system block increases in size by one orbital.

The DMRG algorithm consists of a set of sweeps over
the k spatial orbitals of the problem. We imagine these or-
bitals to be arranged as a one dimensional lattice of sites. At
every step of the algorithm, the lattice is conceptually divided
into four parts: a left block L consisting of sites 1 . . . p − 1,
a left dot •l, consisting of site p, a right dot •r consisting of
site p + 1, and a right block R consisting of sites p + 2 . . .
k; see Figure 1. (This corresponds to the “two-dot” formula-
tion of the DMRG; in the “one-dot” formulation, only •l or
•r is used, depending on the direction of the DMRG sweep.
We will use the one-dot formulation later in the evaluation of
reduced density matrices.) In the forward sweeps, the orbital
index p increases from 2 . . . k − 2, and block L increases in
size to cover the lattice, while block R shrinks. During the
backward sweeps, the index p iterates backward from k − 2
. . . 2, and block R increases in size to cover the lattice, while
block L shrinks. When it is necessary to refer to blocks at dif-
ferent sweep iterations, we will use additional subscripts to
indicate the sites spanned by block. For example, in succes-
sive iterations in a forward sweep, the two L blocks would be
Lp−1 (sites 1 . . . p − 1) and Lp (sites 1 . . . p), and the two
left dots would be •p and •p+1. We refer to the set of computa-
tions performed at each value of index p as a sweep iteration;
a sweep thus contains k − 4 sweep iterations. In total, the full
calculation consists of multiple forward and backward sweeps
(each containing multiple sweep iterations) until convergence
in the energy is observed.

Blocks L and R are each associated with M many-body
states, denoted by {|l〉} and {|r〉}, respectively, where the state
labels range from l, r = 1 . . . M. If we need to be more spe-
cific about the nature of the block we will attach subscripts,
e.g., block Lp−1 contains states |lp−1〉. In successive sweeps
of the DMRG algorithm, these many-body spaces are varia-
tionally improved. The left and right dots are associated with
the complete Fock spaces of their respective orbitals {|nl〉},
{|nr〉}, respectively, where |n〉 ∈ {|−〉, |α〉, |β〉, |αβ〉}.

During the calculation we wish to calculate observ-
ables, that is, expectation values of operators such as the
Hamiltonian. In general such operators can be expressed as
(sums of) products of operators partitioned between the four
blocks. For example, a two particle density matrix element
operator a

†
i a

†
jakal is partitioned amongst the blocks depend-

ing on the values of the indices i, j, k, l. (Note we use the in-
dices to specify spin orbitals; later while describing the spin-
adapted algorithm the indices will be used to specify spatial
orbitals. The distinction will be clear from the context.) The
Hamiltonian across the whole lattice involves sums of the
density matrix element operators, and can thus be partitioned
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TABLE I. Definitions of the operators used in the DMRG algorithm. Here
the indices refer to spin orbital indices rather than spatial orbital indices.

Operator Definition

Âij a
†
i a

†
j

B̂ij a
†
i aj

R̂i

∑

j tijaj +
∑

jkl vij lka
†
jakal

P̂ij

∑

klvijlkakal

Q̂ij

∑

kl(vikj l − viklj )a†kal

in multiple ways into operators on each of the different blocks.

Ĥ =
∑

ij

tija
†
i aj +

1

2

∑

ijkl

vij lka
†
i a

†
jakal . (1)

The following set of operators and their adjoints, de-
fined in Table I, provides an efficient partitioning:
1̂, ai, Âij , B̂ij , R̂i, P̂ij , Q̂ij , Ĥ .36 R̂i, P̂ij , Q̂ij are known
as complementary operators, and their definitions involve the
one- and two-electron integrals.

The computations in a sweep iteration consists of manip-
ulations of states and operators in the spaces associated with
the four blocks L, •l, •r ,R. These computations are divided
into three steps blocking, wavefunction solution, and renor-
malization and decimation. We now describe these computa-
tions in the context of a forward sweep.

Blocking — This consists, conceptually, of adding the left
dot to the left block and the right dot to the right block to form
blocks A = L•l and B = •rR, respectively. Blocks A and
B are each associated with many-body spaces {|a〉}, {|b〉},
where the state labels range from a, b = 1 . . . 4M. They are
product spaces, i.e., {|a〉} = {|l〉} ⊗ {|nl〉} and {|b〉} = {|nr〉}
⊗ {|r〉}.

During blocking, the matrix elements of operators on
block A and block B are formed from the matrix elements
of constituent operators on the blocks L, •l and •r, R, re-
spectively. Consider the operations to form the matrix repre-
sentation of Âij = a

†
i a

†
j on block A. We write this as Aij [A],

where the bold font denotes matrix representation. Depend-
ing on the indices i, j, the matrix representation (Aij [A])aa′

= 〈a|a†
i a

†
j |a′〉 is formed in one of three ways,

i, j ∈ L ⇒ Aij [L] ⊗ 1[•l],

i ∈ L, j ∈ •l ⇒ ai[L] ⊗ aj [•l], (2)

i, j ∈ •l ⇒ 1[L] ⊗ Aij [•l].

Here ⊗ denotes a tensor product between operators that is
defined with a parity factor to take into account fermion
statistics. For two operators X̂ and Ŷ with matrix elements
〈μ|X̂|μ′〉, 〈ν|Ŷ |ν ′〉, the tensor product is defined through

〈μν|X̂Ŷ |ν ′μ′〉 = P(ν, X̂)〈μ|X̂|μ′〉〈ν|Ŷ |ν ′〉, (3)

where P is the fermionic parity operator. Similarly, the
Hamiltonian matrix H[A] is built from the matrix represen-

tations of operators in Table I acting on blocks L, •l,

H[A] = H[L] ⊗ 1[•l] + 1[L] ⊗ H[•l]

+
1

2

∑

i∈L

(

a
†
i [L] ⊗ Ri[•l] + R

†
i [•l] ⊗ ai[L]

)

+
1

2

∑

i∈•l

(

a
†
i [•l] ⊗ Ri[L] + R

†
i [L] ⊗ ai[•l]

)

+
1

2

∑

ij∈•l

(

Aij [•l] ⊗ Pij [L] + A
†
ij [•l] ⊗ P

†
ij [L]

)

+
1

2

∑

ij∈•l

Bij [•l] ⊗ Qij [L]. (4)

The representation of other operators in Table I for block A

may be constructed by formulae analogous to Eqs. (2) and (4).
These formulae are summarised in Appendix A.

Wavefunction solution — Here we solve for a target
eigenstate of Ĥ for the full problem of k orbitals. In DMRG
the corresponding Hilbert space is spanned by the product ba-
sis of A and B, which we refer to as the superblock space
{|ab〉}. The corresponding matrix representation of Ĥ is the
superblock Hamiltonian H[AB]. The superblock Hamiltonian
H[AB] is (formally) defined from Eq. (4), where A, B re-
place the block labels L, •l. Note that we could also rewrite
the Hamiltonian formula in Eq. (4) with the labels A and B

swapped. For efficiency, we use the above definition when the
number of orbitals in block A is larger than that in block B,
and swap the labels A and B when the reverse is true.

The superblock Hamiltonian matrix is never built in prac-
tice, as we only wish to obtain one (or a few) eigenvectors.
Instead the target wavefunction is expanded in the superblock
basis {|ab〉}

|�〉 =
∑

ab

Cab|ab〉 =
∑

lnlnr r

Clnlnr r |lnlnrr〉, (5)

and we obtain the eigenvector C using the Davidson algo-
rithm. The main operation in the Davidson algorithm is the
Hamiltonian wavefunction product H · C. Since H is parti-
tioned into a sum of products of operators on blocks A and B

as Eq. (4), this is carried out for each term in the sum, defining
suitable intermediates. For example,

(Aij [A] ⊗ Pij [B]) · C = Aij [A]CPT
ij [B], (6)

and the product is efficiently carried out by grouping the terms
(Aij [A]C)PT

ij [B] or Aij [A](CPT
ij [B]), where superscript T

corresponds to the transpose of the operator.
Renormalization and decimation — Here the many-body

space of block A is truncated from dimension 4M to dimen-
sion M, to obtain the states and operators of the next L block
in the sweep. As argued by White,3 the optimal truncated
space is formed by the eigenvectors of the density matrix of
A with the largest eigenvalues. The density matrix is defined
by tracing out the contributions of the right block B to the full
density matrix,

Ŵ̂ = TrB |�〉〈�|, (7)

Ŵ = CC†. (8)
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The eigenvectors are obtained from

Ŵ̂|l〉 = σl|l〉, (9)

and the M largest eigenvalues yield a set of eigenstates {|l〉}, l

= 1 . . . M. We can collect the eigenvectors into a transforma-
tion matrix L, where

ŴL = L diag[σ1, . . . , σM ]. (10)

The remaining eigenvalues of the discarded eigenstates, σ M+1

. . . σ 4M may be summed to give a total discarded weight,
which measures the accuracy of the DMRG truncation and
which can be used in DMRG extrapolations to the M = ∞
limit. To complete the renormalization, we need to convert
block A into a new left block L. To do this, we truncate the
basis {|a〉} to the renormalized space {|l〉} of dimension M as
above. We next project all the operators constructed on A into
this renormalized space. The projection is written in terms
of the density matrix eigenvectors. For an operator X[A], we
have

X[L] = L†X[A]L. (11)

At the end of the decimation step, we have constructed both
the space and the operators of the new block L, and we can
proceed to the next sweep iteration.

