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We report on the full control of the optical radiation pressure at fixed photon flux and incident angle by

the photon spin. This is done by using transparent chiral liquid crystal droplets that enable a strong

coupling between the linear and angular degrees of freedom of a light field. From these results, we

anticipate optical sorting of particles with different chirality as well as novel optical trapping and

micromanipulation strategies.
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Optical radiation forces are the mechanical manifesta-

tion of the transfer of the linear momentum of light to

matter, which basically occurs when light is reflected,

refracted, scattered, or absorbed in the course of its propa-

gation [1]. In particular, the discontinuity of the dielectric

permittivity at the interface between two transparent,

homogeneous, and dielectric media leads to optical radia-

tion pressure that enables the displacement of solids [2,3]

or the deformation of fluid interfaces [4]. Here we report on

the full control of the optical radiation pressure at fixed

photon flux and incident angle by the photon spin. This is

done by using transparent chiral liquid crystal droplets that

enable a strong coupling between linear and angular

degrees of freedom of light.

Chirality refers to the lack of mirror symmetry. A system

whose mirror images cannot be superimposed by rotations

and translations in space is said to be chiral. A basic

example is our two hands, just like the Greek etymology

(kheir) recalls. Quite naturally, two mirror images of a

chiral entity are referred to as right- and left-handed ver-

sions of it. This concept holds for light as well, whose

polarization handedness is said to be right or left depending

on the sense of rotation of the electric field. Under appro-

priate conditions, the propagation of one of the two circular

polarization states through a chiral optically anisotropic

material may even be forbidden for a well-defined range of

frequencies. A helical arrangement of the optical axis

indeed combines dielectric periodic structuration, which

leads to a Bragg photonic band gap, with chirality, which

brings circular polarization sensitivity. A famous example

is the circular Bragg reflection phenomenon in cholesteric

liquid crystals [5], which we use here to experimentally

demonstrate how mechanical effects driven by the radia-

tion pressure of light can be fully controlled by the spin

of photons. The principle of our experiment is sketched in

Fig. 1.

The cholesteric mesophase refers to a chiral nematic

state where the director n (a unit vector that defines the

local averaged molecular orientation, n and �n being

equivalent) twists in a well-defined direction with a helical

pitch p that is the distance over which n rotates by 2�, see
upper sketch in Fig. 2(a). A planar cholesteric film having

its helical axis along the normal to the film behaves as a

perfect mirror for a normally incident collimated light

beam with wavelength �0 inside the polarization photonic

band gap, �� < �0 < �þ, centered on �B, see Fig. 2(a),

and Bragg circular polarization state referred to as �B.

In contrast, the orthogonally polarized beam referred to

as anti-Bragg and labeled �AB is transmitted through the

film up to Fresnel reflection. At fixed incident wavelength

�0, circular Bragg reflection thus occurs over a range of

incidence angle around the normal incidence. This angular

range for the external incidence angle is labeled 2�B;ext, as
illustrated in Fig. 1(b) in the case of a cholesteric droplet.

That is to say, one can consider that total reflection occurs

for the �B polarization state when the external incidence

angle satisfies �ext < �B;ext ¼ arcsin½ðn=nextÞ sin�B�. In the
latter expression, n ¼ ðnk þ n?Þ=2 is the average refrac-

tive index of the cholesteric with nk;? the refractive indices

parallel and perpendicular to n, and next (next < n in this

work) is the refractive index of the medium in which the

FIG. 1 (color online). (a) A radial cholesteric droplet of radius

R and average refractive index n is immersed in a fluid with

refractive index next. The droplet is illuminated by on-axis

circularly polarized Gaussian beam with waist w0 � R (in

practice 10<w0=R < 80), vacuum wavelength �0, wave vector

k, and electric field E�, where � ¼ �1 refers to left- and right-

handed circular polarization states. (b) Illustration of the optical

radiation force FB that results from the circular Bragg reflection

phenomenon for the appropriate incident circular polarization

state �B, for which the droplet behaves as a perfect mirror over

an apex angle 2�B;ext.
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cholesteric is immersed. In addition, accounting from

