SPIN — An Extensible Microkernel
for Application-specific Operating System Services

Brian N. Bershad Craig Chambers Susan Eggers ChrisMaeda
Dylan McNamee Przemystaw Pardyak Stefan Savage Emin Gun Sirer

Dept. of Computer Science and Engineering FR-35
University of Washington
Seattle, WA 98195
Technical Report 94-03-03

February 28, 1994

Abstract

Application domains, such as multimedia, databases, and paralel computing, require operating system services with
high performance and high functionality. Existing operating systems provide fixed interfaces and implementations to
system services and resources. This makes them inappropriate for applications whose resource demands and usage
patternsare poorly matched by the services provided. The SPIN operating system enables system servicesto be defined
in an application-specific fashion through an extensible microkernel. It offers fine-grained control over a machine's
logical and physical resources to applications through run-time adaptation of the system to application requirements.

1 Introduction

Thiswhitepaper describes an operating system called SPIN that will address the requirements of the coming generation
of resource-intensive applications. In SPIN, these requirements are achieved through the use of application-specific
services. An application-specific serviceis onethat precisely satisfies the functional and performance requirements of
an application or class of applications.

The key to application-specific services is an adaptable kernel that enables system resources to be efficiently and
safely managed by the application. By efficient, we mean that capable applications execute more quickly and with less
programming complexity than when using a more conventional platform, such as Ultrix or Mach. By safe, we mean
that multiple applications may run at the same time, yet be protected from one another through hardware and software
firewalls.

SPIN supports adaptability through an extensible microkernel that safely executes application-specific code either
in the kernel or at user-level. In SPIN, an application specifies a service as an implementation partitioned into three
components: an application-level component, which is linked into the application’s address space, a kernel-level
component, which provides fast, specialized access to in-kerndl services, and a user-level server component, which
manages long-lived service state. The way inwhich the serviceis partitioned is determined by its safety, sharing, and
performance requirements.

SPIN is structured around an extensible microkernel architecture. The microkernel exports interfaces that offer
applications fine-grained control over a few fundamenta system abstractions, such as processors, memory, and 1/0O.
SPIN isextensiblein that application programs and servers can install program sequences called spindlesthat execute
inthe kernel in response to hardware and software events, such as processor exceptions and context switches. Spindles

enableapplicationsto define customized kernel interfaces and i mplementati onswith which application-specific services
can be built.

1.1 Motivation

The next decade will bring a radical change to the way we do computing as applications that were at one time
considered “niche services’ such aslarge distributed databases, high-quality multimedia, and programs for massively
paralel systems, become common. Althoughtheapplication demandsare changing substantially, the operating systems
base on which those applications run is not. Consequently, application performance is frequently limited by today’s
operating systems, which provide an inadequate i nterface to computer system services.

The key problem facing operating systems ishow to support efficiently arange of applicationswith widely varying
service demands. For example, current virtual memory page-replacement policies are based on application mixes
from the 1970’s and early 1980’'s [Babaoglu & Joy 81] that have good reference locality. These policies, though, are
poorly suited for newer applications, such as information retrieval and multimedia, where page access patterns are
seemingly random, or strictly sequential and temporally constrained [Kearns & DeFazio 89]. Similarly, current file
system implementations assume that most files are accessed sequentially [Ousterhout et a. 85]. However, important
applications such as information retrieval have file access patterns that are quite non-sequential [Gray & Reuter 92].
As aresult, many database systems manage in-core disk caches manually because existing operating systems do such
apoor job of meeting their needs[Stonebraker 81]. We believe that other performance-critica applicationswill follow
the same route because no current operating system allows system resources to be efficiently and safely managed
through tailored interfaces and implementations.

The resource demands of current and future applications can be met by an operating system architecture in which
services can be implemented on an application-specific basis. As a consequence, a service can be defined long after
the operating system has been written, compiled, and shipped as product. The service, which can come bundled
with the application, relies on low-level interfaces exported by the operating system kernel. These interfaces, which
themselves can betailored, enabl e the service to al ocate and manage system resources such as CPUSs, disks, networks,
and memory.

Contemporary commercia and research operating systems provide interfaces that are inadequate for use by
application-specific services. By “inadeguate,” we mean that one of the following statements can be made about the
operating system:

o there are no interfaces through which application-specific services can exercise direct control over the logical
and physical resources, or

o some interfaces for resource management exist, but they are clumsy, or inefficient, or both, or

o al applications have unconstrained access to resources, providing good performance when programs are well-
behaved, but poor system stability when they are not.

In thefirst case, applications must suffer with whatever interfaces and abstractions are provided by the operating
system. In the second case, the “right” abstraction can be realized, but at an intolerable performance cost. Finaly, in
the third case, any abstraction can berealized for a single program, but isol ation between programsis not possible. In
all three cases, a mismatch between the interfaces exported by the operating system kernel and those required by an
application-specific service make such servicesinfeasible.

1.2 Adaptability in SPIN

Our god in building SPIN is to provide applications with an adaptable kernel platform on top of which application-
specific services can be built. The ideas underlying SPIN stem from research over the last several years that has
addressed some of the fundamental performance problems that arise in modern operating system services, including
interprocess communication, synchronization, thread management, networking, virtua memory, and cache man-
agement [Draves et a. 91, Bershad et a. 92, Stodolsky et a. 93, Bershad 93, Yuhara et a. 94, Maeda & Bershad 93,

Thekkath et a. 93, Felten 92, Young 89, McNamee & Armstrong 90, Anderson et a. 92, Wheeler & Bershad 92]. In
each case, theinterfaces exported by a servicewere poorly matched to the needs of important applications. The solution
to the performance problem came from enabling applicationsto adapt the behavior (interface and implementation) of
system servicesto realize maximum performance. Each change, though, required careful and deliberate modifications
of the operating system kernel.

In SPIN, adaptability is achieved with an extensible microkernel that allows an application to specify aservice as
an implementation partitionedinto an application component, an application-specific kernel component, and possibly a
user-level server component. The microkernel provides lightweight and portable abstractions of the physical hardware
such as threads and virtual address spaces which are used by the higher-level services. By alowing applications to
participatein theimplementation of high-level services, we permit applicationsto make informed decisions about their
resource requirements. By placing the implementation within an application component (application-level library), or
akernel-level code sequence, the service can be accessed with low latency.

