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Abstract

We give a functional integral representation of the semigroup generated by the
spin-boson Hamiltonian by making use of a Poisson point process and a Euclidean
field. We present a method of constructing Gibbs path measures indexed by the
full real line which can be applied also to more general stochastic processes with
jump discontinuities. Using these tools we then show existence and uniqueness
of the ground state of the spin-boson, and analyze ground state properties. In
particular, we prove super-exponential decay of the number of bosons, Gaussian
decay of the field operators, derive expressions for the positive integer, fractional
and exponential moments of the field operator, and discuss the field fluctuations
in the ground state.
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1 Spin-boson model

1.1 Introduction

Gibbs measures constructed on the space of continuous paths of a random process

proved to play an important role in studying ground state properties of Hamiltonians

in quantum field theory ([LHB11, Chapter 6] and [LM01, LMS02, L02, BHLMS02,

BH09, GL09, GHL12]). Such random processes are obtained by conditioning Brownian

motion with respect to an external and a pair interaction potential. In this setting

Gibbs measures are obtained as weak limits of sequences of Gibbs measures indexed by

the bounded intervals of the real line by using pre-compactness or tightness arguments.

In the present paper we extend this strategy to construct Gibbs measures on paths of

a random process with jump discontinuities (càdlàg paths) associated with the Hamil-

ton operator of the spin-boson model:

H = −εσx ⊗ 1l + 1l⊗Hf + ασz ⊗ ϕb(ĥ) (1.1)

with a view of studying spectral properties of this Hamiltonian. Here ε > 0 and α ∈ R

are parameters, σx, σz are Pauli matrices, Hf is the free field Hamiltonian, ϕb(ĥ) is the

field operator in Fock space F , and ĥ is a form factor (see the details below). One of

the merits of this approach is that it allows to carry through this analysis in a non-

perturbative way. While in [Spo89, SSW90] the spectral properties of the spin-boson

model are discussed through a measure on the space of paths with jump discontinuities,

no attention was paid to constructing Gibbs measures.

As it will be seen below, in the case of the spin-boson model Gibbs measures involve

densities dependent on a pair interaction potential alone, and no external potential

contribution. We stress that, in contrast, in the case of Brownian motion under zero

external potential and non-zero pair interaction potential even the very existence of

Gibbs measures is poorly understood. A rigorous study of Gibbs measures with an

external potential but without pair interaction on càdlàg paths was begun in [KL12a],

considering them with respect to fractional P (ϕ)1-processes, i.e., stable processes under

an external potential.

For Hamiltonians with spin or a non-local kinetic term Feynman-Kac-type formulae

can be derived by using Lévy processes [Hir12, HL08, LM12, HIL12a, HIL12b, KL12b].

There are few rigorous results on quantum models with spin using functional integration

methods. In [HL08] we derived such a formula for the heat semigroup generated by a

quantum field operator with spin by making use of a Euclidean quantum field and a
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Poisson process. In [HIL12b] we developed similar methods for relativistic Schrödinger

operators, allowing to obtain results on the decay of ground states.

In this paper we derive a Feynman-Kac-type formula for the semigroup generated

by the spin-boson Hamiltonian. The spin-boson model is a much studied variant of

the Caldeira-Leggett model describing a two-state quantum system linearly coupled

to a scalar quantum field [LCDGZ87]. Work on the spectral properties of the spin-

boson and related models includes [SD85, Spo89, SSW90, HS95, Ger96, BS98, AH97,

Hir99, Ger00, Hir01, Hir02]. In particular, in [SD85, Spo89, SSW90, HS95] stochastic

methods were used. Existence or absence of a spin-boson ground state was investigated

in [AH97, Ger00]. Below we obtain existence and uniqueness of the ground state by

a different approach. In [HH12] we apply the method developed in this paper to the

so-called Rabi model, which can be regarded as a single-mode spin-boson model. We

also refer to the recent papers [Abd12, HH10].

In order to study the spin-boson in a stochastic representation we describe the spin

states by the set Z2 = {−1,+1} and derive a Poisson-driven random process with

càdlàg path space X = D(R, Z2), indexed by the real line and taking values in Z2.

This will describe the spin-process. The spin-boson Hamiltonian can be defined as a

self-adjoint operator on a Hilbert space L2(Z2 ×Q) instead of C2 ⊗ F .

On path space X we are then able to construct a Gibbs measure µg associated

with the unique ground state φg of the spin-boson Hamiltonian. Using this probability

measure we represent ground state expectations for interesting choices of operators O
in the form

(φg,Oφg) =

∫
X

fOdµg, (1.2)

where fO is a function on path space X uniquely associated with O. We will consider

the field operator ϕ(f) with test function f , and the second quantization dΓ(ρ(−i∇))

of the multiplication operator by a function ρ, and derive path integral representations

of expressions of the type

O = ξ(σ)F (ϕ(f)) and O = ξ(σ)e−βdΓ(ρ(−i∇)) (1.3)

with suitable ξ : Z2 → C, F : R → C and ρ : Rd → [0,∞). These cases include

O = Nm, O = eβN , O = (−1)N and σ(−1)N

for all m ∈ N and β ∈ C (in particular, β > 0), where N = dΓ(1l) is the boson number

operator, as well as

O = e(β/2)ϕ(f)
2

, O = eiβϕ(f), O = ϕ(f)n, O = |ϕ(f)|s and O = σϕ(f).
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Here β ∈ R, n ∈ N and 0 < s < 2.

Specifically, we obtain explicit formulae for the positive integer and fractional order

moments and exponential moments of the field operator, and show that the field fluc-

tuations increase on switching on the coupling between the spin and the boson field.

Moreover, we show that

φg ∈ D(e(β/2)ϕ(f)
2

)

for −∞ < β < 1/∥f∥2 (i.e., Gaussian decay of the field operators) with

lim
β↑1/∥f∥2

∥e(β/2)ϕ(f)2φg∥ = ∞.

As a consequence, we obtain another representation of the ground state. Recall that

when ε = 0, the spin boson Hamiltonian can be diagonalized so that each matrix

element is a van Hove Hamiltonian (see also below). Then it is trivial to see that

(φg, F (ϕ(f))φg) = (φvH, F (ϕb(f̂))φvH),

where φvH is the ground state of the van Hove Hamiltonian in F . Here we show a

similar representation for the case of ε ̸= 0, i.e., we derive

(φg, F (ϕ(f))φg) =

∫
X

(φvH(χ), F (ϕb(f̂))φvH(χ))dµg,

where φvH(χ) is the ground state of a random van Hove model and χ is a function of

the random path. This suggests implicitly that φg =
∫ ⊕

X
φvH(χ)dµg.

Next we discuss ground state properties of second quantized operators. In partic-

ular, we prove that

φg ∈ D(eβN), β > 0

(i.e., super-exponential decay of the number of bosons). Also, we obtain explicit formu-

lae for the moments of the boson number operator in terms of sums involving coefficients

given by the Stirling numbers of the second kind. Furthermore, although we show that

(φg, σ(−1)Nφg) = −1, we obtain a positive lower bound on the ground state functional

(φg, (−1)Nφg). Finally, we obtain the inequality

(φg, Nφg) ≤
α

2
(φg, ϕ(ω(D)

−1h)φg) ≤
α2

2
∥ĥ/ω∥2, D = −i∇,

relating the mean of the field operator with the expected boson number in the ground

state.

These applications to ground state properties are derived from the main results of

this paper, which can be summarized as follows:
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(1) existence and uniqueness of the ground state φg of the spin-boson Hamiltonian

H is shown in Theorem 2.3

(2) a probability measure µg on càdlàg path space X associated with φg is con-

structed in Theorems 3.8 and 3.9

(3) it is shown in Theorem 3.12 that µg is a Gibbs measure for a pair interaction

potential

(4) path integral representations of (φg,Oφg) in terms of µg are given in Section 4,

in particular,

(i) it is shown that

φg ∈ D(eaN) ∩D(ebϕ(f)
2

), (a, b) ∈ R× (−∞, 1/∥f∥2)

in Theorem 4.9, Corollary 4.10 and Corollary 4.18

(ii) it is shown that (φg,Oφg) can be represented by the ground state φvH(χ)

of a van Hove Hamiltonian as

(φg,Oφg) =

∫
X

(φvH(χ),OφvH(χ))dµg

in Theorem 4.14.

We note that path integral representations were already used to a great extent

for the Nelson model describing the interaction of a charged particle with a scalar

quantum field, see [BHLMS02] and [LHB11, Chapter 6]. We also note that although

the result (φg, e
βNφg) < ∞ has been established in [Gro73] by using operator theory,

our construction here is completely different and rather general. Also, our methods

can be applied to further models involving càdlàg paths, for instance, the Nelson model

with a relativistic kinetic term
√
−∆+m2 + V , which will be done elsewhere.

The paper is organized as follows. The remainder of Section 1 is devoted to con-

structing the Feynman-Kac formula of the spin-boson heat semigroup. In Section 2

we show that the spin-boson Hamiltonian has a unique ground state φg if an infrared

regularity condition is satisfied. In Section 3 we define a Gibbs measure on X for

bounded time intervals associated with the density obtained from the Feynman-Kac

representation, and show its local weak convergence to a path measure in the infinite

time limit. We view Theorems 3.8 and 3.9 below to be pivotal results in this paper. In

Section 4 we derive the expressions of the ground state expectations mentioned above.
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1.2 Definition

We begin by defining the spin-boson Hamiltonian as a self-adjoint operator on a Hilbert

space. Let F =
⊕∞

n=0

(
⊗n

symL
2(Rd)

)
be the boson Fock space over L2(Rd), where

the subscript means symmetrized tensor product. We denote the boson annihilation

and creation operators by a(f) and a†(f), f, g ∈ L2(Rd), respectively, satisfying the

canonical commutation relations

[a(f), a†(g)] = (f̄ , g), [a(f), a(g)] = 0 = [a†(f), a†(g)]. (1.4)

We use the informal expression a♯(f) =
∫
a♯(k)f(k)dk for notational convenience.

Consider the Hilbert space

H = C2 ⊗ F . (1.5)

Denote by dΓ(T ) be the second quantization of a self-adjoint operator T in L2(Rd).

The operator on Fock space defined by

Hf = dΓ(ω) (1.6)

is the free boson Hamiltonian with dispersion relation ω(k) = |k|. The operator

ϕb(ĥ) =
1√
2

∫ (
a†(k)ĥ(−k) + a(k)ĥ(k)

)
dk, (1.7)

acting on Fock space is the scalar field operator, where h ∈ L2(Rd) is a suitable form

factor and ĥ is the Fourier transform of h. Denote by σx, σy and σz the 2 × 2 Pauli

matrices given by

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.8)

With these components, the spin-boson Hamiltonian is defined by the linear operator

HSB = εσz ⊗ 1l + 1l⊗Hf + ασx ⊗ ϕb(ĥ) (1.9)

on H , where α ∈ R is a coupling constant and ε ≥ 0 a parameter.

1.3 A Feynman-Kac-type formula

In this section we give a functional integral representation of e−tHSB by making use

of a Poisson point process and an infinite dimensional Ornstein-Uhlenbeck process.