�B ¼ np and �þ � �� ¼ pðnk � n?Þ [6], one can show

that �B ¼ arccosð�0=�þÞ, at least in the limit of small �B.
A spherical cholesteric droplet with radial distribution of

the helical axis, as sketched in Fig. 2(b), can therefore be

considered as a spherical Bragg mirror with a total reflec-

tion cross-section area normalized to the geometrical cross-

section area being equal to sin2�B;ext for �B-polarized

light and to zero for �AB-polarized light. This allows us

to consider vivid experimental demonstration of spin-

dependent optical radiation pressure by using free-floating

droplets, as sketched in Fig. 1.

In our experiments, the cholesteric is right handed with

pitch p ¼ 347 nm (MDA-02-3211 from Merck) and nk ¼
1:7013 and n? ¼ 1:5064 at 589.3 nm wavelength and

temperature 20 �C. From the transmission spectrum of a

uniformly aligned film shown in Fig. 2(a), we measure the

intrinsic Bragg angle �B ¼ 25:1� at �0 ¼ 532 nm. This is

verified in situ for cholesteric droplets dispersed in glyc-

erol, which ensures parallel anchoring of the director at

cholesteric-glycerol interface, hence, a radial distribution

of the helical axis for p � R where R is the droplet radius

[7,8]. For this purpose, we measure the radius RB of the

total reflection cross-section area under �B-polarized light

at �0 ¼ 532 nm, as a function of R, see Fig. 2(b) [9]. Since
RB ¼ R sin�B;ext, we obtain �B ¼ 25:8� from the best

linear fit, in good agreement with the spectroscopic

characterization.

In the first set of experiments, we follow the sketch

shown in Fig. 1(a) and use spherical radial cholesteric

droplets prepared by mechanical stirring at room

temperature of a small amount of cholesteric into an iso-

density 25.2 wt% aqueous glycerol solution whose refrac-

tive index is 1.365 at 589.3 nm wavelength at 20 �C [10]

and dynamic viscosity � ¼ 2 mPa s [11]. This choice

indeed eases observation of on-axis light-induced droplet

displacement. Typical results are summarized in Fig. 3.

Without laser illumination, the droplet is at rest. When the

laser is turned on, the droplet almost immediately moves

along the beam propagation direction with constant veloc-

ity. Partial control of the light-induced motion is obtained

by setting the photon spin. The Bragg droplet velocity

vB is indeed a few times larger than the anti-Bragg one,

vAB. Noteworthy, the radial structure of the droplet is

unaltered during its displacement, as demonstrated by

the optical transmission image sequences at the early,

FIG. 2 (color online). (a) Unpolarized transmission spectrum

of a right-handed cholesteric film with pitch p and uniform

alignment of helical axis along the normal to the film. The

gray area refers to the spectral range of polarization selective

Bragg photonic band gap �� < �< �þ with central wavelength

�B. (b) In situ characterization of the reflecting cross-section

area of spherical radial cholesteric droplets. Data show the radius

RB of the zero-transmission area observed under uniform illumi-

nation at �0 ¼ 532 nm and Bragg incident circular polarization

state �B as a function of the droplet radius R. Solid line is the

best linear fit.