A. Abelian symmetries in the DMRG

Abelian symmetries, which include, for example, the ax-
ial spin component m, total particle number N, and Abelian
point group symmetry, are taken into account in a straightfor-
ward manner in the DMRG. We label each block basis state
|μ〉 by an additional set of quantum numbers q corresponding
to the irreducible representations of all the applicable symme-
tries, i.e.,

|μ〉 → |μq〉. (12)

For a product state, such as formed in the blocking step,
Abelian symmetry means that the quantum numbers of the
product state are just the “sum” of quantum numbers of the
individual states

|μq〉 = |μ1q1μ2q2〉,

q = q1 ⊕ q2. (13)

In the case of N and m, ⊕ is given by standard addition (i.e.,
N = N1 + N2) while in the case of point groups, it is given by
modulo addition.

The target eigenstate obtained from DMRG transforms
according to a desired irreducible representation. Conse-
quently, only many-body states |a〉 and |b〉 whose quantum
numbers sum to the target state quantum numbers need to ap-
pear in the wavefunction expansion,

|�q〉 =
∑

ab

Caqabqb
|aqabqb〉,

q = qa ⊕ qb, (14)

and thus Abelian symmetry can significantly reduce the num-
ber of coefficients in C.

Operators on the blocks can also be labelled by Abelian
symmetry representations or quantum numbers. For example,
a
†
iβ is labelled by particle quantum number 1 and m quan-

tum number −1/2, reflecting how the operator changes the
quantum numbers of the states that it acts on. The labelling
of operators by quantum numbers allows the use of selection
rules to store and manipulate only the non-zero elements of
the operators. These take the form

〈μ1q1|X̂q |μ2q2〉 = δq1,q⊕q2〈μ1q1|X̂q |μ2q2〉. (15)

Labelling states and operators using Abelian symmetry
thus leads to the following computational advantages: it re-
duces the number of states that need to be considered on each
block, since they need to combine to yield the quantum num-
bers of the target wavefunction, it limits the coefficients C in
the wavefunction expansion, and, selection rules allow us to
work with only non-zero elements of the operators.

III. SPIN ADAPTATION OF THE DMRG ALGORITHM

As discussed in the Introduction, the incorporation of
spin symmetry can potentially yield significant computational
advantages in the DMRG algorithm. The basic advantages are
similar to those for Abelian symmetries: elimination of block
states which cannot participate in the final target wavefunc-
tion, restriction of coefficients in the wavefunction expansion,
and selection rules to work with only the non-zero operator
elements. However, the non-Abelian nature of the SU(2) Lie
group brings additional features into play. For example, asso-
ciated with every spin state S is a 2S + 1 degenerate mani-
fold of multiplet states, but if we are interested in the expec-
tation value of a rotationally invariant operator such as the
Hamiltonian, then we can work with multiplets as a single en-
tity, rather than working with the individual states. The target
wavefunction is then expanded in terms of a set of reduced

coefficients labelled by multiplets, rather than states. Simi-
larly, operators are represented by reduced matrix elements,
labelled by multiplets rather than states. For a given particle
number N in an orbital space of size k, the relative dimension
of the number of multiplets of spin S versus the dimension
of the state space with axial spin m = S is given by the ra-
tio of the Weyl formula for the number of configuration state
functions (with m = S) and the formulae for the number of
determinants, namely

no. CSF =
2S + 1

k + 1

(

k + 1
n/2 − S

) (

k + 1
n/2 + S + 1

)

no. dets =
(

k

n/2 + m

) (

k

n/2 − m

)

. (16)

The computational advantage of using the multiplet space,
versus the state space, is therefore a function of the particle
number, number of orbitals, and spin. From the above formu-
lae, it can be seen that the ratio of the number of CSFs to
the number of determinants is most advantageous when S is
small.

Of course, working with the reduced multiplet repre-
sentations introduces some complications which involve the
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algebra of SU(2). We now recap the theory of spin eigenstates
and spin tensor operators as relevant to the DMRG, before de-
scribing the application to the steps of the sweep iteration.

A. Spin eigenstates

Spin symmetry introduces two additional quantum num-
bers, S and m

|μ〉 → |μSm〉. (17)

Each S is associated with a degenerate multiplet of 2S + 1
states, which transform amongst each other under rotation.
The non-Abelian character of spin is apparent when we con-
struct spin eigenstates from two underlying spins. In this case
|Sm〉 is not the product of spin eigenstates |S1m1S2m2〉, but in-
stead a linear combination of product states with different m1

and m2, coupled by Clebsch-Gordan coefficients cSS1S2
mm1m2

,

|Sm〉 =
∑

m1m2

cSS1S2
mm1m2

|S1m1S2m2〉

m = m1 + m2, (18)

S ∈ {|S1 − S2|, |S1 − S2| + 1, . . . (S1 + S2)}. (19)

Equation (19) generalizes Eq. (13) for Abelian symmetry, to
spin symmetry. Because of the restriction in the range of al-
lowed S1, m1, S2, m2 from Eqs. (18) and (19), we observe that
spin confers a similar advantage to an Abelian symmetry in a
DMRG calculation: block states on A, B need not be consid-
ered if they cannot combine to yield the S, m quantum num-
bers in the target wavefunction.

As mentioned above when solving the Schrödinger equa-
tion with spin symmetry we can work with multiplets as a sin-
gle entity, rather than individual states, because Ĥ is invariant
under rotation. Reduced quantities are labelled only by S, and
the reduced wavefunction is written as

||�S〉 =
∑

aSabSb

CaSabSb
||aSabSb〉. (20)

The reduced coefficients in the multiplet representation are re-
lated to the coefficients CaSamabSbmb

in the state representation,

|�Sm〉 =
∑

aSamabSbmb

CaSamabSbmb
|aSamabSbmb〉, (21)

by

CaSamabSbmb
= cSaSbS

mambm
CaSabSb

. (22)

The reduced coefficients CaSabSb
are clearly smaller in

number than the original set of wavefunction coefficients
CaSamabSbmb

.

B. Spin tensor operators

With spin, symmetry operators can also acquire labels S,
m. Operators which transform according to irreducible spin

TABLE II. Definitions of the operators used in the spin-adapted DMRG.
Here the indices refer to spatial indices rather than spin indices.

Components Definition

â
1/2
i â

1/2,−1/2
i â

†
iβ

â
1/2,1/2
i â

†
iα

R̂
1/2
k R̂

1/2,−1/2
k

1√
2

∑

ij l νijkl(â
†
iα â

†
jα âlα + â

†
iα â

†
jβ âlβ )

R̂
1/2,1/2
k

1√
2

∑

ij l νijkl(â
†
iβ â

†
jα âlα + â

†
iβ â

†
jβ âlβ )

Â0
ij Â

0,0
ij

1√
2

(â†iα â
†
jβ − â

†
iβ â

†
jα)

Â
1,−1
ij â

†
iβ â

†
jβ

Â1
ij Â

1,0
ij

1√
2

(â†iα â
†
jβ + â

†
iβ â

†
jα)

Â
1,1
ij â

†
iα â

†
jα

B̂0
ij B̂

0,0
ij

1√
2

(â†iα âjα + â
†
iβ âjβ )

B̂
1,−1
ij â

†
iβ âjα

B̂1
ij B̂

1,0
ij

1√
2

(â†iα âjα − â
†
iβ âjβ )

B̂
1,1
ij −â

†
iα âjβ

P̂ 0
ij P̂

0,0
ij

1√
2

∑

kl −νijkl(−âlα âkβ + âlβ âkα)

