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Zemach and Glauber's approximation for the nuclear spin correlation effect on the slow 
neutron scattering by polyatomic gas is studied carefully with particular reference to methane. 
lt is shown that the partial differential incoherent scattering cross ~ection based on the 
above approximation deviates appreciably from the exact one at low temperature. It is 
pointed out that the mentioned deviation comes principally from an incorrect treatment of 
the transition amplitude connected with F-states of methane with failure of the condition 
of detailed balance. 

§ I. Introduction 

Following the correlation function formalism by Zemach and Glauber (ZG)/l 
many theoretical studies have been done on the scattering of slow neutrons by 
gas composed of polyatomic molecules.2l Among , them several approximate 
theories treated the rotational transitions semi-classically.8l· 4l The other theories 
took into account the discrete nature of rotational levels.6J,aJ However, the rela
tion of them to the semi-classical treatment was not clear. In a previous paper7l 
Hama and Nakamura have obtained exactly an analytical expression for the 
rotational correlation function for a free spherical rotor. Basing the theory on 
this exact correlation function, they have shown that the effective mass theory of 
Sachs and Teller8l in Krieger and Nelkin's formalism8l ca'n be derived as a 
limiting case of short time for the free spherical rotor. 

However, these are the uncorrelated theories in which the correlation between 
the nuclear spin system and the rotational one through statistics of identical 
nuclei is neglected. This correlation effect was taken into account for spherical 
and symmetric top molecules by Sinha and V enkatarama~ (SV).9l However, 
their treatment was based on ZG's approximation/l which will be described below. 

Now, the partial differential incoherent scattering cross section is given by 

(d 26/d!Jdw);ncoh= (2rc)-1 (k/ko) f_00

00
dte-i"'t[C2/s(s+1)] ~ x••', (1·1) 

x••' =(exp(iiC·r.(t))s.·s.,exp( -iiC·r.,(O))), (1·2) 

if the incident neutron beams are unpolarized. Here we assume the molecule 
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Spin Correlation Effect on the Slow Neutron Scattering 1143 

to contain only one kind of identical nuclei. C is the incoherent scattering length 

of the identical nuclei, r. the position vector of the v-th nucleus, s. the v-th 

nuclear spin with spin quantum number s and IC = k- k0• hw and hiC are the 

energy- and momentum-transfers to the scattered neutrons respectively. 

ZG take into account the correlation between different nuclear spins on the 

average. If one replaces s. · s., in Eq. (1· 2) by its average (s. · s.,), this average, 

being independent of spin pairs, gives ZG's spin correlation term Z (I): 

Z(I) = (s.· s.,) 

s(s+ 1) 

I(I -t 1)-ns(s+ 1) 

s(s+1)n(n-1) 
(v=Fv') (1·3) 

where n is the number of identical nuclei in a molecule and I the total spin 

quantum number. If the number of spin multiplets appearing in the intermediate 

states with the same energy is appropriately large, the above approximation seems 

to be valid. Other~ise it is open to question. We note here that the spacial 

part of the total state> does correlate strongly with the spin part of it through 

statistics of nuclei. No careful study. on the approximate nature of the ZG 

decoupling procedure has been done. It is the aim of this paper to elucidate 

this point with particular reference to methane. 

In § 2 we give the symmetrized spin-rotational wave functions of a tetrahedral 

hydrogenic molecule whence we calculate in § 3 the matrix elements of transi

tion between rotational levels. The spincrotational part of the intermediate scat

tering function is treated in § 4 and the relation of our exact theory to ZG- and 

the uncorrelated approximations is described in § 5. The differential scattering 

cross section of methane gas is computed and compared with those in ZG- and 

uncorrelated approximations for several cases in § 6. 

§ 2. Symmetrized spin-rotational waye functions 

Throughout our study the electronic and vibrational states of the molecule 

are assumed to be iri the ground state; an assumption relevant to the scattering 

of slow neutrons. We shall, for a moment, leave them out of our consideration. 

