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1 Introduction

Integrable open spin chains with boundaries have been widely studied in a variety of con-
texts, see e.g. [1–8] and references therein. Sklyanin [3] provided a general recipe for con-
structing such models, based on solutions of the bulk [9] and boundary [10, 11] Yang-Baxter
equations (YBEs), to which we refer here as R-matrices and K-matrices, respectively.

It was recently noticed, in the context of the A(1)
1 R-matrix (corresponding to a spin

chain of XXZ-type) and a trivial K-matrix, that Sklyanin’s construction can be further gen-
eralized by introducing [12] a boundary inhomogeneity in the transfer matrix, as in (2.15)
below.1 The corresponding Hamiltonian is generally not expected to be local; however, by
virtue of also having suitable staggered bulk inhomogeneities, the resulting Hamiltonian is
in fact local. This model has some further remarkable features, including quantum group
(QG) symmetry [13], a novel Bethe ansatz solution, and a continuum limit described by a
non-compact CFT [14], see also [15–21] for the corresponding closed chain.

The goal of the present paper is to explore such models with boundary inhomogeneities
more broadly, particularly by considering higher-rank R-matrices, as well as non-trivial
K-matrices. For concreteness, we focus here on the infinite family of A(2)

2n R-matrices;
however, we expect that similar results hold for other trigonometric R-matrices [22–24]
with crossing symmetry (including A(2)

2n−1 , B
(1)
n , C

(1)
n , D

(1)
n , D

(2)
n+1). By introducing suitable

staggered bulk inhomogeneities, we find that the key features of locality of the Hamiltonian
and QG symmetry appearing at rank one can still be maintained, and again find novel Bethe
ansatz solutions.

The outline of this paper is as follows. In section 2 we define the model by construct-
ing its transfer matrix, and we see explicitly that its Hamiltonian is local. We briefly

1This was actually a side result of [12], which was primarily devoted to solving D
(2)
2 models.
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discuss the model’s QG symmetry in section 3, and we present its Bethe ansatz solution
in section 4. We conclude in section 5 with a brief summary and a list of some interesting
remaining questions.

2 The model

We begin with a brief review in section 2.1 of the basic ingredients that are used in sec-
tion 2.2 to construct the transfer matrix. We derive the corresponding Hamiltonian in
section 2.3.

2.1 Basic ingredients

As already noted, the model is constructed from solutions R(u) of the bulk YBE [9]

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) , (2.1)

and solutions KR(u) of the corresponding boundary YBE [10, 11]

R12(u− v)KR
1 (u)R21(u+ v)KR

2 (v) = KR
2 (v)R12(u+ v)KR

1 (u)R21(u− v) , (2.2)

where the notations follow those in [25, 26]. For concreteness, we take R(u) to be the
A

(2)
2n R-matrices (n = 1, 2, . . .) [22–24], which for n = 1 was obtained by Izergin and

Korepin [27]; we use the specific form of these R-matrices given in appendix A of [25],
with anisotropy parameter η. These R-matrices have the following additional important
properties: periodicity

R(u+ 2iπ) = R(u) ; (2.3)

unitarity

R12(u) R21(−u) = ξ(u)ξ(−u)I⊗I , ξ(u) = 2sinh(u2−2η)cosh(u2−(2n+1)η) ; (2.4)

regularity
R(0) = ξ(0)P , (2.5)

where P is the permutation matrix; PT symmetry

R21(u) ≡ P12R12(u)P12 = Rt1t212 (u) ; (2.6)

and crossing symmetry

R12(u) = V1R
t2
12(−u− ρ)V1 = V t2

2 Rt112(−u− ρ)V t2
2 , ρ = −2(2n+ 1)η − iπ , (2.7)

where the matrix V is given by

V =
2n+1∑
α=1

e(ᾱ−ᾱ′)ηeα,α′ , α′ = 2n+ 2− α, α = 1, . . . , 2n+ 1 , (2.8)

– 2 –
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and

ᾱ =


α+ 1

2 1 ≤ α < n+ 1
α α = n+ 1
α− 1

2 n+ 1 < α ≤ 2n+ 1
. (2.9)

We take the right K-matrices to be the diagonal matrices [28–30]