The application-specific kernel componentsare called spindles(SPIN Dynamically L oaded Extensions), and enable
applications to define the precise interface and implementation for kernel services that they require. Spindles enable
a service to be partitioned across the user/kernel boundary in the most efficient manner that till satisfies its safety
and sharing requirements. Specificaly, installing code at the kernel level alows for flexible and rapid response to
system hardware and software events. For example, an application program can install a code sequence that runs
each time athread from that program’s address space is preempted in response to an interrupt, atime-dice event, or a
higher-priority thread. In thefirst two cases, the program can ensure system-wide or application-wideinvariants about
preemptability. In the third case, the application can enforce constraints that deny priority inversion. Although the
code sequences execute in kernel-mode, their safety isverified by atrusted compiler.

1.3 Alternatives

Microkernel technology has been promoted as a solution to many of the adaptability requirements of demanding
applications [Accetta et a. 86], and in the past few years there has been dramatic growth in the number and quality
of microkernels [Phelan et a. 93, Hildebrand 92, Rozier et a. 88]. Current practice is to structure a microkernel-
based operating system as one or more server address spaces that collectively implement operating system ser-
vices [Golub et ad. 90, Julinet a. 91, Rozier et d. 88, Khaidi & Nelson 93, Hildebrand 92]. However, it is often as
difficult to modify a service in another address space asit isto modify one placed in the kernel, diminishing many of
theflexibility advantages that favor microkernel architectures. In addition, the communication overhead incurred when
contacting servers can result in poor performance [Maeda & Bershad 92, Maeda & Bershad 93]. These facts make it
quite difficult to tailor an operating system service to the requirements of a particular resource intensive application
using conventional microkernd technol ogy.

1.4 Therest of thispaper

Therest of this paper isstructured asfollows. In Section 2 we describe the SPIN architecture. In Section 3 we discuss
the system’ s extension language and compiler. In Section 4 we show how applicationsin saveral domainsarefacilitated
by SPIN. In Section 5 we describe related work. In Section 6 we discuss the system’s status and directions.

2 SPIN: A system for application-specific services

In this section we discuss the overall system composition of SPIN and present a concrete example of its use in
structuring a service. Later, in Section 4 we broaden our discussion to show how SPIN can be applied to increase
efficiency across arange of demanding application domains.

2.1 Specialization

An operating system kernel offerstwo general functions: it provides abstractions of the system’s physical and logical
resources, and it implements a set of management policies for those resources. In the SPIN microkernel, the two
functions are split. Low-level resource controllers provide lightweight and portable abstractions of the physica
hardware, such as threads and virtual address spaces. They define interfaces providing access to a machine's physical
and logical resources, including a set of globa resource alocation interfaces that allow applications to allocate and
deallocate system resources while guaranteeing integrity and progressin cases of high load. The controllersthemselves
though do not contain any management policy. Policiesare provided either by in-kernel application-specific services
or by default kernel services. For applicationsthat do not require application-specific management policies, SPIN is
an ordinary microkernd with a set of well-defined general purpose services. For applicationswith specia needs, SPIN
provides a set of interfaces to low-level resources that may be combined in an arbitrary way to achieve the required
level of efficiency.

All management policiesare defined by embedded implementationscalled spindles. A spindleisa code sequence
that isinstalled dynamically intothe operating system kernel by or on behalf of an application. Spindlesrunin response
to a particular system event, such as a system call, an exception, or a context switch. They can also be activated by
user code or by events generated within other spindles.

All interaction between an application (or, more likely, an application-level library) and the operating system is
through spindles. The spindleinterfaces alow applicationsto manipulate at afine-grain level the resources granted by
thekerne controllers. Spindlesenable applicationsto define new system calls through a composition of internal kernel
interfaces. They aso enable applications to discover changes in the state of the hardware and the operating system,
thereby enabling them to react to changes in resource allocations and demands with low-latency and high-efficiency.
In effect, the application can specialize the operating system kernel to provide the type of service or management
policy required, without paying the overhead of crossing severa interface and protection boundaries at each service
invocation.

2.2 Components

The SPIN operating system consists of a set of low-level resource controllers with associated interfaces, a set of pre-
defined spindlesoffering default system functions, and machinery to install and run spindles. Three kernel mechanisms
enabl e these components: one for associating spindleswith particular specific events in the kernel, one for executing,
at kernel-level, those spindles associated with an event when that event occurs, and one that verifies the integrity of
spindleswhen they areinstalled into the kerndl.

Figure 1 illustrates the basic structure of SPIN. Although the system’s structure is similar to that of a traditional
microkernel, providing interfaces to services such as threads, address spaces, and memory, the similarity is only
superficial. In a conventional microkernel, the highest-level system services are implemented as a set of layered
abstractions, with the highest layer exporting afew basic interfaces. Applicationsbuilt to the microkernel interface are
consequently constrained to using the services at the highest layer. Whilethese services may be composed to providea
rich set of higher-level abstractions (for example, a UNIX process under Mach is defined through a composition of an
address space, some memory, and athread), the low-level behavior of each abstraction isessentially fixed. In contrast
using SPIN, high-level interfaces required by applications and application-specific services are defined in terms of the
lower-level interfaces available to spindles. A program defines its own interface to the kernel through a spindle that
executes in the kernel. In turn, that spindle has access to alarge set of kernd interfaces. For example, a program can
construct a spindlethat provides an interface for creating and then starting a new thread of control. The spindleitself
uses more primitiveinterfaces (creste thread, allocate stack, set initial thread state, start thread) to accomplish this.

Compiler H B H E B} H
& Application Application EUs%rerl\(/eé/rel . gusirerl\%/fl H
Verifier H H B =
user level
R TS P
<3 < < N~
"',v i L e v v e e - :
_— interface
AW
%4_, % Microkernel

/ \ \ / kernel level
Il B

O - application—specific service library O - spindle I:I — protection domain - — kernel controller

<— _ communication <= - installation of a spindle

Figure 1: This figure illustrates the basic structure of services on the SPIN microkernel. Services are split into
external servers that maintain global service information, application-specific libraries that provide fast access paths
to services, and spindles that allow low latency access to kernel resources. In the figure, each service is depicted as
having these three components. A trusted compiler and code verifier ensures that spindles are unable to compromise
the integrity of the system. (Different stipple patterns denote different services.)