Though the methane molecule is of Ta symmetry, it is sufficient to confine 

ourselves to T group. This is equivalent to the alternating group of four let

ters, i.e., the group of even permutations on them, which is relevant to the proper 

rotation. There are four irreducible representations A, F, E1 and E, with 

respective dimension equal to 1, 3, 1 and 1 in the considered group. The repre

sentations E 1 and E 2 appearing as a pair are the complex conjugate representa

tion to each other. 

The spin wave functions are shown m Table I, in agreement with Anderson 

and Ramsey's tabulation10l except for E symmetry. As is shown in Table I, the 

totaL spin pertaining to the representation A, F and E are respectively I= 2, 1 

and 0. 
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1144 J. Hama and H. Miyagi 

Table I. Symmetrized spin wave functions ¢ 8 (rq; IM) of the four proton system. 

r I q M 1/Js (rq;JM) 

A 2 2 aaaa 

1 L9aaa + a{Jaa+ aa{Ja+aaa{J] /2 
. 0 [aafJfJ+fJfJaa+a{J{Ja+{JaafJ+a/3afJ+fJa{Ja]/ v6 
-1 [afJPP+PaPP+PfJaP+PPfJa]/2 
-2 aaaa 

F 1 1 [({1aaa-aaa.B)- (a.Baa-aa.Ba)]/2 
1 0 [.Ba.Ba-a.Ba.B] /v2 

-1 [ (aPfJ.B-.BfJ.Ba)- (.Ba.B.B-.B.Ba.B) ]/2 

1 [ (a{Jaa+aa.Ba)- (.Baaa+aaap) ]/2 
2 0 [a.BPa-.Baa.B]/ v2 

-1 [ (fJ.BfJa + a.BfJfJ) - (.Ba.B.B + .BPaP)] /2 

1 [ (.Baaa-aaa.B) + (a.Baa-aa.Ba) ]/2 
3 0 [fJ.Baa-aa.B.B]/ v2 

-1 [(a.B.BP-.B.B.Ba) + (PaP.B-.B.Bap)]/2 

E1 0 0 [(a.B.Ba+.Baa.B) +e(a.BafJ+.Ba.Ba) +e2(aa.B.B+.B.Baa)]/ v6 
E2 0 0 [ (a.BfJa+.BaafJ) +e2 (a.BafJ+fJa.Ba) +e(aaPP+P.Baa)]/ v6 

Next, the construction of the symmetrized rotational wave functions of the 
tetrahedral molecule has been discussed by various authors.11l-18l These functions 
are written formally. 

(2·1) 

where G is an element of our alternating group, ·representing the proper rota
tion, and N the normalization constant. We note here that 11 on the left side 
of the above expression depends on k in the starting function .¢/;{lc, the wave func
tion of spherical rotor, which is expressed in terms of the element of rotation 
matrix14l 

(2·2) 

Here (a{3r) is a set of Euler angles of the body-fixed coordinates, O~r;t;., relative 
to the space-coordinates system, where the coordinates system is taken as illustrat
ed in Fig. 1. In Eq. (2 ·1) the coefficient a~~l (G) is an element of tlie representa
tion matrix r, which is obtained by observing the transformation properties of 
symmetrized spin wave functions. The independent functions can be generated 
with a fixed r:. The results are as follows: For F=A, 

r/J~) (A/1) = (NJt))-112 :E [O'n2p + ( -1)ib'n-2p + {1 + ( -Jt} { ( -1)" +in} JWilJ rp~~, 
n 

(2·3} 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

0
/4

/1
1
4
2
/1

8
2
1
6
5
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Spin Correlation Effect on the Slow Neutron Scattering 1145 

'1 

Fig. 1. Coordinates system 0~'1/t: fixed in the molecule. 

where NJ.£l 1s the normalization constant and 

J~~,=fD~~,(O, n/2, 0). (2· 4)' 

We note here that the suffix k/in the starting function must be an even integer. 

