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We report our theoretical results on spin conductivity in antiferromagnets by focusing on the role of the
magnetic toroidal quadrupole (MTQ) in electron systems. The MTQ is characterized as a time-reversal-odd
rank-2 polar tensor degree of freedom in electrons, which is distinct from conventional rank-1 magnetic and
magnetic toroidal dipoles. Based on a microscopic sd model analysis for a tetragonal system under both
collinear and noncollinear antiferromagnetic orderings, we clarify that the MTQ becomes a source of an
extrinsic spin conductivity even with neither a uniform magnetization nor spin-orbit coupling. We also list
all the magnetic point groups to accommodate the MTQs as a primary order parameter as well as the
candidate antiferromagnetic materials.

A magnetic toroidal (MT) moment, which corre-
sponds to a time-reversal-odd polar tensor, is one of
the fundamental moments as well as electric and mag-
netic moments.1–3) Especially, the dipole component
of the MT moment, i.e., the MT dipole (MTD), has
been extensively studied in both theory and experi-
ment, since it becomes a source of parity-violating phys-
ical phenomena in magnetic materials, such as the lin-
ear magnetoelectric effect,4–8) nonreciprocal directional
dichroism,9–14) nonlinear magnon spin Nernst effect,15)

and nonreciprocal magnon excitations.16–22) Although
such MTD-related phenomena were originally investi-
gated in magnetic insulators in the field of multifer-
roics, recent studies have clarified that the emergence
of the MTD in magnetic metals results in similar mul-
tiferroic phenomena,23–30) nonreciprocal transport,31–33)

spin-orbital-momentum locking,34) and nonlinear spin
Hall effect,35) which extends the scope of MTD-related
materials.36–38)

The MTD has often been described by the vector prod-
uct of the position vector ri and the classical spin Si at
site i, whose expression is given by1,2, 39,40)

T =
gµB

2

∑
i

ri × Si, (1)

where g and µB represent the g factor and the Bohr
magneton, respectively. Hereafter, we omit g and µB

in the expression. From Eq. (1), the MTD emerges un-
der a vortex spin configuration, as shown in Fig. 1(a),
whose spatial inversion (P) and time-reversal (T ) pari-
ties are odd owing to Pri = −ri and T Si = −Si; the
MTD is distinct from the magnetic dipole characterizing
a time-reversal-odd axial vector quantity like spin. The
MTD manifests itself in various descriptions based on
the quantum mechanical-operator expressions:41,42) the
orbital hybridization43,44) and bond current.45–47)

The concept of the MTD moment is extended to
higher-rank MT moments, which are referred to as MT
multipoles39–41,48) or hyper-toroidal moments.49) Such
higher-rank MT multipoles are described by a nonuni-

Fig. 1. (Color online) (a,b) Schematic pictures of the magnetic
toroidal dipole (MTD) Tz (a) and quadrupole (MTQ) Tv (b), where

the green and pink arrows represent spin and MTD moments, re-

spectively.

form spatial distribution of the MTD. For example, the
expressions of the higher-rank MT multipoles for a mag-
netic cluster with Si are given by using the spherical
harmonics Ylm(r̂) as50–53)

Tlm = cl
∑
i

(ri × Si) ·∇i

[
rliY
∗
lm(r̂i)

]
, (2)

where l and m represent the azimuthal quantum num-
ber and magnetic quantum number (−l ≤ m ≤ l), and
cl is the numerical coefficient. Since the spatial parity
of Ylm(r̂i) is given by (−1)l, that of Tlm depends on
the rank; the even(odd)-rank MT multipole is invariant
(variant) under the P operation. Thus, physical prop-
erties under even-rank MT multipoles are qualitatively
different from those under odd-rank MT multipoles like
MTD. Nevertheless, an even-rank MT system has been
less studied compared to an odd-rank one, since its char-
acteristic features have been masked owing to the ab-
sence of uniform vector quantity.