First we transform HSB in a convenient form to study its spectrum in terms of path

measures.
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Recall that the rotation group in R3 has an adjoint representation on SU(2). Let n ∈
R3 be a unit vector and θ ∈ [0, 2π). Thus e(i/2)θn·σ satisfies that e(i/2)θn·σσµe

−(i/2)θn·σ =

(Rσ)µ, where R denotes the 3×3 matrix representing the rotation around n with angle

θ, and σ = (σx, σy, σz). In particular, for n = (0, 1, 0) and θ = π/2, we have

e(i/2)θn·σσxe
−(i/2)θn·σ = σz, (1.10)

e(i/2)θn·σσze
−(i/2)θn·σ = −σx. (1.11)

Let

U = exp
(
i
π

4
σy

)
⊗ 1l =

1√
2

[
1 1
−1 1

]
⊗ 1l (1.12)

be a unitary operator on H . By (1.10) and (1.11) HSB transforms as

H = UHSBU
∗ = −εσx ⊗ 1l + 1l⊗Hf + ασz ⊗ ϕb(ĥ). (1.13)

Then H is realized as

H =

[
Hf + αϕb(ĥ) −ε

−ε Hf − αϕb(ĥ)

]
.

In particular, ε = 0 makes H diagonal. If ĥ/
√
ω ∈ L2(Rd) and h is real-valued, then

ϕb(ĥ) is symmetric and infinitesimally small with respect to Hf , hence by the Kato-

Rellich theorem it follows that H is a self-adjoint operator on D(Hf) and bounded from

below.

To construct the functional integral representation of the semigroup e−tH , it is

useful to introduce a spin variable σ ∈ Z2, where Z2 = {−1,+1} is the additive group

of order 2. For Ψ =

[
Ψ(+)
Ψ(−)

]
∈ H , we have

HΨ =

[
(Hf + αϕb(ĥ))Ψ(+)− εΨ(−)

(Hf − αϕb(ĥ))Ψ(−)− εΨ(+)

]
. (1.14)

Thus we can transform H on H to the operator H̃ on

L2(Z2;F ) =

{
f : Z2 → F

∣∣∣∣∣∥f∥L2(Z2;F ) =
∑
σ∈Z2

∥f(σ)∥2F < ∞

}
(1.15)

by

(H̃Ψ)(σ) =
(
Hf + ασϕb(ĥ)

)
Ψ(σ) + εΨ(−σ), σ ∈ Z2. (1.16)
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In what follows, we identify the Hilbert space H with L2(Z2;F ) through

H ∋
[
Ψ(+)
Ψ(−)

]
7→ Ψ(σ) =

{
Ψ(+), σ = +1,
Ψ(−), σ = −1

∈ L2(Z2;F ),

and instead of H we consider H̃, and use the notation H for H̃.

Let (Ω,Σ, P ) be a probability space, and (Nt)t∈R be a two-sided Poisson process

with unit intensity on this space. We denote by D = {t ∈ R |Nt+ ̸= Nt−} the set of

jump points, and define the integral with respect to this Poisson process by∫
(s,t]

f(r,Nr)dNr =
∑
r∈D

r∈(s,t]

f(r,Nr)

for any predictable function f (we refer to Appendix of [HL08] for details). In partic-

ular, we have for any continuous function g,∫
(s,t]

g(r,Nr−)dNr =
∑
r∈D

s<r≤t

g(r,Nr−). (1.17)

We write
∫ t+

s
· · · dNr for

∫
(s,t]

· · · dNr. Note that
∫ t+

s
g(r,N−r)dNr is right-continuous

in t and the integrand g(r,N−r) is left-continuous in r and thus a predictable process.

Define the random process

σt = σ(−1)Nt , σ ∈ Z2. (1.18)

This process describes the spin. Since our Poisson process is indexed by the real line,

we summarize its properties below.

Proposition 1.1 The stochastic process (Nt)t∈R has the following properties:

1. Independence: The random variables Nt and Ns are independent for all s ≤ 0 ≤ t,

s ̸= t.

2. Markov property: The stochastic processes (Nt)t≥0 and (Nt)t≤0 are Markov pro-

cesses with respect to the natural filtrations N +
t = σ(Ns, 0 ≤ s ≤ t) and

N −
t = σ(Ns, t ≤ s ≤ 0), respectively, i.e.,

EP

[
Nt+s|N +

s

]
= ENs

P [Nt] , EP

[
N−t−s|N −

−s

]
= EN−s

P [N−t] .

3. Reflection symmetry: The random variables Nt and N−t are identically dis-

tributed for all t ∈ R, i.e., EP [f(N−t)] = EP [f(Nt)] =
∞∑
n=0

f(n)
|t|n

n!
e−|t|.
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4. Shift invariance: The stochastic process σt = σ(−1)Nt, t ∈ R, is shift invariant,

i.e., ∑
σ∈Z2

EP

[
n∏

j=0

fj(σtj)

]
=
∑
σ∈Z2

EP

[
n∏

j=0

fj(σs+tj)

]
, s ∈ R.

Proof: The proof is a minor modification of [LHB11, Theorem 3.106] and it is omitted.

2

In the Schrödinger representation the boson Fock space F can be realized as an

L2-space over a probability space (Q,µ), and the field operator ϕb(f̂) with real-valued

function f ∈ L2(Rd) as a multiplication operator, which we will denote by ϕ(f). The

identity function 1l on Q corresponds to the Fock vacuum Ωb in F .

Next we introduce the random process describing the free boson field Hf . Let

(QE, µE) be a probability space associated with the Euclidean quantum field (for details

see [LHB11, Section 5]). The Hilbert spaces L2(QE) and L2(Q) are related through the

family of isometries {js}s∈R from L2(Rd) to L2(Rd+1) defined by

ĵsf(k, k0) =
e−itk0

√
π

√
ω(k)

|k0|2 + ω(k)2
f̂(k),

where f̂ denotes the Fourier transform of f . Let ΦE(jsf) be a Gaussian random variable

on (QE, µE) indexed by jsf ∈ L2(Rd+1) with mean zero and covariance

EµE
[ΦE(jsf)ΦE(jtg)] =

1

2

∫
Rd

e−|s−t|ω(k)f̂(k)ĝ(k)dk.

Also, let {Js}s∈R be the family of isometries from L2(Q) to L2(QE) defined by

Js:ϕ(f1) · · ·ϕ(fn): = :ΦE(jsf1) · · ·ΦE(jsfn):,

where :X: denotes Wick product of X. Then we derive that

(JsΦ, JtΨ)L2(QE) = (Φ, e−|t−s|HfΨ)L2(Q). (1.19)

In [HL08] by making use of the process (σt)t∈R a functional integral representation

of the Pauli-Fierz model with spin 1/2 in non-relativistic quantum electrodynamics

was obtained. By a suitable modification we can also construct the functional integral

representation of e−tH . In fact, the construction in the spin-boson case becomes simpler

than in the case of the Pauli-Fierz model, see also [HL08, Remark 6.3] and [LHB11,

Section 7.9]. We have the following Feynman-Kac-type formula for the spin-boson

Hamiltonian.
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We identify H as

H ∼= L2(Z2;L
2(Q)) ∼= L2(Z2 ×Q). (1.20)

Proposition 1.2 Let Φ,Ψ ∈ H and h ∈ L2(Rd) be real-valued. Then

(ε ̸= 0) (Φ, e−tHΨ)H = et
∑
σ∈Z2

EPEµE

[
J0Φ(σ0)e

−αΦE(
∫ t
0 σsjshds)εNtJtΨ(σt)

]
(1.21)

(ε = 0) (Φ, e−tHΨ)H = et
∑
σ∈Z2

EµE

[
J0Φ(σ)e

−αΦE(σ
∫ t
0 jshds)JtΨ(σ)

]
. (1.22)

Proof: Let ε ̸= 0. We see by (1.16) that

HΨ(σ) = (Hf + αϕ(h))Ψ(σ)− elog εΨ(−σ), σ ∈ Z2.

Then by [HL08, Theorem 4.11] we have

(Φ, e−tHΨ)H = et
∑
σ∈Z2

EPEµE

[
J0Φ(σ0)e

−α
∫ t
0 σsΦE(jsf)ds+

∫ t+
0 log εdNsJtΨ(σt)

]
.

Since
∫ t+

0
log εdNs = Nt log ε, (1.21) follows. Next consider the case ε = 0. As ε → 0

on both sides of (1.21) the integrands over {Nt ≥ 1} vanish while those on {Nt = 0}
are non-vanishing. Moreover, note that Ns = 0, s ≤ t, on {Nt = 0}. Hence (1.22) is

obtained by taking the limit

lim
ε→0

(Φ, e−tHΨ)H = lim
ε→0

et
∑
σ∈Z2

EPEµE

[
J0Φ(σ0)e

−αΦE(
∫ t
0 σsjshds)εNtJtΨ(σt)

]
= et

∑
σ∈Z2

EµE

[
J0Φ(σ)e

−αΦE(σ
∫ t
0 jshds)JtΨ(σ)

]
.

2

Remark 1.3 By the Feynman-Kac formula (Proposition 1.2) we see that

e−tHΦ(σ) = etEP

[
J∗
0e

ΦE(−α
∫ t
0 σrjrhdr)JtΦ(σt)

]
(1.23)

for every σ ∈ Z2.

Denote 1lH = 1lL2(Z2) ⊗ 1lL2(Q). Using the above proposition we can compute the

vacuum expectation of the semigroup e−tH , which plays an important role in this paper.
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Corollary 1.4 Let h ∈ L2(Rd) be a real-valued function. Then for every t > 0 it

follows that

(1lH , e−tH1lH ) = et
∑
σ∈Z2

EP

[
εNte

α2

2

∫ t
0 dr

∫ t
0 W (Nr−Ns,r−s)ds

]
, (1.24)

where the pair interaction potential W is given by

W (x, s) =
(−1)x

2

∫
Rd

e−|s|ω(k)|ĥ(k)|2dk. (1.25)

Proof: By Proposition 1.2 we have

(1lH , e−tH1lH ) = et
∑
σ∈Z2

EP

[
εNte

α2

2

∫ t
0 dr

∫ t
0 W (Nr+Ns,r−s)ds

]
.

Since W (Nr +Ns, r − s) = W (Nr −Ns, r − s), the corollary follows. 2

Note that equality (1.25) gives the interaction potential

W (Nr −Ns, r − s) =
1

2
σrσs

∫
Rd

e−|r−s|ω(k)|ĥ(k)|2dk (1.26)

of an infinite range Ising-model on the real line instead of a lattice.