KR(u) = diag

e−u , . . . , e−u︸ ︷︷ ︸
p

,
γeu + 1
γ + eu

, . . . ,
γeu + 1
γ + eu︸ ︷︷ ︸

2n+1−2p

, eu , . . . , eu︸ ︷︷ ︸
p

 , (2.10)

γ = γ0 e
(4p+2)η+ 1

2ρ , p = 0, 1, . . . , n , γ0 = ±1 , (2.11)

which for n = 1 was obtained in [31]. We emphasize that these K-matrices depend on two
boundary parameters p and γ0, which can take the set of discrete values noted in (2.11).
Moreover, for the left K-matrices, we take [25, 31]

KL(u) = KR(−u− ρ)M , M = V t V , (2.12)

which corresponds to imposing the “same” boundary conditions on the two ends.
For later reference, we note here the useful identity [32]

tr0K
L
0 (u)R01(2u)P01 = f(u)V1K

R
1 (u)V1 , (2.13)

with

f(u) = −4 sinh
(
u

2 −
1
2 (2n− 1) η − γ0

iπ

4

)
sinh

(
u

2 −
1
2 (2n+ 3) η + γ0

iπ

4

)

× sinh (u− (4n+ 2) η)
sinh

(
u
2 + 1

2 (2n− 4p− 1) η − γ0
iπ
4

)
sinh

(
u
2 −

1
2(6n− 4p+ 1)η − γ0

iπ
4

) . (2.14)

2.2 Transfer matrix

We consider the following open-chain transfer matrix for a spin chain of length N [12]

t(u; {θl}, u0) = tr0
{
K̄L

0 (u)T0(u; {θl}) K̄R
0 (u) T̂0(u+ u0; {θl})

}
, (2.15)

whose key difference with respect to the transfer matrix in [3] is the shift by u0 in the
argument of T̂ , which can be regarded as a boundary inhomogeneity. We shall see that
this seemingly minor change in the transfer matrix in fact has a profound impact on the
model. The monodromy matrices are given as usual by

T0(u; {θl}) = R0N (u− θN ) . . . R01(u− θ1) ,
T̂0(u; {θl}) = R10(u+ θ1) . . . RN0(u+ θN ) , (2.16)

where {θl} are bulk inhomogeneities. The right K-matrix K̄R
0 (u) in (2.15) satisfies a gen-

eralized boundary YBE

R12(u−v) K̄R
1 (u)R21(u+v+u0) K̄R

2 (v) = K̄R
2 (v)R12(u+v+u0) K̄R

1 (u)R21(u−v) , (2.17)
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which, compared with (2.2), has a shift by u0 in the R-matrix whose argument has the
sum of rapidities. The generalized boundary YBE (2.17) can be mapped to the standard
one (2.2) by performing the shifts u 7→ u − u0/2 and v 7→ v − u0/2, and identifying
K̄R(u− u0/2) = KR(u). Hence, we set

K̄R(u) = KR
(
u+ u0

2

)
, (2.18)

with KR(u) given by (2.10). Setting [12]

K̄L(u) = K̄R(−u− ρ− u0)M , (2.19)

the transfer matrix (2.15) can be shown to satisfy the commutativity property

[t(u; {θl}, u0) , t(v; {θl}, u0)] = 0 , (2.20)

which is the hallmark of quantum integrability.
In terms of the K̄-matrices, the identity (2.13) reads

tr0 K̄
L
0 (u)R01(2u+ u0)P01 = f

(
u+ u0

2

)
V1 K̄

R
1 (u)V1 , (2.21)

where f(u) is given by (2.14).
An important observation is that the presence of a boundary inhomogeneity affects

the crossing relation of the transfer matrix. Indeed, the crossing relation now becomes

t(−u− ρ− u0; {θl}, u0) = t (u; {θl}, u0) , (2.22)

i.e. there is an additional u0-dependent shift.
For generic values of boundary and bulk inhomogeneities, the transfer matrix (2.15)

does not generate a local Hamiltonian (i.e., whose range of interactions is independent
of N). Following [12], we henceforth set these inhomogeneities to

u0 = iπ , θl =

−iπ for l = odd
0 for l = even

. (2.23)

Note that the boundary inhomogeneity u0 is the half-period of the R-matrix (2.3), and
the bulk inhomogeneities are staggered.2 The same transfer matrix but with no bulk or
boundary inhomogeneities (u0 = θl = 0), to which we refer as the “homogeneous case”,
was investigated in [25, 26].