FIG. 3 (color online). One-beam experiment. (a) Droplet

velocity dynamics as a function of reduced time � ¼
ðt� tonÞ=ðtoff � tonÞ for Bragg (vB, solid curves) and anti-

Bragg (vAB, dashed curves) laser beam illumination conditions,

where ton and toff refer to switch on and off times of the laser

beam, respectively. Different curves refer to independent experi-

ments performed at power P ¼ 970 mW, waist w0 ¼ 505 �m,

and the droplet radius R ¼ 28:4 �m. (b), (c), (d) Direct trans-

mission snapshots of the droplet at times � ¼ 0, 0.5, and 1 for the
Bragg case. White arrow on panel (b) indicates the characteristic

radial defect of the droplet. (e), (f), (g) Same as panels (b), (c),

(d) for crossed polarizers transmission through the droplet,

where the orientation of the polarizers is indicated on panel

(g). Scale bar is 30 �m.
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intermediate, and final stages of its laser-induced motion in

the Bragg case, see Figs. 3(b)–3(d) (direct images) and

Figs. 3(e)–3(g) (crossed polarized images). A character-

istic radial defect [7,8] is observed in the former case, see

white arrow in Fig. 3(b), whereas the unchanged dark cross

pattern indicates radially symmetric optical anisotropy in

the latter case [8].

Such partial spin-controlled optomechanical effect in

the one-beam experiment is actually explained by consid-

ering unavoidable axisymmetric angular redistribution of

the optical linear momentum flux away from the propaga-

tion direction as the incident beam is refracted by the

droplet, thereby leading to a net force directed along the

z axis. This interpretation is quantitatively tested by mea-

suring the ratio vAB=vB for various R, see square symbols

in Fig. 4, and comparing it to the theoretical value pre-

dicted by the model described hereafter.

Rigorous treatment of light propagation in cholesteric

films is not an easy task, though literature is available on

this topic [12]. Nevertheless, this can be done numerically

[13]. It becomes even trickier when considering droplets. In

particular, scattering of light by a chiral particle is an issue

that has started to be addressed only recently [14,15].

Moreover, Maxwell stress tensor formalism for inhomoge-

neous, chiral, and anisotropic optical media should be

included as well as possible light-induced deformation of

the shape of the droplet [16]. However, a simple but accu-

rate physical picture of the problem can be handled from

the following assumptions. (i) Since p � R and p� �, we
describe light scattering in a ray-optics approach. (ii) Since

R � w0, the incident beam with power P is considered

as a plane wave with intensity I0 ¼ 2P=ð�w2
0Þ. (iii) Since

the optical radiation pressure (�R) is much smaller than the

Laplace pressure (�L), we neglect droplet deformation.

Indeed �R�P=ðw2
0cÞ�10�2 Pa��L��=R�103 Pa,

with c the speed of light in vacuum, � the surface tension

of the interface between cholesteric and host fluid, and

typical radius R ¼ 10 �m. (iv) Since the circular polariza-

tion photonic band gap has relatively sharp edges, see

Fig. 2(a), a radial cholesteric droplet is considered as a

perfectly reflecting mirror for incident angles � < �B;ext in
the Bragg case and otherwise as a usual dielectric sphere of

refractive index n (i.e., when �B;ext < �< �=2 in the Bragg
case and 0< �< �=2 in the anti-Bragg case). (v) Within

the ray-optics description, the net force exerted on the

cholesteric droplet is evaluated by calculating the net

change of linear momentum of the light field as it interacts

with the droplet. For this purpose, we attribute the

Minkowski linear momentum @k per photon pointing along
each geometrical ray, where k is the wave number in the

considered medium, and @ is the reduced Planck’s constant.

Such a procedure has indeed been validated experimentally

[17,18] and demonstrated theoretically [19] for the prob-

lem of optical radiation pressure exerted on a mirror

immersed in a dielectric fluid. (vi) Since the contribution

of absorption of the droplet to the absolute relative change

of the optical linear momentum along z over the droplet

cross-section area (referred to as 	) is much smaller than

the contribution produced by reflection and refraction, we

consider the cholesteric as a transparent dielectric. Indeed

	abs � 
dropletR� 10�4 � 	refl;refr � 10�1 with typical

absorption coefficient 
droplet & 10 m�1 and radius R ¼

10 �m. (vii) Since light-induced bulk flow that results

from the light absorption by the host fluid itself is typically

2 orders of magnitude smaller than observed droplet veloc-

ities in single-beam experiments, we consider the host fluid

at rest. Indeed vfluid � 
fluidP=ð�cÞ, see section 1.2.1 in

Ref. [20] where 
fluid is the host fluid absorption coeffi-

cient. This gives vfluid � 0:1 �ms�1 W�1 with 
fluid ¼
0:035 m�1 at 25 �C and 532 nm wavelength, which is the