1.4 Parity symmetry

It is a known fact that HSB has a parity symmetry. Let

P = σz ⊗ (−1)N , (1.27)

where N = dΓ(1l) denotes the number operator in F . From Spec(σz) = {−1, 1} and

Spec(N) = {0, 1, 2, ...} it follows that Spec(P ) = {−1, 1}. We identify H with F↑⊕F↓,

where F↑ and F↓ are identical copies of F . Then each Pauli matrix σX =

[
a b
c d

]
acts

as

σX

[
Ψ(+)
Ψ(−)

]
=

[
aΨ(+) + bΨ(−)
cΨ(+) + dΨ(−)

]
for

[
Ψ(+)
Ψ(−)

]
∈ F↑ ⊕ F↓. Furthermore, F = ⊕∞

n Fn can be decomposed as Fe ⊕ Fo,

where Fe and Fo denote respectively the subspaces of F consisting of even and odd

numbers of bosons, i.e., Fe = ⊕∞
m=0F2m and Fo = ⊕∞

m=0F2m+1. The projections from

F to Fe and Fo are denoted by Pe and Po, respectively. Let H+ = PeF↑ ⊕PoF↓ and

H− = PoF↑ ⊕ PeF↓ be subspaces of F↑ ⊕ F↓.
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Lemma 1.5 The following properties hold:

(1) The Hilbert space H can be identified with H+ ⊕ H− by the correspondence

F↑ ⊕ F↓ ∋
[
Ψ(+)
Ψ(−)

]
7→
[
Ψe(+)
Ψo(−)

]
⊕
[
Ψo(+)
Ψe(−)

]
∈ H+ ⊕ H−,

where Ψe(±) = PeΨ(±) and Ψo(±) = PoΨ(±).

(2) It follows that [HSB, P ] = 0.

(3) H± is the eigenspace associated with eigenvalue ±1 of P .

(4) HSB can be decomposed as HSB = HSB⌈H+⊕HSB⌈H−.

Proof: (1) and (2) are straightforward. Let Ψ =

[
Ψe(+)
Ψo(−)

]
∈ H+. Then PΨ = Ψ follows

by a direct calculation. Thus Ψ is eigenvector of P with eigenvalue +1. Similarly it

follows that H− is the eigenspace associated with eigenvalue −1 of P , and (3) also

follows. (4) is obtained by a combination of (1), (2) and (3). 2

Finally, for later use we show some related spin-flip properties.

Lemma 1.6 We have the following properties:

(1) (Ψ, σxΦ) = 0 and (U∗Ψ, σzU
∗Φ) = 0 for any Ψ,Φ ∈ H±.

(2) (Ψ, ϕ(f)Φ) = 0 and (U∗Ψ, ϕ(f)U∗Φ) = 0 for any Ψ,Φ ∈ H±.

Proof: (1) It is straightforward to show that σx is a spin-flip transform, i.e.,

σxH± ⊂ H∓,

which gives the first statement. The second statement follows by observing that

UσzU
∗ = σx. To obtain (2) it is again straightforward to show that

ϕ(f) (H± ∩D(ϕ(f))) ⊂ H∓.

The second part follows by Uϕ(f)U∗ = ϕ(f). 2
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2 Ground state of the spin-boson

2.1 Positivity improving semigroup

In the remainder of this paper we assume that h ∈ L2(Rd) is real-valued.

Let E = inf Spec(H). We estimate the dimension of Ker(H − E) for ε ̸= 0.

Corollary 2.1 Assume that ε ̸= 0. Then e−tH , t > 0, is a positivity improving semi-

group on L2(Z2 ×Q), i.e., (Ψ, e−tHΦ) > 0 for Ψ,Φ ≥ 0 such that Ψ ̸≡ 0 ̸≡ Φ.

Proof: The proof simplifies an argument in [Hir00]. It is trivial that (Ψ, e−tHΦ) ≥ 0,

thus it suffices showing that (Ψ, e−tHΦ) ̸= 0. Suppose the contrary. Then we have∑
σ∈Z2

EP

[(
J0Ψ(σ0), e

ΦE(−α
∫ t
0 σsjshds)εNtJtΦ(σt)

)
L2(QE)

]
= 0.

Since Jt is positivity preserving and eΦE(−α
∫ t
0 σsjshds) is positive, for σ ∈ Z2 we have

EP

[(
J0Ψ(σ0), e

ΦE(−α
∫ t
0 σsjshds)εNtJtΦ(σt)

)
L2(QE)

]
= 0,

which implies that suppJ0Ψ(σ0)∩suppJtΦ(σt) = ∅ a.s. Hence 0 = (J0Ψ(σ0), JtΦ(σt)) =

(Ψ(σ0), e
−tHfΦ(σt)). Since e−tHf is positivity improving, Ψ(σ0) ≡ 0 or Φ(σt) ≡ 0. This

contradicts that Ψ ̸≡ 0 and Φ ̸≡ 0, and the claim follows. 2

2.2 Existence and uniqueness of ground state

2.2.1 The case of ε = 0

Whenever ε = 0 the Hamiltonian H is diagonal, i.e., we have

H =

[
Hf + αϕ(h) 0

0 Hf − αϕ(h)

]
.

It is known that Hf + αϕ(h), the Hamiltonian of the van Hove model, has a unique

ground state if and only if ĥ/ω ∈ L2(Rd), see e.g. [Hir06], which implies that H has a

two-fold degenerate ground state if and only if ĥ/ω ∈ L2(Rd).

2.2.2 The case of ε ̸= 0

Next we consider the case of ε ̸= 0. Write

ΦT = e−T (H−E)1l, T ≥ 0, (2.1)
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and

γ(T ) =
(1lH ,ΦT )

2

∥ΦT∥2
=

(1lH , eTH1lH )2

(1lH , e−2TH1lH )
. (2.2)

A known criterion of existence of a ground state is [LHB11, Proposition 6.8].

Proposition 2.2 A ground state of H exists if and only if lim
T→∞

γ(T ) > 0.

By Corollary 1.4 we have

∥ΦT∥2 = e2TE
∑
σ∈Z2

EP

[
εNT e

α2

2

∫ T
−T dt

∫ T
−T W (Nt−Ns,t−s)ds

]
, (2.3)

(1lH ,ΦT ) = eTE
∑
σ∈Z2

EP

[
εNT e

α2

2

∫ T
0 dt

∫ T
0 W (Nt−Ns,t−s)ds

]
= eTE

∑
σ∈Z2

EP

[
εNT e

α2

2

∫ 0
−T dt

∫ 0
−T W (Nt−Ns,t−s)ds

]
. (2.4)

The second identity on (2.4) is derived from the reflection symmetry in Proposition 1.1.

Note that ∣∣∣∣∫ 0

−T

dt

∫ T

0

W (Nt −Ns, t− s)ds

∣∣∣∣ ≤ 1

2

∥∥∥∥∥ ĥω
∥∥∥∥∥
2

(2.5)

uniformly in T and in the paths.

Theorem 2.3 If ĥ/ω ∈ L2(Rd), then H has a ground state and it is unique.

Proof: We write

∫ T

−T

dt

∫ T

−T

Wds =

∫ 0

−T

dt

∫ 0

−T

Wds +

∫ T

0

dt

∫ T

0

Wds + 2

∫ 0

−T

dt

∫ T

0

Wds,

and by (2.5) obtain

∥ΦT∥2 ≤ e2TE
∑
σ∈Z2

EP

[
εNT e

α2

2
(
∫ 0
−T dt

∫ 0
−T dsW (Nt−Ns,t−s)+

∫ T
0 dt

∫ T
0 dsW (Nt−Ns,t−s)+2∥ĥ/ω∥2)

]
.

(2.6)

By the independence of Nt and N−s, and reflection symmetry of the paths we further-

more obtain that

∥ΦT∥2 ≤ e2TE
∑
σ∈Z2

(
EP

[
εNT e

α2

2

∫ T
0 dt

∫ T
0 dsW (Nt−Ns,t−s)

])2
e

α2

2
∥ĥ/ω∥2

≤

(
eTE

∑
σ∈Z2

EP

[
εNT e

α2

2

∫ T
0 dt

∫ T
0 dsW (Nt−Ns,t−s)

])2

e
α2

2
∥ĥ/ω∥2

= (1lH ,ΦT )
2e

α2

2
∥ĥ/ω∥2 .
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Hence γ(T ) ≥ e−
α2

2
∥ĥ/ω∥2 and a ground state φg of H exists. By Corollary 2.1 φg is

strictly positive as a vector in L2(Z2 ×Q), in particular, it is unique. 2

We note that the condition ĥ/ω ∈ L2(Rd) in Theorem 2.3 is not a mere technicality.

This condition will play an essential role throughout below in the definition of a Gibbs

measure and the analysis of the ground state properties, see also Section 4.6 below.

By Theorem 2.3 it follows that HSB also has a unique ground state. As seen above,

H can be decomposed as H = H+ ⊕ H− and H can be reduced by H±.

Corollary 2.4 Let φSB be the ground state of HSB. Then φSB ∈ H−.

Proof: Let U be as in (1.12). Notice that φSB = U∗φg, and thus

φSB = s− lim
T→∞

U∗e−TH1lH
∥U∗e−TH1lH ∥

= s− lim
T→∞

e−THSBU∗1lH
∥e−THSBU∗1lH ∥

.

The function 1lH ∈ L2(Z2)⊗ L2(Q) corresponds to

[
Ω
Ω

]
∈ F↑ ⊕ F↓ and

U∗1lH =
1

2

[
1 −1
1 1

] [
Ω
Ω

]
=

[
0
Ω

]
∈ H−.

Hence by the parity symmetry of HSB we have

Pe−THSBU∗1lH = e−THSBPU∗1lH = −e−THSBU∗1lH

and thus e−THSBU∗1lH ∈ H−. This implies that φSB ∈ H−. 2

Remark 2.5 By Corollary 2.1 the ground state φg ofH overlaps with the non-negative

vector ρ(σ, ϕ) =

{
1, σ = +1
0, σ = −1

in L2(Z2 ×Q). Hence (φg, ρ)L2(Z2×Q) ̸= 0 and

inf Spec(H) = − lim
β→∞

1

β
log(ρ, e−βHρ) = − lim

β→∞

1

β
log eβEP

[
εNte

α2

2

∫ β
0 dt

∫ β
0 dsW

]
. (2.7)

The expression at the right hand side above was also obtained in [Hir99, Abd12].

3 Path measure associated with the ground state

3.1 Z2-valued paths

In Sections 3.1-3.2 we set ε = 1 for simplicity.
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Let X = D(R;Z2) be the space of càdlàg paths with values in Z2, and G the σ-field

generated by cylinder sets. Thus σ· : (Ω,Σ, P ) → (X ,G ) is an X -valued random

variable. We denote its image measure by Wσ, i.e., Wσ(A) = σ−1
· (A) for A ∈ G , and

the coordinate process by (Xt)t∈R, i.e., Xt(ω) = ω(t) for ω ∈ X . Hence Proposition 1.2

can be reformulated in terms of (Xt)t∈R as

(Φ, e−tHΨ)H = et
∑
σ∈Z2

Eσ
WEµE

[
J0Φ(X0)e

−αΦE(
∫ t
0 Xsjshds)JtΨ(Xt)

]
. (3.1)

Here EWσ = Eσ
W so that Eσ

W [X0 = σ] = 1. Then (1.23) can be converted to the form

e−tHΦ(σ) = etEσ
W

[
J∗
0e

ΦE(−α
∫ t
0 Xrjrhdr)JtΦ(σt)

]
(3.2)

for every σ ∈ Z2.