To summarize, we consider the transfer matrix (2.15) with inhomogeneity values
given by (2.23); it depends on the discrete parameters N ∈ {1, 2, . . .}, n ∈ {1, 2, . . .},
p ∈ {0, 1, . . . , n} and γ0 ∈ {−1,+1}, as well as the continuous parameters u and η.

2Staggered models date back at least to [33].
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2.3 Hamiltonian

We define the N -site Hamiltonian by3

H(N) = d

du
log (t(u))

∣∣∣
u=0

= t−1(0) d
du
t(u)

∣∣∣
u=0

. (2.24)

Note that this is the usual recipe for a closed-chain, rather than an open-chain, Hamiltonian.
(For an open chain, usually t(0) ∝ I [3], hence the definition (2.24) reduces to t′(0).
However, here t(0) is not proportional to I, thus these two definitions are not equivalent;
and the latter definition does not yield a local Hamiltonian.) Using (2.21) and the identity

t(0) t(iπ) = ξ2N (0) ξ2N−2(iπ) f
(
iπ

2

)
f

(3iπ
2

)
I , (2.25)

we obtain, after a long calculation, the following Hamiltonian for even values of N > 2

H(N=even) = 1
ξ(0) ξ4(iπ) K̄

R
1 (iπ)R32R31 h12R13R23 K̄

R
1 (0)

+ 1
ξ(0) VN K̄

R
N (iπ)VN hN−1,N VN K̄

R
N (0)VN

+ 1
ξ(0) ξ2(iπ) RN−1,N−2 hN−2,N RN−2,N−1

+ 1
ξ(0) ξ2(iπ)

N−3∑
j=1,3,...

Rj+2,j+1 hj,j+2Rj+1,j+2

+ 1
ξ(0) ξ6(iπ)

N−4∑
j=2,4,...

Rj+3,j+2Rj+1,j Rj+3,j hj,j+2Rj,j+3Rj,j+1Rj+2,j+3

+ 1
ξ2(iπ)

N−2∑
j=2,4,...

h̄j,j+1

+ 1
ξ4(iπ) K̄

R
1 (iπ)R32 h̄13R23 K̄

R
1 (0)

+ 1
ξ6(iπ)

N−4∑
j=2,4,...

Rj+3,j+2Rj+1,j h̄j,j+3Rj,j+1Rj+2,j+3

+ K̄R
1 (iπ) K̄R′

1 (0) + VN K̄
R
N (iπ) K̄R′

N (0)VN

+
f ′( iπ2 )
f( iπ2 )

I , (2.26)

where we have introduced the following short-hand notations

hij = Pij R′ij(0) , h̄ij = Rji(iπ)R′ij(iπ) , Rij = Rij(iπ) , (2.27)

and a prime denotes differentiation with respect to the spectral parameter u. Note that
the range of interactions in this Hamiltonian does not exceed 4 sites. For the case N = 2,

3We henceforth suppress displaying the dependence of the transfer matrix on the inhomogeneities, which
are given by (2.23).
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we obtain

H(N=2) = 1
ξ(0) K̄

R
1 (iπ)h12 K̄

R
1 (0) + 1

ξ(0) V2 K̄
R
2 (iπ)V2 h12 V2 K̄

R
2 (0)V2

+ K̄R
1 (iπ) K̄R′

1 (0) + V2 K̄
R
2 (iπ) K̄R′

2 (0)V2 +
f ′( iπ2 )
f( iπ2 )

I . (2.28)

A similar computation for odd values of N > 1 gives

H(N=odd) = 1
ξ(0) ξ4(iπ) K̄

R
1 (iπ)R32R31 h12R13R23 K̄

R
1 (0)

+ 1
ξ(0) ξ2(iπ) VN K̄

R
N (0)VN RN,N−1 hN,N−1RN−1,N VN K̄

R
N (iπ)VN

+ 1
ξ(0) ξ2(iπ)

N−2∑
j=1,3,...