P̂
1,−1
ij

∑

kl νijkl âlα âkα

P̂ 1
ij P̂

1,0
ij

1√
2

∑

kl −νijkl(−âlα âkβ − âlβ âkα)

P̂
1,1
ij

∑

kl νijkl âlβ âkβ

Q̂0
ij Q̂

0,0
ij

1√
2

∑

kl(−νiklj + 2νikj l)(â
†
kα âlα + â

†
kβ âlβ )

Q̂
1,−1
ij

∑

kl −νiklj â
†
kβ âlα

Q̂1
ij Q̂

1,0
ij

1√
2

∑

kl −νiklj (â†kα âlα − â
†
kβ âlβ )

Q̂
1,1
ij

∑

kl νiklj â
†
kα âlβ

representations are known as irreducible (spin) tensor oper-
ators. Similarly to a spin multiplet, tensor operators labelled
by S are associated with a manifold of 2S + 1 operators that
transform amongst each other under rotation. A simple way to
characterize a tensor operator is to observe its effect on a state
with spin S = 0. For example, a†

iα and a
†
iβ are 2 components of

a S = 1
2 (doublet) tensor operator a1/2, because they act on a

vacuum state (with spin S = 0) to generate eigenstates of spin
1
2 . Considering the operators a

†
iαajα, a

†
iαajβ , a

†
iβajα, a

†
iβajβ ,

they collectively span an S = 0 singlet and an S = 1 triplet
manifold. The S = 0 singlet operator is defined as

B̂
0,0
ij =

1
√

2
(a†

iαajα + a
†
iβajβ), (23)

and the S = 1 triplet operators are defined as

B̂
1,−1
ij = a

†
iβajα, (24)

B̂
1,0
ij =

1
√

2
(a†

iαajα − a
†
jαaiα), (25)

B̂
1,1
ij = −a

†
iαajβ . (26)

A full list of the tensor operators used in the spin-adapted
DMRG algorithm is given in Table II.



124121-6 S. Sharma and G. K.-L. Chan J. Chem. Phys. 136, 124121 (2012)

Tensor operators allow us to work with reduced operator
matrix elements, labelled only by multiplets

XS
μ1S1μ2S2

= 〈μ1S1||X̂S ||μ2S2〉. (27)

The full matrix elements are obtained from the reduced ma-
trix elements by the Wigner-Eckart theorem (analogously to
Eq. (22))

XSm
μ1S1m1μ2S2m2

= cS2SS1
m2mm1

XS
μ1S1μ2S2

. (28)

The adjoint of a tensor operator is also a tensor operator. Here,
we define the adjoint with a additional sign factor to preserve
the Condon-Shortley phase convention used in the angular
momentum ladder operators.34 To denote this adjoint with an
additional phase, we use the symbol ‡. For example,

XS,m‡ = (−1)S+mXS,−m†. (29)

Note that the reduced matrix elements of the adjoint of a ten-
sor operator are not the adjoint of the reduced matrix ele-
ments of the operator. The relationship between the reduced
matrix elements of the tensor operators of spin S = 0, 1

2 , 1
and those of the corresponding adjoint operators, is given in
Appendix D.

As is the case for spin eigenstates, a product tensor oper-
ator with quantum numbers S, m consists of a linear combina-
tion of tensor operators with quantum numbers S1, m1 and S2,
m2, coupled through Clebsch-Gordan coefficients

(

X̂
S1
1 X̂

S2
2

)Sm =
∑

m1m2

cS1S2S
m1m2m

X̂
S1m1
1 X̂

S2m2
2 . (30)

We can obtain the reduced matrix elements of the product op-
erator (X̂S1

1 X̂
S2
2 )S directly from the reduced matrix elements

of the operators X̂ and Ŷ using Wigner 9-j coefficients

〈μνSμν ||
(

X̂
S1
1 X̂

S2
2

)S ||μ′ν ′Sμ′ν ′〉

=

⎡

⎣

Sμ′ Sν ′ Sμν ′

S1 S2 S

Sμ Sν Sμν

⎤

⎦ 〈μSμ||X̂S1
1 ||μ′Sμ′〉〈νSν ||X̂S2

2 ||ν ′Sν ′〉.

(31)

Here we define the spin-adapted tensor product ⊗ S as

X
S1
1 ⊗S X

S2
2 =

(

X
S1
1 X

S2
2

)S
, (32)

which is the reduced matrix analogue of Eq. (30) and the re-
duced matrix elements of (XS1

1 X
S2
2 )S are calculated as shown

in Eq. (31).
We now proceed to discuss how the spin algebra estab-

lished above can be applied to the computations of the sweep
iteration.

C. Spin-adapted sweep iteration

Blocking — The two modifications to blocking when
implementing spin-adaptation, are (i) instead of using the
operators in Table I, we use tensor operators, defined in
Table II, (ii) because we use tensor operators, we manipulate
and store only the reduced matrix elements of the operators.
This means that we replace the tensor multiplication ⊗, by the
spin-adapted tensor multiplication ⊗ S, defined in Eq. (32).

As an example, we consider the AS
ij [A] spin tensor

operators, whose non-tensor analogues were considered in
Eq. (2). The matrix of reduced matrix elements correspond-
ing to A0

ij [A] is obtained by

i, j ∈ L ⇒ A0
ij [L] ⊗0 10[•l],

i ∈ L, j ∈ •l ⇒ a
1/2
i [L] ⊗0 a

1/2
j [•l], (33)

i, j ∈ •l ⇒ 10[L] ⊗0 A0
ij [•l].

The partitioning of the superblock Hamiltonian similarly
follows Eq. (4). Here we recall that the Hamiltonian is an S

= 0 operator, i.e., we write H0. Then

H0[A]=H0[L] ⊗0 10[•l] + 10[L] ⊗0 H0[•l]

+2
∑

i∈L

(

a
1/2
i [L] ⊗0 R

1/2‡
i [•l]+a

1/2‡
i [L] ⊗0R

1/2
i [•l]

)

+2
∑

i∈•l

(

a
1/2
i [•l] ⊗0 R

1/2‡
i [L]+a

1/2‡
i [•l] ⊗0 R

1/2
i [L]

)

+
∑

ij∈•l

(

−
√

3B1
ij [•l] ⊗0 Q1

ij [L]+B0
ij [•l] ⊗0 Q0

ij [L]
)

+
√

3

2

∑

ij∈•l

(

A1
ij [•l] ⊗0 P1

ij [L] + A
1‡
ij [•l] ⊗0 P

1‡
ij [L]

)

+
1

2

∑

ij∈•l

(

A0
ij [•l] ⊗0 P0

ij [L] + A
0‡
ij [•l] ⊗0 P

0‡
ij [L]

)

.

(34)

Wavefunction solution — In the wavefunction solution
step, the spin-adapted Hamiltonian wavefunction product can
be performed entirely in terms of the reduced operator ma-
trix elements and reduced wavefunction coefficients. As in
non-spin adapted DMRG algorithm, the full Hamiltonian ma-
trix is never generated and the product is carried out for each
term in the sum in the Hamiltonian in Eq. (34). For example,
Eq. (6) becomes

Ca′S ′
ab

′S ′
b
=

∑

SaSb

⎡

⎣

Sb Sa S

SJ SI 0
S ′

b S ′
a S ′

⎤

⎦

×〈S ′
b||O

SJ

J [B]||Sb〉〈S ′
a||O

SI

I [A]||Sa〉CaSabSb
.

(35)

Note, as in Eq. (6), this can be evaluated with the help of in-
termediates in O(M3) cost. However, because of the summa-
tion over Sa, Sb, the operator product does not separate into a
single pair of decoupled matrix multiplications, as in the non-
spin adapted case, but rather a pair of matrix multiplications
must be carried out for each Sa, Sb in the sum if the corre-
sponding 9-j coefficient is non-zero. The overall operation is
a constant times the cost of the non-spin-adapted operation
Eq. (6), where the constant depends on the number of non-
zero 9-j coefficients.

Renormalization and decimation — In the spin-adapted
renormalization and decimation step we do not seek a
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simple optimal truncation of the states of A, but rather an
optimal truncation to a set of states consistent with spin
symmetry, i.e., to a set of pure spin states. These cannot be ob-
tained as eigenvectors of the reduced density matrix of A, be-
cause it does not commute with the spin operator Ŝ2 of block
A. As shown in McCulloch and Gulacsi,28 the density matrix
to use in this case is the quasi-density matrix, which is ob-
tained from the usual density matrix by setting off-diagonal
blocks, that couple states of different spins, to zero. All op-
erations of the renormalization and decimation step can be
carried out in the multiplet representation, working in terms
of reduced wavefunction coefficients and reduced matrix ele-
ments. The reduced matrix elements of the quasi-density ma-
trix are obtained from the reduced wavefunction coefficients.

