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Spin and valley polarization of plasmons in silicene due to external fields
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The electronic properties of the two-dimensional material silicene are strongly influenced by the application

of a perpendicular electric field Ez and of an exchange field M due to adatoms positioned on the surface

or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron

interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons,

their lifetime, and their oscillator strength. We find that the combination of the fields Ez and M brings a spin

and valley texture to the particle-hole excitation spectrum and allows the formation of spin- and valley-polarized

plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding

spectrum disappears. For zero Ez and finite M the spin symmetry is broken and spin polarization is possible. The

lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley

type electrons that form the electron-hole pairs.
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I. INTRODUCTION

Since its realization as a truly two-dimensional (2D)
material, graphene has attracted much interest, both due to
fundamental science and technological importance in various
fields [1]. However, the realization of a tunable band gap, suit-
able for device fabrications, is still challenging and spin-orbit
coupling (SOC) is very weak in graphene. To overcome these
limitations researchers have been increasingly studying similar
materials. One such material, called silicene, is a monolayer
honeycomb structure of silicon and has been predicted to
be stable [2]. Already several attempts have been made to
synthesize it [3–6] and its properties are reviewed in Ref. [7].

Despite controversy over whether silicene has been created
or not [8], it is expected to be an excellent candidate material
because it has a strong SOC and an electrically tunable
band gap [9–11]. It’s a single layer of silicon atoms with a
honeycomb lattice structure and compatible with silicon-based
electronics that dominates the semiconductor industry. Sil-
icene has Dirac cones similar to those of graphene and density
functional calculations showed that the SOC induced gap in
it is about 1.55 meV [9,10]. Moreover, very recent theoretical
studies predict the stability of silicene on nonmetallic surfaces
such as graphene [12], boron nitride, or SiC [13], and in
graphene-silicene-graphene structures [14]. Besides the strong
SOC, another salient feature of silicene is its buckled lattice
structure with the A and B sublattice planes separated by
a vertical distance 2ℓ so that inversion symmetry can be
broken by an external perpendicular electric field resulting
in a staggered potential [11]. Accordingly, the energy gap
in it can be controlled electrically. Due to this unusual band
structure, silicene is expected to show exotic properties such
as quantum spin/valley and anomalous Hall effects [11,15,16],
magneto-optical and electrical transport [17], etc.

One interesting property of 2D materials is their use
in developing fast plasmonic devices [18]. Plasmons are
quantized collective oscillations of the electron liquid. In
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graphene they have been studied extensively both theoreti-
cally [19] and experimentally [20]. So far though in silicene
the relevant studies are limited [21,22] and do not take into
account the effect of an exchange field M which can be
induced by ferromagnetic adatoms [23] or a ferromagentic
substrate [24,25]. This is important as this field leads to spin-
and valley-polarized currents [26] and, as will be shown,
brings a spin and valley texture to the particle-hole excitation
spectrum (PHES).

The application of a perpendicular electric field Ez en-
hances the SOC gap for one spin and valley type, while it
shrinks it for the other [11,27]. Together with the influence of
the field M, which breaks the spin degeneracy, this leads to
valley polarization and the occurrence of the anomalous Hall
effect [11]. In this work we combine these two peculiar features
and calculate the dynamical polarization function within the
random phase approximation (RPA) and silicene’s plasmonic
response to optical excitations. We investigate how the fields
Ez and M influence such a response and calculate the decay
rate and oscillator strength (not evaluated in Ref. [21]) of the
plasmons.

In Sec. II we discuss the one-electron Hamiltonian, the
energy spectrum, and the density of states as well as their
dependence on the SOC. Then we present analytical results
for the polarization in Sec. III and use them to calculate
and discuss the plasmon dispersion and corresponding decay
rate and oscillator strength in Sec. IV. In Sec. V we make
concluding remarks.

II. BASIC FORMALISM

Silicene consists of a hexagonal lattice of silicon
atoms [7,9,10]. Similar to graphene, the silicon atoms make
up two trigonal sublattices which we call A and B sublattices.
These sublattices are vertically displaced by [11] 2ℓ = 0.46 Å,
and form the buckled structure of silicene. Due to the large
ionic radius, the interatomic distance of silicene is also larger
than that of graphene, measuring a = 3.89 Å, whereas for
graphene this is a = 1.42 Å. Because of the buckling, the
conduction electrons move in a hybridization [2] of the pz
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orbitals with the σ orbitals and therefore the SOC is strong
and cannot be neglected [28].