Rj+2,j+1 hj,j+2Rj+1,j+2

+ 1
ξ(0) ξ6(iπ)

N−3∑
j=2,4,...

Rj+3,j+2Rj+1,j Rj+3,j hj,j+2Rj,j+3Rj,j+1Rj+2,j+3

+ 1
ξ2(iπ)

N−3∑
j=2,4,...

h̄j,j+1

+ 1
ξ4(iπ) K̄

R
1 (iπ)R32 h̄13R23 K̄

R
1 (0)

+ 1
ξ6(iπ)

N−3∑
j=2,4,...

Rj+3,j+2Rj+1,j h̄j,j+3Rj,j+1Rj+2,j+3

+ K̄R
1 (iπ) K̄R′

1 (0) + VN K̄
R
N (iπ) K̄R′

N (0)VN

+
f ′( iπ2 )
f( iπ2 )

I . (2.29)

The range of interactions again does not exceed 4 sites. We conclude that the Hamiltonian
is local.

3 Quantum group symmetry

The transfer matrix (2.15) with inhomogeneities (2.23) has the QG symmetry Uq(Bn−p)⊗
Uq(Cp), corresponding to removing the pth node from the A(2)

2n Dynkin diagram, as follows
from arguments similar to those for the homogeneous case [25].4 The “left” algebra Bn−p

4The gauge transformations for the K-matrices are now given by

˜̄KR(u,p) = B
(

u+ u0

2 ,p
)

K̄R(u,p)B
(

u+ u0

2 ,p
)

, ˜̄KL (u,p) = B
(

−u− u0

2 ,p
)

K̄L (u,p) B
(

−u− u0

2 ,p
)

,

where B(u, p) is given by eq. (3.3) in [25].

– 6 –
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(with p = 0, 1, . . . , n− 1) has generators

H
(l)
j (p) = ep+j,p+j − e2n+2−p−j,2n+2−p−j ,

E
+ (l)
j (p) = ep+j,p+j+1 + e2n+1−p−j,2n+2−p−j ,

E
− (l)
j (p) =

(
E

+ (l)
j (p)

)t
, j = 1, . . . , n− p , (3.1)

and the “right” algebra Cp (with p = 1, 2, . . . , n) has generators

H
(r)
j (p) = −ep+1−j,p+1−j + e2n+1−p+j,2n+1−p+j ,

E
+ (r)
j (p) =

ep−j,p+1−j + e2n+1−p+j,2n+2−p+j for 1 ≤ j ≤ p− 1
√

2e2n+1,1 for j = p
,

E
− (r)
j (p) =

(
E

+ (r)
j (p)

)t
, j = 1, . . . , p , (3.2)

where eij are the elementary (2n+ 1)× (2n+ 1) matrices with elements (eij)αβ = δi,αδj,β .
The coproducts for the “left” generators are given by

∆(H(l)
j ) =H

(l)
j ⊗I+I⊗H(l)

j , j= 1, . . . ,n−p,

∆(E±(l)
j ) =E

±(l)
j ⊗e(η+iπ)H(l)

j −ηH
(l)
j+1 +e−(η+iπ)H(l)

j +ηH(l)
j+1⊗E±(l)

j , j= 1, . . . ,n−p−1 ,

∆(E±(l)
n−p ) =E

±(l)
n−p⊗e

(η+iπ)H(l)
n−p+e−(η+iπ)H(l)

n−p⊗E±(l)
n−p , (3.3)

and the coproducts for the “right” generators are given by

∆(H(r)
j ) =H

(r)
j ⊗I+I⊗H(r)

j , j= 1, . . . ,p ,

∆(E±(r)
j ) =E

±(r)
j ⊗e(η+iπ)H(r)

j −ηH
(r)
j+1 +e−(η+iπ)H(r)

j +ηH(r)
j+1⊗E±(r)

j , j= 1, . . . ,p−1 ,

∆(E±(r)
p ) =E±(r)

p ⊗e2ηH(r)
p − e−2ηH(r)

p ⊗E±(r)
p . (3.4)

These expressions for the coproducts are the same as in [25] (where many further details
can also be found), except for the relative minus sign in ∆(E± (r)

p ) (3.4).
Due to the relative minus sign in ∆(E± (r)

p ) (3.4), this coproduct does not obey the
standard co-associativity property. Indeed,