ŴaSa ,a′Sa
=

∑

bSb

CaSabSb
C∗

a′SabSb
. (36)

The eigenvectors of the quasi-density matrix yield the trans-
formation matrices in reduced form, via its eigenvectors

Ŵ̂||lS〉 = σl,S ||lS〉. (37)

After obtaining the new renormalized basis, the operators in
multiplet representation are transformed using the analogous
formula to Eq. (11).

Note that when retaining M eigenvectors of the quasi-
density matrix in the multiplet representation, we are retaining
M sets of spin-multiplets. This corresponds to a much larger
set of underlying states, which is of course, the advantage of
working in a spin-adapted formulation. However, we will still

use the terminology “M states” to refer to the renormalized

basis in the spin-adapted algorithm.

IV. COMPUTATIONAL CONSIDERATIONS

The computational implementation of the spin-adapted
DMRG algorithm is similar to the non-spin-adapted DMRG.
Here we focus on computational differences between the two.

� The total number of operators stored in the spin-
adapted DMRG is approximately half that in the non-
spin-adapted DMRG. The most numerous kinds of op-
erators in the DMRG algorithm are those with two
orbital indices i and j, namely Âij , B̂ij , P̂ij , Q̂ij . In the
non-spin-adapted case there are four different Âij op-
erators for every spatial pair ij, i.e., Âiαjα , Âiβjα , Âiαjβ ,
and Âiβjβ . In the spin-adapted case, there are only two
tensor operators: Â0

ij and Â1
ij . Â1

ij contains three m

components, but the Wigner-Eckart theorem (Eq. (28))
means we store only a single matrix of reduced matrix
elements.

� The storage dependence of the spin-adapted algorithm
is O(M2) which is the same scaling as in the non-
spin-adapted algorithm. However, the storage pref-
actor in the spin-adapted case is larger. This arises
from the non-Abelian nature of the spin symme-
try. For example, if we consider an operator such
as B̂1

ij , the following reduced matrix elements are

non-zero: 〈μ1S||B̂1
ij ||μ2S − 1〉, 〈μ1S||B̂1

ij ||μ2S〉 and

〈μ1S||B̂1
ij ||μ2S + 1〉, i.e., several different couplings

between bra and ket are allowed. When Abelian sym-
metries are used, B̂iαjβ has non-zero matrix elements
only between states of a single symmetry type, i.e.,
〈μ1m| and |μ2m〉.

� The main cost of the algorithm comes from the Hamil-
tonian wavefunction multiplication in the wavefunc-
tion solution step, and the operator transformation, in
the renormalization and decimation step. In the spin-
adapted case, the cost of the Hamiltonian wavefunc-
tion multiplication is O(k2M3) per sweep step, similar
to the non-spin-adapted algorithm. In the spin-adapted
algorithm the presence of the 9j coupling coefficients
prevents the Hamiltonian wavefunction multiplication
from factoring into two stages as in Eq. (6). The pref-
actor of this step thus depends on the number of 9j cou-
plings that must be accounted for. For singlet states,
the spin-adapted computational prefactor is similar to
that of the non-spin-adapted case but for higher spin
states, it can be larger. The operator transformation in
the spin-adapted algorithm is very similar to the non-
spin-adapted case (and scales as O(k2M3) per sweep
step), with the caveat that some of the operators are
more dense as described in the previous paragraph.

� For large-scale calculations an efficient parallelization
of the code is required. We have carried this out in the
exact same way as in the non-spin-adapted DMRG al-
gorithm described by Chan.37

A. Singlet embedding

When using the spin-adapted DMRG algorithm to study
higher spin states than the singlet, some disadvantages appear.
First, the reduced coefficient matrix CaSabSb

becomes more
dense. In the case of the singlet, only quantum states of equal
spins on blocks A and B can couple, while for say, a triplet
state, additional couplings (Sb = Sa ± 1) are possible. A sec-
ond disadvantage (related to the first) is that for non-singlet
states, the eigenvalues of the quasi-density matrix of block A

and of block B are not equivalent. A simple example illus-
trates this. Consider a reduced wavefunction written as

||�S=1〉 =
1

√
2
||aSa = 1〉(||bSb = 0〉 + ||bSb = 2〉). (38)

The quasi-density matrix of block A has one non-zero eigen-
value, while that of block B has two non-zero eigenval-
ues. This non-equivalence means that discarded weights ob-
tained during the forward and backward sweeps of a calcula-
tion (which respectively arise from quasi-density matrices of
blocks A and B) are different, and this makes DMRG energy
extrapolation using discarded weights ambiguous.

To overcome these disadvantages, it is clearly best to use
the spin-adapted algorithm only to target singlet states. How
then do we study systems in a higher spin state? One way is
to use a technique which we call singlet embedding, origi-
nally introduced by Tatsuaki.2 Here we note that we can al-
ways add a set of auxiliary non-interacting orbitals to the end
of the lattice which couple to the physical orbitals to overall
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yield a singlet state. In general, the wavefunction ||�̃〉 of the
combined physical and auxiliary orbitals is of the form

||�̃S=0〉 = ||�S〉||	S〉, (39)

where ||	S〉 is the state of the auxiliary non-interacting or-
bitals. Because the auxiliary orbitals do not energetically cou-
ple to the physical system, and have themselves no energy,
they do not affect the energy of the physical system. We have
implemented the singlet embedding technique as an option in
our calculations, as described below.

V. REDUCED DENSITY MATRIX EVALUATION

One- and two-body density matrices are important not
only because they provide quantities which allow us to in-
terpret the electronic structure, but also because they pro-
vide the link between active space correlation methods and
dynamic correlation treatments, such as those based on
perturbation theory, configuration interaction, or canonical
transformations.30, 31, 38–40 Algorithms to efficiently evaluate
one- and two-body density matrices from DMRG wavefunc-
tions have been described earlier41, 42 and we refer the reader
to those references for details. The efficient evaluation of the
two-body reduced density matrix is most convenient in the
“one-dot” formulation (see Sec. II) because it can easily be
combined with the standard DMRG sweep algorithm. In this
case, elements of the reduced density matrix can be evaluated
using the same DMRG operators that are used in the evalu-
ation of the energy (i.e., those in Table II) at different block
configurations in a converged DMRG sweep. For example,
to evaluate the element Ŵijkl of the two-body reduced density
matrix (we assume i < j < k < l) we use a block configuration
where indices i, j ∈ L, k ∈ •L and l ∈ R. Indeed, for most el-
ements of the two-body reduced density matrix, we can find
a corresponding block configuration where no more than two
indices are present on any of the blocks. (The exception is for
the cases when more than two indices refer to the same spatial
orbital, but these do not form part of the leading cost of the
computation.) The memory cost of storing the necessary two
index operators is of order O(k2M2), which is the same as for
the DMRG sweep algorithm.

In what follows, we use Roman letters i, j, . . . to re-
fer to spatial orbitals and Greek letters τ , β, . . . to refer
to the spin of these orbitals. The spin orbital two-body re-
duced density matrix has (2k)4 matrix elements, i.e., the
elements are 〈â†

iτ â
†
jσ âkγ âlδ〉, while the spatial orbital two-

body reduced density matrix can be defined by integrating
over the spin of the above expression, i.e., the elements are
∑

τσ 〈â†
iτ â

†
jσ âkσ âlτ 〉. Because we have spin-adapted wave-

functions and operators in the spin-adapted DMRG, it is
possible to directly evaluate the spatial orbital two-body re-
duced density matrix using the operators in Table II without
first constructing the spin-orbital two-body reduced density
matrix.

Equations (40) and (41) illustrate how the spatial orbital
two-body density matrix elements Ŵijkl and Ŵikjl are com-
puted, where i < j < k < l and the indices are arranged in
a 1, 1, 2 arrangement,41 i.e., the first index i ∈ L, the second
index j ∈ •L, i.e., i, j ∈ A, and the last two indices k, l ∈ B.

