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We derive diffusion equations, which describe spin-charge coupled transport on the helical metal

surface of a three-dimensional topological insulator. The main feature of these equations is a large

magnitude of the spin-charge coupling, which leads to interesting and observable effects. In particular, we

predict a new magnetoresistance effect, which manifests in a non-Ohmic correction to a voltage drop

between a ferromagnetic spin-polarized electrode and a nonmagnetic electrode, placed on top of the

helical metal. This correction is proportional to the cross product of the spin polarization of the

ferromagnetic electrode and the charge current between the two electrodes. We also demonstrate

tunability of this effect by applying a gate voltage, which makes it possible to operate the proposed

device as a transistor.

DOI: 10.1103/PhysRevLett.105.066802 PACS numbers: 73.43.�f, 72.25.�b, 85.75.�d

The time-reversal invariant topological insulator (TI) is
a new state of matter, distinguished from a regular band
insulator by a nontrivial topological invariant, which char-
acterizes its band structure [1]. Its theoretical [2] and
experimental [3] discovery has accordingly generated a
great deal of excitement in the condensed matter physics
community. The most robust observable consequence of a
nontrivial topological character of these materials is the
presence of gapless helical edge states, whose gaplessness
is protected by time-reversal symmetry and is thus robust
to perturbations that do not break this symmetry. In par-
ticular, the surface of a three-dimensional (3D) TI, such as
Bi2Se3 or Bi2Te3 [4], is a 2D metal, whose band structure
consists of an odd number of Dirac cones, centered at time-
reversal invariant momenta in the surface Brillouin zone
[2]. Assuming the Fermi surface encloses only one Dirac
point, the low-energy Hamiltonian, describing such a 2D
metal, is given by

H ¼ X
k

vFðk� ẑÞ � ���0cyk�ck�0 ; (1)

where ẑ is along the normal to the surface, vF is the Fermi
velocity, � is the vector of Pauli matrices, summation over
repeated spin indices is implicit, and we use @ ¼ 1 units
henceforth. The eigenstates of this Hamiltonian are labeled
by helicity, i.e., projection of the spin of the electron on the
direction of its momentum, hence the name helical metal
(HM). The most obvious physical property of a HM is a
strong coupling between the spin and orbital degrees of
freedom, the energy scale characterizing this coupling
being the Fermi energy �F. Spin-orbit (SO) coupling of
such a magnitude is unprecedented among known materi-
als, and it is thus extremely interesting to work out its
possible observable consequences. Some work on this
subject has already appeared in the literature [5,6].

In this Letter we will focus on spin and charge transport
phenomena in a 2D HM. In this setting, it is useful to note

that the Hamiltonian of a HM Eq. (1) is very similar to the
Rashba Hamiltonian [7], which has been studied exten-
sively in the context of spin transport in semiconductor-
based two-dimensional electron gas (2DEG) systems [8–
10]. The main difference is the magnitude of the SO term:
while in a semiconductor 2DEG it is only a weak pertur-
bation on top of the band kinetic energy, it is the only term
present in the Hamiltonian of the HM. Thus, while the
spin-charge coupling effects in semiconductor 2DEGs are
extremely weak and largely experimentally unobservable,
they can be expected to be significant in a HM.
We start from the HM Hamiltonian Eq. (1). We will

assume that the surface Fermi energy, measured relative to
the Dirac point, is finite (we will take it to be positive for
concreteness), as is generically the case in real materials
[1], and that the corresponding 2D Fermi surface encloses
one Dirac point (we expect our results to hold for any odd
number of Dirac cones as different cones will contribute
additively to transport). We will assume that nonmagnetic
impurities with potential ViðrÞ ¼ u0

P
a�ðr� raÞ and 2D

density ni are present at the surface. To derive the diffusive
transport equation we will adopt the formalism of Ref. [9],
based on the evaluation of the density matrix response
function.
The real-time disorder-averaged Green’s function of a

2D HM is a 2� 2 matrix in spin space. It is convenient to
write it as a sum of ‘‘singlet’’ and ‘‘triplet’’ contributions

GR;A
��0 ðk; !Þ ¼ GR;A

s ðk; !Þ���0 þGR;A
t ðk; !Þ � ���0 , where

R, A stand for retarded and advanced and the singlet and
triplet Green’s functions, projected onto the band with
positive helicity, are given by

GR;A
s ðk; !Þ ¼ 1=2

!� �k � i=2�
;