Lemma 3.1 For every s, t ∈ R it follows that

(Φ, e−tHΨ)H = et
∑
σ∈Z2

Eσ
WEµE

[
JsΦ(Xs)e

−αΦE(
∫ s+t
s Xrjrhdr)Js+tΨ(Xs+t)

]
. (3.3)

Proof: By the Trotter product formula (Φ, e−tHΨ)H = lim
n→∞

(Φ, (e−
t
n
H0e−

t
n
Hf )nΨ), and

using the fact that e−|t−s|Hf = J∗
t Js we have

(Φ, e−tHΨ)H = et
∑
σ∈Z2

EPEµE

[
JsΦ(σ0)e

−αΦE(
∫ t
0 σrjs+rhdr)Js+tΨ(σt)

]
.

By the shift invariance of (Nt)t∈R stated in Proposition 1.1 we have

(Φ, e−tHΨ)H = et
∑
σ∈Z2

EPEµE

[
JsΦ(σs)e

−αΦE(
∫ t
0 σs+rjs+rhdr)Js+tΨ(σs+t)

]
.

Hence the lemma follows. 2

Let (Z2,B) be a measurable space with σ-field B = {∅, {−1}, {+1},Z2}. For later
use we show a functional integral representation of Euclidean Green functions of the

type (Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAnΨ), where −∞ < t0 ≤ . . . ≤ tn <

∞ and A0, ..., An ∈ B. We see that the operator

Q[S,T ] = J∗
Se

ΦE(−α
∫ T
S Xsjshds)JT : L2(Q) → L2(Q) (3.4)

is bounded. In fact, we have that

∥Q[S,T ]∥L2(Q)→L2(Q) ≤ ∥Q[S,T ]∥L1(Q) ≤ e
α2

4
∥
∫ T
S Xsjshds∥2 , (3.5)

which was shown in e.g. [HL08, Corollary 4.4].
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Corollary 3.2 Let −∞ < t0 ≤ . . . ≤ tn < ∞ and A0, ..., An ∈ B. Then

(Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAnΨ)

= etn−t0
∑
σ∈Z2

Eσ
WEµE

[(
n∏

j=0

1lAj
(Xtj)

)
Φ(Xt0)Q[t0,tn]Ψ(Xtn)

]
. (3.6)

Proof: This is proven by using the Markov properties of both the Poisson process and

the Euclidean field, and (1.23). Denote by Ns = σ(Nr, 0 ≤ r ≤ s) the natural filtration

of the Poisson process (Nt)t∈R. The Markov property of (Nt)t∈R and (1.23) yield that(
e−sH1lAe

−tHΦ
)
(σ)

= es+tEP

[
J∗
0e

ΦE(−α
∫ s
0 σrjrhdr)Js1lA(σs)EP

[
J∗
0e

−αΦE(
∫ t
0 σr+sjrhdr)JtΦ(σt+s)

∣∣∣Ns

]]
= es+tEP

[
J∗
0e

ΦE(−α
∫ s
0 σrjrhdr)Js1lA(σs)J

∗
0e

−αΦE(
∫ t
0 σr+sjrhdr)JtΦ(σt+s)

]
= es+tEP

[
J∗
0e

−αΦE(
∫ s
0 σrjrhdr)Js1lA(σs)J

∗
0e

−αΦE(
∫ t
0 σr+sjrhdr)JtΦ(σt+s)

]
.

Since J0 = U−sJs, where Us : L2(QE) → L2(QE) is the shift operator defined by

UsΦE(jt1f1) · · ·ΦE(jtnfn) = ΦE(jt1+sf1) · · ·ΦE(jtn+sfn), we obtain(
e−sH1lAe

−tHΦ
)
(σ)

= es+tEP

[
J∗
0e

−αΦE(
∫ s
0 jrσrhdr)JsJ

∗
sUs1lA(σs)e

−αΦE(
∫ t
0 σr+sjrhdr)JtΦ(σt+s)

]
= es+tEP

[
J∗
0e

−αΦE(
∫ s
0 jrσrhdr)JsJ

∗
s 1lA(σs)e

−αΦE(
∫ t
0 σr+sjr+shdr)Jt+sΦ(σt+s)

]
. (3.7)

Furthermore, by the Markov property of the Euclidean field we can remove the projec-

tion JsJ
∗
s in (3.7) and obtain(
e−sH1lAe

−tHΦ
)
(σ) = es+tEP

[
J∗
0e

−αΦE(
∫ s+t
0 σrjrhdr)1lA(σs)Jt+sΦ(σt+s)

]
.

Hence in terms of (Xt)t∈R we have

(Φ, 1lA0e
−sH1lA1e

−tH1lA2Ψ)

= es+t
∑
σ∈Z2

Eσ
W

[
1lA0(X0)1lA1(Xs)1lA2(Xs+t)

(
J0Φ(X0), e

−αΦE(
∫ s+t
0 Xrjrhdr)Jt+sΨ(Xt+s)

)]
.

Repeating this procedure, we have

(Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAnΨ)

= etn−t0
∑
σ∈Z2

Eσ
WEµE

[(
n∏

j=0

1lAj
(Xtj−t0)

)
Φ(X0)Q[0,tn−t0]Ψ(Xtn−t0)

]
. (3.8)

By the shift invariance of σt (Proposition 1.1) we complete the proof. 2
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Corollary 3.3 Let −∞ < t0 ≤ t1 ≤ . . . ≤ tn < ∞ and A0, ..., An ∈ B. Then

(1lA0 , e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAn)

= etn−t0
∑
σ∈Z2

Eσ
W

[
e

α2

2

∫ tn
t0

dt
∫ tn
t0

dsW (Xs,Xt,t−s)
n∏

j=0

1lAj
(Xtj)

]
, (3.9)

where W (x, y, t) =
xy

2

∫
Rd

e−|t|ω(k)ĥ(k)2dk.

Proof: By Corollary 3.2 we have

LHS (3.9) = etn−t0
∑
σ∈Z2

Eσ
W

[
EµE

[
Q[t0,tn]

] n∏
j=0

1lAj
(Xtj)

]
.

Hence the corollary follows. 2

3.2 Local weak convergence

In this section we make the assumption that ĥ/ω ∈ L2(Rd), so that there is a unique

ground state φg ∈ H . Let G[−T,T ] = σ(Xt, t ∈ [−T, T ]) be the family of sub-σ-fields of

G and

G =
∪
T≥0

G[−T,T ].

Let G = σ(G). Define the probability measure µT on (X ,G) by

µT (A) =
e2T

ZT

∑
σ∈Z2

Eσ
W

[
1lAe

α2

2

∫ T
−T dt

∫ T
−T dsW (Xt,Xs,t−s)

]
, A ∈ G, (3.10)

where ZT is the normalizing constant such that µT (X ) = 1. This probability measure

is a Gibbs measure for the pair interaction potential W , indexed by the bounded

intervals [−T, T ] (see the next section for further details). In this section we show

convergence of µT to a probability measure µ∞ in a specific sense when T → ∞.

Definition 3.4 Let µ∞ be a probability measure on (X ,G), and (Tn)n∈N ⊂ R be

any unbounded increasing sequence of positive numbers. The sequence of probability

measures (µTn)n∈N is said to converge to the probability measure µ∞ in local weak

topology whenever limn→∞ |µTn(A)− µ∞(A)| = 0 for all A ∈ G[−t,t] and t ≥ 0.

By the above definition it is seen that whenever µT → µ∞ in local weak sense, we have

that

lim
T→∞

EµT
[f ] = Eµ∞ [f ] (3.11)
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for any bounded G[−t,t]-measurable function f .

Next we define the finite dimensional distributions indexed by Λ = {t0, . . . , tn} ⊂
[−T, T ] with t0 ≤ . . . ≤ tn. Let

µΛ
T (A0 × · · · × An) =

e2T

ZT

∑
σ∈Z2

Eσ
W

[(
n∏

j=0

1lAj
(Xtj)

)
e

α2

2

∫ T
−T dt

∫ T
−T dsW (Xt,Xs,t−s)

]
(3.12)

be a probability measure on (ZΛ
2 ,B

Λ), where ZΛ
2 = ×n

j=1Z
tj
2 and BΛ = ×n

j=1B
tj for

Λ = {t1, ..., tn}, and Ztj
2 and Btj are copies of Z2 and B, respectively. Clearly, G is a

finitely additive family of sets. Define an additive set function on (X ,G) by

µ(A) = e2Ete2t
∑
σ∈Z2

Eσ
W
[
1lA(φg(X−t), Q[−t,t]φg(Xt))H

]
, A ∈ G[−t,t]. (3.13)

Note that µ(X ) = (φg, e
−2t(H−E)φg) = 1.

Lemma 3.5 There exists a unique probability measure µ∞ on (X ,G) such that µ∞⌈G=
µ. In particular, µ∞(A) = µ(A), for every A ∈ G[−t,t] and t ∈ R.

Proof: Let ∪∞
j=1Aj ∈ G and Ai ∩ Aj = ∅ for i ̸= j. Then there exists t > 0 such that

∪∞
j=1Aj ∈ G[−t,t] by the definition of G. Thus by the definition of µ we have

µ(∪∞
j=1Aj) = e2Ete2t

∑
σ∈Z2

Eσ
W [1l∪∞

j=1Aj
(φg(X−t), Q[−t,t]φg(Xt))] =

∞∑
j=1

µ(Aj)

by the Lebesgue dominated convergence theorem. Hence the set function µ on (X ,G)
is a completely additive measure. Then the Hopf extension theorem implies that there

exists a unique probability measure µ∞ on (X ,G) such that µ∞⌈G= µ. 2

In order to show that µT (A) → µ∞(A) for every A ∈ G[−t,t], we define the probability

measure ρT on (X ,G[−T,T ]) for A ∈ G[−t,t] with t ≤ T by

ρT (A) = e2Ete2t
∑
σ∈Z2

Eσ
W

[
1lA

(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
. (3.14)

The family of probability measures ρΛT on (ZΛ
2 ,B

Λ) indexed by Λ = {t0, ..., tn} ⊂
[−T, T ] is defined by

ρΛT (A0 × · · · × An) = e2Ete2t
∑
σ∈Z2

Eσ
W

[(
n∏

j=0

1lAj
(Xtj)

)(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
(3.15)

for arbitrary t such that −T ≤ −t ≤ . . . ≤ t0 ≤ . . . ≤ tn ≤ t ≤ T . To show that

µT = ρT , we prove that their finite dimensional distributions coincide.



20

Lemma 3.6 Let Λ = {t0, t1, ..., tn} and A0 × · · · × An ∈ BΛ. Then it follows that

µΛ
T (A0 × · · · × An) = ρΛT (A0 × · · · × An).

In particular, ρΛT is independent of the choice of t.

Proof: By Corollary 3.2 we see that

µΛ
T (A0 × · · · × An) =

1

∥ΦT∥2
(1lH , e−(t0+T )H1lA0e

−(t1−t0)H1lA1 · · · 1lAne
−(T−tn)H1lH ).

Hence we have by the definition of ΦT−t that

µΛ
T (A0 × · · · × An) =

e2Et

∥ΦT∥2
(ΦT−t, e

−(t0+t)H1lA0e
−(t1−t0)H1lA1 · · · 1lAne

−(t−tn)HΦT−t).