In this Letter, we investigate the nature of the even-
rank MT multipoles in the antiferromagnetic (AFM) sys-
tems in order to explore the possibility of exhibiting in-
triguing physical phenomena even without the uniform
magnetic dipole (axial-vector quantity) and MTD (polar-
vector quantity). By focusing on the l = 2 component of
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the MT multipole, i.e., the MT quadrupole (MTQ), in
AFMs, we find that the emergence of the MTQ causes
spin conductive phenomena. The mechanism does not
rely on atomic spin-orbit coupling (SOC). This is qualita-
tively different from that in the noncentrosymmetric non-
magnetic systems, where the antisymmetric SOC plays
an important role. Although the present mechanism is
closely related to the previous findings in the SOC-free
AFMs with the spin-split band structure,54–60) we show
that the nonzero spin conductivity survives even with-
out the spin-split band structure. We demonstrate it by
exemplifying both the collinear and noncollinear AFM
orderings in the tetragonal system. Moreover, we list all
the magnetic point groups (MPGs) with the MTQs but
without the magnetic dipole in addition to the candidate
materials. Our results open up a new direction of AFMs
as a spin current generator based on the MTQ, which
stimulates further exploration of the functional materi-
als applicable to spintronics.

Let us start by showing the cluster-multipole expres-
sion of the MTQ in AFMs, which is obtained as the l = 2
component in Eq. (2):

Tu =
∑
i

(2zit
z
i − xitxi − yit

y
i ), (3)

Tv =
√

3
∑
i

(xit
x
i − yit

y
i ), (4)

(Tyz, Tzx, Txy) = [
√

3
∑
i

(yit
z
i + zit

y
i ), (cyclic)], (5)

where ti = ri×Si. The MTQ is described by the spatial
distribution of the local MTD ti, as schematically plot-
ted in the case of Tv [Eq. (4)] in Fig. 1(b). All the MTQs
have even P parity but odd T parity. Although such a
transformation regarding P and T is common to that of
the magnetic dipole (uniform magnetization), the trans-
formation regarding other point group operations, such
as the mirror and rotational operations, is different ow-
ing to the different rank of multipoles.61,62) In terms of
the representation theory, the MTQs can belong to the
different irreducible representations from the magnetic
dipoles under an MPG. We find 22 MPGs with the fi-
nite MTQ but without the magnetic dipole, as discussed
below (see Table I), where pure MTQ-related physical
phenomena are expected.

The expressions in Eqs. (3)–(5) also give a relationship
between the MTQ and the AFM spin configuration. To
demonstrate that, we here consider an eight-sublattice
rectangular solid, as shown in Fig. 2(a). When suppos-
ing that the basal plane is square, the eight-sublattice
system belongs to the MPG 4/mmm1′. By performing
the multipole expansion for the magnetic cluster based
on the virtual atomic cluster method,52) one finds that
five out of twenty-four AFM spin configurations pos-
sess nonzero MTQ moments and belong to the differ-
ent irreducible representation from the magnetic dipole;
the five irreducible representations are represented as
A−1g ⊕ 2B−1g ⊕ 2B−2g (the superscript stands for the time-
reversal parity). Here, the irreducible representations of
A−1g, B

−
1g, and B−2g correspond to nonzero Tu, Tv, and

Txy, respectively.
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Fig. 2. (Color online) (a) Collienar and (b) noncollinear spin

configurations with the MTQ Tv in the rectangular solid consist-
ing of the eight sublattices A–H. The red, blue, and green arrows

on each sublattice represent spin moments with the positive, neg-

ative, and zero Szi , respectively, while the pink arrows in each face
of the rectangular solid stand for the MTD. (c) The schematic pic-

ture of an eight-sublattice tetragonal system under the 4/mmm1′

symmetry.

Among them, we examine two AFM orderings with Tv
as examples, which are characterized by the collinear and
noncollinear spin configurations, as shown in Figs. 2(a)
and 2(b), respectively. In the noncollinar spin config-
uration in Fig. 2(b), each spin points along the 〈110〉
direction. In both AFM cases, the system reduces to
4′/mmm′. Although one obtains nonzero Tv for these
AFM spin configurations by evaluating Eq. (4), its ap-
pearance is intuitively understood from the spatial distri-
bution of the MTD in each plaquette; the Tv-type distri-
bution appears as shown by the pink arrows in Figs. 2(a)
and 2(b), which well corresponds to the distribution in
Fig. 1(b).