The behavior of the electrons in silicene can be described
using a four-band next-nearest-neighbor tight-binding model.
Near the Kη point, the corresponding Hamiltonian is given
by [9,11,30]

Hη = �vF (ηkxτx + kyτy) + ητzh11 − ℓEzτz

+Mσz + λR1(Ez)(ητxσy − τyσx)/2, (1)

where h11 = λSOσz + aλR2(kyσx − kxσy). Here vF ≈ 0.5 ×
106 m/s is the Fermi velocity of the electrons [9], k = (kx,ky)
is the 2D wave vector, η distinguishes between the two valleys,
and λSO ≈ 3.9 meV is the intrinsic SOC strength. Further,
λR1(Ez) and λR2 represent the Rashba SOC due to the external
electric field Ez and the intrinsic Rashba SOC which is present
due to the buckling of silicene [10,29], respectively.

The exchange field M can be induced by ferromagnetic
adatoms or a ferromagnetic substrate. Its value is predicted
to be M ≈ 3 meV for graphene deposited on a EuO sub-
strate [24]. The exchange effect is due to the proximity of
the Eu2+ moments and is therefore tunable by varying the
distance between the substrate and the silicene layer. In this
paper we will use a slightly bigger value of M to make its
effect more clear. The Pauli matrices σi and τi correspond to
the physical spin and the sublattice pseudospin, respectively.

One can write this Hamiltonian in the basis of atomic spin-
orbital eigenfunctions of the sublattices A and B for both spin
components, � = {ψA↑,ψB↑,ψA↓,ψB↓}T , near the point K+
as (k± = kx ± iky)

H+ =

⎡

⎢

⎢

⎢

⎣

E(1,1) �vF k− iaλR2k− 0

�vF k+ E(1,−1) iλR1 −iaλR2k−

−iaλR2k+ −iλR1 E(−1,1) �vF k−

0 iaλR2k+ �vF k+ E(−1,−1)

⎤

⎥

⎥

⎥

⎦

,

(2)

where E(sz,tz) = 	sz
tz + Msz and 	sz

= szλSO − ℓEz.

A. Spin-orbit interaction

In Fig. 1 we show the energy spectrum for λSO = 3.9 meV
and several combinations of Ez and M values near both valleys.
In the Hamiltonian (1) three types of SOC are included. One is
represented by the parameter λSO and introduces a gap in the
spectrum as shown in Fig. 1(a). It is diagonal in the spin basis,
so both spin components are treated equally. The terms λR1

and λR2 do mix up the spin states. However, as shown below,
the effect of these terms is very small and the spin remains an
approximate good quantum number.

The term λR1(Ez) describes the Rashba SOC due to the
field Ez. Note, however, that for a wide range of Ez values

FIG. 1. (Color online) Energy spectrum of silicene versus wave

vector k in the K+ (left column) and the K− valleys (right column)

for different values of the electric Ez and exchange M fields, as

specified, and λSO = 3.9 meV. The blue dashed curves pertain to

sz = +1 electrons and the red dash-dotted curve to sz = −1 electrons

when the terms λR2 are neglected. The dotted lines show the Fermi

level μ0 = 13 meV. This μ0 value will be used in the entire paper.

this term can be safely neglected since at fields of the order
of the critical field Ec = λSO/ℓ, its value is approximately
λR1 ≈ 10−3λSO [9,11,29].

A unitary transformation of Eq. (2) allows more insight into
the importance of λR2. With the combinations

ψ1 = [�vF ψB↑ + iaλR2
ψA↓]/�v′

F , (3)

ψ2 = [�vF ψA↓ + iaλR2ψB↑]/�v′
F , (4)

where �v′
F = �vF (1 + ξ 2)1/2 and ξ = aλR2/�vF ≈ 0.5 ×

10−3, the new basis �sz
= {ψA↑,ψ1,ψ2,ψB↓}T transforms

Eq. (2) into the form

H ′
+ =

⎡

⎢

⎣

E(1,1) �v′
F k− 0 0

�v′
F k+ E(1,−1) − 2M ′ξ 2 −2iM ′c 0

0 2iM ′c E(−1,1) + 2M ′ξ 2
�v′

F k−
0 0 �v′

F k+ E(−1,−1)

⎤

⎥

⎦
, (5)

where M ′ = ℓEz + M and c = ξ/(1 + ξ 2)1/2.
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The effect of λR2 is thus threefold. To first order in ξ

it induces a change in the Fermi velocity, vF → v′
F , and it

couples the spin components by virtue of a finite electric Ez

or exchange M field. Additionally, it affects the gap to second
order in ξ by a diagonal term that is linear in Ez and M .
However, these effects are very small due to the smallness of
ξ . We shall therefore neglect λR2.