At abasiclevel, aspindlecan be used to define theimplementation of atraditional system call, serving asawrapper
around underlying kernel services. At a more sophisticated level, a spindle can enable an application to monitor and
react to changesin global resource all ocation without involving costly transfers to user-level code. With thisstructure,
high-level operating system services, such asfiling, networking, virtual memory management, and fine-grained thread
management, can be efficiently implemented as part of each application’saddress-space instead of as part of the kernel
or adedicated server.

2.3 Servicepartitioning

Microkernel-based systems refl ect atension between modularity and efficiency. Services are moved out of thekernel to
user-space to achieve higher modularity, but additiona overhead for communication isincurred whenever the services
are accessed. Thisoverhead can be greatly reduced in SPIN by alowing parts of a service to be located in the address
spaces that use them. Figure 2 shows the differences between the decomposition of services on a microkernel and
under SPIN and their influence on communication overhead in a system. There are three cases illustrated.

casel : Placing parts of a server within an application in the form of an application-level library alows application
requests to be served without crossing any protection boundaries. This optimizes system performance for
common operations that do not need kernel interaction or access to datain other domains.

casell : Operations that require tight integration with the kernel can be installed as a spindle, and thus may access
internal kernel interfaces without incurring the overhead of protection boundary crossings.

caselll : Instaling server code at the kernel level alows for flexible and rapid response to system hardware and
software events without costly upcallsto a server.

Conventiona microkernels with fixed interfaces can use the first optimization, but the other two require new
capabilitiesthat are provided by the spindle mechanism.

case | case Il case llI

Application H Application H Application
Server H Server H Server

!
& U

Kernel H Kernel H Kernel
H H

Microkernel

H
...... sesssssssssEsEsssEssssEsEsssEnennEsesnnanennnfenunannnnanannnan s Rana R RARE s RaEeEREREsRRanen{enenunannnnanennnan s nan R nnn R nannnnn

i
Epplcamn 1 1

Kernel : Kernel I ‘

Kernel
‘ - spindle D — protection domain e _ flow of control

SPIN

Figure2: Comparison of a traditional microkernel server with a partitioned service in SPIN.

24 Anexample

As an example of how components of SPIN fit together, consider the structure of a user-level virtua memory man-
ager [McNamee & Armstrong 90, Harty & Cheriton 92]. A user-level virtual memory manager enables an application
to control the set and contents of physical page frames that are currently backing a given piece of virtual memory. An
application can request, say, 100 pages of physical memory from the system’s physica page manager. Those pagesare
granted in bulk, and the application creates spindlesthat rely on fine-grained kerndl interfaces to the physical mapping
layer to control access and to shuffle pages between disk and memory. By defining a spindle to handle page faults,
the pager can inexpensively be notified of changesto a page's access patterns. For example, the pager can implement
LRU-clock with simulated reference bits by defining a spindle that sets a bit in the application’s address space on a
reference to a page by defining a spindle associated with the page-write trap that sets a bit in the applications. The
pager can even define logical pages that are smaller than the machine's physical pages, detecting writes, for example,
to sub-pages in order to collect fine-grained reference information [Hosking & Moss 93].

3 Spindle language and compiler issues

An operating system interface is much like a programming language in that it defines a primitive set of operations
available to the programmer [Lampson 84]. In SPIN, the operating system interfaceisin fact an actual programming
language through which applicationscan define and install new interfaces that match their requirements. Thelanguage
and its implementation have the following goals:

o Expressiveness. There should be few limitationsto the kinds of interface extensions that applicationscan install
into the kernel.

o Safety. Spindles installed by applications must be checked to ensure that in-kernd interfaces are respected
(otherwise system integrity can be lost) and that spindles installed by other applications are not adversely
affected.

o Performance. The quality and efficiency of spindles must be no worse than that of the systems “native’ code,
otherwise service providers will have an incentive to modify the kernel through more intrusive mechanisms.
Additionally, the process of installing a spindle should not be prohibitively expensive.

o Scalability. Since each application may install dozens, or even hundreds of spindles, system performance should
not degrade with the number of spindles.

In the foll owing subsections, we describe the characteristics of an extension language, checker, and compiler that
satisfy these requirements.

3.1 Theextension language

A spindleis similar to amodule: it contains one or more procedures sharing local state that can persist across spindle
invocations. A spindle interacts with the rest of the kernel by invoking operations on a set of abstract data types that
define the spindl€' s interface to the kernel. These abstract data types grant a spindle access to low-level parts of the
kernel-level data structures, such as the process table or the TLB, as well as access to memory in the application’s
address space.

Spindles are written in atype-safe, object-based programming language. Type safety hel ps guarantee that spindles
do not violate the integrity of the kernel. Object-based languages support clearly-specified interfaces to the abstract
data types that model kernel resources available to spindles. Some spindles are designated as entry points that are
directly calable from the application; other procedures are invoked by the kerndl in response to system events. A
spindleregistersinterest in akernel event and isinvoked when the event occurs.

3.2 Theextension checker

Spindles execute in kernel mode and are granted access to some low-level kernel routines and data structures. SPIN
verifies that these spindles do not compromise system integrity. The kernel, along with a trusted service outside the
kernel, verifies at installation time that a spindle does not violate any of its restrictions, and fulfills its obligations (if
any). Since spindlesarewrittenin atype-safe language with awell-defined interface to kernel services, traditional type
checking can ensure that spindlesonly invoke legal operations on the abstract data types defined in the spindle/kernel
interface. Additionally, kernel operations exported to spindles can be guarded with a predicate expression that must
be true for access to be legal. The spindle compiler ensures that these predicates are satisfied through a combination
of static analysis and dynamic checks.