(I⊗∆)∆(E± (r)
p ) = (I⊗∆)

(
E± (r)
p ⊗ e2ηH(r)

p − e−2ηH(r)
p ⊗ E± (r)

p

)
= E± (r)

p ⊗ e2η∆(H(r)
p ) − e−2ηH(r)

p ⊗∆(E± (r)
p )

= ∆(E± (r)
p )⊗ e2ηH(r)

p + e−2η∆(H(r)
p ) ⊗ E± (r)

p

6= (∆⊗ I)∆(E± (r)
p ) , (3.5)

which suggests that there is instead an underlying quasi-Hopf algebra structure [13, 34].
We define the higher coproducts for E± (r)

p recursively by

∆N (E± (r)
p ) = (I⊗∆)∆N−1(E± (r)

p )

= E± (r)
p ⊗ e2η∆N−1(H(r)

p ) − e−2ηH(r)
p ⊗∆N−1(E± (r)

p ) , N > 2 , (3.6)
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where ∆2 = ∆.
The N -fold coproducts of the “left” and “right” generators commute with the transfer

matrix (2.15), (2.23)

[
∆N (H(l)

j ) , t(u)
]

=
[
∆N (E± (l)

j ) , t(u)
]

= 0 , j = 1, . . . , n− p , p = 0, . . . , n− 1 ,[
∆N (H(r)

j ) , t(u)
]

=
[
∆N (E± (r)

j ) , t(u)
]

= 0 , j = 1, . . . , p , p = 1, . . . , n , (3.7)

for both values γ0 = ±1. At least for real values of the anisotropy parameter η, the rich
degeneracies in the spectrum of the transfer matrix are completely accounted for by its QG
symmetry, as in the homogeneous case [25].

4 Analytical Bethe ansatz

The eigenvalues of the transfer matrix (2.15), (2.23) can be determined by analytical Bethe
ansatz [35] similarly to the homogeneous case [26]; however, there are some surprises.
Indeed, let |Λ(m1,...,mn)〉 be simultaneous eigenvectors of the transfer matrix and Cartan
generators

t(u) |Λ(m1,... ,mn)〉 = Λ(m1,...,mn)(u) |Λ(m1,...,mn)〉 ,

∆N (H(l)
i (p)) |Λ(m1,...,mn)〉 = h

(l)
i |Λ

(m1,...,mn)〉 , i = 1, . . . , n− p ,

∆N (H(r)
i (p)) |Λ(m1,...,mn)〉 = h

(r)
i |Λ

(m1,...,mn)〉 , i = 1, . . . , p . (4.1)

We propose that the eigenvalues of the transfer matrix for general values of n, p and
γ0 are given by the following TQ-equation

Λ(m1,...,mn)(u) =φ(u,p)
{
A(u)z0(u)y0(u,p) [−sinh(u−4η)sinh(u−2(2n+1)η)]N

+Ã(u) z̃0(u) ỹ0(u,p) [−sinh(u)sinh(u−2(2n−1)η)]N

+
{
n−1∑
l=1

[
zl(u)yl(u,p)Bl(u)+z̃l(u) ỹl(u,p)B̃l(u)

]

+w(u)yn(u,p)Bn(u)
}

[−sinh(u)sinh(u−2(2n+1)η)]N
}
. (4.2)

The overall factor φ(u, p) is given by

φ(u, p) =
(
γeu+ iπ

2 + 1
γ + eu+ iπ

2

)(
γe−u−ρ−

iπ
2 + 1

γ + e−u−ρ−
iπ
2

)
, (4.3)

where γ is defined in (2.11). The tilde denotes crossing e.g. Ã(u) = A(−u − ρ − iπ), in

– 8 –
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view of the crossing relation (2.22). The functions A(u) and Bl(u) are defined as

A(u) = Q[1](u+ 2η)
Q[1](u− 2η)

,

Bl(u) = Q[l](u− 2(l + 2)η)
Q[l](u− 2lη)

Q[l+1](u− 2(l − 1)η)
Q[l+1](u− 2(l + 1)η)

, l = 1, . . . , n− 1 ,

Bn(u) = Q[n](u− 2(n+ 2)η)
Q[n](u− 2nη)