B. Effective Hamiltonian

The approximations referred to above decouple the two
spin states. Because the valleys are independent, we can
describe electrons in silicene as particles that have a spin- and
valley-dependent gap. In the basis �ηsz

= {ψA,ηsz
,ψB,ηsz

}T the
Hamiltonian becomes

H sz

η =
[

	ηsz
+ szM �vF ηk

η
−

�vF ηk
η
+ −	ηsz

+ szM

]

, (6)

where sz = ±1 is the spin quantum number, η denotes the
valley and k

η
± equals k± for η = +1 and k∗

± for η = −1.
The gap is independent of M and given by

2
∣

∣	ηsz

∣

∣ = 2|ηszλSO − ℓEz|. (7)

Equation (6) corresponds to a 2D Dirac Hamiltonian of
particles with mass 	ηsz

. Note that in graphene because of the
low buckling, both the SOC and the effect of an electric field
on the gap are negligible [29]. The energy spectrum obtained
from Eq. (6) reads

Esz

η = szM + λ
[

�
2v2

F k2 + 	2
ηsz

]1/2
, (8)

where λ = 1(−1) denotes the electron (hole) states. We show
it for all spin and valley components in Fig. 1 for different
values of ℓEz and M . In Fig. 1(b) ℓEz attains its critical value
Ec = λSO/ℓ, for which the sz = +1 spin component has a
linear massless dispersion, while the sz = −1 one has a large
gap near the K+ point. In Fig. 1(c) the field M is finite; it
displaces both spin components in opposite directions and
results in a spectrum that is different for each spin and valley
type of electron. In Fig. 1(d) only the M field is present and
leads to spin polarization but the valleys remain equivalent.

This energy spectrum gives rise to a density of states D(E)
(DOS) with a structure that depends sensitively on the values
of the electric Ez and exchange M fields. With Ē = E − szM

the full expression for D(E) is [30]

D(E) =
∑

η=±1

∑

sz=±1

|Ē|
2π�2v2

F

�
(

|Ē| −
∣

∣	ηsz

∣

∣

)

. (9)

We show D(E) in Fig. 2 for various values of ℓEz and M .
Notice that the DOS depends heavily on the spin and valley
index of the electrons. In Figs. 2(c) and 2(d), for example,
the total DOS is constant near zero energy, but it nonetheless
consists of different portions of spin-up and spin-down states
for each energy.

FIG. 2. (Color online) DOS in silicene for different values, spec-

ified, of the electric Ez and exchange M fields. The solid black curve

is the total DOS. The other curves correspond to different valleys and

spins as shown at the top of the figure. The DOS is expressed as a

dimensionless quantity defined by D′(E) = (2π�
2v2

F /λSO)D(E).

III. POLARIZATION IN SILICENE

To assess electron-electron interactions in the RPA, we first
need to determine the polarization [31–35]:

0(q,ω) =
∑

η=±1

∫

dν d2k

(2π )3
Tr

[

G0
η(k,ν)G0

η(k + q,ν + ω)
]

,

(10)
where the summation over η corresponds to different valleys
and G0

η(k,ν) is the Green’s function of the noninteracting par-
ticle near the Kη valley. For a finite-mass Dirac Hamiltonian,
such as the one shown in Eq. (6), the Green’s function is given
by [31,32]

G0
ηsz

(k,ω) =
(

�ω + μ0 − H sz

η

)−1

=
�ω + μ0 − 2szM + H

sz
η

(�ω + μ0 − szM)2 − (�vF k)2 − 	2
ηsz

, (11)

where we have omitted the identity matrices for the sake of
brevity and k is the magnitude of k. Notice that the dependence
of the Green’s function on the spin quantum number sz is
twofold: on the one hand it changes the Fermi level μ0 to
μsz

= μ0 − szM and on the other it influences the gap given
by 	ηsz

defined in Eq. (7).
We consider only the reduced Hamiltonian (6). For the

complete 4 × 4 Hamiltonian, we obtain both Green’s functions
along the diagonal, so

G0
η(k,ν) =

[

G0
η,+1(k,ν) 0

0 G0
η,−1(k,ν)

]

. (12)

We can readily calculate the trace in Eq. (10) and write the
total polarization as

0(q,ω) =
∑

η=±1

∑

sz=±1

0
ηsz

(q,ω), (13)
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with the spin- and valley-dependent polarization, obtained in
the manner of Ref. [35], given by

0
ηsz

(q,ω) =
1

2

∫

d2k

(2π )2

∑

λλ′=±1

f λλ′

ηsz
(k,q)

×
n

sz

F

(

λE
ηsz

k

)

− n
sz

F

(

λ′E
ηsz

k+q

)

�ω + λ′E
ηsz

k − λE
ηsz

k+q + iδ
; (14)

here δ is an infinitesimal positive quantity, n
sz

F is the Fermi-
Dirac distribution with a spin-dependent Fermi level μsz

,

E
ηsz
q = [�2v2

F q2 + 	2
ηsz

]1/2, and f λλ′

ηsz
is the structure factor

f λλ′

ηsz
(k,q) =

[

1 + λλ′ k(k + q) + 	2
ηsz

E
ηsz
q E

ηsz

k+q

]

. (15)

Equation (15) expresses the pseudospinorial character of
electrons in silicene and will prevent two oppositely moving
ones from interacting if the gap 	ηsz

is zero. This factor is
typical for graphenelike 2D systems such as silicene.