∑

τσ

〈â†
iτ â

†
jσ âkσ âlτ 〉 = −

√
3
〈

Â1
ij [A] ⊗0 Â

1,‡
kl [B]

〉

+
〈

Â0
ij [A] ⊗0 Â

0,‡
kl [B]

〉

∑

τσ

〈â†
iτ â

†
kσ âjσ âlτ 〉 =

√
3
〈

B̂1
ij [A] ⊗0 B̂1

kl[B]
〉

−
〈

B̂0
ij [A] ⊗0 B̂0

kl[B]
〉

. (40)

For the arrangement 1, 2, 1, i.e., i ∈ L, j, k ∈ •L, and l ∈ R,
a different formula is used, for example,
∑

τσ

〈â†
iτ â

†
jσ âkσ âlτ 〉 = 2

〈(

â
1/2
i [L] ⊗1/2 B̂0

jk[•l]
)

⊗0 â
1/2,‡
l [R]

〉

,

(41)

Other expressions for Ŵijkl corresponding to different distri-
butions of the indices amongst the blocks can be generated
similarly.

Before discussing the spin orbital two-body reduced
density matrix, we note that there are 24 = 16 elements
for every spatial orbital element, but if the wavefunc-
tion conserves Sz, only 6 elements are non-zero, corre-
sponding to 〈â†

iα â
†
jα âkα âlα〉, 〈â†

iα â
†
jβ âkβ âlα〉, 〈â†

iβ â
†
jα âkα âlβ〉,

〈â†
iβ â

†
jα âkβ âlα〉, 〈â†

iα â
†
jβ âkα âlβ〉, and 〈â†

iβ â
†
jβ âkβ âlβ〉. These

spin orbital density matrix elements can be calculated using
appropriate combinations of the tensor operators in Table II.
For example, let us again use the indices i, j, k, l in a 1, 1,
2 arrangement, i.e., with i, j ∈ A, k, l ∈ B. We first calcu-
late the 6 expectation values shown on the right-hand side of
Eq. (42). Then the 6 non-zero elements of the spin orbital re-
duced density matrix may be obtained by solving the linear
equation,

⎛

⎜

⎜
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⎜

⎜
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⎜
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⎜
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⎜

⎝
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〈â†
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〈â†
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jα âkα âlβ〉

〈â†
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〈
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〈Â0
ij [A] ⊗0 Â

0,‡
lk [B]

〉

〈

Â1
ij [A] ⊗0 Â

1,‡
lk [B]

〉

〈

Â0
ij [A] ⊗1 Â

1,‡
lk [B]

〉

〈

Â1
ij [A] ⊗1 Â

0,‡
lk [B]

〉

〈

Â1
ij [A] ⊗1 Â

1,‡
lk [B]

〉

〈

Â1
ij [A] ⊗2 Â

1,‡
lk [B]

〉
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⎠

. (42)
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For different arrangements of indices, a different set of linear
equations is used. Note that this process is simplified for a
singlet wavefunction, because the last 4 expectation values on
right-hand side are zero.

VI. APPLICATIONS

We now describe some benchmark applications of the
spin-adapted DMRG algorithm in transition metal complexes,
Fe2S2,43, 44 [Fe2S2(SCH3)4]2−, and Cr2.45–47 Unlike recent
studies by ourselves and others, such as the DMRG-CT study
of [Cu2O2]2+ in Ref. 17, or the DMRG-CASPT2 study of
Cr2 in Ref. 31, here we are not targeting chemical accuracy
in these benchmarks. Rather our initial studies are designed
to illustrate various aspects of the spin-adapted DMRG al-
gorithm, such as the targeting of closely spaced spin states,
the evaluation of reduced density matrices, and the compu-
tational performance of the spin-adapted algorithm relative
to the traditional non-spin-adapted algorithm. Consequently,
we study the electronic structure of the complexes within
the active space approximation only. In future work, we will
describe the combination of the spin-adapted DMRG algo-
rithm with dynamic correlation methods, along the lines of
Refs. 17 and 31.

In our first application, to demonstrate the ability of the
spin-adapted DMRG algorithm to target very closely spaced
states of different spatial and spin symmetries, we calcu-
late the spin ladder of the Fe2S2 molecule using an active
space of 12 electrons in 12 orbitals (12e, 12o), where ex-
act calculations can also be performed. In the second ap-
plication, we study the [Fe2S2(SCH3)4]2− in a 30 electron,
20 orbital active space (30e, 20o) that includes the S 3p or-
bitals. By examining the number and spin correlation func-
tions, we can analyze the contributions of the S 3p orbitals to
the electronic structure. Finally, in the third application, we
study the singlet and triplet spin states of the Cr2 molecule.
This is a benchmark calculation using a large active space
(24e, 30o) but a small (double-zeta with polarization) basis
set. This system has previously been studied by Kurashige
and Yanai with the non-spin-adapted algorithm, and our re-
sults allow us to examine in detail the relative computa-
tional efficiency of the spin-adapted and non-spin-adapted
algorithms.

A. Fe2S2

We first carried out spin-adapted DMRG calculations on
the Fe2S2 molecule at a D2h geometry (see supplementary
information58). For simplicity, we used a minimal STO-3G
(Ref. 48) basis. The active space was identified by carrying
out a high-spin UB3LYP/STO-3G (Refs. 48–50) calculation
with multiplicity 9 (i.e., eight unpaired electrons), and then se-
lecting 12 unrestricted natural orbitals (UNO) (Ref. 51) with
occupation numbers between 1.99 and 0.01 to make up the
(12e, 12o) active space. The orbitals in the DMRG calculation
were ordered by UNO occupation number. We then carried
out calculations on 40 states (multiplicities 1, 3, 5, 7, 9, for
each of the 8 irreducible representations of D2h). Because of
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FIG. 2. Convergence of the DMRG energies for eight different singlet states
of Fe2S2. Here “States” refer to the number of retained DMRG multiplets.

the small active space, with M = 200 the DMRG energies (in
Eh) were already converged to 5 decimal places; these were
checked against complete active space configuration interac-
tion using the ORCA (Ref. 52) package, which agreed to all
digits. The convergence of the DMRG energies for the 8 sin-
glet states is shown in Fig. 2, while the converged energies
for all 40 states are given in Table III. As can be seen from
Fig. 2 and Table III, many of the states are almost degener-
ate - to within <10μEh. Naturally, such closely spaced states
would be very hard to resolve without a method that takes into
account spin symmetry.

B. [Fe2S2(SCH3)4]2−

We now describe DMRG calculations performed on the
[Fe2S2(SCH3)4]2− molecule. The molecule is illustrated in
Figure 3. We constructed the geometry (see supplementary
information58) by replacing p-toluene groups with methyl
groups in the crystal structure of the [Fe2S2(S-p-tol)4]2− com-
plex synthesized by Mayerle et al.53 To determine the active
space, first we carried out an UBP86/SVP calculation54 on
the high spin state of the molecule (Sz = 10). Next, the dou-
bly occupied and singly occupied alpha valence molecular or-
bitals were localized by using the Pipek-Mezey localization

TABLE III. Energies (E + 3283.0) in Eh of various spin and symmetry
states of Fe2S2 calculated using the spin-adapted DMRG algorithm. Note the
very close spacing (<10μEh) of states of different spin, which would be very
hard to resolve without a spin-adapted algorithm.

MultiplicityIrreducible
representations 1 3 5 7 9

Ag −0.75993 −0.75990 −0.75993 −0.75993 −0.75996
B1g −0.75992 −0.75992 −0.75991 −0.75993 −0.75996
B2g −0.77344 −0.78351 −0.78343 −0.72207 −0.78312
B3g −0.77345 −0.78007 −0.77991 −0.78662 −0.78648
Au −0.78028 −0.77344 −0.78678 −0.78669 −0.78656
B1u −0.77686 −0.77672 −0.78333 −0.72207 −0.78301
B2u −0.68761 −0.75991 −0.75990 −0.75992 −0.75995
B3u −0.69535 −0.75991 −0.75993 −0.69537 −0.69614
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FIG. 3. The [Fe2S2(SCH3)4]2− molecule, obtained by replacing toluene
groups with methyl groups in the [Fe2S2(S-p-tol)4]−2 complex synthesized
by Mayerle et al.53

scheme. From these localized orbitals, we constructed two ac-
tive spaces (i) a (10e, 10o) Fe 3d only active space and (ii) a
(30e, 20o) Fe 3d and S 3p active space. The S orbitals in-
cluded three 3p orbitals on each bridging S atom and one 3p

orbital pointing toward the Fe atom on each ligand S atom
(see Figure 4). For the purposes of counting electrons in the
active space, the S orbitals were regarded as doubly occupied.

