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Spin-chain model of a many-body quantum battery
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Recently, it has been shown that energy can be deposited on a collection of quantum systems at a rate that scales
superextensively. Some of these schemes for quantum batteries rely on the use of global many-body interactions
that take the batteries through a correlated shortcut in state space. Here we extend the notion of a quantum
battery from a collection of a priori isolated systems to a many-body quantum system with intrinsic interactions.
Specifically, we consider a one-dimensional spin chain with physically realistic two-body interactions. We find
that the spin-spin interactions can yield an advantage in charging power over the noninteracting case and we
demonstrate that this advantage can grow superextensively when the interactions are long ranged. However,
we show that, unlike in previous work, this advantage is a mean-field interaction effect that does not involve
correlations and that relies on the interactions being intrinsic to the battery.

DOI: 10.1103/PhysRevA.97.022106

I. INTRODUCTION

The recent push towards the development of quantum
technologies can be viewed through the lenses of two driving
forces. The first is the increasing miniaturization of technology,
especially electronics, which will soon require us to account
for the nontrivial effects that quantum mechanics will have on
minuscule components. Traditional thermodynamics cannot
describe quantum-scale devices, and a new understanding
of concepts such as work, heat, and entropy is required.
This has led to the field of quantum thermodynamics, which
explores new understandings of those quantities and also
involves the study of quantum machines such as heat engines
and refrigerators [1–7]. A second driving force of quantum
technologies is the potential for advantages due to quantum
effects in certain applications, such as in quantum sensing,
cryptography, and computation. One scenario which features
both of these aspects of quantum technologies is that of a
possible quantum enhancement in thermodynamic tasks, such
as the charging of batteries [8–14].

Conventional chemical batteries and electrochemical ca-
pacitors may be intrinsically composed of quantum compo-
nents, but their operation is essentially classical in nature.
“Quantum batteries,” a term first used by Alicki and Fannes
[8], seek to use nonclassical effects such as quantum coherence
or quantum entanglement to impart an advantage compared
with classical batteries. Typically, quantum batteries have been
modeled as a collection of N independent and identical subsys-
tems, to which a temporary charging field is applied in order
to extract or deposit work. In particular, Alicki and Fannes
found that global entangling operations could extract more
work from a quantum battery than local operations [8]. This
was further nuanced by Hovhannisyan et al. [9], who found
that a series of N global entangling operations can extract
the maximum work without creating any entanglement in the
quantum battery. This scenario corresponds to taking a time-
consuming indirect path such that the quantum battery only

traverses the space of separable states. By contrast, the direct
path taken under the action of a global entangling operation
does generate entanglement during operation. This led to the
conjecture that the rate of work extraction, that is, the power,
is linked to quantum entanglement [9]. This was supported by
Binder et al. [10], who showed that N interacting quantum
batteries traversing through entangled subspaces can charge N

times faster than the same number of noninteracting batteries
confined to uncorrelated subspaces (under the restriction that
the initial and final states are completely uncorrelated in both
cases such that the comparison is meaningful).

It would therefore appear plausible that quantum entangle-
ment can enhance the charging of a quantum battery. On the
other hand, Campaioli et al. [11] have shown that a quantum
battery with N highly mixed qubits can jointly charge N times
faster than they would charge independently. Yet the joint state
of N qubits can be chosen to be so highly mixed that it is
confined to the separable ball, i.e., while the joint state does
become correlated, there is no entanglement at any point in
the charging procedure. If entanglement is not the resource for
quantum speed-up, then what is?

One answer to this question may lie in the structure of the
interaction Hamiltonian. All of the analyses described above
consider rather optimistic scenarios that involve N -body global
interactions between all the subsystems in the quantum battery.
As such, Ref. [11] additionally considered the case where at
most k subsystems can interact with each other (interaction
order k) and each subsystem appears in at most m interaction
terms (participation number m). With this constraint, it was
found that the quantum enhancement to the charging power
is at most a constant factor of O(mk2). Thus, the extensive
quantum enhancement attained by Binder et al. [10] is due to
the interaction order, i.e., k = N , while m = 1. However, in the
recent theoretical work by Ferraro et al. [12], an enhancement
in a solid-state battery was achieved by the coupling together
of all N two-level systems in a cavity, i.e., the participation
number m = N − 1, while k = 2.
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FIG. 1. (a) Many-body spin-chain battery with internal interac-
tions (represented by bundles of lines), which is charged by local
charging fields (light shaded regions), i.e., charging fields that in
themselves do not couple the spins together. (b) In contrast, previous
literature considered independent subsystems charged by a entangling
field (large shaded region) that can couple the system together
temporarily during the charging process.