Since transitions between different spin and valley states
can be neglected, as previously motivated, the resulting
polarization is a sum of independent systems. These systems
are analogous to gapped graphene [35] but in each of them one
can change the size of the gap separately by varying the field
Ez and the Fermi level can be tuned by changing the field M .
The spin and valley components are influenced by these fields
in different ways.

The contributions to the polarization from Eq. (14) can be
written as a sum of three parts [36,37]

0
ηsz

= −−
ηsz,∞ + +

ηsz,μsz
+ −

ηsz,μsz
, (16)

where ±
ηsz,μ

= ±
ηsz,μ

(q,ω) stands for interband (−) or intra-
band (+) contributions with Fermi level μ. The last two terms
contribute only for μsz

> 	ηsz
. Note that because the Fermi

level μ0 is fixed, while the spectrum is displaced or deformed
due to the field Ez or M , it is possible that this inequality is
reversed for one valley spin state while it still holds for the
others. In such a case only the vacuum polarization −

ηsz,∞
contributes to the polarization of the respective state. Different
possible situations are depicted in Fig. 1 in which the Fermi
level is shown as a black dotted line. In Figs. 1(a) and 1(b) the
Fermi level lies in the conduction band of all spin and valley
type electrons such that intraband transitions are possible. In
Fig. 1(c), however, this is not the case for spin-up electrons near
the K− valley. The combination of the M and Ez fields is such
that the Fermi level lies in the band gap of this type of electron
and therefore intraband transitions are excluded in this case.
In Fig. 1(d) the two valleys are equivalent as discussed earlier,
but the Fermi level lies in the gap of the spin-up electrons and
excludes intraband transitions for them.

Analytical solutions have been found for both the vacuum
polarization [31,35,38] and the polarization in graphene with a
partly filled conduction band [35]. The polarization for μsz

>

	ηsz
can be written as

0
ηsz,μ0

(q,ω)

D0(μ0)
= −

[

μ′
sz

−
q ′2

8 aq ′
Fηsz

(q,ω)

]

, (17)

where a2
q ′ = |q ′2 − ω′2|, q ′ = �vF q/μ0, ω′ = �ω/μ0, and

μ′
sz

= μsz
/μ0. Further, D0(E) = |E|/[2π�

2v2
F ] is the density

of states for one spin component near one Dirac point if
E > 	ηsz

and Fηsz
a dimensionless function that acquires

different values in different parts of the (q,ω) plane as shown
in the Appendix.

On the other hand, the vacuum polarization reads

0
sz,vac(q,ω)

D0(μ0)
= −

q ′2

aq ′

[

	′
ηsz

2 aq ′
+ Fηsz,vac(q,ω)

]

, (18)

where a2
q ′ = |q ′2 − ω2| and 	′

ηsz
= 	ηsz

/μ0. Fηsz,vac is a
dimensionless function defined in the Appendix. Combining
these results, the total polarization is given by

0
ηsz

= θ
(

μsz
− 	ηsz

)

0
ηsz,μ0

+ θ
(

	ηsz
− μsz

)

0
ηsz,vac.

(19)

The complete expression of the dynamical polarization is
given in the Appendix. The static one can be written as

0
ηsz,μ0

(q,0)

D0(μ0)
= −

[

μ′
sz

−
1

4
θ (q − 2qF,sz

)

×
(

2μ′
sz
bq ′

q ′ −
cq ′

q ′ arctan
bq ′

2μ′
sz

)]

, (20)

0
ηsz,vac(q,0)

D0(μ0)
= −

1

2

[

	′
ηsz

+
c2
q ′

2q ′ arcsin
q ′

cq ′

]

,

where bq ′ = [q ′2 − 4q ′2
F,sz

]1/2 and cq ′ = [q ′2 − 4	′2
sz

]1/2; we
used the definition of the Fermi wave vector qF,ηsz

=
�vF [μ2

sz
− 	2

ηsz
]1/2. For M = 0 Eq. (20) coincides with the

result of Ref. [21] and for M = Ez = 0 and λSO = 	 with
that of Ref. [35]. In Fig. 3 we show the static polarization
for various values of the fields Ez and M . This figure shows
that as long as all spin and valley type electrons contribute,
for low q, the static polarization equals the DOS at the Fermi
level, D(μ0), which is the case for the blue dashed and red

FIG. 3. (Color online) Static polarization versus wave vector q ′

for different values of the fields Ez and M . The Fermi level is μ0 =
13 meV and the SOC λSO = 0.3μ0. The blue dashed curve is for Ez =
M = 0, and the red dotted one for the critical field Ez = Ec = λSO/ℓ

and M = 0. Further, the green dash-dotted curve is for M = 2.7λSO

and ℓEz = λSO, and the purple dash-dot-dotted one for ℓEz = 0 and

M = 2.7λSO.
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dotted curves. However, when this is not the case, as for the
other two curves, the polarization decreases because, in this
case, for some spin and valley type electrons only interband
contributions are allowed.