3.3 Theextenson compiler

Spindles are compiled into an executing system at run-time. Werely on aggressive compiler technology to ensure that
the SPIN microkernel extended with user-defined spindles performs as well as a non-extensible monolithic operating
system with services built-in to the kernel. Good performance can be achieved with well-understood optimizing

compiler technology, such as intraprocedural data flow analysis, symbolic evaluation, and inline expansion. These
techniques can eliminate much of the overhead of the extension language: the compiler can inline-expand cals in
spindles to kernel operations, replacing them with direct data structure accesses or even constants, and the compiler
can attempt to evaluate predicate expressions guarding kernel operationsin the context of the spindle code preceding
the call. With thistechnology, spindles can be installed and executed quickly.

Advanced compilationtechnology, such aspartial evaluation[Joneset a. 89, Consel 90, Weise et a. 91, Jones et al. 93]
can blend together multiple spindle routines and the surrounding kernel code to reduce the overheads of maintaining
large numbers of spindles. It can aso reduce the cost of crossing from the kernel’s execution environment to the
spindle's. Partia evaluation is a program transformation technique that specializes program code with respect to some
of itsargument values. In our context, for example, if severa spindles are associated with the same kernel event, the
compiler can specialize the event dispatcher to produce a single code sequence tuned just for the spindlesinstalled at
that time.

4 SPIN and application domains

Application-specific techniques enabled by SPIN’s structure are relevant to application domains that have high per-
formance requirements. Examples include genera purpose high-performance computing, multicomputer-based mul-
tiprocessing, shared memory multiprocessing, multimedia, and databases/information retrieval. The performance of
traditional operating system services for these problems has been poor, either for the demanding application, or al
other applications running at the same time. In this section, we describe the operating system requirements of these
domains and discuss the role of application-specific solutions. We then describe a number of key techniques enabled
by SPIN that satisfy these requirements.

General purpose high-performance computing

Many operating system services such as synchronization and scheduling, virtual memory and interprocess com-
munication are generally important for any application requiring high performance. For example, any program
that uses threads internally as a program structuring device [Hauser et al. 93] can benefit from fast synchroniza
tion [Bershad et al. 92]. Any program that interactswith an operating system server can benefit from fast interprocess
communication [Bershad et a. 90, Draves et d. 91]. Many applications have become sensitive to the degree to which
thelr memory access patterns are satisfied by an architecture's fast memory system (cache and trandlation lookaside
buffer) [Chen & Bershad 93]. For example, some compilers now use static blocking algorithms based on the cache
sizein order to maximize the cache hit rate during well-formed dataintensive computations[Lam et a. 91]. Programs
with irregular structure must rely on more dynamic information, for example, cache, TLB, or page fault rates. These
missrates may be easy to determine, but potentially expensive to communicate to the application. Application-specific
code in the kernel that can track a program’s memory system behavior and provide guidance and feedback to the
runtime can result in improved program performance.

Parallel processing

Application-specific communication protocols[Felten 92], scheduling, and virtual memory management can improve
the performance of parallel programs running on a distributed memory multicomputer. Fast communicationisrequired
to transmit messages from one processor to another. Appropriate scheduling and synchronization support can ensure
that all threads in a multicomputer program run at the same time to avoid unnecessary stalls due to scheduling
anomalies [Zahorjan & McCann 90, Ousterhout 84]. Application-specific virtual memory services can ensure that
unanticipated page faults do not delay processors involved in a cooperative computation, thereby delaying other
processors.

Shared memory multi processi ng appli cationsrequirefine-grai ned scheduling control , lightwei ght threads[Anderson et al. 92],
synchronization [Anderson et al. 89], and information about memory system behavior. Multiprocessor applications
can rely on application-specific thread schedulers, or user-level thread management packages, for high performance
in the presence of relatively fine-grain parallelism [Anderson et al. 89]. Implementing user-level threads on top of

existing operating system mechanisms (such as kernel threads) can be difficult. In previouswork, we addressed these
difficulties with a mechanism called scheduler activations. Scheduler activations rely on the operating system kernel
to convey information about kernel-level scheduling events to applications[Anderson et a. 92].

Multimedia

Multimediaapplications, such asvideo-on-demand, video-conferencing, virtual reality, and interactivelearning,impose
special demands on the scheduling, communi cation and memory alocation policies of an operating system. Ingeneral,
real-time systems implement a simple fixed priority ordering [Hildebrand 92]. Conventional operating systems,
however, support either a single scheduling policy to arbitrate among competing activities, or multiple policies that
promote fairness but favor interactive activities [Black 90]. Some systems provide multiple scheduling policies
but only from among a few fixed policies set at kernel-build time [Tokudaet a. 90]. Flexible, application-specific
scheduling, though, has been shownto providecritical performance benefitsfor both time-constrained and non real-time
activities[Anderson 93, Anderson et a. 92].

In terms of memory resources, multimedia applications use large amounts of data (audio and video streams) with
access patternsthat interact poorly with locality-based page repl acement algorithms[Anderson 93, Nakgjima et al. 92].
Application-specific virtual memory management policies can solvethisproblem. High-level informationabout media
direction, edit cuts, and tempora constraints are directly relevant to page replacement decisions. When presenting
a video stream, for example, an application can sequentialy prefetch video frames directly from disk into memory-
resident buffers. Information about synchroni zati on between mediastreams can al so be specified to prevent unnecessary
replacement of pages that are interdependent.

Databases and information retrieval

Databases and information retrieval applications impose severe demands on the filing and memory services of an
operating system. The speed of disks and memory, which are at the base of any file service, have not kept pace with
processor speeds; any leveragethat can be appliedtoincreasetheir performanceiscritically important to end-application
performance.

Filesystem performance can benefit from application-specific information in several ways. The application can
provide hints about future usage to the filesystem to help it schedule disk traffic [Gibson et a. 92]. Thiscan result in
more effective prefetching policiesand lower buffer cache missrates. An effective prefetching policy can aso remove
virtual memory remapping operations from the critical path, since disk blocks are already mapped into the application
address space when they are needed. In addition, the application can inform the kernel about how it will use the buffer
cache, so that the kernel can make informed decisions about physical memory allocation [Stonebraker 81].

4.1 Some application-specific services enabled by SPIN

The application domains described in the previous subsection can be enabled by operating system services that are
customized to the program’s needs. Below, we detail some specific techniques.