By Corollary 3.2 we have furthermore

µΛ
T (A0 × · · · × An) = e2Ete2t

∑
σ∈Z2

Eσ
W

[
n∏

j=0

1lAj
(Xtj)

(
ΦT−t

∥ΦT∥
(X−t), Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
= ρΛT (A0 × · · · × An).

Thus the lemma follows. 2

Denote Z(−∞,∞)
2 = {ω : (−∞,∞) → Z2}.

Lemma 3.7 Let t ≤ T and A ∈ G[−t,t]. Then µT (A) = ρT (A).

Proof: It is straightforward to see that the family of probability measures µΛ
T , Λ ⊂ R,

on (ZΛ
2 ,B

Λ) with #Λ < ∞ satisfies the Kolmogorov consistency condition:

µ
{t0,...,tn,s1,...,sm}
T (A0 × · · · × An ×

m∏
Z2) = µ

{t0,...,tn}
T (A0 × · · · × An).

Let πΛ : Z(−∞,∞)
2 → ZΛ

2 be the projection defined by πΛ(ω) = (ω(t0), . . . , ω(tn)) for ω ∈
Z(−∞,∞)
2 and Λ = {t0, . . . , tn}. Then AT = {π−1

Λ (E) |Λ ⊂ [−T, T ],#Λ < ∞, E ∈ BΛ}
is a finitely additive family of sets. Thus by the Kolmogorov extension theorem there

exists a unique probability measure µ
(−∞,∞)
T on (Z(−∞,∞)

2 , σ(AT )) such that

µ
(−∞,∞)
T (π−1

Λ (A0 × · · · × An)) = µΛ
T (A0 × · · · × An) (3.16)

for all Λ ⊂ [−T, T ] with #Λ < ∞ and Aj ∈ B. Note that Z(−∞,∞)
2 = X and

σ(AT ) = G[−T,T ] follow. On the other hand, we have

µT (π
−1
Λ (A0 × · · · × An)) = µΛ

T (A0 × · · · × An),
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and µT ⌈G[−T,T ]
is a probability measure on (X ,G[−T,T ]). Thus the uniqueness of µ

(−∞,∞)
T

satisfying (3.16) implies that µ
(−∞,∞)
T = µT ⌈G[−T,T ]

. Observing that

µΛ
T (A0 × · · · × An) = ρΛT (A0 × · · · × An) = ρT (π

−1
Λ (A0 × · · · × An))

by Lemma 3.6, we also see that ρT (A) = µ
(−∞,∞)
T (A) for A ∈ G[−t,t] by the uniqueness

of µ
(−∞,∞)
T satisfying (3.16). Thus together with µ

(−∞,∞)
T = µT ⌈G[−T,T ]

we conclude that

µT (A) = ρT (A) for A ∈ G[−t,t] and t ≤ T . 2

Theorem 3.8 Suppose ĥ/ω ∈ L2(Rd). Then the probability measure µT on (X ,G)
converges in local weak sense to µ∞ as T → ∞.

Proof: By Lemma 3.7 it suffices to show that lim
T→∞

ρT (A) = µ∞(A) for every A ∈
G[−T,T ]. Since ΦT−t/∥ΦT∥ → φg strongly in L2(Z2) ⊗ L2(Q) as T → ∞, we have

ΦT−t(σ)/∥ΦT∥ → φg(σ) for every σ ∈ Z2, strongly in L2(Q). Since Q[−t,t] is a bounded

operator, it is seen that

lim
T→∞

ρT (A) = lim
T→∞

e2te2Et
∑
σ∈Z2

Eσ
W

[(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)
1lA

]
= e2te2Et

∑
σ∈Z2

Eσ
W
[(
φg(X−t), Q[−t,t]φg(Xt)

)
1lA
]
= µ∞(A).

Thus the theorem follows. 2

3.3 The case of arbitrary ε > 0

In the case when ε ̸= 1 a parallel discussion to the previous section can be made. Since

tH = εt

(
−σx ⊗ 1l + 1l⊗ 1

ε
Hf +

α

ε
σz ⊗ ϕ(ĥ)

)
,

by replacing t, h and ω with εt, h/ε and ω/ε, respectively we have

(Φ, e−tHΨ)H = eεt
∑
σ∈Z2

Eσ
WEµE

[
Jε
0Φ(X0)e

−(α/ε)ΦE(
∫ εt
0 Xsjεshds)Jε

tΨ(Xεt)
]
. (3.17)

Here Jε
t and jεt are defined by ω replaced by ω/ε. Thus jεs

∗jεt = e−|t−s|ω/ε and Jε
s
∗Jε

t =

e−|t−s|Hf/ε. Define the probability measure µε
T on (X ,G) by

µε
T (A) =

e2εT

ZεT

∑
σ∈Z2

Eσ
W

[
1lAe

α2

2

∫ T
−T dt

∫ T
−T dsW (Xεt,Xεs,t−s)

]
, A ∈ G. (3.18)
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Define also an additive set function on (X ,G) by

µε(A) = e2Eεte2εt
∑
σ∈Z2

Eσ
W [1lA(φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)H ], A ∈ G[−εt,εt],

where Q
(ε)
[−εt,εt] = Jε∗

−εte
ΦE(−(α/ε)

∫ εt
−εt Xsjεshds)Jε

εt. In the same way as Lemma 3.5 we see

that there exists a unique probability measure µε
∞ on (X ,G) such that µε

∞⌈G= µε.

Furthermore, it can be derived in a similar manner to Theorem 3.8 that

lim
T→∞

µε
T (A) = µε

∞(A), A ∈ G[−t,t]. (3.19)

We summarize this in the theorem below.

Theorem 3.9 Suppose ĥ/ω ∈ L2(Rd). Then the probability measure µε
T on (X ,G)

converges in local weak sense to µε
∞ as T → ∞.

We also write µg for µε
∞ for notational convenience.

3.4 Gibbs measure

In this subsection we show that µg is a Gibbs measure on (X ,G). First we give some

definitions and basic facts on Gibbs measures needed for this proof.

Let (Ω,Y , Q) be a probability space, and (Yt)t∈R be a Markov process with càdlàg

paths on it. We write YT = σ(Yr, r ∈ [−T, T ]) and TT = σ(Yr, r ∈ [−T, T ]c). Let

V : Rd → R and W : Rd × Rd × R → R be Borel measurable functions, called external

potential and pair potential, respectively. We call V an admissible external potential

whenever

0 < EQ[e
−

∫
I V (Ys)ds] < ∞ (3.20)

for every bounded interval I ⊂ R. Furthermore, we say that W is an admissible pair

interaction potential whenever∫
R

sup
x,y∈Rd

|W (x, y, s)|ds < ∞. (3.21)

For the admissible potentials V ,W and 0 < S ≤ T define the functionals

ET =

∫ T

−T

V (Yt)dt+

(∫
R
ds

∫ T

−T

dt+

∫ T

−T

ds

∫
R
dt

)
W (Yt, Ys, |t− s|), (3.22)

ES,T =

∫ T

−T

V (Yt)dt+

(∫ S

−S

ds

∫ T

−T

dt+

∫ T

−T

ds

∫ S

−S

dt

)
W (Yt, Ys, |t− s|). (3.23)
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Also, define QY
T on (Ω,Y ) for every Y ∈ Ω as the unique probability measure such

that EQY
T
[fg] = EQ[f |TT ](Y )g(Y ), for every bounded YT -measurable function f and

every bounded TT -measurable function g, i.e.,

QY
T [A] = EQ[1lA|TT ](Y ). (3.24)

Definition 3.10 Suppose that V and W are admissible potentials.

(1) A probability measure PT on (Ω,Y ) is called a finite volume Gibbs measure for

the interval [−T, T ] with respect to the reference measure Q and the potentials

V and W whenever for all 0 < S < T

(i) PT ⌈YT
≪ Q⌈YT

(ii) for every bounded Y -measurable function f

EPT
[f |TS](Y ) =

EQY
S
[fe−ES,T ]

EQY
S
[e−ES,T ]

, PT -a.s. (3.25)

(2) A probability measure P is called a Gibbs measure with respect to the reference

measure Q and the potentials V and W whenever for all T > 0

(i) P ⌈YT
≪ Q⌈YT

(ii) for every bounded Y -measurable function f

EP [f |TT ](Y ) =
EQY

T
[fe−ET ]

EQY
t
[e−ET ]

, P -a.s. (3.26)

A sufficient condition for PT to be a finite volume Gibbs measure and P a Gibbs

measure is as follows.

Proposition 3.11 Let V and W be admissible potentials.

(1) For every T > 0

dPT =
1

ZT

e−ET,T dQ (3.27)

is a finite volume Gibbs measure for [−T, T ], where ZT denotes the normalizing

constant.

(2) Suppose that there exists a probability measure P∞ such that Pt(A) → P∞(A) as

t → ∞ for all A ∈ YT , and P∞⌈YT
≪ Q⌈YT

for every T . Then P∞ is a Gibbs

measure for the given potentials and reference measure.
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Proof: For (1) see Proposition 4.1, for (2) Proposition 4.2 in [LHB11]. 2

Consider on Z2 the Bernoulli measure

ν(σ) =
1

2
(δ−1(σ) + δ+1(σ)), σ ∈ Z2,

and define the probability measure µ0 on (X ,G) by

µ0(A) = EνE
σ
W [1lA], A ∈ G.

Theorem 3.12 Suppose that ĥ/ω ∈ L2(Rd). Then the probability measure µg is a

Gibbs measure on (X ,G) with respect to reference measure µ0, zero external potential

and pair interaction potential

W (Xεt, Xεs, |t− s|) = 1

2
XεtXεs

∫
Rd

e−|t−s|ω(k)|ĥ(k)|2dk.

Proof: The probability measure µε
T is a finite volume Gibbs measure by part (1) of

Proposition 3.11 and (3.18). By Theorem 3.9 we have that µε
T (A) → µg(A) as T → ∞

for every A ∈ G[−t,t], t ≤ T , and

µg(A) = e2Eεte2εt
∑
σ∈Z2

Eσ
W

[(
φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)

)
1lA

]
≤ 2e2Eεte2εt∥Q(ε)

[−εt,εt]∥L1(Q)µ0(A) ≤ 2e2Eεte2εteα
2t2∥h∥2µ0(A).

This bound is derived from (3.5). Hence µg⌈Yt≪ µ0⌈Yt follows for every t > 0. Then

the theorem follows by part (2) of Proposition 3.11. 2

4 Ground state properties

4.1 Expectations of functions of the form ξ(σ)F (ϕ(f))

In this section we use the Gibbs measure obtained above to derive ground state prop-

erties of the form (1.2) mentioned in Section 1.1. We start by considering ground state

expectations of the form (φg, ξ(σ)F (ϕ(f))φg) with suitable functions F and ξ expressed

through expectations with respect to the path measure µg. By the parity symmetry

we know that

(φg, σφg)L2(Z2;L2(Q)) = (φSB, σxφSB)C2⊗F = 0. (4.1)
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4.1.1 Expectation of ξ(σ)

Theorem 4.1 Let f be a G[−εt,εt]-measurable function on X . Then

Eµg[f ] = e2Eεte2εt
∑
σ∈Z2

Eσ
W

[(
φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)

)
f
]
. (4.2)

Proof: Since for A ∈ G[−εt,εt] we have

µg(A) = e2εte2Eεt
∑
σ∈Z2

Eσ
W

[(
φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)

)
1lA

]
,

(4.2) follows. 2

An immediate consequence of Theorem 4.1 is the following.