In this paper, we extend the concept of a quantum battery to
a many-body quantum system. As opposed to previous works
[8–12], where N batteries are jointly charged via global oper-
ations, we explore the possibility of locally charging a many-
body battery, which can become entangled due to the intrinsic
two-body interactions between the system’s constituents. In-
deed, charging operations which create global entanglement
are necessarily emergent operations, while an actual physical
system is expected to have a low interaction order. To inves-
tigate the possibility of a collective charging speed-up in a
physically realizable system, we consider a one-dimensional
Heisenberg spin chain, which is a fundamental model in
condensed-matter physics featuring both interactions and the
possibility of entanglement. This many-body system has finite
interaction order k = 2 and may have long-range interactions
(hence large participation number). Such a deceptively simple
Hamiltonian is known to generate arbitrarily complex global
entangling operations [15] and forms a promising basis for
certain quantum technologies such as quantum communication
[16] and quantum computation [17]. The difference between
our spin-chain battery and those considered previously is
depicted in Fig. 1. Note, though, that the upper bound on
charging power derived in Ref. [11] for N batteries still holds in
our case due to a symmetry between the intrinsic and charging
Hamiltonians in the two scenarios.1

In general, we find that both the interaction range and the
symmetry of the spin-spin coupling play a role in the work and
power derived from the charging process. For isotropic spin-
spin interactions (i.e., the coupling is independent of direction)
and identical local charging on every spin, we show that the
many-body interactions have no effect. However, when the
coupling is anisotropic, we find that interactions can provide a

1Specifically, the upper bound depends on the norm of the com-
mutator of the intrinsic and charging Hamiltonians. Here we have a
local charging Hamiltonian and interacting intrinsic Hamiltonian; in
Ref. [11], the situation is reversed, but the commutator norm, and
hence the bound, does not depend on which is which.

boost to the charging power, and the range of the interaction is
a major determiner in whether the enhancement is a constant
factor, logarithmic, or polynomial in N (as in Ref. [10]). By
comparing the quantum evolution to a correlationless mean-
field evolution, we demonstrate that the power is determined by
the energetics and interactions of the many-body system. This
implies that the correlations that develop during the quantum
evolution of our many-body battery are not necessary for
enhancing the charging power.

We furthermore demonstrate how an effective Hamiltonian
with N -body terms emerges naturally as a result of the intrinsic
two-body interactions. We show this explicitly for the few-spin
problem, where we take advantage of a large spectral gap that
develops between a low-energy manifold and higher-energy
states in the strongly interacting spin chain. In this case, the
work deposited onto the battery decomposes into fast and slow
oscillations as a function of time, where the slow time scale
results from the emergent N -body interactions. However, we
find that the associated power becomes negligible and thus this
situation does not lead to a quantum advantage. This raises the
question of whether it is ever advantageous to take a direct path
through globally entangled subspaces in a physical battery,
which is naturally restricted to few-body interactions.

This paper is structured as follows. In Sec. II, we describe
our spin-chain battery model and local charging scheme. In
Sec. III, we investigate the role of symmetries and deter-
mine how effective entangling many-body interactions can be
produced in the strong-coupling regime. We also investigate
the perturbative limit of weakly interacting spin chains and
in general how the work deposited and the maximum power
depend on the range and isotropy of interactions in the battery.
In Sec. IV, we consider the approximate mean-field evolution
of the spin chain, where we neglect correlations, and find that
the charging power is comparable to that of the exact quantum
evolution. We summarize in Sec. V.

II. SPIN-CHAIN QUANTUM BATTERY

We consider our quantum battery to be a one-dimensional
XXZ Heisenberg spin chain comprised of N spins on a
lattice. The spin chain has a precedent of being used in other
explorations of quantum devices, communication, and compu-
tation (e.g., [18,19]). Furthermore, spin chains are realized in
numerous crystals, such as CuCl2 · 2N(C5D5) [20], CuGeO3

[21], and KCuF3 [22], where chains of Cu2
+ along one crystal

axis can act as spin chains. Alternatively, spin chains can be
engineered using ultracold atoms [23–25] or trapped ions [26].
All of these spin chains allow the implementation of the XXZ
Heisenberg model, with varying degree of control over the
precise parameters, and as such can be used to implement our
quantum battery.