GR;A
t ðk; !Þ ¼ k̂� ẑ

2

1

!� �k � i=2�
:

(2)
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Here �k ¼ vFjkj � �F, and the impurity scattering rate is
given by 1=� ¼ �niu

2
0�ð�FÞ, where �ð�FÞ ¼ �F=2�v

2
F is

the density of states at Fermi energy. We assume that
�F� � 1, which allows us to treat disorder perturbatively.
We then introduce generalized density operators

%��0 ðr; tÞ ¼ �y
�0 ðr; tÞ��ðr; tÞ, and evaluate the retarded

density response function ��1�2;�3�4
ðr� r0; t� t0Þ ¼

�i	ðt� t0Þh½%�1�2
ðr; tÞ; %y

�3�4
ðr0; t0Þ�i. To leading order in

the small parameter 1=�F� this is easily evaluated by
summing all ladder vertex corrections to the polarization
bubble diagram [9]. Assuming q � kF and � � �F, one
obtains the following result for the Fourier transformed
density response function: �ðq;�Þ ¼ �0 �
i���ð�FÞIðq;�ÞDðq;�Þ, where �0 is the static

uniform susceptibility and I�1�2;�3�4
ðq;�Þ ¼

niu
2
0

R
d2k
ð2�Þ2 G

R
�1�3

ðkþ q;�ÞGA
�4�2

ðk; 0Þ. D ¼ ð1� IÞ�1

is the diffusion propagator, i.e., the Green’s function of
the spin-charge coupled transport equation we seek to
derive. Evaluating the momentum integral above, expand-
ing the result to leading nontrivial order in i�� and vFq�,
which corresponds physically to coarse graining over
length scale of the order of the mean free path ‘ ¼ vF�
and time scale of order �, we finally obtain the following
set of spin-charge coupled transport equations:

@N

@t
¼ Dr2N þ 2�ðẑ� rÞ � S;

@Sx

@t
¼ D

2

@2Sx

@x2
þ 3D

2

@2Sx

@y2
þD

@2Sy

@x@y
� Sx

�

þ �ðẑ� rÞxN;

@Sy

@t
¼ D

2

@2Sy

@y2
þ 3D

2

@2Sy

@x2
þD

@2Sx

@x@y
� Sy

�

þ �ðẑ� rÞyN:

(3)

Here S is the nonequilibrium spin density and N=�ð�FÞ is
the full local electrochemical potential (we have subsumed
the contribution of the external electrostatic potential into
the definition of the charge density N). D ¼ v2

F�=2 is the

diffusion constant and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
D=2�

p ¼ vF=2 is the spin-
charge coupling constant. The out-of-plane component of
the spin density does not appear in the above equations.
The reason for this is that any nonequilibrium spin polar-
ization in the z direction will precess with frequency of
order �F around the momentum-dependent SO field ẑ� k
and will thus average out to zero on time scales longer than
1=�F.

It is useful to compare Eq. (3) with the corresponding
equations for semiconductor 2DEG systems with Rashba
SO interactions, derived in Ref. [9]. In the latter case, the
coupling between the in-plane and out-of-plane spin com-
ponents is large, of order 
�F�, where 
 is the Rashba SO
coupling constant. This leads to interesting and experimen-
tally observable effects in spin transport [10]. These effects
will not be observable in HM due to a vanishing coupling

between in-plane and out-of-plane spin components. In
contrast, the spin-charge coupling in Rashba 2DEG sys-
tems is extremely small, with �� 
ð
kF�Þ2, and is largely
experimentally unobservable. In a HM, on the other hand,
the spin-charge coupling is much stronger, �� vF, and
one can thus expect these effects to be easily experimen-
tally accessible. Another difference from the Rashba
2DEG case is an anisotropic nature of spin diffusion in
the HM: the diffusion constant is different in the direction
of the spin polarization and perpendicular to it. This is not
unexpected and is also a consequence of the strong SO
coupling in this system. Finally, the relaxation time for the
in-plane spin components in the HM case is the same as the
momentum relaxation time �. In the Rashba 2DEG case, in
contrast, the relaxation time is much longer, of order
�=ð
kF�Þ2.
Unusual spin-charge transport properties of the HM are

embodied in a nonstandard relation between the charge
current and the gradient of the electrochemical potential,
which are no longer simply proportional to each other. This
can be seen from the first equation of Eq. (3). Namely,
since the electron charge is conserved, the charge transport
equation must have the form