Extensibleinter process communication

An extensible |PC interface enabl es applications and servers to define their own semantics for interprocess communi-
cation enabling the best tradeoff between performance and functionality. To receive a message, an applicationinstalls
a spindle that can recognize a message destined for it as the receiver. To send a message, an application formats the
message for the spindle, traps to the kernel, and presents the kernel with a block of data intended for a particular
address space, which is represented in the kernel by a spindle waiting to receive a message. Upon executing the
spindle, the kernel delivers data to the corresponding receiver. The responsibility for interpreting the contents of the
message bel ongs with the receiver.

Application-level protocol processing

IPC is an example of amore general style of interaction in which the applicationsimplement a sophisticated commu-
nication protocol such as TCP/IP entirely within application-level libraries. Spindlesimplement low-level data packet
dispatching mechanisms that couple remote communi cation with application-level protocol processing.

Fast, ssmple communication

For many multicomputer applications, the per-message processing required by an application is substantially less than
that needed to transmit the message reliably [Felten 93]. Low-latency message passing spindles that run at interrupt-
level can substantially improve paralel system performance. For example, active messages [von Eicken et al. 92] are
simple interrupt handlers that can be written as spindles, alowing them to run safely in a general purpose computer
system where integrity is as important as performance.

Application-specific file systems and buffer cache management

An application-specific buffer cache manager for afile system can beimplemented asalibrary that allows applications
to access resident data with a simple procedure call but without data copying. A library-based buffer cache manager
can provide for application-specific buffer management policiesto ensure a high cache hit rate. Spindlescan monitor
page access patterns, and notify applications of changes in the current availability of the virtua memory pages used
to contain buffer cache pages. A long-lived server can act as a caretaker for the buffer cache, guarding its contents as
processes start and terminate, and ensuring consistency across multiple readers and writers.

User-level scheduling

In SPIN, a complete user-level scheduler can be implemented with a per-program spindle that emulates scheduler
activations. The spindle, executed on every kernel-level thread context switch, sends a message to the thread's address
space that reflects the change in scheduling state. A user-level library, in turn, implements application-specific thread
management primitives.

Synchronization

Synchronization mechanisms coordinate the activity of multiple threads of control that share memory. Synchro-
ni zation mechanisms that assume no contention for shared resources can have lower overhead than pessimistic ones
that assume that contention will occur [Massalin & Pu 89, Stodolsky et al. 93]. In the genera case, these opti-
mistic strategies require some form of kernel support to ensure correctness in the presence of an oblivious kernel
scheduler [Bershad et a. 92, Bershad 93, Alemany & Felten 92]. SPIN will make arbitrary synchronization strategies
possible by reflecting scheduling decisions up to applications as they occur, or by providing an in-kernel rollback
mechanism. An application that requires lightweight synchronization can install a spindle that executes on every
thread preemption, ensuring the correctness of optimistic synchronization mechanisms.

Real-time scheduling policies
Spindles make it possible to implement a framework that alows applications to implement their own scheduling
policies associated with low-level context switch and I/O events.

Application-specific virtual memory

Application-specific virtua memory can be implemented by providing an application with physical memory pages.
The application can creste aspindlethat provides access to |ow-level mapping operations, and another onethat reflects
page faults up to an application-specific library.

10

Runtime systemswith memory system feedback

Spindles enable low-level performance information to be inexpensively reflected back to applications. For example,
aruntime system can install a spindle that decrements a counter each time an application takes a TLB miss within a
particular range of virtual addresses. When the counter reaches zero, the spindle can notify the application, enabling
it to restructure its virtual memory usage to reduce the load on the TLB.

4.2 Summary

Table 1 characterizes the relationship between application domains and some application-specific services that are
enabled by SPIN. The table shows the extent to which SPIN’s structure facilitates high-performance applicationsin
each of the domains.

service and/or application
technique genera purpose | multicomputing | multiprocessing | multimedia | database
computing

extensible IPC V4 VvV v Vavs VvV
application level protocol Vv NaVAYA VvV v
processing
fast smple network VvV VvV
communication
application specific file vV NV VvV VYV VAV
systems
synchronization Vv NEVAYA NEYAYA Vava
application controlled vir- vV vV vV NEVAVAR IRVEVEV:
tual memory
real-time scheduling VvV
scheduler activations Vv NEVAVA NEVAYA Vv
memory system feedback Vi Vv V4 Vava Vavs

Table 1. This table illustrates the applicability of different techniques enabled by spindles, and their importance
for different application classes. One tick denotes some applicability, two ticks denote significant improvements in
performance, and three ticks denote critical improvements.

5 Reated work

5.1 Extensbility and the operating system

Extensibility has been the “holy grail” of operating systems design since “THE”, one of the first modular operating
systems [Dijkstra66]. An inflexible module structure and poor performance proved to be a substantial drawback
of these systems. Early persona computer operating systems [Redell et a. 80], which ran al system services and
applicationsin asingleaddress space, enabled applicationsto have good performance while being tightly coupled with
the operating system. However, these systems offered no protection agai nst rogue or buggy applications, making them
inappropriate for multiuser environments.

11

Extensible services

Previous research into extensible system services has addressed file systems [Rees et al. 86, Bershad & Pinkerton 88],

scheduling[Anderson et a. 92], communication[Bershad et al. 91], and user-level memory management [Krueger et al.

McNamee & Armstrong 90, Harty & Cheriton 92, Sechrest & Park 91]. No system has provided an efficient way to
compose multiple resources in a coherent manner. For example, with previous systems, in order for an application to
cooperate with the kernel in making fine-grained CPU and memory allocation decisions, control must be transferred
from the kernel to the application and back one or more times each time the kernel changes the global resource
allocation. This context switching overhead can put a high lower bound on the allocation granularity possible in the
system. In contrast to this approach, SPIN provides asingle framework in which extensible services can be build.

Packet filters

The packet filter offersan example of kernel extensibility[Mogul et a. 87]. A packet filter isrun against each incoming
network packet to demultiplex data packets to higher level protocol software. With careful design, the packet filter
is able to support protocol processing for alarge number of applications[Yuharaet a. 94]. SPIN generadizes on the
notion of the packet filter, enabling richer, more complex servicesto be safely installed into the kernel.