Corollary 4.2 Let fj : Z2 → C, j = 0, ..., n, be bounded functions. Then

Eµg

[
n∏

j=0

fj(Xεtj)

]
= (φg, f0e

−(t1−t0)(H−E)f1 · · · e−(tn−tn−1)(H−E)fnφg). (4.3)

In particular, we have for all bounded functions ξ, f and g that

Eµg [ξ(X0)] = (φg, ξ(σ)φg), (4.4)

Eµg [f(Xt)g(Xs)] = (f(σ)φg, e
−|t−s|(H−E)g(σ)φg). (4.5)

Proof: For Aj ∈ B, j = 0, 1, ..., n, it follows that

Eµg

[
n∏

j=0

1lAj
(Xεtj)

]
= e2εte2Eεt

∑
σ∈Z2

Eσ
W

[(
φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)

) n∏
j=0

1lAj
(Xεtj)

]
= (φg, 1lA0e

−(t1−t0)(H−E)1lA1 · · · e−(tn−tn−1)(H−E)1lAnφg).

Hence (4.3) is obtained. 2

4.1.2 Expectation of ξ(σ)F (ϕ(f))

Lemma 4.3 Let F be a real-valued bounded function on R, f ∈ L2(Rd) and ξ : Z2 → C

be a bounded function. Then

(e−TH1lH , ξ(σ)F (ϕ(f))e−TH1lH )

= e2εT
∑
σ∈Z2

Eσ
WEµE

[
ξ(X0)e

−α
ε
ΦE(

∫ εT
−εT Xsjshds)F (ΦE(j0f))

]
.
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Proof: By (3.2) we have

(e−THξ(σ)F (ϕ(f))e−TH1lH )(σ) = e2εTEσ
W

[
Q

(ε)
[−εT,0]ξ(X0)F (ϕ(f))EX0

W

[
Q

(ε)
[0,εT ]1lH (XεT )

]]
.

Here Q
(ε)
[S,T ] = Jε∗

S eΦE(−α
ε

∫ T
S Xsjεshds)Jε

T . Then in a similar manner to the proof of Corol-

lary 3.2 the lemma follows from the Markov property of (Nt)t∈R. 2

Theorem 4.4 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, ξ : Z2 → C be a bounded

function, and β ∈ R. Then

(φg, ξ(σ)e
iβϕ(f)φg) = e−

β2

4
∥f∥2Eµg

[
ξ(X0)e

iβK(f)
]
, (4.6)

where K(f) is a random variable on (X ,G) given by

K(f) =
α

2

∫ ∞

−∞
(e−|r|ωĥ, f̂)Xεrdr. (4.7)

Proof: Note that

(φg, ξ(σ)e
iβϕ(f)φg) = lim

T→∞
(
ΦT

∥ΦT∥
, ξ(σ)eiβϕ(f)

ΦT

∥ΦT∥
)

and by Lemma 4.3 we see that(
ΦT

∥ΦT∥
, ξ(σ)eiβϕ(f)

ΦT

∥ΦT∥

)
=

1

ZεT

e2εT
∑
σ∈Z2

Eσ
WEµE

[
ξ(X0)e

−α
ε
ΦE(

∫ εT
−εT Xsjshds)eiβΦE(j0f)

]
.

The expectation with respect to µE can be computed explicitly and thus

(φg, ξ(σ)e
iβϕ(f)φg)

= lim
T→∞

e−
β2

4
∥f∥2 1

ZεT

e2T
∑
σ∈Z2

Eσ
W

[
ξ(X0)e

α2

2

∫ T
−T dt

∫ T
−T W (Xεt,Xεs,t−s)dseiβ

∫ T
−T (e−|s|ωĥ,f̂)Xεsds

]
= lim

T→∞
e−

β2

4
∥f∥2Eµε

T

[
ξ(X0)e

iβ
∫ T
−T (e−|s|ωĥ,f̂)Xεsds

]
.

Notice that |
∫∞
−∞ Xεs(e

−|s|ωĥ, f̂)ds| ≤ 2∥ĥ/ω∥∥f̂∥ < ∞. By the local weak convergence

of µT and a similar telescoping as in the proof of Theorem 4.16 below, we obtain the

desired result. 2

By using Theorem 4.4 the functionals (φg, ξ(σ)F (ϕ(f))φg) can be represented in

terms of averages with respect to the path measure µg. Consider the case when F is

a polynomial or a Schwartz test function. We will show in Corollary 4.18 below that

φg ∈ D(e+βN) for all β > 0, thus φg ∈ D(ϕ(f)n) for every n ∈ N.
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Corollary 4.5 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, and ξ : Z2 → C a bounded

function. Also, let hn(x) = (−1)nex
2/2 dn

dxn e
−x2/2 be the Hermite polynomial of order n.

Then

(φg, ξ(σ)ϕ(f)
nφg) = inEµg

[
ξ(X0)hn

(
−iK(f)

∥f∥2−1/2

)]
(∥f∥2−1/2)n, n ∈ N. (4.8)

Proof: We have

e−β2∥f∥2/4eiβK(f) =
∞∑
n=0

hn

(
−iK(f)

∥f∥2−1/2

)
(−β∥f∥2−1/2)n

n!
. (4.9)

Hence
1

in
dn

dβn
e−β2∥f∥2/4eiβK(f)

⌈
β=0

= inhn

(
−iK(f)

∥f∥2−1/2

)
(∥f∥2−1/2)n (4.10)

follows. By (4.10) and the computation

(φg, ξ(σ)ϕ(f)
nφg) =

1

in
dn

dβn
e−

β2

4
∥f∥2Eµg[ξ(X0)e

iβK(f)]

⌈
β=0

,

we obtain (4.8). 2

In the next corollary we give the path integral representation of (φg, ξ(σ)F (ϕ(f))φg)

for F ∈ S (R), where S (R) denotes the space of rapidly decreasing, infinitely many

times differentiable functions on R.

Corollary 4.6 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, F ∈ S (R), and ξ : Z2 →
C a bounded function. Then

(φg, ξ(σ)F (ϕ(f))φg) = Eµg [ξ(X0)G (K(f))] , (4.11)

where G = F̌ ∗ ǧ and g(β) = e−β2∥f∥2/4.

Proof: Since F (ϕ(f)) = 1√
2π

∫∞
−∞ F̌ (β)eiβϕ(f)dβ, we have

(φg, ξ(σ)F (ϕ(f))φg) =
1√
2π

∫ ∞

−∞
F̌ (β)e−

β2

4
∥f∥2Eµg

[
ξ(X0)e

iβK(f)
]
dβ. (4.12)

Thus the corollary follows. 2
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4.1.3 Field fluctuations in the ground state

The field fluctuations in the ground state are defined for every real-valued function

f ∈ L2(Rd) by

Fα(f) = (φg, ϕ(f)
2φg)− (φg, ϕ(f)φg)

2. (4.13)

More generally, we also consider fluctuations of the form

Gα(f) = (φg, (σϕ(f))
2φg)− (φg, σϕ(f)φg)

2. (4.14)

Corollary 4.7 Let ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) be a real-valued function. Then

(1) (φg, σϕ(f)φg) = Eµg[X0K(f)],

(2) (φg, (σϕ(f))
2φg) = Eµg[(X0K(f))2] +

1

2
∥f∥2.

In particular,

(3) Gα(f) = Eµg [(X0K(f))2]−
(
Eµg [X0K(f)]

)2
+ 1

2
∥f∥2,

(4) (φg, ϕ(f)φg) = 0 and Fα(f) = (φg, ϕ(f)
2φg) = Eµg[K(f)2] +

1

2
∥f∥2,

(5) whenever f ̸≡ 0, we furthermore have that (i) Fα(f) > 0 and Fα(f) ≥ F0(f), (ii)

Gα(f) > 0 and Gα(f) ≥ G0(f).

Proof: Statements (1)-(3) easily follow from Corollary 4.5, which imply (4) for σ = 1.

Using Schwarz inequality, we obtain (5ii), while (5i) is clear by (4). 2

Note that to prove (1)-(2) of Corollary 4.7 we can proceed, alternatively, to derive

first the equality (φg, ϕ(f)φg) = Eµg [K(f)] by using Corollary 4.5, and from Eµg[Xs] =

(φg, σφg) to further obtain that

(φg, ϕ(f)φg) = −α

2
(ĥ/ω, f̂)(φg, σφg) = 0. (4.15)

Notice that X2
0 = 1. Thus in Corollary 4.7 we have equivalently Eµg[(X0K(f))2] =

Eµg[K(f)2].
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4.2 Gaussian decay and exponential moments of the field op-
erator

4.2.1 Gaussian decay of the field operator

In this section we show that (φg, e
βϕ(f)2φg) < ∞ for some β > 0.

Lemma 4.8 Let ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) be a real-valued function. Then for

β > 0 we have

(φg, e
−βϕ(f)2φg) =

1√
1 + β∥f∥2

Eµg

[
e
− βK2(f)

1+β∥f∥2

]
. (4.16)

Proof: By Theorem 4.4 we see that

(φg, e
−(β2/2)ϕ(f)2φg) =

1√
2π

∫
R
e−β2/2(φg, e

iβϕ(f)φg)dβ

=
1√
2π

∫
R
e−β2/2e−β2∥f∥2/4Eµg

[
eiβK(f)

]
dβ

=
1√

1 + β2∥f∥2/2
Eµg

[
e
− β2K2(f)/2

1+β2∥f∥2/2

]
.

Replacing β2/2 by β completes the proof of the lemma. 2

Theorem 4.9 Let ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) be a real-valued function. If −∞ <

β < 1/∥f∥2, then φg ∈ D(e(β/2)ϕ(f)
2
) and

∥e(β/2)ϕ(f)2φg∥2 =
1√

1− β∥f∥2
Eµg

[
e

βK2(f)

1−β∥f∥2

]
. (4.17)

Proof: The proof is a modification of [Hir04, Theorem 10.12].

Let B = {z ∈ C||z| < 1/∥f∥2}, C+ = {z| ℜz > 0} and C− = {z| ℜz < 0}. Consider

ρ(z) =
1√

1 + z∥f∥2
Eµg

[
e
− zK2(f)

1+z∥f∥2

]
, (4.18)

for z > 0. Then ρ(z) can be analytically continued to C+ ∪ B, since |K(f)| ≤
|α|∥f∥∥ĥ/ω∥ uniformly in paths. We denote this extension by ρ̄(z). Let w ∈ R ∩ B

and consider the ball Bδ(w) = {z ∈ C| |z − w| < δ}. Take any δ < 1/∥f∥2 such that

for w we have Bδ(w) ∩ C− ∩B ̸= ∅. We expand ρ̄(z) as

ρ̄(z) =
∞∑
n=0

(z − w)nbn(w), z ∈ Bδ(w) ∩B (4.19)
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and get in particular

ρ̄(z) =
∞∑
n=0

|z − w|n|bn(w)| < ∞ (4.20)

for z ∈ Bδ(w) ∩ B. On the other hand, C+ ∋ z 7→ (φg, e
−zϕ(f)2φg) ∈ C is differentiable

on C+, since φg ∈ D(ϕ(f)2), and is thus analytic on C+. We have

(φg, e
−zϕ(f)2φg) =

∞∑
n=0

(z − w)n
1

n!