In the DMRG calculation, the 20 orbitals were ordered as
follows: S4(3p), S5(3p), Fe1(3d), Fe1(3d), Fe1(3d), Fe1(3d),
Fe1(3d), S1(3p1), S2(3p1), S1(3p0), S2(3p0), S1(3p2),
S2(3p2), Fe2(3d), Fe2(3d), Fe2(3d), Fe2(3d), Fe2(3d),
S3(3p), and S6(3p), where the atom labels are given in

TABLE IV. Energy in Eh and discarded weights of a spin-adapted DMRG
calculation on the singlet state of the [Fe2S2(SCH3)4]−2 molecule.

M Energy Discarded weight

1024 −5103.96332 7.24 × 10−5

2048 −5103.96341 2.84 × 10−5

3200 −5103.96342 1.50 × 10−5

Figure 3. Here orbitals 3p1, 3p0, and 3p2, respectively, point
toward Fe1 (orbital label b of Figure 4), in the north-south di-
rection in the plane of the paper (orbital label d of Figure 4)
and toward Fe2 (orbital label c of Figure 4), respectively. For
the 10 orbital active space, the same ordering of the Fe 3d

orbitals was used.
We carried out DMRG calculations targeting the singlet

ground state. The DMRG calculations for the (10e, 10o) ac-
tive space converged to μEh accuracy already at M = 200. In
Table IV, we report the energies and discarded weights for the
(30e, 20o) active space. We find that the energy is converged
to μEh accuracy by M = 3200. Subsequently, one-dot DMRG
sweeps at the final M value were carried out to tight conver-
gence, and the resulting wavefunctions were used to compute
the one- and two-body spatial reduced density matrices.

To analyze the electronic structure in this molecule,
we computed the number-number (Eq. (43)) and spin-spin
(Eq. (44)) correlation functions in both the Fe 3d only active

FIG. 4. Five representative active space orbitals of [Fe2S2(SCH3)4]2− are shown. Orbital “a” is the 3p orbital of ligand S pointing toward the Fe atom; four
such orbitals, one from each ligand S, are included in the active space. Orbitals “b,” “c,” and “d” are the three 3p orbitals of bridging S; three more such orbitals
from the other bridging S are also included in the active space. Orbital “e” is the Fe 3d orbital; ten such orbitals, five from each Fe atom, are included in the
active space.
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FIG. 5. Left: Number-number correlations in the Fe 3d active space. The correlations are almost vanishing (all < 0.01). Right: Spin-spin correlations in the Fe
3d active space. All the positive values in correlation matrix are equal to 1/3 and negative values are equal to −7/15. The electrons on the same Fe atom are
ferromagnetically aligned but are antiferromagnetically aligned to electrons on different Fe atom. The above patterns of number and spin correlations can be
explained by a very simple wavefunction, see text.

space and the Fe 3d, S 3p active space; here n̂i is the number
operator â

†
i âi .

Pij = (1 − δij )(〈n̂i n̂j 〉 − 〈n̂i〉〈n̂j 〉). (43)

Sij = 4(1 − δij )(〈Ŝzi Ŝzj 〉 − 〈Ŝzi〉〈Ŝzj 〉). (44)

Note that these correlation functions are normalized such the
maximum value of |Pij| and |Sij| is 1.

Figure 5 shows the number-number and spin-spin cor-
relation plots for the 10 orbital Fe 3d active space. We find
that the number-number correlation function is almost iden-
tically zero (all elements are <0.01), while the spin-spin
correlation function takes only two values + 1

3 ≈ 0.33, and
− 7

15 ≈ −0.47. The positive values of Sij are between the 3d

orbitals on the same atom (ferromagnetic alignment), while
the negative values are between the 3d orbitals between atoms
(antiferromagnetic alignment). (The values are not 1 and −1,

indicating that the wavefunction contains fluctuations in the
relative angles of the spins on the different atoms.)

The above correlation functions can be seen to arise from
a very simple wavefunction for the 10 orbital Fe 3d active
space singlet. This consists of a singlet coupling between two
Fe atoms which are each in a high spin state, with 5 singly
occupied d orbitals,
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Since each state in the above contains only Fe atoms with
singly occupied d orbitals, the corresponding number-number
correlation function vanishes, while the values 1

3 ,− 7
15 of the

spin-spin correlation function arise from the pattern of spin
couplings in Eq. (45). The correctness of the above wave-
function is also confirmed by its energy, −5103.14473 Eh, as
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FIG. 6. Left: Number-number correlations in the Fe 3d, S 3p active space. The Fe 3d orbitals are orbitals 2–6, 13–17. The bridging S 3p orbitals are orbitals
7–12. Note that compared to the 3d only active space, number correlations are increased, although they still are relatively small. Right: Spin-spin correlations
in the Fe 3d, S 3p active space. Spin-spin correlations between the Fe 3d orbitals are significantly reduced (by about 50%) from the minimal 3d active space,
reflecting the strong influence of the bridging ligands.

compared to the exact DMRG wavefunction energy for the 10
orbital active space of −5103.14487 Eh.

What happens when we introduce ligand bridging or-
bitals to the active space? In Fig. 6 we show the number-
number and spin-spin correlation plots for the (30e, 20o) Fe
3d active space that includes the S ligand orbitals. We see that
the inclusion of S orbitals promotes both number-number and
spin-spin fluctuations as evidenced in the correlation plots.
The number-number correlations still remain fairly small (the
largest correlation between the Fe and S orbitals is only about
0.04). However, the spin-spin correlations are significantly al-
tered from the 10 orbital active space. In particular, the spin-
spin correlations both between d orbitals on the same Fe atom,
and between different Fe atoms, are significantly reduced, by
about 50%, from the simple wavefunction in Eq. (45). Further
we have shown the occupation numbers of the active space
orbitals and the natural orbitals in Table V. Note that none of
the active space orbitals have occupation numbers greater than

1.88. In addition, there are only 4 natural orbitals with occu-
pation numbers greater than 1.98 which implies that a simple
rotation of active space orbitals will not lead to an active space
of fewer than 16 orbitals.

The strong effect of the S ligand orbitals on the spin cor-
relations and the significant deviation of values of occupation
numbers from 0 to 2 in Table V suggests that the minimal d

only active space may be insufficient for computations of spin
states in bridged metal systems, even when dynamic correla-
tion is included, say, at the second-order perturbation theory
level.

C. Cr2

Recently Kurashige and Yanai11 carried out large-scale
DMRG calculations on the singlet ground state of Cr2 us-
ing an active space of (24e, 30o). These were benchmark
rather than realistic calculations because they did not include



124121-13 S. Sharma and G. K.-L. Chan J. Chem. Phys. 136, 124121 (2012)

TABLE V. Occupation numbers of the active space orbitals and the natural
orbitals of [Fe2S2(SCH3)4]2− calculated using DMRG on (30e, 20o) active
space. The order of the active space orbials is given in the text. None of the
active space orbitals have occupation numbers greater than 1.88 and there are
only 4 natural orbitals with occupation numbers greater than 1.98, indicating
the importance of including S 3p orbitals in the active space.

Orbital Active orbitals 〈n̂i〉 Natural orbitals 〈n̂i〉

1 1.869 0.686
2 1.878 0.794
3 1.277 0.846
4 1.212 0.901
5 1.193 0.999
6 1.284 1.013
7 1.209 1.175
8 1.775 1.271
9 1.776 1.451
10 1.518 1.511
11 1.520 1.824
12 1.783 1.829
13 1.782 1.877
14 1.215 1.907
15 1.276 1.972
16 1.205 1.980
17 1.199 1.982
18 1.281 1.986
19 1.878 1.998
20 1.869 1.997

dynamical correlation. (We note however, a later study,
namely Ref. 55 also included a perturbation theory
treatment of dynamical correlation on top of the DMRG,
and this produced a highly accurate chromium dimer bind-
ing curve.) Here, we use the same Cr2 benchmark example as
Kurashige and Yanai with exactly the same geometry (bond
length 1.5 Å), basis set (the Ahlrichs SVP basis, a polarized
double zeta quality basis54), molecular orbitals and ordering
as in their original paper. Our purpose here will be to ex-
amine the accuracy and speed of the spin-adapted DMRG
algorithm as compared to the original non-spin-adapted al-
gorithm. We target the singlet (1Ag in D2h symmetry) and
triplet (3B1g in D2h symmetry) states of the molecule in our
calculations.