In the absence of charging operations, we assume that the
system has the static Hamiltonian

H0 = HB + Hg. (1)

Here HB defines an external magnetic field, which acts to break
the degeneracy between spins |↑〉 and |↓〉:

HB = B

N∑
i=1

σ z
i , (2)
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where the subscript i refers to the ith spin in the chain and
σ k

i denotes a Pauli spin operator with k = x,y,z. Without loss
of generality, we have taken the magnetic field to point in the
negative z direction such that the single-spin ground state is
|↓〉. We work in units where the magnetic moment, the lattice
spacing, and h̄ are all set to 1.

The second term in the Hamiltonian, Hg , defines pairwise
interactions between different spins:

Hg = −
∑
i<j

gij

[
σ z

i ⊗ σ z
j + α

(
σx

i ⊗ σx
j + σ

y

i ⊗ σ
y

j

)]
. (3)

Here the interaction strength between spins i and j is given
by gij and we have encoded an anisotropy in the parameter α,
where |α| � 1. For general α, this model corresponds to the
XXZ spin chain, while the particular values of α = 0 and α = 1
correspond to the Ising and XXX spin chains, respectively.

While nearest-neighbor coupling is often assumed, next-
nearest-neighbor coupling can better model some experimental
compounds [27] and long-range interactions that decay as a
power law can be manufactured [26,28]. Moreover, random-
coupling spin chains can be driven to the so-called random
singlet phase where long-range interactions emerge [29–31].
Thus, in general, we will consider either nearest-neighbor (NN)
or long-range (LR) interactions, respectively, given by

gNN
ij = gδi,j−1, (4a)

gLR
ij = g

|i − j |p , (4b)

where g is a real constant and p is a non-negative number. Note
that the infinite-range casegij = g corresponds to takingp = 0
in Eq. (4b), which is similar in spirit to the scenario considered
in Ref. [12]. We assume attractive interactions (g � 0) such
that the ground state of the static Hamiltonian is ferromagnetic,
i.e., ρ↓ = |↓〉 〈↓|⊗N , and we always take this to be our initial
state. In this case, the initial energy corresponds to

tr[H0ρ↓] = tr[HBρ↓] + tr[Hgρ↓] = −NB −
∑
i<j

gij . (5)

In order to impart energy to the system, we consider a
charging Hamiltonian V . In contrast to previous works, where
N batteries are collectively charged by an interacting potential,
here a single many-body battery (with internal interactions) is
charged using a local external driving field that changes the
energy splitting Hamiltonian from HB to

V = ω

N∑
i=1

σx
i , (6)

which is perpendicular to the original Zeeman splitting and
uniform in space. This could be physically generated by
imposing another external magnetic field or by simply rotating
the system relative to the existing field. By considering a local-
only charging, we can isolate any entanglement generation
during the charging as arising from the interactions within the
spin chain itself. It is worth noting that, unlike in the case where
the interactions are controlled during charging, discharging the
battery in our scenario is not as simple as reversing the charging
procedure; however, we leave this as an open problem.

The charging potential can, in general, be time dependent;
however, we will consider the simpler scenario where it is
constant during the charging interval. For 0 < t < T we thus
have the total Hamiltonian

H = Hg + V, (7)

which generates the unitary evolution

Ut = exp[−i(Hg + V )t]. (8)

Hence if ρ↓ is the battery’s initial state, then its state at time t is
ρt = Utρ↓U

†
t . The deposited work is the difference in internal

energy

W (t) = tr[H0ρt ] − tr[H0ρ↓] (9)

and we have the total work W ≡ W (T ) at the end of the
charging such that the average charging power is simply

P = W

T
. (10)

For N independent spins (equivalently gij = 0), the max-
imum total work scales as Wind = NW (1) (ind stands for
independent), where W (1) is the work deposited on one spin,
and similarly, the average power scales as Pind = NP (1). Below
we analytically and numerically compute the charging power
for different parameters in the interaction Hamiltonian Hg .

III. LOCAL CHARGING OF A MANY-BODY BATTERY

For a single spin, the driving field in Eq. (6) produces the
following work at time T :

W (1) = 2B sin2(ωT ). (11)

The maximum work is therefore W (1) = 2B, which corre-
sponds to charging the spin from |↓〉 to |↑〉. The maximum
power is P (1) � 1.4ωB when T � 1.2/ω. Note that the time
of maximum work and that of maximum power deposition do
not coincide.