Furthermore, one can approximate the polarization at small
energies and momenta, �vF k ≪ �ω ≪ μ, as [35]

0
ηsz

(q,ω)

D0(μ0)
=

q ′2μ′
sz

2ω′2

(

1 −
	′2

ηsz

μ′2
sz

)

θ
(

	′
ηsz

− μ′
sz

)

, (21)

which is valid for all values of μsz
and 	ηsz

.

A. Particle-hole excitation spectrum (PHES)

The PHES is the region in the (q,ω) plane where it is
possible for a photon with energy �ω and momentum �q to
excite an electron-hole pair. This ability for pair creation is
embodied in the polarization, in the regions where it has a
nonzero imaginary part. The PHES can be divided into two
disjunct regions where inter- and intraband electron-hole pair
formation is possible. These regions are located above and
below the ω′ = q ′ line, respectively. Because the fields Ez and
M change the structure of the bands and the position of the
Fermi level, the PHES is also subject to changes in their values.
Since the valley and spin of the electrons determine how the
fields affect their dispersion and Fermi level, the PHES can be
different for electrons with different spin or valley index.

In Fig. 4 we show the PHES of silicene for different values
of Ez and M for which the energy spectra are shown in Fig. 1.
The left column corresponds to electrons in the K+ valley and
the right one to the K− valley.

Figure 4(a) shows that in the absence of the fields both
valleys and spins are treated equally and the PHES is the same.
When a finite electric field is applied, the gap is changed for
each spin and the PHES of each spin near the same Dirac
point is different. In the other valley, however, the effect of
the electric field has the opposite effect such that the PHES is
interchanged between both spin types. Figure 4(b) shows the
PHES when the critical electric field Ec is applied. Since for
this field one of the two spin states has a gapless dispersion,
we obtain the PHES of graphene for the spin-up state near
the K+ valley and the spin down-state near the K− valley.
The situation is reversed if Ec points in the opposite direction.
For M = 0 the effect of the electric field on the PHES was
investigated in detail in Ref. [21].

Changing the exchange field M also affects the PHES
because the Fermi level of the two spin components is not the
same. If the Fermi level of one component is moved inside the
band gap of the corresponding spectrum, the intraband region
completely disappears because there are no electrons left in
the conduction band. This situation is depicted in Figs. 4(c)
and 4(d), where a finite field M is considered. As seen in
Fig. 1(c), for which the same fields are considered as Fig. 4(c),
the Fermi level μ+1 of the spin-up electrons is displaced inside
the gap near the K− valley and therefore the intraband PHES
is absent in this case. The PHES of different spin and valley
type electrons differs strongly, so spin and valley polarization
is expected because there are regions in the (q,ω) plane where
only one spin and valley type of electrons can create an
electron-hole pair.

FIG. 4. (Color online) PHES of silicene for different values of

the fields Ez and M as specified. The left column is for the K+ valley

and the right one for the K− valley. The different hatched regions

correspond to the spin type of the electrons as indicated at the top of

the figure. The different colors refer to the inter- or intraband PHES.

The SOC is λSO = 0.3μ0.

If the field Ez is absent but the M one is finite, the
spin symmetry is broken but the valleys remain equivalent.
Figure 4(d) shows that the corresponding PHES is strongly
spin dependent and spin polarization is possible.

In the region between the intra- and interband PHES, it is not
possible to excite a particle-hole pair. Therefore, in this region
it is possible to excite stable plasmons. Inside the PHES, the
plasmons do have a finite lifetime because they can decay into
electron-hole pairs. Notice that the PHES has a spin and valley
texture, that is, in some parts of the (q,ω) plane pair formation
is allowed for only one spin and one valley component, denoted
by {sz,η}, but that there are also regions shared with different
{s ′

z,η
′} components. When pair formation is allowed for only

one spin and valley type, it is possible to excite plasmons that
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FIG. 5. (Color online) Top row: real part of the RPA polarization ′(q,ω). Bottom row: absorption. For clarity we added a small imaginary

part to ω, such that ω → ω + Iβ with β = 10−4. The columns correspond to various values of the electric and exchange fields, as specified,

that are the same as those used in Figs. 1–3. The SOC strength is λSO = 0.3μ0.

contain only one specific spin or valley type of electrons and
refer to them as spin- and valley-polarized plasmons.