Dynamiclinking

In systems such as Spring [Khalidi & Nelson 93], Chorus [Rozier et a. 88], and OSF/1 the kernel can be modified
at run time with a new set of interface implementations for heavyweight services like device drivers or the Unix file
system. Pure object code is downloaded “on-the-fly” from user-level into the kernel, exposing the kernel to protection
violations. In contrast, with SPIN, extensihility is at the interface level (new kernel interfaces can be defined by
applications), fine-grained (particular events within particular applications and threads), and safe (the extensions are
validated both dynamically and statically).

Synthesis

The Synthesissystem[Massalin & Pu 89] improved performance throughthe use of highly specialized and dynamically
constructed i nterface implementations. For instance, afile open operationin Synthesiswould return ahandleto apiece
of code optimized for accessing the opened file. However, both the interfaces and the scope of their implementation
were limited to that which was pre-defined by the Synthesis kernel itself. This differsfrom SPIN, where applications
are ableto define both theinterfaceto, and implementation of, system services. Hence, a SPIN application could creste
afile open interface whose implementation is optimized not only for the particular file, but also for the access patterns
of the application.

5.2 Language and compiler work
The Fox Project

TheFox project [Cooper et a. 91] appliesadvanced compiler technol ogy to system software devel opment. Theprimary
focus of the research is on the extensions necessary to use the Standard ML programming language [Milner et a. 89]
in support of systems programming. Standard ML is a type-safe programming language with a rich module system
that enables many of types of extensions that are available in SPIN. The Fox project has focussed on improving the
performance of the Standard ML compiler in the context of a standalone network service, and has not developed a
genera operating system structure.

Reflective systems

Severa systems have used reflection to create adaptable systems. A reflective system is one that includes mechanisms
to monitor and modify itsown behavior asit executes. Inthe Apertosoperating system [Yokote et a. 91], for example,
users customize the system’s behavior by choosing among several reflective mechanisms for kernel services. Kiczales

12

93,

et al. have studied general meta-object protocols, which are interfaces to languages and systems that enable usersto
customize and extend the system’s behavior [Kiczales et a. 91].

Although SPIN does not support general reflection, it does provide a controlled mechanism by which services can
augment the kernel with their own speciaized code sequences (spindles). Previous reflective systems have suffered
high overhead from the extralayers of abstraction. SPIN relies on dynamic compilation and partial evaluationto ensure
good performance.

Compiler optimization techniques

Runtime compilation of code has been explored in several experimental systems, ranging from a Smalltalk environ-
ment [Deutsch & Schiffman 84] totheimplementation of bit-transfer operationsinraster graphicssystems|Pikeet a. 85]
to debugging [Kessler 90]. Runtime code generation and optimization has also been used to produce speedups in
traditional applications [Keppel et al. 93]. The Sdlf and Cecil systems [Ungar & Smith 87, Chambers & Ungar 91,
Chambers 93, Chambers 92] include automati c mechanisms for determining where optimizationscan be cost effective,
and may choose not to optimizein cases where performance will not beimproved. SPIN will rely on similar heuristics.
There has been little work in applying partial evaluation techniques at runtime, as required by SPIN. Most partia
evaluation techniques are oriented towards static analyses. Moreover, existing techniques for partial evauation do not
address the problem of increased code size, which occurs when generating specialized instances of code.

6 Statusand directions

We are developing SPIN in the context of the Mach 3.0 microkernel and the OSF/1 Unix server running on DEC
Alphaworkstations. We are partitioning the system statically intoa SPIN component and a native (OSF/1) component.
Existing OSF/1 binaries will continue to run by accessing the OSF/1 services that manage the native-component.
SPIN will manage the SPIN component across applications that have been explicitly marked to run within SPIN. This
approach alows us to slowly migrate avay from a mixed-mode system to one that runs SPIN natively. With this, we
will provide aset of OSF/1 services using the SPIN primitives.

The advantages of the approaches taken in SPIN are not restricted to microkernel-based systems. Any system
that provides a core set of services behind a fixed interface is subject to inadeguate performance when faced with
the “wrong” application. The flexible structures and solutions provided in SPIN are therefore aso appropriate for a
monolithic system.

We intend to use SPIN both as a research target, enabling us to explore resource management mechanisms as we
construct the system, and as a research vehicle, enabling us to explore resource management policies, as we use the
system. SPIN will support applicationsin traditional domains, such as UNIX-styleworkstation computing, and newer
domains, such as multimedia and multiprocessing. While we intend to use SPIN at the University of Washington as
a salf-hosting system, and to make it available in its pristine form to other universities and industrial sites, we expect
that additional value will come with the transfer of afew key mechanisms and interfacesto commercia systems, such
as OSF/1 and Windows-NT. These systems, as their application base grows, will be required to provide an application
programming interface that facilitates fine-grained resource control.

References

[Accettaet a. 86] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F,, Tevanian, Jr., A., and Young, M. W.
Mach: A New Kernel Foundation for Unix Development. In Proceedings of the 1986 Summer USENIX Conference,
pages 93-113, July 1986.

[Alemany & Felten 92] Alemany, J. and Felten, E. W. Performance Issuesin Non-blocking Synchronization on Shared-Memory
Multiprocessors. In Proceedingsof the 1992 Principles of Distributed Computing, August 1992.

[Anderson 93] Anderson, D. P. Metascheduling for Continuous Media. ACM Transactionson Computer Systems, 11(3):226-252,
August 1993.

13

[Andersonet a. 89] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Implications of Thread Management
Alternatives for Shared-Memory Multiprocessors. |EEE Transactions on Computers, 38(12):1631-1644, December
1989.

[Andersonet al. 92] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism. ACM Transactions on Computer Systems, 10(1):53-79,
February 1992.

[Babaoglu & Joy 81] Babaoglu, Ozalp. and Joy, W. Converting a Swap-Based System to do Paging in an Architecture Lacking
Page-Referenced Bits. In Proceedings of the Eighth Symposium on Operating Systems Principles, pages 78-86,
December 1981.

[Bershad & Pinkerton 88] Bershad, B. N. and Pinkerton, C. B. Watchdogs — Extending the UNIX File System. Computing
Systems, 1(2):169-188, Spring 1988.