∫ ∞

0

(−λ)ne−wλdEλ, z ∈ C+. (4.21)

Here Eλ denotes the spectral measure of 1
2
ϕ(f)2 with respect to φg. Comparing (4.19),

(4.21) and ρ̄(z) = (φg, e
−zϕ(f)2φg) for z ∈ C+, we conclude that

bn(w) =
1

n!

∫ ∞

0

(−λ)ne−wλdEλ. (4.22)

Substituting (4.22) into (4.19) we have

ρ̄(z) =
∞∑
n=0

(z − w)n
1

n!

∫ ∞

0

(−λ)ne−wλdEλ, z ∈ Bδ(w) ∩B (4.23)

where the right hand side is absolutely convergent for every z ∈ Bδ(w) ∩ B. Thus by

(4.20) for z ∈ Bδ(w) ∩B ∩ R we have∫ M

0

e−zλdEλ ≤
∞∑
n=0

|z − w|n

n!

∣∣∣∣∫ M

0

(−λ)ne−wλdEλ

∣∣∣∣ ≤ ∞∑
n=0

|z − w|n

n!

∣∣∣∣∫ ∞

0

(−λ)ne−wλdEλ

∣∣∣∣ < ∞,

which implies that limM→∞
∫M

0
e−zλdEλ < ∞ for these z. The monotone convergence

theorem then gives
∫∞
0

e−zλdEλ < ∞, hence φg ∈ D(e−(z/2)ϕ(f)2) and

∥e−(z/2)ϕ(f)2φg∥2 = ρ̄(z), z ∈ Bδ(w) ∩B ∩ R. (4.24)

Since for every δ < 1/∥f∥2 there exists w ∈ R ∩ B such that C− ∩ B ∩ Bδ(w) ̸= ∅, the
proof of the theorem is complete. 2

From Theorem 4.9 it is immediate to get the limit of ∥e(β/2)ϕ(f)2φg∥.

Corollary 4.10 Suppose that ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) is a real-valued function.

Then

lim
β↑1/∥f∥2

∥e(β/2)ϕ(f)2φg∥ = ∞.
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In the previous section we investigated the moments of ϕ(f) of positive integer

order. By using Lemma 4.8 also the moments of fractional order can be derived.

Define |ϕ(f)|s = (ϕ(f)2)s/2 for 0 ≤ s ≤ 2, and let λ be the Lévy measure on R \ {0}
such that

∫∞
0
(1− e−yu)λ(dy) = us/2 for u > 0, i.e.,

λ(dy) =
s

2Γ(1− s/2)
y−1− s

21(0,∞)(y)dy,

corresponding to the s/2-subordinator. Let Λα = ∥|ϕ(f)|s/2φg∥2.

Corollary 4.11 Suppose that ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) is a real-valued function.

Then for 0 < s < 2,

Λα = Eµg

[∫ ∞

0

(
1− 1√

1 + β∥f∥2
e
− βK(f)2

1+β∥f∥2

)
λ(dβ)

]
. (4.25)

In particular, Λ0 ≤ Λα follows.

Proof: Notice that(
1− 1√

1 + β∥f∥2
e
− βK(f)2

1+β∥f∥2

)
β−1− s

2 ≤

(
1− 1√

1 + β∥f∥2
e
−βα2∥f∥2∥ĥ/ω∥2/4

1+β∥f∥2

)
β−1− s

2

= η(β).

In a neighborhood of β = 0 it holds that η(β) = β−s/2 + o(β) locally uniformly. Then

η(β) is integrable in this neighborhood, and since η(β) ≤ const β1+s/2, η ∈ L1([0,∞))

follows. Then (4.25) is immediate from Lemma 4.8 by using the Fubini theorem, and

the inequality follows from

Λ0 =

∫ ∞

0

(
1− 1√

1 + β∥f∥2

)
λ(dβ).

2

Remark 4.12 A simple computation shows that if U is a real-valued Gaussian random

variable with mean m and variance σ2, then whenever θ < 1/(2σ2), we have

EG[e
θU2

] =
1√

1− 2θσ2
e

m2θ
1−2θσ2 ,

where the expectation is taken with respect to this Gaussian measure. A comparison

with (4.17) implies that there exists thus a real-valued Gaussian random variable U

with mean K(f) (or −K(f)) and variance ∥f∥2/2 such that

∥eβϕ(f)2φg∥2 = EG[e
βU2

].

For some consequences see Section 4.3 below.
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4.2.2 Exponential moments of the field operator

Theorem 4.9 says that ∥e(β/2)ϕ(f)2φg∥ < ∞. Using this fact we can obtain explicit

formulae of the exponential moments (φg, e
βϕ(f)φg) of the field.

Corollary 4.13 If ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) is a real-valued function, then φg ∈
D(eβϕ(f)) and

(φg, e
βϕ(f)φg) = (φg, cosh(βϕ(f))φg) = e

β2

4
∥f∥2Eµg

[
eβK(f)

]
, (4.26)

(φg, σe
βϕ(f)φg) = (φg, σ sinh(βϕ(f))φg) = e

β2

4
∥f∥2Eµg

[
X0e

βK(f)
]
. (4.27)

Proof: For simplicity we reset βf to f . By using the generating function exy−
1
2
y2 =∑∞

n=0 hn(x)
yn

n!
of the Hermite polynomials, summation in (4.8) gives

lim
M→∞

(φg,
M∑
n=0

1

n!
ϕ(f)nφg) = e

1
4
∥f∥2Eµg

[
eK(f)

]
. (4.28)

We need to check that the left hand side converges to (φg, e
ϕ(f)φg). Notice that by the

spin flip property (2) in Lemma 1.6, (φg, ϕ(f)
nφg) = 0 for odd n. Hence it suffices

to show the convergence of (φg,
∑M

n=0
1

(2n)!
ϕ(f)2nφg) as M → ∞. By Theorem 4.9 we

have that ∥eϕ(f)2/(4∥f∥2)φg∥ < ∞. Let Eλ be the spectral measure of ϕ(f) with respect

to φg. Then

M∑
n=0

1

(2n)!
(φg, ϕ(f)

2nφg) =

∫
R

M∑
n=0

1

(2n)!
λ2ne−λ2/(4∥f∥2)eλ

2/(4∥f∥2)dEλ.

Since eλ
2/(4∥f∥2) is integrable by Theorem 4.9,

∑M
n=0

1
(2n)!

λ2ne−λ2/(4∥f∥2) is monotonously

increasing to cosh(λ)e−λ2/(4∥f∥2) as M ↑ ∞, which is a bounded function, hence the

monotone convergence theorem yields that limM→∞
∫
R

∑M
n=0

1
n!
λndEλ =

∫
R e

λdEλ < ∞,

which implies φg ∈ D(eϕ(f)) and (4.26). Equality (4.27) is derived in a similar way. 2

4.3 Van Hove representation

In Remark 4.12 we pointed out that the expectation of the field operator ϕ(f) in the

ground state φg can be realized as an expectation of a Gaussian random variable. Here

we show that this allows another representation of the ground state.

The van Hove Hamiltonian is defined by the self-adjoint operator

HvH(ĝ) = Hf + ϕb(ĝ) (4.29)
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in Fock space F . Suppose that ĝ/ω ∈ L2(Rd) and define the conjugate momentum by

πb(ĝ) =
i√
2

∫ (
a†(k)

ĝ(k)

ω(k)
− a(k)

ĝ(−k)

ω(k)

)
dk.

Then

eiπb(ĝ)HvH(ĝ)e
−iπb(ĝ) = Hf −

1

2
∥ĝ/ω∥2 (4.30)

and the ground state of HvH(ĝ) is given by

φvH(ĝ) = e−iπb(ĝ)Ωb.

On the other hand, clearly the spin-boson Hamiltonian H with ε = 0 is the direct sum

of van Hove Hamiltonians since

H =

[
Hf + αϕb(ĥ) 0

0 Hf − αϕb(ĥ)

]
(see Section 2) and Hf ± αϕb(ĥ) are equivalent. Therefore the ground state of H with

ε = 0 can be realized as φg =

[
φvH(αĥ)

φvH(−αĥ)

]
. Thus in this case

(φg, e
iβϕ(f)φg)H = (φvH(αĥ), e

iβϕb(f̂)φvH(αĥ))F . (4.31)

and the right hand side above equals

(Ωb, e
iβ(ϕb(f̂)+α(ĥ/ω,f̂))Ωb)F = e−β2∥f̂∥2/4+iβα(ĥ/ω,f̂). (4.32)

When ε ̸= 0 we can derive similar but non-trivial representations. Define the

random boson field operator

Ψ(f̂) = ϕb(f̂) +K(f) (4.33)

on F , where K(f) is the random variable on X defined by (4.7). Then we see that

(Ωb,Ψ(f̂)Ωb) = K(f), (4.34)

(Ωb,Ψ(f̂)2Ωb)− (Ωb,Ψ(f̂)Ωb)
2 = ∥f̂∥2/2, (4.35)

(Ωb, e
iβΨ(f̂)Ωb) = e−β2∥f∥2/4+iβK(f). (4.36)

Let

χ =
α

2
ω(k)ĥ(k)

∫ ∞

−∞
e−|s|ω(k)Xεsds. (4.37)

Note that χ ∈ L2(Rd)

K(f) = (χ, f̂), (4.38)

moreover, χ/ω ∈ L2(Rd), whenever ĥ/ω ∈ L2(Rd), and χ = αĥ for ε = 0. We define

the random van Hove Hamiltonian by HvH(χ).
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Theorem 4.14 If ĥ/ω ∈ L2(Rd), then

(φg, e
iβϕ(f)φg) = Eµg

[
(Ωb, e

iβΨ(f̂)Ωb)
]
= Eµg

[
(φvH(χ), e

iβϕb(f̂)φvH(χ))
]
. (4.39)

Proof: The first equality can be directly derived from Theorem 4.4. The second equality

follows from eiπb(χ)Ψ(f̂)e−iπb(χ) = ϕb(f̂). 2

Corollary 4.15 Suppose ĥ/ω ∈ L2(Rd) and F ∈ S (R). Then we have

(φg, F (ϕ(f))φg) = Eµg

[
(Ωb, F (Ψ(f̂))Ωb)

]
= Eµg

[
(φvH(χ), F (ϕ(f̂))φvH(χ))

]
, (4.40)

∥eβϕ(f)2/2φg∥2 = Eµg

[
∥eβΨ(f̂)2/2Ωb∥2

]
= Eµg

[
∥eβϕb(f̂)

2/2φvH(χ)∥2
]
. (4.41)

Proof: This is proven from Corollary 4.6 and Theorem 4.9. 2

4.4 Expectations of second quantized operators

4.4.1 General results

In this section we consider expectations of the form (φg, e
−βdΓ(ρ(−i∇))φg), where ρ is a

real-valued multiplication operator given by the function ρ. An important example is

ρ = 1l giving the boson number operator N = dΓ(1l).