Next, we consider the lattice system consisting of the
eight-sublattice unit cell, as shown in Fig. 2(c). The sd
model Hamiltonian is given by

H = −
∑
ijσ

tijc
†
iσcjσ −

∑
iσσ′

hi · c†iσσσσ′ciσ′ , (6)

where c†iσ (ciσ) is the creation (annihilation) operator
for site i and spin σ =↑, ↓. The Hamiltonian consists
of the hopping term with the five hopping parameters
(t, t′, tz, t

′
z, txy) in Fig. 2(c) and the AFM mean-field term

to induce the spin configurations in Figs. 2(a) and 2(b).
For example, we set hA = (0, 0, h) for the collinear spin
configuration in Fig. 2(a) and hA = (−h,−h, 0) for non-
collinear one in Fig. 2(b). In the following, we set t = 1 as
the energy unit and set t′ = 0.5, tz = 0.6, and t′z = 0.3.
We take the equal lattice constants for both x and z
directions for simplicity.

We briefly discuss the stabilization mechanisms of the
spin configurations, i.e., the origin of hi, in Figs. 2(a)
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Fig. 3. (Color online) (a,b) ne dependence of σ
z(s)
xy for h = 0.2

and h = 2 at (a) txy = 0 and (b) txy = 0.2 in the collinear AFM

in Fig. 2(a). The inset of (a) [(b)] represents the isoenergy surfaces
at kz = 0 and µ = −3.95 (µ = −2.8) in the first Brillouin zone,

where µ represents the chemical potential; the red and blue colors

in (b) stand for the up- and down-spin polarization, respectively.

(c,d) τ−1 dependence of σ
z(s)
xy with fixed ne = 0.2 for h = 0.2 and

h = 2 at (c) txy = 0 and (d) txy = 0.2.

and 2(b). One of the mechanisms is the direct exchange
interaction between the neighboring spins; the ferromag-
netic (AFM) Heisenberg interaction along the z (x and
y) directions favors the collinear spin configuration in
Fig. 2(a), while the ferromagnetic (AFM) Heisenberg in-
teraction along the x and y (z) directions in addition to
the AFM interaction along the 〈110〉 direction can lead
to the noncollinear spin configuration in Fig. 2(b).63) An-
other mechanism is based on the effective magnetic in-
teraction in itienrant magnets;64) the instability toward
the spin configurations in Figs. 2(a) and 2(b) has been
discussed in the double exchange model and the periodic
Anderson model in the limit of the square (t = t′ and
tz = t′z = txy = 0)65–67) and cubic (t = t′ = tz = t′z
and txy = 0)67–70) lattices. In addition to these factors,
although the SOC might play a role in determining the
spin directions, we neglect it in order to examine the
behavior driven by the magnetic phase transition.

As the MTQ is characterized by the rank-2 polar ten-
sor, its emergence leads to various physical phenom-
ena, such as the linear magneto-elastic effect and the
nonlinear magnetoelectric effect.41,62) Among them, we

focus on the spin-conductivity tensor σ
η(s)
µν in J

η(s)
ν =∑

µ σ
η(s)
µν Eµ,61) which has often been refereed to as the

magnetic spin Hall effect;71–76) J
η(s)
ν = Jνση represents

the spin current with the spin ση and Eµ represents the

electric field for µ, ν, η = x, y, z. We compute σ
η(s)
µν by

evaluating the J
η(s)
ν -Jµ correlation function based on the

Kubo formula following Ref. 76 with the scattering rate
τ−1 = 10−2 and the temperature T = 10−2, unless oth-
erwise mentioned. The summation of the wave vector k
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Fig. 4. (Color online) (a) ne dependences of (a) σ
x(s)
yz and σ

x(s)
zy

and (b) σ
z(s)
xy and σ

z(s)
yx for h = 0.2 and h = 2 at txy = 0 in the

noncollinear AFM in Fig. 2(b).

is taken over 1203 grid points in the first Brillouin zone.

Nonzero components of σ
η(s)
µν in the 4′/mmm′ symmetry

under the AFM orderings are given by σ
x(s)
yz , σ

x(s)
zy , σ

y(s)
zx ,

σ
y(s)
xz , σ

z(s)
xy , and σ

z(s)
yx .