1. Accuracy

The total DMRG energy of the singlet state as a function
of the number of retained states (M), and discarded weight
in the quasi-density matrix (i.e., the largest discarded weight
during the DMRG sweep) is shown in Table VI. Kurashige
and Yanai’s converged DMRG energy with 10 000 non-spin-
adapted states was −2086.42053 Eh which is slightly above

our spin-adapted M = 5000 energy of −2086.42061 Eh. We
see that the spin-adapted DMRG algorithm requires roughly
only half the number of states as the non-spin-adapted DMRG
to achieve a similar accuracy in the energy. The greater ac-
curacy of the spin-adapted algorithm allows us to perform a
more accurate extrapolation of the DMRG energy to M = ∞

TABLE VI. Energy (E + 2086) in Eh and discarded weights of a spin-
adapted DMRG calculation on the singlet state of the Cr2 molecule. Note
that our M = 5000 spin-adapted energy is already lower than the M = 10000
non-spin-adapted energy reported in Ref. 11.

M Energy Discarded weight

1000 −0.41831 2.032 × 10−5

2000 −0.41979 1.006 × 10−5

5000 −0.42061 3.075 × 10−6

8000 −0.42078 1.608 × 10−6

10000 −0.42082 9.630 × 10−7

∞ −0.42100

than in Ref. 11. Our final M = 10 000 spin-adapted DMRG
energy is within 0.2 mEh of the extrapolated M = ∞ result.

The total DMRG energy and the discarded weights of
the triplet state using the spin-adapted (with and without spin
embedding) and non-spin-adapted algorithms are shown in
Table VII. Similarly to the singlet case, we find that the spin-
adapted algorithm requires roughly half the number of renor-
malized states as the non-spin-adapted algorithm to achieve
the same accuracy. Singlet embedding (Sec. IV A), although
formally increasing the number of orbitals in the problem,
leads to no loss of accuracy as compared to the spin-adapted
calculation on the triplet state, and indeed leads to a slight
increase in accuracy. As observed in Sec. IV A, in the spin-
adapted calculation on the triplet state, the discarded weights
obtained during the forward and backward sweeps are vastly
different. This discrepancy vanishes when the triplet state en-
ergies are obtained via embedding in a singlet state. The sin-
glet embedding allows us to perform energy extrapolation
with respect to the discarded weights, as shown in Fig. 7. We
find that the M = 10 000 spin-adapted calculation is within
0.3 mEh of the extrapolated exact DMRG result. Thus in both
the singlet and triplet states, we are able to use the DMRG
to obtain the total electronic energy to within better than
1 kcal/mol (0.6 mEh).

FIG. 7. Spin-adapted DMRG energy in Eh of the Cr2 triplet state versus
discarded weight. The triplet energy is calculated using the singlet embedding
approach, which allows the definition of a consistent discarded weight.
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TABLE VII. Energies (E + 2086) in Eh and discarded weights of a spin-adapted DMRG calculation on the triplet state of the Cr2 molecule. Columns 2
through 5 give data for the forward and backward sweeps of spin-adapted calculations, columns 6 and 7 give our results when we use the singlet embedding
technique and finally the last two columns give our results for non-spin-adapted calculations.

Spin-adapted

Forward sweep Backward sweep Singlet embedding Non-spin-adapted

M Energy Discarded weight Energy Discarded weight Energy Discarded weight Energy Discarded weight

1000 −0.37682 1.5 × 10−4 −0.37682 1.8 × 10−5 −0.37729 2.2 × 10−5 −0.37418 5.9 × 10−5

2000 −0.37888 6.7 × 10−5 −0.37888 1.1 × 10−5 −0.37910 1.2 × 10−5 −0.37736 2.8 × 10−5

5000 −0.38011 2.5 × 10−5 −0.38009 4.7 × 10−6 −0.38015 4.3 × 10−6 −0.37949 1.1 × 10−5

8000 −0.38036 1.2 × 10−5 −0.38036 2.8 × 10−6 −0.38039 2.3 × 10−6 −0.38000 5.9 × 10−6

10000 −0.38043 8.6 × 10−6 −0.38043 1.9 × 10−6 −0.38045 1.2 × 10−6 −0.38016 3.5 × 10−6

∞ −0.38074 −0.38059

2. Efficiency

As explained in Sec. IV the most expensive step in
the DMRG algorithm is formation of the Hamiltonian
wavefunction product, whose computational cost scales as
O(M3), where M is the number of retained states. From the
above results, we observe that the spin-adapted algorithm
requires roughly half the number of renormalized states as
the non-spin-adapted algorithm to achieve the same accuracy.
This suggests that if the cost of a single Davidson iteration
(for a given number of states) is comparable between the spin-
adapted and non-spin-adapted algorithms, then, to achieve a
given accuracy in the DMRG energy, the spin-adapted algo-
rithm should offer an 8-fold gain in computational speed.

To compare the performance of the spin-adapted and
non-spin-adapted DMRG algorithms we show the wall times
per Davidson iteration of the two algorithms in Table VIII.
For the singlet case, we notice that for example the M = 5000
timings are comparable for both the spin-adapted and non-
spin-adapted calculations. However, moving to M = 10 000,
the computational cost increases by a factor of 4 rather than
8, i.e., more like O(M2) rather than O(M3). This means that
the spin-adapted algorithm yields (for a given accuracy) only
a 4-fold gain in computational efficiency over the non-spin-

FIG. 8. The figure shows the graphical representation of the MPS wavefunc-
tion that can be obtained using the results of the spin-adpated DMRG calcu-
lation. The red dots represent a matrix of Clebsch-Gordan coefficients (Un)
and the black dots are the rotation matrices obtained from the renormalization
step in DMRG (L, R see text for details).

adapted algorithm. The quadratic scaling is a result of the
high Abelian spatial symmetry (D2h) present in the molecule,
which means that each of the non-zero blocks of the oper-
ators are so small that the corresponding basic linear alge-
bra subprograms matrix multiplication operations are domi-
nated by quadratic as opposed to cubic complexity terms. We
expect, however, the computational scaling would approach
O(M3) as M is increased further, or if the calculations were
performed without the use of point group symmetry, as may
be the case in other more complex molecules. In such cases
the spin-adapted algorithm should offer even larger computa-
tional gains.

In the triplet state, as expected from the analysis in
Sec. IV, for any given M, the cost of the Davidson iteration is
much higher for the spin-adapted algorithm than for the non-
spin-adapted algorithm. However, with singlet embedding,
the spin-adapted computational times are now similar to those
of the non-spin-adapted case. Thus, with singlet embedding,
the spin-adapted algorithm also provides a 4-fold efficiency
gain for the triplet state. This we also expect to rise either as
M is increased, or if we consider more complex molecules
without high Abelian spatial symmetry. Overall, we conclude
that the spin-adapted DMRG algorithm provides considerable
advantages in terms of computational efficiency, which would
only increase in larger calculations.

TABLE VIII. Wall-clock times for a single Davidson iteration performed
with spin-adapted (denoted spin) and non-spin-adapted (denoted no-spin)
DMRG algorithms. The calculations use 2 Intel quad-core Xeon E5420 pro-
cessors (2.50 GHz). (ratio) is the ratio of the spin-adapted and non-spin-
adapted times, while spin (s.e.) denotes the singlet embedding technique,
where we add a set of non-interacting orbitals and then target the S = 0
state of the combined system (see text for more details). Note that for the
singlet state, the spin-adapted and non-spin-adapted calculations for given M

are roughly the same cost. In the case of the triplet state, this is true if the spin-
adapted calculations are carried out using the singlet embedding technique.

S = 0 S = 1
M Spin No spin (Ratio) Spin Spin (s.e.) No spin (Ratio)

2000 59 55 1.07 111 41 48 0.85
5000 329 292 1.13 707 248 267 0.93
8000 1003 794 1.26 2622 792 746 1.06
10000 1752 1363 1.29 4628 1782 1295 1.38
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VII. CONCLUSIONS

In this work, we described the implementation of spin-
adapted DMRG algorithms for quantum chemical Hamiltoni-
ans. Our formulation of spin-adaptation is based on the ear-
lier work of McCulloch and Gulacsi for model Hamiltoni-
ans. We also described efficient reduced density matrix eval-
uation within the spin-adapted formalism. Spin-adaptation
brings several advantages, including the correct treatment of
spin symmetry within approximate calculations, the ability
to resolve closely spaced spin states, and significant com-
putational efficiency gains. We demonstrate these capabil-
ities with active space studies of several transition metal
complexes, including Fe2S2, where we study closely spaced
spin states, [Fe2S2(SCH3)4]2−, where we compute the re-
duced density matrices to analyze the electronic structure,
and Cr2, where we carry out detailed timing studies. In
[Fe2S2(SCH3)4]2−, we find that the inclusion of S 3p orbitals
in the active space significantly modifies the spin-spin corre-
lations between the Fe atoms, reducing them by about 50%.
This argues for the importance of the bridging ligand or-
bitals in complete active space models. In Cr2 we find (i) that
spin-adaptation reduces the number of renormalized states re-
quired for a given accuracy by a factor of 2, (ii) for non-
singlet states, we need to use the singlet embedding strat-
egy of Tatsuaki to obtain maximum efficiency gains. From
the above, we conclude that the theoretical computational
speedup from spin-adaptation is a factor of 8, although we
have only observed speedups close to a factor of 4 due to the
small size and high point group symmetry of the molecules.
Overall, the ability to target spin states and the computa-
tional efficiency advantages of the spin-adapted DMRG al-
gorithm will be most important when studying larger transi-
tion metal complexes such as those which involve multiple
metal centres. Such studies are currently in progress in our
group.
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APPENDIX A: BLOCKING

In this section, we give the formulae for formation of
operators R, P, and Q in the blocking step of the non-spin-
adapted and spin-adapted DMRG algorithms.