In a similar way to [GHPS09, Section 3.2] we obtain the expression

(ΦT , ξ(σ)e
−βdΓ(ρ(−i∇))ΦT )

∥ΦT∥2
= Eµε

T

[
ξ(X0)e

−α2
∫ 0
−T dt

∫ T
0 W ρ,β(Xεt,Xεs,t−s)ds

]
, (4.42)

where

W ρ,β(x, y, T ) =
xy

2

∫
Rd

|ĥ(k)|2e−|T |ω(k)(1− e−βρ(k))dk.

Denote

W ρ,β
∞ =

∫ 0

−∞
dt

∫ ∞

0

W ρ,β(Xεt, Xεs, t− s)ds. (4.43)

Notice that |W ρ,β
∞ | ≤ ∥ĥ/ω∥2/2 < ∞, uniformly in the paths in X .

Theorem 4.16 Suppose that ĥ/ω ∈ L2(Rd) and ξ : Z2 → C is a bounded function.

Then

(φg, ξ(σ)e
−βdΓ(ρ(−i∇))φg) = Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]
, β > 0. (4.44)
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Proof: This is shown by using Theorem 3.8 and telescoping. For a shorthand we write

W ρ,β
T =

∫ 0

−T
ds
∫ T

0
W ρ,β(Xεt, Xεs, t − s)dt. Note that for every δ > 0 there is Sδ such

that |W ρ,β
T −W ρ,β

∞ | ≤ δ for all T > Sδ, uniformly in the paths, and write

Eµε
T

[
ξ(X0)e

−α2W ρ,β
T

]
− Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]

= Eµε
T

[
ξ(X0)e

−α2W ρ,β
T

]
− Eµε

T

[
ξ(X0)e

−α2W ρ,β
∞
]

+ Eµε
T

[
ξ(X0)e

−α2W ρ,β
∞
]
− Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]
.

We have ∣∣∣Eµε
T

[
ξ(X0)e

−α2W ρ,β
T

]
− Eµε

T

[
ξ(X0)e

−α2W ρ,β
∞
]∣∣∣ ≤ Cδ (4.45)

with a constant C. The second term can be evaluated as∣∣∣Eµε
T

[
ξ(X0)e

−α2W ρ,β
∞
]
− Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]∣∣∣

≤
∣∣∣Eµε

T

[
ξ(X0)e

−α2W ρ,β
∞
]
− Eµε

T

[
ξ(X0)e

−α2W ρ,β
Sδ

]∣∣∣ (4.46)

+
∣∣∣Eµε

T

[
ξ(X0)e

−α2W ρ,β
Sδ

]
− Eµg

[
ξ(X0)e

−α2W ρ,β
Sδ

]∣∣∣ (4.47)

+
∣∣∣Eµg

[
ξ(X0)e

−α2W ρ,β
Sδ

]
− Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]∣∣∣ . (4.48)

For (4.46) and (4.48) we have again the same upper bound as in (4.45), and (4.47) goes

to zero as T → ∞ by Theorem 3.8. 2

4.4.2 Super-exponential decay of the boson number

In this section we discuss the expectation of e−βN , which can be obtained by a minor

modification of Theorem 4.16.

Corollary 4.17 Suppose that ĥ/ω ∈ L2(Rd) and ξ : Z2 → C is a bounded function.

Then

(φg, ξ(σ)e
−βNφg) = Eµg

[
ξ(X0)e

−α2(1−e−β)W∞
]
, (4.49)

where

W∞ =

∫ 0

−∞
dt

∫ ∞

0

W (Xεt, Xεs, t− s)ds. (4.50)

Proof: By replacing ρ by 1l in Theorem 4.16, the claim readily follows. 2

The following result says that the distribution of the number of bosons in the ground

state has a super-exponentially short tail.
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Corollary 4.18 If ĥ/ω ∈ L2(Rd), then φg ∈ D(eβN) for all β ∈ C and

(φg, e
βNφg) = Eµg

[
e−α2(1−eβ)W∞

]
(4.51)

follows. In particular, φg ∈ D(e+βN) for all β > 0.

Proof: The proof is similar to that of Theorem 4.9 and [Hir04, Theorem 10.12], and is

left to the reader. 2

Corollary 4.19 Suppose ĥ/ω ∈ L2(Rd). Then

(φg, (−1)Nφg) = Eµg

[
e−2α2W∞

]
, (4.52)

(φg, ξ(σ)(−1)Nφg) = Eµg

[
ξ(X0)e

−2α2W∞
]
. (4.53)

In particular, it follows that

(φg, (−1)Nφg) = Eµg

[
e−2α2W∞

]
≥ e−α2∥ĥ/ω∥2 > 0, (4.54)

(φg, σ(−1)Nφg) = Eµg

[
X0e

−2α2W∞
]
= −1 < 0. (4.55)

Proof: Equality (4.52) is derived from (4.49) with ξ(σ) = 1 and β = −iπ, and (4.53)

with ξ(σ) = σ. Equality (4.54) follows from the estimate of the right hand side of (4.53).

Noticing that φSB ∈ H−, we obtain PφSB = σx(−1)NφSB = −φSB. In particular, this

gives

Eµg

[
X0e

−2α2W∞
]
= (φg, σ(−1)Nφg) = (φSB, PφSB) = −1.

2

4.4.3 Moments of the boson number operator

We can derive the expectation of Nm, m = 1, 2, ..., with respect to the ground state

φg by using Corollary 4.17.

Corollary 4.20 Suppose that ĥ/ω ∈ L2(Rd). Then

(φg, N
mφg) =

m∑
r=1

ar(m)α2rEµg [W
r
∞] , m = 1, 2, 3, ... (4.56)

where ar(m) = (−1)r

r!

∑r
s=1(−1)s

(
r
s

)
sm are the Stirling numbers of the second kind.

Proof: It can be checked that

dm

dβm
e−C(1−e−β) = (−1)m

m∑
r=1

ar(m)e−rβ(−C)re−a(1−e−β).

Then the corollary follows from (φg, N
mφg) = (−1)m dm

dβm (φg, e
−βNφg)⌈β=0 and Corol-

lary 4.17. 2
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4.5 A relation between the expectations of σϕ(f) and N

By the results obtained in the previous subsections we can derive an inequality con-

necting the expectations (φg, σϕ(f)φg) and (φg, Nφg).

Corollary 4.21 Suppose that ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) is real-valued, and ξ : Z2 → C

a bounded function. Then

(φg, ξ(σ)ϕ(f)φg) = α

∫
Rd

(ξ(σ)φg, (H − E + ω(k))−1σφg)ĥ(k)f̂(k)dk. (4.57)

In particular,

(φg, σϕ(h)φg) = α

∫
Rd

∥(H − E + ω(k))−1/2σφg∥2|ĥ(k)|2dk. (4.58)

Proof: By Theorem 4.4 we have

(φg, ξ(σ)ϕ(f)φg) = Eµg [ξ(X0)K(f)] =
α

2

∫ ∞

−∞
dr(e−|r|ωĥ, f̂)Eµg [ξ(X0)Xεr] .

By Corollary 4.2 we also see that this furthermore is

=
α

2

∫ ∞

−∞
dr

∫
dk(ξ(σ)φg, e

−|r|(H−E+ω(k))σφg)ĥ(k)f̂(k)

= α

∫
Rd

(ξ(σ)φg, (H − E + ω(k))−1σφg)ĥ(k)f̂(k)dk.

Then the corollary follows. 2

A standard inequality, see e.g. [LHB11, Proposition 5.1], says that

(Φ, (σϕ(f))2Φ) ≤ ∥f∥2

2
(Φ, (N + 1l)Φ).

From Corollary 4.21 we obtain the following inequality.

Corollary 4.22 Let ĥ/ω ∈ L2(Rd). Then

(φg, Nφg) ≤
α

2
(φg, σϕ(ω(D)

−1h)φg) ≤
α2

2
∥ĥ/ω∥2, D = −i∇. (4.59)

Proof: By (4.56) we have

(φg, Nφg) =
α2

2

∫
Rd

|ĥ(k)|2
∫ 0

−∞
dt

∫ ∞

0

dse−|t−s|ω(k)Eµg [XεtXεs] .
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Since Eµg[XεsXεt] = (σφg, e
−|t−s|(H−E)σφg), by Corollary 4.3 we see that

(φg, Nφg) =
α2

2

∫
Rd

|ĥ(k)|2∥(H − E + ω(k))−1σφg∥2dk. (4.60)

The first inequality is derived from (4.60) and (4.58). The second inequality follows

through (4.58). 2

Since φg ∈ D(N), we have that f 7→ (φg, σϕ(f)φg) is linear and the bound

|(φg, σϕ(f)φg)| ≤ C∥f∥ with a constant C follows. By the Riesz representation theo-

rem there exists G ∈ L2(Rd) such that (φg, σϕ(f)φg) = (Ĝ, f̂)L2(Rd).

Corollary 4.23 If ĥ/ω ∈ L2(Rd), then

Ĝ(k) =
α

2
(σφg, (H − E + ω(k))−1σφg)ĥ(k). (4.61)

Proof: This is obtained directly from Corollary 4.21. 2

4.6 Comparison with the Nelson model

From (4.61) we see that, formally, G(·) = (φg, σϕ(·)φg). Recall that the Nelson model

is defined by a linear coupling between a particle described by the Schrödinger operator

Hp = −∆+ V and a boson field described by Hf . The coupling term is given by

ϕb(x) =
1√
2

∫ (
a†(k)e−ikxĥ(−k) + a(k)e−ikxĥ(k)

)
dk (4.62)

so that the Nelson Hamiltonian is defined by

HN = Hp +Hf + ϕb(x). (4.63)

For this model a similar kernel to (4.61) is obtained, see [LHB11, eq. (6.5.60)]. Using

this kernel we can show [LHB11, Sect. 6.5] that

a∥ĥ/ω∥2 − b ≤ (φN
g , NφN

g ) ≤ c∥ĥ/ω∥2, (4.64)

where φN
g is the ground state of HN, and a, c ≥ 0 and b ∈ R are suitable constants.

Thus (φN
g , NφN

g ) → ∞ as ∥ĥ/ω∥ → ∞, and it follows that HN has no ground state

whenever ĥ/ω ̸∈ L2(Rd). The key point is that (φN
g , e

i(·,x)φN
g ) ̸= 0; for some discussions

see [AHH99]. While in (4.59) we show the upper bound (φg, Nφg) ≤ α2

2
∥ĥ/ω∥2, we

have no lower bound like in (4.64) due to the fact that (φg, σφg) = 0. Although there
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is no mathematical proof known, the physics literature supports the conjecture that

whenever a ground state exists, the boson number expectation (φN
g , NφN

g ) is finite.

Thus ĥ/ω ̸∈ L2(Rd) would then mean absence of a ground state. For the spin boson

model it can be conjectured for similar physical reasons that the same mechanism

applies and ĥ/ω ̸∈ L2(Rd) implies absence of a ground state. Then some interesting

open questions are if it is possible to prove (φg, Nφg) → ∞ as ∥ĥ/ω∥ → ∞ and,

secondly, if a ground state of H exists when ĥ/ω ̸∈ L2(Rd). These questions will be

considered elsewhere.
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