Then we put k=2fl.. For T=F, 

cj;~fl (Ffl.1) = (Nj-11)-112( -lY' L: [1- ( -1)"]J}!i~'¢~~, 
n 

¢;!l (Ffl.2) = (Nj.l))- 112 L: i" [1- ( -1)"] L1~ 1 i~'¢~~ , 

" 
¢;!> (Ffl.3) = (Nj.l))- 112 L: [8n2.a- ( -1)'8n-2.aJ ¢~~, 

" 
Nj.l) = 2[1- ( -1)'8.aoJ. (2·5) 

We can easily show the orthogonality among ¢~1l (T fl.rJ) with different fl.. For 

T=E, 

¢V/(Eifl.) = (N11))-112 L: [8n2,a+( -1)'8,.,--2.a+ {1+ ( -1)"} {c( -1Y'+c 2 i"}J}!i~']¢~~, 
n 

(2·6) 

Here ¢;!> (E2fl.) is given by Eq. (2 · 6) with replacement of c = ei2"18 by c* = e-£2"18• 

In the above functions, ¢~ 1 l (TjJ.rJ) with negative fl. differs only by a phase factor 

from that with positive fl., as is proved with the help of A~~'= ( -1)m-m' Ll~J. -m' 

and A~~'= ( -1)'-m A~~m'· Hence we take fl. to be non-negative. The number 

of triplets F contained in the. manifold with given j proves to be j/2 for even j 

and (j + 1) /2 for odd j, owing to the mentioned orthogonality. The numbers of 

the other T contained in the same manifold are obtained from the group theo

retical results,l5>' 16l where one gets fl. in the _independent function cf;~Jl (T fl.) as 

follows. 

Xlo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 0 1 0 1 0 1 0 1 0 1 

1 2 1 1 2 1 2 

2 3 
(2·7) 

A 

0 0 1 0 1 0 1 0 1 0 1 0 1 

E 1 1 2 1 2 1 2 

2 
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1146 J. Hama and H. Miyagi 

We note here that the symmetry A is splitted into A 1 and A 2 under the 
group Ta. The function (2 · 3) with even f1 is of the A1-symmetry while that 
with odd f1 is of the other symmetry. The orthogonality between two functions 
with respective symmetries A 1 and A 2 can be easily seen from Eq. (2 · 3). The 
non-orthogonal functions appear .first at j=8 for T=E and at j=12 for T=A, 
where we take the well-known orthogonalization procedure. 

Finally the totally symmetric wave function is written 

dr 

1Jf(T /1; jm; IM) = dr- 112 ""£ ¢~ 1 l (T f1G) ¢. (T*G; IM), (2·8) 
~=1 

where T* lS the complex conjugate representation to r and dr the dimension 
of r. 

§ 3. Matrix element 

Before going into the intermediate scattering function, the matrix elements 
relevant to its evaluation will be given separately for the ' spin and rotational 
parts. 

(a) Spi'n part Let sq. be the q-th component of the v-th proton spin as defin
ed by 

(3·1) 

Let us now consider the following operator: 

(3·2) 

with c., given by 

~))I .. ~, 1 2 3 4 

0 1 1 1 1 

1 1 -1 1 -1 (3·3) 

2 -1 1 1 -1 

3 1 1 -1 -1 

which satisfies 

E Cv.-Cv'r=40vJ.I'' ""£ cJ),.cJ),.,=4a ... ,. (3·4) 
r v 

We can show that 1/'l with q = 0, ± 1 constitute a set of tensor operators for 
each 7:. According to the Wigner-Eckart theorem we have 

(T' (f' ; ]' M' I Jq (r) I TG; JM) 

= (-1f'-M'(_~: 1 
q (3·5) 
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Spin Correlation Effect on the Slow Neutron Scattering 1147 

in terms of the Wigner 3j-symbol, where the double-bar matrix element can be 

obtained from evaluation of a particular matrix element. It is easily proved that 

1/'l with r = 0 is of A-symmetry and that 1/'l with r = 1, 2 and 3 constitute the 

bases of F-symmetry, (Fl), (F2) and (F3). Thus we replace r by (To'). 

With the above labeling the non-vanishing double-bar matrix elements in Eq. 