We now proceed to consider the charging of a many-
body battery, where the constituent spins interact pairwise. In
general, the unitary evolution according to the Hamiltonian of
Eq. (7) cannot be solved analytically. However, as we describe
in this section, we can gain insight into the problem by studying
limiting cases where we can obtain analytic results. Therefore,
in the following we analyze both the case of weak and strong
interactions compared with the charging field strength. We
begin this section by investigating the role of symmetries in
the Hamiltonian, as this has important implications for whether
interactions can affect the charging at all.

A. Role of symmetries

The most symmetric scenario we can consider is that of a
spin chain with isotropic couplings, i.e., α = 1. Despite the
quantum nature of its constituent components, this scenario
generates no quantum correlations or entanglement, nor any
effect of the interactions between the spins. To see this,
first note that V commutes with the interaction part of the
Hamiltonian Hg . Hence, the unitary evolution decomposes via
the Baker-Campbell-Hausdorff formula to Ut = e−iV t e−iHgt ,
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FIG. 2. Maximum power (maximized over time) achievable by a
spin chain of length N = 4 as a function of anisotropy parameter
α [see Eq. (3)]. For this illustration, we consider LR interactions
with p = 1, as well as NN interactions [see Eq. (4)]. The remaining
parameters are chosen as g = B and ω = 4B. Here Pind is the power
achieved with isotropic interactions, α = 1, corresponding to that of
four independent spins.

leading to the final state

ρT = e−iV T ρ↓eiV T =
N⊗

k=1

e−iωσ x
k T |↓〉〈↓|k eiωσx

k T , (12)

which has no dependence on the interactions. Finally, one
can show that tr[Hgρt ] = tr[Hgρ↓], which implies that the de-
posited work in Eq. (9) is also independent of the interactions.

This is our first result: that a spin chain with isotropic
coupling leads to completely independent charging of each
spin. In other words, the XXX Heisenberg spin chain will
charge as though it were a collection of N independent spins,
regardless of the range or strength of the coupling interactions
gij , and despite the fact that the added interactions change the
spectrum of both the static and the charging Hamiltonians. In
fact, we can see numerically that reducing the symmetry (i.e.,
changing α from 1) leads to a direct increase in maximum
average power. As Fig. 2 illustrates, the maximum power ob-
tainable in the charging increases as the anisotropy increases.
Correspondingly, as a direct consequence of the many-body
nature of the interacting spin battery, the anisotropic XXZ spin
chain achieves a much higher power than the isotropic XXX
spin chain.

Therefore, to take advantage of the spin-chain battery’s
capability of intrinsic many-body interactions, we must break
a rotational or translational symmetry. This could also be
achieved by applying a different charging field to each spin,
and, to this end, a physically reasonable charging scheme is
one where charging fields are only applied to one or both ends
of the spin chain. However, our preliminary results suggest
that only the end spin(s) and those connected via a direct
interaction will charge, while the remainder of the spin chain
remains uncharged. Indeed, this scenario holds even when the
symmetries in H0 are broken. Thus, a quantum advantage in
this scheme is limited to short chains or chains with long-range
interactions where p in Eq. (4b) is sufficiently small. Hence,
we only consider schemes that charge all the spins in the chain
uniformly. We will therefore focus on systems with broken

rotational symmetry, i.e., we consider anisotropic spin-spin
interactions.

B. Emergence of N-body interactions in the
strongly interacting spin chain

We now turn to the limit of a strongly interacting spin
chain, which, as we will explicitly demonstrate, allows us
to identify emergent N -body interactions, even though our
Hamiltonian only features a local charging field and is limited
to two-body interactions. Our starting point is the observation
that in the limit of strong attractive interactions, i.e., g 	 ω,
the Hamiltonian features a large spectral gap between the
low-energy states ρ↓ = |↓〉〈↓|⊗N and ρ↑ = |↑〉〈↑|⊗N , and all
other states. The size of this gap generally increases with the
range of the interactions and it depends on the anisotropy
parameter α. Taking, for concreteness, α = 0, we see that even
if we limit ourselves to nearest-neighbor interactions quantified
by the interaction constant g, the size of the gap ∼2g. This
large separation of scales allows us to adiabatically eliminate
the high-energy degrees of freedom [32] and project onto an
effective low-energy Hamiltonian which acts only in the space
spanned by ρ↓ and ρ↑.