Q[n](u− 2(n− 1)η + iπ)
Q[n](u− 2(n+ 1)η + iπ)

, (4.4)

where the functions Q[l](u) are given by

Q[l](u) =
ml∏
j=1

sinh
(1

2
(
u− u[l]

j

))
cosh

(1
2
(
u+ u

[l]
j

))
, Q[l](−u) = Q[l](u+ iπ) ,

l = 1, . . . , n , (4.5)

whose zeros {u[l]
j } remain to be determined. The functions zl(u) and w(u) are given by

zl(u) = cosh(u) cosh(u− 2(2n+ 1)η) sinh(u− (2n− 1)η)
cosh(u− 2lη) cosh(u− 2(l + 1)η) sinh(u− (2n+ 1)η) ,

w(u) = cosh(u) cosh(u− 2(2n+ 1)η)
cosh(u− 2nη) cosh(u− 2(n+ 1)η) , (4.6)

and the functions yl(u, p) are given by

yl(u, p) =

F (u) for 0 ≤ l ≤ p− 1
G(u) for p ≤ l ≤ n

, (4.7)

where

G(u) =
cosh

(
1
2(u− (2n− 1)η + iπε)

)
cosh

(
1
2(u− (2n+ 3)η + iπε)

)
cosh

(
1
2(u− (2n− 4p− 1)η + iπε)

)
cosh

(
1
2(u− (2n+ 4p+ 3)η + iπε)

) ,
F (u) = −

sinh
(

1
2(u+ (2n− 4p− 1)η + iπε)

)
cosh

(
1
2(u− (2n− 1)η + iπε)

)
2

G(u) , (4.8)

with
ε = 1

2(1− γ0) ∈ {0, 1} . (4.9)

The Bethe equations for the zeros {u[l]
k } of the Q-functions, which we determine by requiring

that the transfer-matrix eigenvalues (4.2) have vanishing residues at the poles u = u
[l]
k +2lη,

are given bysinh
(
u

[1]
k +2η

)
sinh

(
u

[1]
k −2η

)
N Φ1,p,n(u[1]

k ) =
Q

[1]
k

(
u

[1]
k +4η

)
Q

[1]
k

(
u

[1]
k −4η

)Q[2]
(
u

[1]
k −2η

)
Q[2]

(
u

[1]
k +2η

) , k= 1, . . . ,m1 , (4.10)
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Φl,p,n(u[l]
k ) =

Q[l−1]
(
u

[l]
k −2η

)
Q[l−1]

(
u

[l]
k +2η

)Q[l]
k

(
u

[l]
k +4η

)
Q

[l]
k

(
u

[l]
k −4η

)Q[l+1]
(
u

[l]
k −2η

)
Q[l+1]

(
u

[l]
k +2η

) , k= 1, . . . ,ml ,

l= 2, . . . ,n−1 , (4.11)

Φn,p,n(u[n]
k ) =

Q[n−1]
(
u

[n]
k −2η

)
Q[n−1]

(
u

[n]
k +2η

)Q[n]
k

(
u

[n]
k +4η

)
Q

[n]
k

(
u

[n]
k −4η

)Q[n]
k

(
u

[n]
k −2η+iπ

)
Q

[n]
k

(
u

[n]
k +2η+iπ

) , k= 1, . . . ,mn ,

(4.12)

where Q[l](u) is given by (4.5), and Q
[l]
k (u) is defined by a similar product with the kth

term omitted

Q
[l]
k (u) =

ml∏
j=1,j 6=k

sinh
(1

2(u− u[l]
j )
)

cosh
(1

2(u+ u
[l]
j )
)
. (4.13)

Finally, the important factor Φl,p,n(u) appearing in the Bethe equations is given by

Φl,p,n(u) = yl(u+ 2lη, p)
yl−1(u+ 2lη, p) =


G(u+2pη)
F (u+2pη) for l = p

1 for l 6= p
,

=

sinh
(

1
2(u− δl,p[(2n− 2p− 1)η + iπδε,0])

)
sinh

(
1
2(u+ δl,p[(2n− 2p− 1)η + iπδε,1])

)
2

, (4.14)

where ε is defined in (4.9). Note that Φl,p,n(u) is different from 1 only if l = p.
The energy is given, in view of (2.24) and (4.2), by