B. Plasmons in the RPA

Using the expression found in Eq. (13), we can find higher-
order contributions, within the RPA, using [39–41]

(q,ω) = 0(q,ω)/ε(q,ω), (22)

where the RPA dielectric function is given by

ε(q,ω) = 1 − vq
0, (23)

with vq = e2/2κq the 2D Fourier transform of the Coulomb
potential with an effective dielectric constant κ that takes into
account the medium surrounding the silicene sample. In this
study we consider free-standing silicene and we therefore take
κ = ǫ0, the permittivity of vacuum. In Fig. 5 we plot the real
part of the RPA polarization function on the top row.

Using the expressions in Eqs. (17) and (18), we can write
the dielectric function as

ε(q,ω) = 1 − (4α/q ′)′,0, (24)

where ′,0 = 0/D(μ0) with D(μ0) = 2μ0/π�
2v2

F and α =
e2/4πκ�vF the fine-structure constant. The value of α depends
on the material by virtue of the Fermi velocity vF and on the
dielectric constant κ . For instance, in free-standing silicene
we have α ≈ 4, while for silicene on a substrate, with κ = 4
(e.g., SiO2), α decreases to α ≈ 1. In this work we consider
only free-standing silicene. A procedure to fabricate it, by
intercalating it between two graphene layers, was recently
proposed [14,42], and opens the way for its experimental
realization.

The dielectric function determines the amount of absorbed
radiation through the relation

A(q,ω) = −Im[1/ε(q,ω)]. (25)

In Fig. 5 we show the absorption on the bottom row. The
absorption is strong inside the interband PHES because here
particle-hole pair formation is possible. There is, however, also
a pronounced absorption curve outside the PHES. Here the
radiation is not absorbed by pair formation but by plasmons.

Plasmons in the RPA can be found from the zeros of
the dielectric function ε(q,ωp + iγ ), where ωp is the plasma
frequency and γ the decay rate of the plasmon. Following the
standard procedure [35–37] we first look for the zeros of the
real part of the dielectric function Reε(q,ω). Later on, we will
include the finite lifetime. Note that these plasmons are exact
and not damped outside the PHES since the imaginary part of
the polarization is zero.

The plasmon dispersion is found by solving the equation
Reε(q,ω) = 0 numerically. However, for small energies and
momenta we can find a near analytical solution upon using
Eq. (21). The approximate result is

ω′2
p ≈

αq ′

8

∑

η,sz=±1

μ′
sz

(

1 − 	′2
ηsz

/μ′2
sz

)

θ
(

	′
ηsz

− μ′
sz

)

. (26)

Note that we obtain again a
√

q behavior. This is typical for
plasmons in 2D systems [43].

On the first row of Fig. 6 we show the plasmon branches for
several configurations of the electric and exchange fields. The
solid curves correspond to the plasmons with zero decay rate,
while the dashed curves are the zeros of the real part of ε. The
plasmon dispersion given by Eq. (26) is shown by dash-dotted
curves.

A more detailed study of the effect of the electric field on
plasmons in silicene can be found in Ref. [21]; our results
reduce to those of this study for M = 0.

C. Oscillator strength and decay rate

In this part we calculate the oscillator strength and the decay
rate which are related to the robustness of the plasmon. The
decay rate determines how fast the plasmon decays after it has
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FIG. 6. (Color online) Top row: plasmon dispersion in silicene. The blue solid curve corresponds to plasmons with zero decay rate, the

blue dashed curves are the roots of the real part of the dielectric function that are the prolonged versions of the stable branches, the blue dotted

curves are the other roots of the real part of ε, and the dash-dotted curve is the low-momentum approximation. The other colored curves show

the borders of the PHES of different spin and valley types as shown in Fig. 4 with the same color code. The dashed curves are for the K+ valley

and the dotted ones for the K− valley. Second and third rows: decay rate and oscillator strength, respectively, of the plasmon branches shown

in blue on the first row. Each column corresponds to various values of the electric and exchange fields as specified.

been excited. It is given by [36,44]

γ =
Im0(q,ωp(q))

[(∂/∂ω)Re0(q,ω)]ω=ωp(q)

, (27)

where ωp(q) is the plasmon frequency for wave vector q. In
Fig. 6 on the second row we show the decay rate as a function
of the plasmon momentum.

The amount of absorbed radiation by the plasmon is
determined by the oscillator strength. In the RPA the imaginary
part of the dynamical polarization near the plasmon branch is
given by [40]

Im(q,ω → ωp) = O(q)δ(ω − ωp). (28)

and the oscillator strength O(q) by

O(q) = −
π Re0(q,ωp)

vq |∂ Re0(q,ω)/∂ω]|ω=ωp

. (29)

In Fig. 6 we show the oscillator strength for various systems
as a function of the wave vector on the third row.

IV. NUMERICAL RESULTS

The results shown in Figs. 5 and 6 correspond to four
systems to which different electric and exchange fields are
applied. These four different combinations of Ez and M

correspond to the values used earlier in Figs. 1–4. This allows

us to demonstrate the different types of plasmons that can be
excited in silicene. In all cases we use λSO = 3.9 meV.