To see how this projection works, it is instructive to first
consider the two-spin problem where, of course, there is no
difference between short- and long-range interactions. In this
particular case, we can take advantage of how the total spin
S commutes with both terms in the Hamiltonian and thus
remains constant during the charging. It is then straightforward
to evaluate the time evolution analytically within the set of
triplet states: |↑↑〉, 1√

2
(|↑↓〉 + |↓↑〉), and |↓↓〉. While the work

deposited onto the battery is in general a complicated function
of time, it can essentially be decomposed into two regimes.
The first is a regime dominated by the high-energy part of the
spectrum, leading to fast oscillations:

Wfast(t) � 4ω2

g
sin2(gt), t � g

ω2
. (13)

This result indicates that, by turning off the field at the first
peak of these oscillations, we can charge the battery up to a
maximum work ∼ω2/g and a corresponding maximum power
∼ω2. At longer times, we find a second oscillatory behavior

Wslow(t) � 2ω2

g
+ 4B sin2(ω2t/g), t 	 1/g, (14)

where the first term arises from averaging out the fast oscilla-
tions. As seen by the prefactor ∼B, this slow oscillation of the
work corresponds exactly to the charging between the states ρ↓
and ρ↑. Therefore, in this case the maximum work scales with
B while the maximum power goes as Bω2/g. We thus see that
the achievable power is in general much greater if one uses the
fast oscillations for charging, at the expense of depositing less
work. The fast and slow oscillations are illustrated in Fig. 3.

The slow oscillations found in Eq. (14) may be understood
as arising from an effective low-energy charging Hamiltonian
for the two-spin problem

Heff = ω2

g
[|↑↑〉〈↓↓| + |↓↓〉〈↑↑|], (15)
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FIG. 3. Work as a function of time for a two-spin battery in the
strong-coupling regime (for this illustration we set ω = 3B, α = 0,
and g = 20B). The exact result is shown as the solid blue curve.
The slow oscillations [Eq. (14)], related to the effective low-energy
Hamiltonian (15), are shown as a black solid line, while the sum of
the slow and the fast oscillations of Eq. (13) are shown as a dotted red
line.

which can be found using second-order perturbation theory
(we ignore a term proportional to the identity which does not
lead to work deposition). This Hamiltonian acts solely within
the space of ρ↓ and ρ↑ and as such the corresponding evolution
proceeds through an entangled subspace.

We can generalize our results to longer spin chains in
the regime of strong interactions. For general N , one also
obtains an effective global entangling Hamiltonian similar
to Eq. (15), i.e., of the form

⊗N
k=1 |↓〉 〈↑|k + H.c., and we

find that the prefactor scales as ωN/gN−1 with a coefficient
that depends on the range of the interactions. This scaling
emerges naturally within a perturbative approach in the small
parameter ω/g by enumerating the virtual processes needed
to connect the states ρ↓ and ρ↑ for general N . For instance,
if one considers a chain consisting of three spins, each in-
teracting with coupling constant g, then we find Wslow(t) =
6B sin2(3ω3t/8g2) arising from the effective Hamiltonian
Heff = 3ω3

8g2 [|↑↑↑〉〈↓↓↓| + |↓↓↓〉〈↑↑↑|]. This scaling means
that for N spins the maximum power due to the slow oscil-
lation scales as Bω(ω/g)N . These scalings are exemplified
in Fig. 4, where we show the maximum achievable power
and work (corresponding to the first peaks of fast and slow
oscillations, respectively) as a function of N for a particular
choice of parameters. Our results, which are calculated by
exactly solving the system numerically, are also shown for
both nearest-neighbor interactions and the case of long-range
interactions with p = 1. Note, in particular, that our results
for the maximum achievable power shown in Fig. 4(b) are
compatible with the results of Ref. [11] since the power
enhancement we get (as opposed to a linear scaling) is less
than O(mk2) with k = 2 and m ∼ 2 (m = N − 1) for the
nearest-neighbour (long-range) Ising model, respectively. We
do not find a strong dependence on the participation number.