E = d

du
log

(
Λ(m1,...,mn)(u)

) ∣∣∣
u=0

= −
m1∑
j=1

sinh(4η)
sinh(u[1]

j + 2η) sinh(u[1]
j − 2η)

− N sinh(2(2n+ 3)η)
sinh(4η) sinh(2(2n+ 1)η) + c0 , (4.15)

where
c0 = d

du
log [φ(u, p) z0(u) y0(u, p)]

∣∣∣
u=0

. (4.16)

As in the homogeneous case [26], the Dynkin labels [a(l)
1 , . . . , a

(l)
n−p] of the representa-

tions of the “left” algebra Bn−p (with p = 0, 1, . . . , n− 1) are given by

a
(l)
i = mp+i−1 − 2mp+i +mp+i+1 , i = 1, . . . , n− p− 1 .

a
(l)
n−p = 2mn−1 − 2mn , (4.17)

where m0 = N . Similarly, the Dynkin labels [a(r)
1 , . . . , a

(r)
p ] of the representations of the

“right” algebra Cp (with p = 1, 2, . . . , n) are given by

a
(r)
i = mi−1 − 2mi +mi+1 , i = 1, . . . , p− 1 ,

a(r)
p = mp−1 −mp . (4.18)
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Given the cardinalities of the Bethe roots of each type (namely, m1, . . . ,mn) for an eigen-
value Λ(m1,...,mn)(u), eqs. (4.17)–(4.18) determine the Dynkin labels of the corresponding
“left” and “right” representations, from which one can deduce (e.g., using LieART [36])
their dimensions, and therefore the eigenvalue’s degeneracy.

We have numerically verified the completeness of this Bethe ansatz solution for small
values of n and N , namely, n = 1, 2 with N = 1, 2, 3, and n = 3 with N = 1, 2, for
all p = 0, 1, . . . , n and γ0 = ±1, for some generic value of the anisotropy η, along the
lines in [32].

We emphasize that in the homogeneous case [26], the Q-functions are given by

Q[l](u) =
ml∏
j=1

sinh
(1

2
(
u− u[l]

j

))
sinh

(1
2
(
u+ u

[l]
j

))
;

but in the presence of the boundary inhomogeneity (2.23), the Q-functions are instead
given by (4.5), with a cosh instead of sinh in the second factor. Consequently, it is not just
the “left-hand-side”, but also the “right-hand-side” of the Bethe equations (4.10)–(4.12)
that is affected by the boundary inhomogeneity, contrary to the conventional wisdom that
the boundary affects only the former. Note also that, contrary to what usually happens for
open spin chains, the power appearing in the left-hand-side of the first Bethe equation (4.10)
is N instead of 2N .

5 Conclusions

We have seen that an integrable open quantum spin chain with a boundary inhomogene-
ity (2.15) can have a local Hamiltonian (2.26)–(2.29), as well as QG symmetry (3.7) that
accounts for rich degeneracies in the spectrum. The presence of a boundary inhomogeneity
affects the crossing relation (2.22), and has a profound effect on the Bethe ansatz solution,
most notably on the Q-functions (4.5).

We have focused here on a boundary inhomogeneity whose value is half the period of
the R-matrix, and with corresponding staggered bulk inhomogeneities (2.23). It may be
interesting to consider other choices of boundary and bulk inhomogeneities, especially if
they give rise to local Hamiltonians. Although we have also focused here on the infinite
family of models constructed with A(2)

2n R-matrices, we expect that similar results hold for
other models with crossing symmetry, such as those considered in [25, 26]. In the simpler
A

(1)
1 case [12], the Hamiltonian can be formulated in a beautiful compact form [14] in

terms of Temperley-Lieb (TL) operators [37]. It would be interesting if the Hamiltonians
obtained here (2.26)–(2.29) could be reformulated in a similar way in terms of some sort
of generalized TL operators, at least for the “extremal” cases p = 0, n, where the QG
symmetry is Uq(Bn), Uq(Cn), respectively. The continuum limit of the A(1)

1 model [12] is
described [14] by a non-compact CFT; it would be very interesting if a similar phenomenon
occurs for the higher-rank models introduced here.

– 11 –
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