@N

@t
¼ �r � J; (4)

where J is the particle current density (equal to 1=e times
the electrical current density). Then from Eq. (3) we can
immediately read off the following expression for the
particle current density:

J ¼ �DrN þ 2�ðSxŷ� Syx̂Þ: (5)

The first term here is the usual contribution to the charge
current, proportional to the charge electrochemical poten-
tial gradient. There is, however, a second term, which is
proportional to the excess spin electrochemical potentials,
if the spins are polarized in-plane (in the case of a clean TI
surface this term was first studied in Ref. [5]). The physical
origin of this term is a definite helicity of the Fermi surface
states in a HM.
We will now show that this extra term in the expression

for the charge current manifests as a novel and potentially

TI

I

x

y

FM N

FIG. 1 (color online). Schematic picture of the sample. The
left electrode (FM) is ferromagnetic and can inject a spin-
polarized current (polarization shown by arrow) into the sample.
The right electrode (N) is nonmagnetic. The voltage drop be-
tween the electrodes has a contribution proportional to the cross
product of the polarization and the current.
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useful magnetoresistance effect. We imagine a setup, sche-
matically depicted in Fig. 1. Assume that two electrodes
are deposited on top of a TI sample a distance L from each
other. Assume the left electrode is ferromagnetic (FM) and
can inject a spin-polarized current into the surface of the
sample, while the right electrode is nonmagnetic (N). Let a
fixed current I flow between the electrodes. We will now
use Eq. (3) to calculate the corresponding voltage drop
between the electrodes as a function of the degree and
direction of the spin polarization in the FM electrode.
Assuming there is no variation in the spin and charge
electrochemical potentials in the y direction (i.e., parallel
to the electrodes), the spin-charge diffusion equations sim-
plify to:

D
d2N

dx2
þ 2�

dSy

dx
¼ 0;

3D

2

d2Sy

dx2
� Sy

�
þ �

dN

dx
¼ 0:

(6)

Wewill assume for simplicity that the distance between the
electrodes L is greater than the spin diffusion length in the
HM, which is of order ‘. Then we can assume that the spin
transmission from the FM to the N electrode is zero and
take the boundary conditions for Eq. (6) to be

Jjx¼�L=2 ¼ I

e
; � 3D

2

dSy

dx

��������x¼�L=2
¼ I�

e
;

dSy

dx

��������x¼L=2
¼ 0;

(7)

where J ¼ �DdN=dx� 2�Sy is the particle current in the
x direction and �ð3D=2ÞdSy=dx is the spin current. Note
that the term ��N, which, as may naively be concluded
from examining Eq. (6), contributes to the spin current,
should not in fact be included in the definition of the spin
current. This term is not zero even in equilibrium and thus
represents an equilibrium spin current [11], which has no
relation to measurable transport spin current. One arrives at
the same conclusion from a formal derivation of the spin
current boundary conditions [12]. The second boundary
condition assumes that the current, injected into the HM
from the FM electrode, is spin polarized with the degree of
spin polarization parametrized by �. Note that � can be
either positive or negative, corresponding to spin polariza-
tion of the FM electrode along the y or�y direction. At the
N electrode, the spin current is taken to be zero, as dis-
cussed above. Note that the polarization dependence dis-
appears from Eqs. (6) and (7) if the FM electrode is
polarized in the x direction, i.e., along the direction of
the current.

We now solve Eqs. (6) with the boundary conditions (7).
The first equation of Eqs. (6) simply gives

D
dN

dx
þ 2�Sy ¼ const ¼ �I=e: (8)

Expressing dN=dx in terms of Sy and substituting into the
second equation of Eq. (6), we obtain

d2Sy

dx2
� 8

3‘2
Sy ¼ 4I

3evF‘
2
; (9)

which needs to be solved with boundary conditions (7).
The solution is given by

SyðxÞ ¼ I�

evF

ffiffiffi
2

3

s
cosh½ð2x� LÞ= ffiffiffiffiffiffiffiffi

3=2
p

‘�
sinhð2L= ffiffiffiffiffiffiffiffi

3=2
p

‘Þ
� I

2evF

: (10)