In the first column we show results for a Fermi level μ0 ≈
3λSO but no external fields present. Here both spin types behave
the same and we obtain a plasmon branch that is similar to that
of gapped graphene [35]. Note, however, that because the fine
structure constant α is twice that of free-standing graphene, it
is interrupted by the interband PHES which is accompanied by
a strong absorption. Inside the PHES, the decay rate increases
very quickly showing the instability of the plasmon at that
point. The oscillator strength of the small q plasmon branch
is larger than that of the second part of the stable branch. The
first part is therefore more pronounced than the second one.

In the second column Ez is the critical field, ℓEz = λSO, and
the exchange field is zero. This particular example is especially
interesting because the spectrum of the sz = +1 electrons is
linear and gapless, while that of the sz = −1 electrons has
a large gap near the K+ valley. The corresponding plasmons
have a dispersion that is similar to that of graphene, but which
is interrupted by the PHES of the K+ spin-up electrons. The
absorption shows that at this point the plasmon can decay
into spin-up electron hole pairs near the K+ valley. This is
supported by the increase in the decay rate, but note that this
rate is much smaller than that for the first case because only one
spin type per valley can induce pair formation. The oscillator
strength of the plasmon outside the PHES is similar to that of
the field-free case, but diminishes inside the PHES. Although
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the PHES and the plasmons in the two valleys depend on the
spin type, they are compensated in the other valley. Therefore,
in this case the plasmons are not spin polarized.

In the third column the electric and exchange fields are
finite. Because of the combined effect of both fields, the PHES
acquires a spin and valley texture. For very small q the plasmon
branch is stable but it quickly encounters the border of the K+
spin-up PHES where the decay rate increases. The branch
continues under the border of the K− spin-up PHES but the
strong absorption signals its presence. The crossing of the
border of the K− spin-down PHES results in a shortening
of the lifetime because the plasmons can decay into two
different types of electrons, the spin-up type in the K+ valley
and the spin down one in the K− valley. Thus, in this case,
we obtain spin- and valley-polarized plasmons. Notice an
additional feature, the oval dotted curve; this is the remnant of
the plasmon branch of spin-down electrons.

The fourth column applies to the case where the electric
field is absent but a very large exchange field is applied, M ≈
2.7λSO. In this situation the dispersions of both spin types
are shifted with respect to each other in such a way that the
Fermi level lies in the gap of the spin-up electrons while it is
situated in the conduction band of the spin-down electrons. For
spin-up electrons the intraband PHES therefore vanishes and
the interband PHES is shifted to lower energies. Here there is
an undamped plasmon branch that follows the border of the
interband PHES of the spin-up electrons. Despite its stability,
the oscillator strength and absorption show that it is not very
pronounced. There exists, however, also a strongly damped
branch that lies inside the spin-up interband PHES, shown
by the dotted curve, which is the prolonged version of the
undamped plasmon and shows the same

√
q dependence of the

stable plasmon for low q. This branch indicates a spin-down
plasmon but one which can decay very quickly into spin-up
electron-hole pairs leading to a strong absorption in this region
as shown in Fig. 5(d). This plasmon lies outside the PHES and
is therefore neither spin nor valley polarized. However, the
plasmonlike branch inside the spin-up PHES does resemble a
spin-polarized system but with a very short lifetime.

V. CONCLUDING REMARKS AND OUTLOOK

We investigated how electric (Ez) and exchange (M) fields
can be used to tune the plasmonic response of the electron
gas in silicene. These fields affect the PHES of electrons with
opposite spin and valley indices in different ways giving the
PHES a spin and valley texture and thus leading to spin- and
valley-polarized plasmons. Their lifetime is, however, finite
because they can easily decay into electron-hole pairs with
different spin or valley indices. Further, the field M affects
strongly the oscillator strength. The undamped plasmon that
remains has a negligible strength and is therefore not expected
to show up in experiments. If the Fermi level lies in the gap of
a spin in one valley, the intraband region of the corresponding
PHES disappears. For zero Ez and finite M the spin symmetry
is broken and spin polarization is possible.

We found a low-momentum plasmon dispersion that has the
typical 2D

√
q behavior. At higher momentum, the plasmon

dispersion differs from this
√

q dependence. However, a strong
field M can induce plasmons with finite lifetime of one spin

type for which the dispersion follows closely the approximate
plasmon branch.

The results reported in this work pertain to free-standing
silicene since we used the permittivity ǫ0 of the vacuum.
For silicene on a substrate the permittivity will be different
and the results will be modified quantitatively. The plasmon
branches will be curved downward and the PHES can be
avoided yielding plasmons with larger oscillator strength.