one of water [21]. Note that in two-beam experiments,

absorption-induced bulk flow formally vanishes since the

two beams are counterpropagating, coaxial, and have equal

powers.

Following the above-mentioned assumptions, the pro-

jection along the beam propagation direction z of the

elementary optical force exerted by a single beam on

the surface element dS ¼ R2 sin�d�d�, � and � being

the polar and azimuthal angles in the spherical coordinate

system centered on the droplet, is (see, for instance,

Ref. [22])

dFjð�;�Þ ¼ fjð�Þnext
I0
c
cos�dSð�;�Þ; (1)

with j ¼ ðAB; BÞ and

fjð�Þ ¼ 1þRjð�Þ cos2�

�T 2
j ð�Þ

cos�out þRjð�Þ cos2�

1þ 2Rjð�Þ cos2�int þR2
j ð�Þ

;

whereRj and T j ¼ 1�Rj are the reflectance and trans-

mittance of the droplet interface, and �out ¼ 2ð�� �intÞ

FIG. 4 (color online). Two-beam experiment. Experimental

droplet velocity ratio vAB=vB and vABþAB=vBþAB are plotted

as a function of droplet radius R in one- and two-beam experi-

ments, respectively. Total power of each beam is P ¼ 780 mW.

Dashed lines refer to mean values whereas gray areas correspond

to standard deviation ranges.
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with �int ¼ arcsin½ðnext=nÞ sin��. Following the above-

mentioned assumption (iv), RABð�Þ¼ ½Rkð�Þþ
R?ð�Þ�=2 for all �, where Rkð�Þ¼ ½tanð���intÞ=tanð�þ
�intÞ�

2 and R?ð�Þ¼ ½sinð���intÞ=sinð�þ�intÞ�
2 are the

reflectances of plane waves polarized parallel and perpen-

dicular to the incidence plane [23]. On the other hand,

RBð0<�<�B;extÞ¼1 and RBð�B;ext<�<�=2Þ¼
RABð�Þ.

In the one-beam situation, the integration of Eq. (1) over

the hemisphere gives the net force Fj. Then, in the limit of

small Reynolds number as is the present case, the steady

state droplet velocity vj is estimated from the balance

between the viscous force of magnitude 6��Rvj exerted

by the surrounding fluid on the moving droplet and the

optical force Fj. The expression for the viscous force

accounts for the fact that the viscosity of the surrounding

fluid is much smaller than the effective viscosity of the

cholesteric droplet, see [24]. We obtain

vj ¼ Fj=ð6��RÞ; (2)

from which we can readily derive the ratio vAB=vB. As

shown in Fig. 4, we find the experimental value vAB=vB ¼
0:38� 0:075. From our model, by using �B;ext as the only
adjustable parameter, we obtain an effective Bragg angle

�B ¼ 15:3�ðþ3:1�=� 2:3�Þ. This value is smaller than the

ones measured from spectroscopic [Fig. 1(a)] and direct

imaging [Fig. 1(b)] measurements. However, this is

actually expected recalling that our model assumes perfect

Bragg reflection over the effective Bragg angular band gap.

We thus conclude to a fair description of our observations,

thereby validating that (i) the physical picture is properly

grasped, and (ii) the scattering of light by the droplet

prevents full control of the optical radiation pressure by

the photon spin.