We first discuss the result for the collinear AFM in
Fig. 2(a). Owing to the absence of the SOC, only the z

component of σ
η(s)
µν becomes nonzero, i.e., σ

x(s)
yz = σ

x(s)
zy =

σ
y(s)
zx = σ

y(s)
xz = 0. Figures 3(a) and 3(b) show the filling

(ne =
∑
iσ〈c

†
iσciσ〉/8) dependence of σ

z(s)
xy for h = 0.2 and

h = 2 at (a) txy = 0 and (b) txy = 0.2. Both results in

Figs. 3(a) and 3(b) indicate that nonzero σ
z(s)
xy is obtained

for small h = 0.2 and large h = 2 unless the system
becomes insulating at ne = 1. Moreover, we confirm that
only the symmetric component of the spin conductivity,

i.e., σ
z(s)
xy = σ

z(s)
yx , appears, which is expected from the

symmetry analysis in the presence of Tv.
61)

Meanwhile, one finds that the magnitudes of σ
z(s)
xy in

Figs. 3(a) and 3(b) are substantially different from each
other; the values with txy = 0.2 is much larger than
those with txy = 0 by the order of 103. Their difference

is understood from the different mechanisms of σ
z(s)
xy that

originates from the electronic band structures; the sys-
tem with txy 6= 0 exhibits the spin-split band structure
in the form of kxkyσz [inset of Fig. 3(b)], while that with
txy = 0 does not [inset of Fig. 3(a)].54,55,77,78) The ab-
sence of the spin splitting with txy = 0 is attributed to
the fact that there are no microscopic degrees of free-
dom in the hopping term to couple to the AFM mean
fields.55) Since the spin splitting as kxkyσz indicates the
direct coupling between the spin current Jyσz ∼ kyσz
(Jxσz ∼ kxσz) and input field Ex (Ey) that flows the

electric current in metals Jx ∼ kx (Jy ∼ ky), σ
z(s)
xy is

largely enhanced for txy 6= 0. In fact, the intraband pro-
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cess is dominant for txy 6= 0 [Fig. 3(b)], while only the
interband one is present for txy = 0 [Fig. 3(a)]. Such

a difference is found in the τ−1 dependence of σ
z(s)
xy in

Figs. 3(c) and 3(d); the case for txy = 0 (txy 6= 0) is
proportional to τ−1 (τ), which means that the interband
(intraband) process is dominant.

To further examine the difference in Figs. 3(a) and 3(b)
from the viewpoint of the model-parameter dependence,

we expand σ
z(s)
xy as a polynomial form of products of the

Hamiltonian matrix at wave vector k, H(k), and the ve-
locity operator, vk = ∂H(k)/∂k, based on the procedure
in Ref. 79. As a result, the lowest-order contribution to

σ
z(s)
xy is given by ht2xy for txy 6= 0, while that is given by
h(t2 − t′2)2 for txy = 0. This indicates that the compli-
cated hopping path in real space is necessary in the case

of txy = 0, which tends to suppress σ
z(s)
xy .

Next, we discuss the spin conductivity for the non-
collinear AFM in Fig. 2(b). In the noncollinear AFM, all

the components allowed from the symmetry (σ
x(s)
yz , σ

x(s)
zy ,

σ
y(s)
zx , σ

y(s)
xz , σ

z(s)
xy , and σ

z(s)
yx ) become nonzero. We show

the behaviors of σ
x(s)
yz and σ

x(s)
zy in Fig. 4(a) and those

of σ
z(s)
xy and σ

z(s)
yx in Fig. 4(b) against ne for h = 0.2

and h = 2 at txy = 0. We omit the results of σ
y(s)
zx and

σ
y(s)
xz , as they are related to σ

x(s)
zy and σ

x(s)
yz owing to the

4′ symmetry. In contrast to the collinear AFM case, as
shown in Fig. 4(a), there is an antisymmetric component

between σ
x(s)
zy and σ

x(s)
yz , i.e., σ

x(s)
zy − σ

x(s)
yz 6= 0, which

is attributed to the noncollinear structure; y-spin com-

ponent contributes to the difference between σ
x(s)
zy and

σ
x(s)
yz . Both σ

x(s)
yz and σ

x(s)
zy show similar behavior to that

in Fig. 3(a), where only the interband process contributes
to the spin conductivity; the diagonal hopping in the xz
and yz plane like between sublattices A and H is neces-
sary to enhance the spin conductivity through the intra-
band contribution owing to the spin-split band structure.