The first term in Eq. (10) corresponds to the spin density,
injected from the FM electrode. This term decays expo-
nentially away from the electrode on length scale of the
order of the mean free path ‘. The second term, on the
other hand, is constant and is due to the magnetoelectric
effect: generation of nonequilibrium in-plane spin polar-
ization by charge current. Note that the magnetoelectric
coefficient does not depend on disorder and in this sense is
universal.
The voltage drop between the electrodes can now be

calculated as

V ¼ � 1

e�ð�FÞ
Z L=2

�L=2

dN

dx
dx ¼ 2�IL

e2kF‘
þ 4�I�

e2kF
: (11)

Thus the voltage drop consists of two contributions. The
first contribution corresponds to the usual Ohmic resis-
tance, which is proportional to the separation between
the electrodes L and inversely proportional to the conduc-
tivity. The second contribution depends on the degree and
direction of the polarization of the FM electrode and con-
stitutes a new magnetoresistance effect. Note that this
contribution is proportional to the cross product of the
polarization of the FM electrode and the charge current
(recall that it disappears when the spin polarization of the
FM electrode is along the �x directions). This distin-
guishes it from all other known magnetoresistance effects.
The effect has some degree of universality, in the sense that
it is independent of disorder and the separation between the
electrodes and only depends on the spin polarization of the
injected current and the Fermi momentum, characterizing
the band structure of the HM. However, the degree of the
injected spin polarization of course does depend on non-
universal properties of the interface between the FM elec-
trode and the HM.
It is interesting to note that when L < 2‘, the resistance,

according to Eq. (11), may formally become negative when
� is negative. This may mean two things. One possibility is
that this simply indicates that we are going outside of the
regime of validity of the gradient expansion of the diffu-
sion propagator or of the boundary conditions Eq. (7) at
short length scales. Another, more interesting possibility is
that this signifies a real physical phenomenon: a nonequi-
librium transition into a zero-resistance state, reminiscent
of the microwave-induced zero-resistance states in 2DEG
[13]. We leave the resolution of this issue to future study.
It is important to realize that while Eq. (11) was obtained

using a specific form of the spin current boundary con-
ditions Eq. (7), our result is in fact largely independent of
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the boundary conditions. If instead of Eq. (7) we used a
more general form for the boundary conditions, involving
both spin densities and spin density gradients (which
physically would correspond to significant spin-flip scat-
tering at the electrode-HM interfaces), only the numerical
coefficient of the magnetoresistance term in Eq. (11) would
change, while its general form would remain the same.

The magnetoresistance effect we propose is fundamen-
tally different from other known magnetoresistance effects
and is easily distinguishable from them. The extra voltage
drop, first found by Johnson and Silsbee [14], which al-
ways occurs at interfaces between ferromagnetic and para-
magnetic metals and which results from differences in
conductivities of the majority and minority spin elec-
trons in ferromagnets, is an even function of the spin
polarization of the ferromagnet (also true when the para-
magnetic metal is helical), while it is an odd function for
the effect we propose. The famous giant magnetoresistance
effect [15] requires both electrodes to be FM and separated
by a distance, smaller than the spin diffusion length. The
effect we describe here requires only one electrode to be
FM and does not depend on the distance between the
electrodes.

Yet another interesting feature of Eq. (11) is that the
magnitude of the polarization-dependent term may be
varied independently of the Ohmic term by applying an
external gate voltage to the HM to tune the Fermi energy.
This is based on the observation that the product of the
Fermi momentum and the mean free path is in fact inde-
pendent of the Fermi energy kF‘ ¼ 2v2

F=niu
2
0, which

makes the Ohmic term insensitive to changing the Fermi
energy [16]. The magnitude of the polarization-dependent
term, however, does explicitly depend on the Fermi energy
as �1=�F. The possibility of realizing this transistorlike
effect depends strongly on how insulating the bulk TI
material actually is. It may thus be difficult to realize
with currently available 3D TI, in which the bulk is not
really insulating [1]. We expect, however, that these prob-
lems will be resolved in the next generation of TI materials.

In conclusion, we have proposed a new magnetoresis-
tance effect that should occur on the HM surface of a 3D
TI. The effect manifests itself in a non-Ohmic correction to
the voltage drop between two electrodes, placed on top of
the HM: a polarized FM electrode and a nonmagnetic
electrode. The correction is proportional to the cross prod-
uct of the charge current between the two electrodes and
the spin polarization of the FM electrode and thus changes
sign when the direction of the spin polarization is reversed.
We have also proposed a transistorlike device, based on
this new magnetoresistance effect.
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