In the second set of experiments, we overcome the

above-mentioned fundamental limitation by using two

coaxial, collimated, circularly polarized, and counterpro-

pagating beams with equal powers and waists, one being

either �B or �AB polarized whereas the other is �AB

polarized. When both beams are �AB polarized, the indi-

vidual contributions of the two beams to the total optical

scattering force indeed perfectly cancel each other. A non-

zero net force is exerted on the droplet otherwise. That is to

say, vABþAB ¼ 0 and vBþAB � 0 are expected, the former

case being confirmed experimentally whatever the droplet

radius, see diamond symbols in Fig. 4. We indeed measure

vABþAB=vBþAB ¼ �0:0083� 0:055, hence, achieving full
control of the optical radiation pressure exerted on a micro-

scopic object by a mere change of the photon spin.

The dependence on P and R of the droplet velocity in

the ‘‘Bragg or anti-Bragg’’ case is shown in Fig. 5.

In this figure, the inverse of the characteristic time of the

droplet motion vBþAB=R is shown as a function of total

power P of one beam for various droplets. To confront

these observations with our model, we use Eq. (2) with

FBþAB ¼ FB � FAB and FABþAB ¼ 0 as the total force

exerted on the droplet in the ‘‘Bragg and anti-Bragg’’

and ‘‘anti-Bragg and anti-Bragg’’ cases, respectively.

Since the refractive index contrast between the droplet

and the host fluid is moderate, n=next ¼ 1:17, and that

�B;ext � 20�–30�, the Fresnel contributions to FBþAB can

be approximated (up to a few percent) assumingRAB ! 0
and �out ! 0. This leads to

vBþAB

R
¼

next
3��w2

0c
ð1� cos4�B;extÞP: (3)

Following Eq. (3), the best linear fit using �B;ext as the only
adjustable parameter (see dashed line in Fig. 5) gives �B ¼
21:5�ðþ1:9�=� 1:9�Þ. As emphasized by Eq. (3), a quan-

titative analysis in the two-beam experiments is more

difficult than in the one-beam case since the fitting proce-

dure involves additional parameters, namely, � and w0.

The beam waist is measured from direct imaging whereas

the viscosity is taken from tabulated data (� ¼ 2 mPa s)
without measuring it for our actual aqueous glycerol solu-

tion. This could explain the difference of ’ 6� between the

values of �B obtained from one-beam and two-beam

experiments. We conclude that our model gives an overall

satisfying description of observations in the two-beam

experiments as well.

We have presented a quantitative experimental study

demonstrating that optical radiation pressure can be fully

controlled by the spin angular momentum of light, at fixed

photon flux and incidence angle, in contrast to existing

optical micromanipulation techniques, though we noticed

that optical tweezers endowed with spin-controlled optical

FIG. 5 (color online). The ratio vBþAB=R is plotted as a

function of total beam power P of one beam for various values

of the droplet radius R. Dashed curve refers to the best linear fit

from Eq. (3). Inset: solid line is the theoretical ratio vBþAB=ðRPÞ
vs �B;ext whereas the dashed line and gray area refer to the mean

value and the standard deviation range of vBþAB=ðRPÞ, respec-
tively. This allows us to deduce the precision of �B, see vertical
dotted lines.
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gradient forces have been recently reported using choles-

teric droplets [25]. A straightforward anticipated applica-

tion is the development of chiral optical sorting, which

would bring enhanced functionality to optical chromatog-

raphy [26]. This allows us to envision applications for the

pharmaceutical industry related to the ability to sort mate-

rials with different chiralities. Nanoactuation driven by

optical radiation pressure [27] is another topic that may

benefit from such a polarization control, as discussed in the

few dedicated theoretical studies reported so far [14,28].

Finally, at a larger spatial scale, our findings emphasized

the spin angular momentum of light as a novel ingredient

to drive solar sails [29].

We are grateful to N. Katsonis for providing the choles-

teric material and its spectroscopic characterization.
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