We can conclude that, although strong coupling can lead to
effective many-body interactions in our model, the magnitude

FIG. 4. (a) Maximum achievable work and (b) power as a function
of the spin-chain length. We illustrate this for isotropic (interaction-
independent) spin chains (XXX) and for anisotropic (α = 0) NN in-
teractions and LR interactions with p = 1. We show, for comparison,
(c) the average power at maximum work and (d) the work achievable at
maximum power. For this illustration, we set g = 100B and ω = 4B.

of such effective interactions decreases with our ability to
produce them. The power deposited in the battery is actually
worse when the spins traverse the correlated shortcut suggested
in Ref. [10] and it becomes vanishingly small in the limit of
a large number of spins. Therefore, we now consider whether
weaker interactions can lead to a faster charging of the many-
body battery.

C. Weakly interacting spin chain

In the regime where the interactions are small compared
to the driving strength ω, i.e., G ≡ ∑

i<j gij � Nω, we can
treat the interactions as a perturbation and derive approximate
analytical results for the work deposited and charging power.
In the following, we simplify the derivation by separating the
Hamiltonian into V and Hg and moving into the interaction
picture with respect to the former. This is convenient since
V consists of only local terms whose spectral decomposition
is straightforward. The interaction-picture density operator
is then ρ̃t = eiV tρt e

−iV t , with the corresponding interaction-
picture Hamiltonians H̃x,t = eiV tHxe

−iV t where x ∈ {0,B,g}.
To first order in G, the first term of the deposited work [Eq. (9)]
can be decomposed into

tr[H0ρt ] � tr[H̃0,tρ↓] − i tr

[
H̃B,t

∫ t

0
ds[H̃g,s,ρ↓]

]
, (16)

where we discard any terms of order G2 and higher.
Since V is a local Hamiltonian, we can write e±iV t =⊗N
j=1 e±iωtσ x

j . The first part of Eq. (16) then becomes

tr[H̃0,tρ↓] � − B

N∑
i=1

cos(2tω)−G[α sin2(2tω)+cos2(2tω)].

(17)

The second term tr[H̃B,t

∫ t

0 ds[H̃g,s,ρ↓]] turns out to be identi-
cally zero after a straightforward expansion of the commutator.
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FIG. 5. (a) Work and (b) power as a function of time for a battery
with seven spins in the weak-coupling regime (for this illustration
we set ω = 10B, g = B, α = 0, and p = 1). The perturbative result
in Eq. (18) is shown as a dotted red curve, while the exact result
corresponds to the solid blue curve.

Hence, the total work as a function of time is

W (t) � 2BN sin2(ωt) + (1 − α)G sin2(2ωt). (18)

Note that we recover the work of N noninteracting spins when
the interactions are isotropic, i.e., if we have α = 1.

In Fig. 5, we see that Eq. (18) is a good approximation for the
weakly interacting spin chain at short times Gt < 1, which is
sufficient for determining the maximum power and work. Since
Eq. (18) neglects higher-order terms, it does not include the
dynamical role of the interactions. Specifically, the dynamical
effect of the interactions only appears at second order and
thus the period of oscillations in Eq. (18) does not depend on
G. Instead, the first-order perturbative work incorporates the
energy stored in the interactions due to effective independent
charging. Nevertheless, the last term of Eq. (18) yields the
potential for greater work deposition in an interacting many-
body battery than in N independent batteries. This is due to
the existence of many-body eigenstates higher in energy than
ρ↑ once G is sufficiently large compared to BN .

In the regime where 2(1 − α)G/BN < 1, the maximum
work is the same as in the independent case, with Wmax,1 =
2BN = Wind at Tmax,1 = nπ/2ω (for any integer n). How-
ever, when 2(1 − α)G/BN > 1, these become local min-
ima, as shown in Fig. 5(a), and the maxima occur at times

Tmax,2 = arccos{−2BN/4G(1 − α)}/2ω, with corresponding
work values

Wmax,2 = B2N2 [1 + 2G(1 − α)/BN ]2

4G(1 − α)
. (19)

In this case, the average power at maximum work is higher
than in the independent case.

The maximum average power in the weak-coupling regime
can be approximated as

Pmax = max
T

{
4ω

[
BN

2
+ (1 − α)G cos2(ωT )

]
sin2(ωT )