1. Non-spin-adapted DMRG

Ri[A] = Ri[L] ⊗ 1[•l] + Ri[•l] ⊗ 1[L]

+
∑

j∈•l

2Pij [L] ⊗ a
†
j [•l] + Qij [L] ⊗ ai[•l]

+
∑

j∈L

2Pij [•l] ⊗ a
†
j [L] + Qij [•l] ⊗ ai[L], (A1)

Qij [A] = Qij [L] ⊗ 1[•l] + Qij [•l] ⊗ 1[L]

+ 2
∑

k∈•l

l∈L

((vikj l − viklj )a†k[•l] ⊗ al[L]

+ (viljk − vilkj )ak[•l] ⊗ a
†
l [L]), (A2)

Pij [A] = Pij [L] ⊗ 1[•l] + Pij [•l] ⊗ 1[L]

+
∑

k∈•l

l∈L

(vij lkak[•l] ⊗ al[L] + vijklak[•l] ⊗ al[L]).

(A3)

2. Spin-adapted DMRG

R
1/2
i [A] = R

1/2
i [L] ⊗1/2 10[•l] + R

1/2
i [•l] ⊗1/2 10[L]

+
∑
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√
3

2
P1
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1/2
j [•l] +

1

2
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+
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0‡
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+
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j∈L
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1/2
j [L] +

1

2
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1/2
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+
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Q1
ij [A] = Q1

ij [L] ⊗1 10[•l] + Q1
ij [•l] ⊗1 10[L]

−
∑

l∈•l

k∈L

(

vkij la
1/2;‡
l [•l] ⊗1 a

1/2
k [L]

+vlijka
1/2
l [•l] ⊗1 a

1/2‡
l [L]

)

, (A5)

Q0
ij [A] = Q0

ij [L] ⊗0 10[•l] + Q0
ij [•l] ⊗0 10[L]

−
∑

l∈•l

k∈L

(

(2vikj l − vkij l)a
1/2;‡
l [•l] ⊗0 a

1/2
k [L]

+(2viljk − vlijk)a1/2
l [•l] ⊗0 a

1/2‡
l [L]

)

, (A6)

P1
ij [A] =P1

ij [L] ⊗1 10[•l] + P1
ij [•l] ⊗1 10[L]

−
∑

k∈L
l•l∈

vij lka
1/2‡
k [•l] ⊗1 a

1/2‡
l [L], (A7)

P0
ij [A] =P0

ij [L] ⊗1 10[•l] + P0
ij [•l] ⊗1 10[L]

+
∑

k∈L
l•l∈

(vij lk − vijkl)a
1/2‡
k [•l] ⊗0 a

1/2‡
l [L]. (A8)

APPENDIX B: WAVEFUNCTION TRANSFORMATION

In the DMRG wavefunction solution step, the conver-
gence of the Davidson iterations is greatly improved if we use
a suitable guess. Such a guess can be obtained by transform-
ing the wavefunction from the previous sweep iteration. The
transformation of the wavefunction in the case of the spin-
adapted algorithm is very similar to that used in the non-spin-
adapted algorithm with the exception that a spin-rescaling
step must be performed, involving Racah coefficients. We
start with the coefficients of the wavefunction for a given
L •L •RR block configuration,

CS
(lp−1;S1 np;S2 )S12 (np+1;S3 rp+2;S4 )S34

= 〈(lp−1;S1np;S2 )S12 ||〈(np+1;S3rp+2;S4 )S34 ||�S〉. (B1)

In the lhs expression, we have explicitly shown the order of
the spin-couplings; lp−1;S1 and np;S2 first couple to spin S12,
np+1;S3 and rp+2;S4 couple to spin S34, and S is the target spin
of the wavefunction obtained by coupling S12 and S34. Next,
we approximately transform these coefficients using the pseu-
doinverse of the forward transformation matrix L̄, and the
backward transformation matrix R, to obtain the coefficients
of the guess wavefunction

GS
lp;S12 (np+1;S3 (np+2;S5 rp+3;S6 )S4 )S34

=
∑

lp−1nprp+2

L̄
lp ;S12

lp−1;S1 np;S2
CS

(lp−1;S1 np;S2 )S12 (np+1;S3 rp+2;S4 )S34
R

rp+2;S4
np+2;S5 rp+3;S6

≈ 〈lp;S12 ||〈(np+1;S3 (np+2;S5rp+3;S6 )S4 )S34 ||�S〉. (B2)

Finally, we need to recouple the spins from GS
(12)(34) to obtain

the guess wavefunction coefficients GS
(123)(4). This involves

the Racah coefficients W, through

GS
(lp;S12 np+1;S3 )S123 (np+2;S5 rp+3;S6 )S4

=
∑

S34

W (S12S3SS4; S123S34)[(2S123 + 1)(2S34 + 1)]1/2

×GS
lp;S12 (np+1;S3 (np+2;S5 rp+3;S6 )S4 )S34

. (B3)

APPENDIX C: MATRIX PRODUCT
STATE FORMULATION

The wavefunction emerging from the usual non-spin-
adapted DMRG has a MPS structure as described, for exam-
ple in Refs. 33, 56, and 57. In the canonical form associated
with a given block configuration, the MPS wavefunction is
written as (using the one-dot formulation of the DMRG for
simplicity56, 57)

|�〉 =
∑

{n}

Ln1 Ln2 . . . Cnp Rnp+1 . . . Rnk |n〉, (C1)

where |n〉 denotes a Slater determinant in occupation number
representation, Ln is a left transformation matrix as defined in
Eq. (10), obtained during the forwards DMRG sweep, Rn is
a right transformation matrix, obtained during the backward
sweep, and Cnp is the wavefunction coefficient matrix.

In the case of the spin-adapted DMRG, the wavefunction
also has a matrix product state form. However, the transforma-
tion matrices Ln, Rn now assume a special restricted structure.
In particular,

Ln = UnL, (C2)

Rn = RUn. (C3)

Here Un is a unitary matrix containing the Clebsch-Gordan
coefficients that construct pure spin states out of the prod-
uct states |l〉|nl〉, |nr〉|r〉, and L, R are transformation matrices
that map from the complete basis of pure spin states to the
renormalized spin state basis (see Figure 8). In addition, L

and R also display a special block structure, namely states
with different spins are not mixed. Overall, we can view the
spin-adapted DMRG algorithm as carrying out an energy min-
imization within the space of matrix product states, subject to
the above restrictions.

APPENDIX D: ADJOINT OF TENSOR OPERATORS

The reduced matrix elements of the adjoint of a tensor op-
erator are not the same as the adjoint of the reduced matrix el-
ements of the tensor operator. The reduced matrix elements of
the adjoint of tensor operators appearing in our spin-adapted
DMRG implementation are shown below,

〈μ′S||X̂0‡||μS〉 = 〈μS||X̂0||μ′S〉, (D1)

〈μ′S||X̂1‡||μS〉 = 〈μS||X̂1||μ′S〉, (D2)
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〈μS + 1||X̂1‡||μ′S〉 = (−1)

√

2S + 3

2S + 1
〈μ′S||X̂1||μS + 1〉,

(D3)

〈

μS +
1

2

∣

∣

∣

∣

∣

∣
X̂1/2‡||μ′S〉 =

√

2S + 2

2S + 1

〈

μ′S
∣

∣

∣

∣

∣

∣
X̂1/2

∣

∣

∣

∣

∣

∣
μS +

1

2

〉

.
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