[Bershad 93] Bershad, B. N. Practical Considerations for Non-Blocking Concurrent Objects. In Proceedings of the 13th Interna-
tional Conferenceon Distributed Computing Systems, pages 264-274, May 1993.

[Bershad et al. 90] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. Lightweight Remote Procedure Call.
ACM Transactionson Computer Systems, 8(1):37-55, February 1990. Also appeared in Proceedingsof the 12th ACM
Symposiumon Operating Systems Principles, December 1989.

[Bershad et al. 91] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. User-Level Interprocess Communication
for Shared Memory Multiprocessors. ACM Transactionson Computer Systems, 9(2):175-198, May 1991.

[Bershad et al. 92] Bershad, B. N., Redell, D. D., and Ellis, J. R. Fast Mutual Exclusion for Uniprocessors. In Proceedings
of the Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOSV), pages 223-233, October 1992.

[Black 90] Black, D. L. Scheduling and Resource Management Techniques for Multiprocessors. PhD dissertation, Carnegie
Mellon University, July 1990.

[Chambers & Ungar 91] Chambers, C. and Ungar, D. Making Pure Object-Oriented Languages Practical. In Proceedings of
OOPSLA'91, pages 1-15, October 1991. SIGPLAN Notices 26(10).

[Chambers92] Chambers, C. Object-Oriented Multi-Methods in Cecil. In Proceedings of ECOOP ’92, pages 33-56, June 1992.
LNCS615.

[Chambers 93] Chambers, C. Analysisand Optimization of Object-Oriented Languages. Technical report, University of Washing-
ton, 1993. LNCS615.

[Chen & Bershad 93] Chen, J. B. and Bershad, B. N. The Impact of Operating System Structure on Memory System Performance.
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 120-133, December 1993.

[Consel 90] Consel, C. Binding Time Analysis for Higher Order Untyped Functional Languages. In Conference on Lisp and
Functional Programming, pages 264272, 1990.

[Cooper et a. 91] Cooper, E., Harper, R., and Lee, P. The Fox Project: Advanced Developement of Systems Software. Technical
Report CMU-CS-91-187, Carnegie Mellon University, 1991.

[Deutsch & Schiffman 84] Deutsch, P. and Schiffman, A. Efficient Implementation of the Smalltalk-80 System. In ACM Symposium
on Principles of Programming Languages, pages 297-302, January 1984.

[Dijkstra66] Dijkstra, E. W. The Structure of the THE Multiprogramming System. Communications of the ACM, 9(3):341-346,
March 1966.

[Draveset al. 91] Draves, R. P, Bershad, B. N., Rashid, R. F,, and Dean, R. W. Using Continuations to Implement Thread
Management and Communication in Operating Systems. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 122—136, October 1991.

[Felten 92] Felten, E. The Case for Application-Specific Communication Protocols. In Proceedings of Intel Supercomputer
Systems Division Technology Focus Conference, pages 171-181, 1992.

[Felten 93] Felten, E. W. High-Performance Communication for Parallel Programs. PhD dissertation, University of Washington,
July 1993.

[Gibson et al. 92] Gibson, G., Patterson, H., and Satyanarayanan, M. Disk Readswith DRAM Latency. Operating Systems Review,
April 1992.

14

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program. In Proceedings of the 1990
Summer USENIX Conference, pages 8795, June 1990.

[Gray & Reuter 92] Gray, J. and Reuter, A. Transaction Processing. Morgan Kaufman, 1992.

[Harty & Cheriton 92] Harty, K. and Cheriton, D. R. Application-Controlled Physical Memory using External Page-Cache Man-
agement. In Proceedingsof the Fourth Inter national Conferenceon Architectural Supportfor Programming Languages
and Operating Systems (ASPLOS V), pages 187197, 1992.

[Hauser et al. 93] Hauser, C., Jacobi, C., Theimer, M., Welch, B., and Weiser, M. Using Threadsin Interactive Systems: A Case
Study. In Proceedingsof the Fourteenth ACM Symposiumon Operating Systems Principles, pages 94-105, December
1993.

[Hildebrand 92] Hildebrand, D. An Architectural Overview of QNX. In Proceedings of the Usenix Workshop on Micro-Kernels
and Other Kernel Architectures, April 1992.

[Hosking & Moss93] Hosking, A. L. and Moss, J. E. B. Protection Traps and Alternatives for Memory Management of an
Object-Oriented Language. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,
pages 106119, December 1993.

[Joneset al. 89] Jones, N., Sestoft, P, and Sondergaard, H. MIX: A Self-Applicable Partial Evaluator for Experimentsin Compiler
Generation. Lisp & Symbolic Computing, 2(1):9-50, February 1989.

[Joneset al. 93] Jones, N., Gomard, C., and Sestoft, P. Partial Evaluation and Automatic Program Generation. Prentice Hall,
1993.

[Julinet a.91] Julin, D. P, Chew, J. J.,, Stevenson, J. M., Guedes, P, Neves, P, and Roy, P. Generalized Emulation Services for
Mach 3.0: Overview, Experiencesand Current Status. In Proceedings of the Second Usenix Mach Symposium, pages
13-26, 1991.

[Kearns & DeFazio 89] Kearns, J. and DeFazio, S. Diversity in Database Reference Behavior. Performance Evaluation Review,
1989.

[Keppel etal. 93] Keppel, D., Eggers, S., and Henry, R. Evaluating Runtime-Compiled, Value-Specific Optimizations, 1993.
Submitted for publication.

[Kessler 90] Kessler, P Fast Breakpoints: Design and Implementation. In ACM SIGPLAN '90 Conference on Programming
Language Design and Implementation, pages 78-84, June 1990.

[Khalidi & Nelson 93] Khalidi, Y. A. and Nelson, M. N. An Implementation of UNIX on an Object-Oriented Operating System.
In Proceedings of the 1993 Winter USENIX Conference, pages 469480, January 1993.

[Kiczaleset a. 91] Kiczales, G., desRiviéres, J., and Bobrow, D. The Art of the Metaobject Protocol. MIT Press, 1991.

[Krueger et a. 93] Krueger, K., Loftesness, D., Vahdat, A., and Anderson, T. Tools for the Developement of Application-Specific
Virtual Memory Management. In Proceedingsof the 1993 OOPSLA, pages 4864, 1993.