ωT

}
,

which shows that the maximum power of the interacting chain
is larger than its noninteracting counterpart when α � 1. If
the spin-spin interaction is finite ranged, such as nearest-
neighbor or next-nearest-neighbor interactions, then G ∼ N

and the power is enhanced by a constant factor only. This
corresponds to a fixed participation number, and interaction
order of k = 2, which agrees with the charging power scaling
O(mk2) = O(const) of Ref. [11]. For long-range interactions
(4b), we find that if the decay of the spin-spin coupling
strength is sufficiently fast, i.e., if p > 1, then these long-range
interactions can only provide, at most, an extra prefactor in
the limit N → ∞, with G converging to a constant factor.
If we engineered a stronger pairwise interaction with p = 1,
then G ∼ N log N and the power is now superextensively
enhanced as O(log N ). It is only when we have uniform
magnitude infinite-range coupling that we recover the scaling
of Ref. [11], since G ∼ N2 and the spin chain’s charging power
enhancement is O(m) = O(N ). Such long-range interactions
can, for instance, be engineered and controlled using atoms
trapped in a photonic crystal waveguide [28], thus highlighting
the practical relevance for the model considered here.

While we have framed these results as perturbative, they
correspond exactly to the work and power achieved by switch-
ing off the interactions during charging, regardless of the
parameter regime. That is, they represent the nondynamical
contributions of the interaction energy. We are able to achieve a
superextensive scaling even in this case, where the spins charge
independently. This motivates a further study of the role played
by the interactions when they can affect the dynamics.

IV. ROLE OF CORRELATIONS

Thus far, we have demonstrated that spin chains with
anisotropic interactions can achieve greater power than in the
noninteracting case. However, a crucial question to ask is how
much of this advantage derives from quantum correlations
and entanglement? For example, in the work by Binder et al.
[10], the quantum battery achieved greater power by taking
a shortcut through an entangled subspace. To investigate this
further, in this section, we compare the full dynamics of the
spin chain with that of a mean-field model, where interactions
cannot generate correlations.

More precisely, we consider the case where spin m =
1, . . . ,N evolves according to a local, time-dependent effective
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FIG. 6. Comparison of the maximum power achievable for quan-
tum (Q) and classical (C) spin chains of varying length. Here
we consider isotropic (independent) spin chains (XXX) as well as
maximally anisotropic spin chains, α = 0, where we have long-range
interactions with p = 1 (LR Ising) and nearest-neighbor (NN Ising)
interactions. In (b), the solid line gives the quantum spin chain results
and the dotted line the classical spin chains. For this illustration, we
have set g = B and ω = 4B.

Hamiltonian H eff
m,t ,

H eff
m,t = tr!m{H (1m ⊗ trm[ρt ])}, (20)

where tr!m is the trace over all spins except spin m and H is
the original quantum Hamiltonian. As such, the total effective
Hamiltonian is H eff

t = ∑
m H eff

m,t . Given that no correlations
(classical or quantum) can now build up, the state of the spin
chain is simply described by positions of each spin’s Bloch
vectors �Sm = (Sx

m,S
y
m,Sz

m), where | �Sm| = 1.
The (nonlinear) evolution of the spin chain under H eff

t is
equivalent to the evolution of the Bloch vectors according to
the classical Hamiltonian HC , where Pauli operators in H are
replaced by components of �Sm [33,34]:

d �Sm

dt
= 2

∂HC

∂ �Sm

× �Sm. (21)

Here each spin is subject to the time-dependent potential
generated by the rest of the chain, but without any quantum
backaction. While this classical spin chain ultimately evolves
in a very different state space, it has the same energetics as the
quantum spin chain from which it was constructed. That is, the
average energy of equivalent configurations is identical.

The power comparison between a quantum spin chain
and its corresponding classical mean-field model is shown in
Fig. 6. As expected, the XXX spin chains, where the spins
evolve independently, achieve the same maximum power in
both classical and quantum versions, as no correlations were

created in the quantum spin chain in the first place. However,
when quantum correlations are created, the corresponding
classical spin actually charges faster than the quantum one
for the parameters we considered. This demonstrates that the
correlations between spins are not the important factor in
improving the charging power of a many-body battery. Rather,
it is the additional interaction energy between the spins that
provides the boost in power.

For the case of infinite-range interactions (p = 0), we can
formally show that we obtain the classical mean-field model
in the limit N 	 1. Defining the average spin operator s̃k =
1
N

∑
j σ k

j , we can rewrite the interaction Hamiltonian as

Hp=0
g = −gN2

2

[
s̃2
z + α

(
s̃2
x + s̃2

y

)]
, (22)

where we have dropped an unnecessary constant term. Simi-
larly, we can write HB = BNs̃z and V = ωNs̃x . It is easy to
show that the average spin operators obey the commutation
relations

[s̃j ,s̃k] = 2i

N
εjkl s̃l , (23a)

[s̃2,s̃k] = 0, (23b)

where s̃2 = s̃2
x + s̃2

y + s̃2
z and εjkl is the Levi-Civita symbol.