For σ
x(s)
yz and σ

x(s)
zy , the lowest-order essential model pa-

rameter dependence is given by h(t2 − t′2)(t2z − t′2z ).
Another differece from the collinear AFM is found in

σ
z(s)
xy and σ

z(s)
yx , as shown in Figs. 3(a) and 4(b). In the

noncollinear AFM, the out-of-plane z-spin component of
the spin conductivity also becomes nonzero, as pointed
out in the previous studies.72,73) In the present non-
collinear AFM structure, we obtain the antisymmetric

spin conductivity to satisfy σ
z(s)
xy = −σz(s)yx , as shown in

Fig. 4(b). However, it is noted that the mechanism of

σ
z(s)
xy and σ

z(s)
yx is different from that depending on τ−1

or τ in Figs. 3(c) and 3(d); σ
z(s)
xy and σ

z(s)
yx does not show

the τ dependence. In other words, the intrinsic interband
process like the spin Hall effect in the nonmagnetic sys-
tems with the SOC80,81) and longitudinal spin conduc-
tivity in the systems with the electric toroidal dipole82)

is dominant for σ
z(s)
xy and σ

z(s)
yx , where the vector chiral-

ity degree of freedom in the plaquette ACBD or EGFH
plays a similar role to the SOC. Thus, this component is
regarded as a secondary effect owing to the effective SOC
under the noncollinear spin configuration rather than the
MTQ-driven effect. The necessity of the noncollinear spin
configuration is verified in the parameter expansion of

Table I. List of magnetic point groups (MPGs) to possess the
MTQ as a primary order parameter in both centrosymmetric

(P :©) and noncentrosymmetric (P : ×) magnetic systems. Mul-

tipoles in the column “Other” represent the MT monopole (T0)

and magnetic octupoles (Mxyz , M3b, and Mβ
z ) that contributes

to the spin conductivity tensor. The candidate materials are also
shown in the rightmost column.

P MTQ Other Material

4/mmm, 6/mmm © Tu T0 CdYb2(S,Se)4
84)

422, 4̄2m, 4mm × Ho2Ge2O7
85)

622, 6̄m2, 6mm CuFeS2
86)

mmm © Tu, Tv T0,Mxyz MnTe87)

222,mm2 × ErGe1.83
88)

3̄m © Tu T0,M3b CoF3
89)

32, 3m × Ba3MnNb2O9
90)

4′/mmm′ © Tv Mxyz CoF2
91)

4′22′, 4̄′2m′ × Ce4Sb3
92)

4̄′m2′, 4′mm′

4′/m © Tv,
Txy

Mxyz,
Mβ
z

4′, 4̄′ × CsCoF4
93)

σ
z(s)
xy ; the essential model parameters are proportional to
h2 as given by h2(t2 − t′2)2.83)

So far, we have shown that the AFM with the MTQ
in the 4′/mmm′ system in Fig. 2(c) exhibits the charac-
teristic spin conductivity. We discuss the possible mag-
netic systems from the symmetry viewpoint to stimulate
experimental findings of the MTQ-related phenomena.
Among all 122 types of MPGs, the MTQ becomes active
for 42 MPGs.62) Furthermore, for 22 out of 42 MPGs, the
MTQ is regarded as a primary order parameter, as the
lower-rank magnetic dipole is not activated. We list these
22 MPGs accompanying the MTQs in Table I, where the
information about the P symmetry, other activated mul-
tipoles contributing to the spin conductivity (T0 repre-
sents the MT monopole and Mxyz, M3b, and Mβ

z rep-
resent the magnetic octupoles),61,62) and candidate ma-
terials reported in MAGNDATA94) are also shown. As
these 22 MPG systems are not affected by the magnetic-
dipole-related phenomena, one can expect pure MTQ-
related phenomena.

To summarize, we have investigated the MTQ, which
corresponds to the time-reversal-odd rank-2 polar tensor
degree of freedom, accompanied by the AFM spin con-
figuration. By analyzing the sd model in the presence of
the AFM mean fields under the 4′/mmm′ symmetry, we
found that both collinear and noncollinear AFMs exhibit
spin conductivity with the dissipation once the MTQ is
activated. We have shown two types of mechanisms for
spin conductivity: One arises from the interband process
without the spin-split band structure, while the other
arises from the intraband process induced by the spin-
split band structure. We provided all the MPGs to pos-
sess the MTQ but without the magnetic dipole in order
to stimulate exploration of MTQ-related physics.
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