[Lamet al.91] Lam, M. S, Rothberg, E. E., and Wolf, M. E. The Cache Performance and Optimizations of Blocked Algorithms.
In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V), April 1991.

[Lampson 84] Lampson, B. W. Hints for Computer System Design. |EEE Software, 1(1):11-28, January 1984.

[Maeda & Bershad 92] Maeda, C. and Bershad, B. N. Networking Performance for Microkernels. In Proceedings of the Third
Workshop on Workstation Operating Systems, pages 154-159, April 1992.

[Maeda & Bershad 93] Maeda, C. and Bershad, B. N. Protocol Service Decomposition for High-Performance Networking. In
Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 244-255, December 1993.

[Massalin & Pu89] Massalin, H. and Pu, C. Threads and Input/Output in the Synthesis Kernel. In Proceedings of the Thirteenth
ACM Symposiumon Operating Systems Principles, pages 191-201, December 1989.

[McNamee & Armstrong 90] McNamee, D. and Armstrong, K. Extending the Mach External Pager Interface to Accommodate
User-Level Page Replacement Policies. In Proceedings of the Usenix Mach Symposium, pages 17—29, 1990.

[Milner et a. 89] Milner, R., Tofte, M., and Harper, R. The Definition of Standard ML. MIT Press, Cambridge, MA, 1989.

[Mogul et al. 87] Mogul, J. C., Rashid, R. F., and Accetta, M. J. The Packet Filter: An Efficient Mechanismfor User-level Network
Code. In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages 39-51, November
1987.

15

[Nakajimaet al. 92] Nakajima, J., Yazaki, M., and Matsumoto, H. Multimedia/Realtime Extensionsfor Mach 3.0. In Proceedings
of the Usenix Workshop on Micro-Kernels and Other Kernel Architectures, April 1992.

[Ousterhout 84] Ousterhout, J. Scheduling Techniques for Concurrent Systems. In Proceedings of the 3rd IEEE International
Conferenceon Distributed Computing, 1984.

[Ousterhout et al. 85] Ousterhout, J. K., Costa, H. D., Harrison, D., Kunze, J. A., Kupfer, M., and Thompson, J. G. A Trace-Driven
Analysisof the UNIX 4.2 BSD File System. In Proceedings of the Tenth Symposiumon Operating SystemsPrinciples,
pages 15-24, 1985.

[Phelanet a. 93] Phelan, J. M., Arendt, J., and Ormsby, G. R. An OS/2 Personality on Mach. In Proceedings of the Third Usenix
Mach Symposium, pages 191-201, 1993.

[Pikeetal. 85] Pike, R., Locanthi, B., and Reiser, J. Hardware/Software Trade-offs for Bitmap Graphics on the Blit. Software
Practice and Experience, 15(2):131-151, February 1985.

[Redell et a. 80] Redell,D.D., Daal, Y.K., Horsley, T. R., Lauer, H. C., Lynch, W. C., McJones, P. R., Murray, H. G., and Purcell,
S. C. Pilot: An Operating System for a Personal Computer. Communications of the ACM, 23(2):81-92, February
1980.

[Reeset al. 86] Rees, J, Levine, P. H., Mishkin, N., and Leach, P. J. An Extensible I1/0 System. In USENIX Association Summer
Conference Proceedings, pages 114125, June 1986.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F., Boule, |., Giend, M., Guillemont, M., Herrmann, F., Leonard, P,
Langloais, S., and Neuhauser, W. The Chorus Distributed Operating System. Computing Systems, 1(4), 1988.

[Sechrest & Park 91] Sechrest, S. and Park, Y. User-Level Physical Memory Management for Mach. In Proceedings of the Second
Usenix Mach Symposium, pages 189-199, 1991.

[Stodolsky et al. 93] Stodolsky, D., Bershad, B. N., and Chen, B. Fast Interrupt Priority Management for Operating SystemKernels.
In Proceedings of the Second Usenix Workshop on Microkernelsand Other Kernel Architectures, September 1993.

[Stonebraker 81] Stonebraker, M. Operating System Support for Database Management. Communicationsof the ACM, 24(7):412—
418, July 1981.

[Thekkath et al. 93] Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E. D. Implementing network protocols at user level.
IEEE/ACM Transactions on Networking, 1(5):554-565, October 1993.

[Tokudaet al. 90] Tokuda, H., Nakajima, T., and Rao, P. Real-TimeMach: Toward aPredictable Real-Time System. In Proceedings
of the Usenix Mach Symposium, October 1990.

[Ungar & Smith 87] Ungar, D. and Smith, R. SELF: The Power of Simplicity. In Proceedings of OOPSLA ’'87, pages 227241,
October 1987. Lisp and Symbolic Computation 4(3).

[von Eickenetal. 92] von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. Active Messages: A Mechanism
for Integrated Communication and Computation. In Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 256266, May 1992.

[Weise et al. 91] Weise, D., Conybeare, R., Ruf, E., and Seligman, S. Automatic Online Partial Evaluation. In Functional
Programming Languagesand Computer Architecture, pages 165-191. Springer-Verlag, August 1991. LNCS 202.

[Wheeler & Bershad 92] Wheeler, B. and Bershad, B. N. Consistency Management for Virtually Indexed Caches. In Proceedings
of the Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOSV), October 1992.

[Yokoteet al. 91] Yokote, Y., Mitsuzawa, A., Fujinami, N., and Tokoro, M. Reflective Object Management in the Muse Operating
System. In Proceedings of the Second Inter national Workshop on Object Orientation in Operating Systems, October
1991.

[Young 89] Young, M.W. Exporting aUser Interface to Memory Management from a Communication-Oriented Operating System.
Technical Report CMU-CS-89-202, Carnegie Mellon University, November 1989.

[Yuharaetal. 94] Yuhara, M., Bershad, B. N., Maeda, C., and Moss, J. E. B. Efficient Packet Demultiplexing for Multiple Endpoints
and Large Messages. In Proceedings of the 1994 Winter USENIX Conference, January 1994.

[Zahorjan & McCann 90] Zahorjan, J. and McCann, C. Processor Scheduling in Shared Memory Multiprocessors. In Proceedings

of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 214-225, May
1990.

16