Therefore, we see that these operators all commute in the
limit N → ∞ and thus behave like the Bloch vectors for a
classical spin. Furthermore, s̃2 commutes with all the terms in
the Hamiltonian and thus the magnitude of the spin is always
conserved. Since we start in the state ρ↓, we have magnitude
|s̃| = √

tr[s̃2ρ↓] = √
1 + 2/N , which tends to 1 for large N ,

once again mimicking the behavior of a classical spin. Finally,
we can derive the equations of motion for the spin operators:

ds̃x

dt
= gN (1 − α)(s̃y s̃z + s̃zs̃y), (24a)

ds̃y

dt
= −2ωs̃z − gN (1 − α)(s̃x s̃z + s̃zs̃x), (24b)

ds̃z

dt
= 2ωs̃y. (24c)

These are exactly the classical equations obtained from
Eq. (21) if we assume that the s̃k all commute with one another.
Note that the strength of the interactions simply scales linearly
with N in this case.

Hence, we have shown that the infinite-range interacting
spin chain in the large-N limit behaves like a global classical
spin, where spin-spin correlations are absent. Given that the
infinite-range case generates the largest enhancement of the
charging power, this further supports the conclusion that
correlations are unnecessary for the efficient operation of our
many-body battery.

V. CONCLUSION

We have examined the viability of quantum spin chains as
a platform for a many-body battery. Our setup differs from
those previously considered, where multiple batteries were
charged collectively by inducing interactions with an external
charging field. Instead, the spin chains forming our battery
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include intrinsic interactions between the constituent spins,
while the charging is achieved by applying a local external
field. Nevertheless, as in previous studies, our aim has been to
look for speed-ups in charging power. In particular, we have
investigated the role that the interactions play in producing such
speed-ups. We have found that, in our model, enhancements
in charging power can be mainly attributed to the extra energy
available, rather than the ability to traverse correlated regions
of the state space.

In order to couple to the higher-energy many-body eigen-
states of the interacting spin system, we require the trans-
lational or rotational symmetry to be broken and thus we
have focused on anisotropic spin-spin interactions. In the
strong-interaction limit, we have demonstrated that the spins
traverse the entangled subspace responsible for the speed-up
in Ref. [10], due to the emergence of an effective Hamiltonian
with an interaction term that involves all spins simultaneously.
However, we have found that the strength of this effective
Hamiltonian is inversely proportional to the coupling strength
and vanishes exponentially with the number of spins. While
there can be an increase in power relative to the independent
charging case, this comes at the expense of the amount of work
deposited in the battery, which becomes negligible in this limit.

We next examined the weak-coupling regime. To first order
in the coupling strength, we found that the interactions in the
chain play no dynamical role, such that the spins effectively
charge independently. Nevertheless, the interactions contribute
to the work done and can lead to an increase in charging
power in some regimes. The independent nature of charging
in this regime, combined with the poor performance of the
effective many-body Hamiltonian mentioned above, led us to
further investigate the role of correlations in the final section
of this paper. There, by comparing with dynamics in which
no correlations were allowed to build up, we showed that

mean-field effects can account for any increase in charging
power coming from the interactions in our model. In other
words, any speed-ups we see arise from the increased energy
experienced by each spin due to interactions with the other
spins in the chain. This scenario fundamentally relies on the
interactions being intrinsic to the many-body battery, rather
than being imposed temporarily during the charging process.

Quantum technologies typically aim for exponential, or at
least quadratic, advantage over their classical counterparts.
However, in many applications even a constant advantage (one
that does not scale with the size of the quantum system) is
desirable. We have shown that physically constrained quantum
batteries have the potential for faster charging over their
classical (noninteracting) counterparts. Specifically, our work
illuminates how the structure of the interaction Hamiltonian
may be designed to build fast charging quantum batteries. Our
work opens up the potential feasibility of spin-chain quantum
batteries and is a step towards combining the concepts of
quantum thermodynamics with the practicality of condensed-
matter systems. In a physical implementation of our battery, the
robustness of the charging scheme to environmental noise is of
great practical relevance. While in general we expect dynamics
that is dominated by mean-field effects to be rather insensitive
to noise, we leave a detailed study of the inclusion of dissipative
dynamics in our problem as a future exercise.
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