We evaluated the plasmon dispersion within the framework
of the RPA which is valid for high electron densities. For lower
densities further work is necessary to obtain more accurate
results for silicene’s plasmonic properties.

The predicted spin and valley polarization of plasmons is
a consequence of a mechanism similar to that responsible for
directional filtering of plasmons in a 2D electron gas [45]. In
this case the anisotropy of the electron dispersion renders the
PHES anisotropic and damps the plasmons in one direction
more than in the other.

Recently a lot of experimental progress has been made in
the detection of plasmons in 2D materials [46]. To overcome
the mismatch of energy and momentum with light in free
space, one uses a periodic diffractive grid, cuts the sheet
into ribbons or other shapes, and uses an AFM tip to excite
the electron liquid or uses a resonant metal antenna [47].
The appropriate experimental probe though will strongly
depend on the setup used to stabilize the silicene crystal. We
believe that at the current pace of experimental progress, in
the creation of silicene and the probing of plasmons in 2D
materials, the results presented in this paper will soon be tested
experimentally.
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APPENDIX: ANALYTICAL FORMULAE

The results for the polarization shown in Eqs. (17) and (18)
each depend on a dimensionless function that determines the
variation of the polarization in the (q,ω) plane. For the vacuum
polarization this function is given in terms of the dimensionless
variables q ′, ω′, and μ′

sz
defined earlier. In the following,

we will suppress the prime notation for simplicity and set
a2

q = ω2 − q2. Then [35]

Fηsz,vac =
4	2

ηsz
+ a2

q

8a2
q

[

θ (q + ω) arccos
4	2

ηsz
+ a2

q

4	2
ηsz

− a2
q

+ θ (ω − q) ln

(

2	sz
+ aq

)2

∣

∣4	2
ηsz

− a2
q

∣

∣

]

+ i
π

8

(

a2
q − 4	2

ηsz

a2
q

)

θ
(

a2
q − 4	2

ηsz

)

. (A1)
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With y± = (2μsz
± ω)/q, xηsz

= [1 + 4	2
ηsz

/(q2 − ω2)]1/2,

and x̄2
ηsz

= 2 − x2
ηsz

, the total polarization for μsz
> 	ηsz

is [35]

Fηsz
(q,ω) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iG>(y−) − iG>(y+) : 1A,

G<(y−) − iG>(y+) : 2A,

G<(y+) + G<(y−) : 3A,

G<(y−) − G<(y+) : 4A,

G>(y+) − G>(y−) : 1B,

G>(y+) + iG<(y−) : 2B,

G>(y+) − G>(−y−) − iπx̄2
ηsz

: 3B,

G>(−y−) + G>(y+) − iπx̄2
ηsz

: 4B,

G0(y+) − G0(y−) : 5B.

In these expressions

G<(x) = x
[

x2
ηsz

− x2
]1/2 − x̄2

ηsz
arccos(x/xηsz

), (A2)

G>(x) = x
[

x2 − x2
ηsz

]1/2 − x̄2
ηsz

arcosh(x/xηsz
), (A3)

G0(x) = x
[

x2 − x2
ηsz

]1/2 − x̄2
ηsz

arsinh(x/ixηsz
). (A4)

In this solution, we have subdivided the (q,ω) plane
in several regions for which the solution is different. We
show them in Fig. 7. Setting q± = q ± qF,ηsz

the borders
determining these regions are determined as

1A : ω < μsz
−

[

q2
− + 	2

ηsz

]1/2
,

2A : ±μsz
∓

[

q2
− + 	2

ηsz

]1/2
< ω < −μsz

+
[

q2
+ + 	2

ηsz

]1/2
,

FIG. 7. Different regions of the (q-ω) plane that are specified

below. For this illustration we used μsz = 1 and 	ηsz = 0.7μsz .

3A : ω < −μsz
+

[

q2
− + 	2

ηsz

]1/2
,

4A : −μsz
+

[

q2
+ + 	2

ηsz

]1/2
< ω < q,

1B : q < 2qF,ηsz
,
[

q2+4	2
ηsz

]1/2
< ω < μsz

+
[

q2
− + 	2

ηsz

]1/2
,

2B : μsz
+

[

q2
− + 	2

ηsz

]1/2
< ω < μsz

+
[

q2
+ + 	2

ηsz

]1/2
,

3B : ω > μsz
+

[

q2
+ + 	2

ηsz

]1/2
,

4B : q > 2qF,ηsz
,
[

q2 + 4	2
ηsz

]1/2
< ω < μsz

+
[

q2
− + 	2

ηsz

]1/2
,

5B : q < ω <
[

q2 + 4	2
ηsz

]1/2
.

Note that the PHES is defined as the region where the
imaginary part of the polarization is nonzero. This is the case
in regions 1A, 2A for the intraband PHES and in regions 2B,
3B, and 4B for the interband PHES of each valley spin state.
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