(3·5) are given by 

<T'~'; I'liJ<-"liiT~; I)= [1(1+ 1) (21+ l)J121Jrr'IJaa'IJ1I', 

<F~'; liiJCFa'JIIA; 2) = ../lOIJa'a', 

<F~'; liiJCFa'JIIF~; 1) = v'6e~'a'a, 

<F~'; liiJCFa'JIIE,; 0) =- 2e•a'tJa,a•, 

(3·6) 

where ea'a'a is the usual antisymmetric unit tensor with rank 3*l and e•a' =ei2"'a'f3, 

(b) Rotational Part We describe here the matrix element of a tensor operator 

T m <IJ (T tt~) defined by 

T m (!) (T tt~) = [81N (2l + l)J12¢m <IJ (T tt~), (3 · 7) 

where ¢m <IJ (T tt~) is the symmetrized rotational wave function given m § 2. By 

the same procedure as Eq. (3 · 5) was obtained, we have14l 

<r1/-l1~1; j1m1ITm< 1 l(Tp~)IT2/-l2~2; j2m2) 

=(-l)ft-m•( j 1 l j 2 )<r1/-l1~1;j1IIT< 1 l(TM)IIT2/f.2~2; i2). (3·8) 
-m1 m mz 

The above double-bar matrix elements are calculated as follows: 

<F1-t1~1; j111T(!l(F,M)11Ftta~2; iz)= (e'IJ,aa,)"'•+~'+~'•+lp, 

P = -8 [ (2j1 + 1) (2j2 + 1) ] 1 1 2 (N~~·; NJ)~N~~·!)- 1 1 2 

X (-1)"+"•"' ,;>.. A(J.) .A(!) ( jl l j2) 
~ • -"2t<1 2t<2+A-"2p A 2 1 1 ' 

. A: odd - /-l2- ll ll 2p2 

(Fp1~1; iiiiT(!l(Ftt~)IIE.tt2; J2)=e'aiJa,aq ,, 

q = 2 [ (2j1 + 1) (2jz + 1) ]!12 (N~~·! NJ)~Ni~·;)- 1 1 2 

(3· 9a) 

(3·9b) 

(3 ·lOa) 

x(-l)'•L;{tJ),.l-C-lYtJ>..-1}[( il l i2)+C-l)'·( il z )2) 
.!= ±1 - 2tt1 2A.tt 2tt2 - 2tt1 2A.tt - 2p2 

(3 ·lOb) 

<Fttl~l; itiiT(!l(Ftt~)IIAtt2; J2)=1Ja,aq' (3·11) 

where q' is given by q of Eq. (3 ·lOb) with Ni';; and e replaced by Nl~!l and 

1 respectively. 

*> e12s=ezs1=esu=l, e182=esz1=e213=-l and otherwise zero. 
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1148 J. Hama and H. Miyagi 

For T=A, <Tt!-lll't; jtliT<1>(A!-l)IIT2/-l2li2; js) vanishes unless T1=T2 and lit=li2, 
whose expression is rather lengthy and may be omitted here. 

§ 4. Intermediate scattering function 

We assume that the intermediate scattering function x••' defined by Eq. (1· 2) 
can be separated into the translational, vibrational and spin-rotational parts: 

J.IJJ' vv' vv" ·VJ.I' 

X = Xtr XvibXspin-rot_, (4·1) 

where X~~, is well known1l and x~~ reduces to the De bye-Waller factor exp (- tc2r .. ,) 
for the cold neutron scattering.8l The r •• :s are the same for all pairs of protons 
including the J) = v' case,3l which is denoted by r p• ' 

Now we look into x~~n-rot· Considering x~' and X~~ to be independent of v 
and v', we have 

I:; X~~n-rot= I:; <exp(ite·b.(t))s.·s., exp( -ite·b.,(O))). (4·2) 
vv' vv' 

If we expand exp (ite ·b.) in terms of the spherical Bessel function j! and the 
Legendre polynomial with reference to the body-fixed system, Eq. ( 4 · 2) becomes 

(4·3) 

(4·4) 

Here b. is the position vector of the v-th proton relative to the mass center, ' 
whose magnitude is denoted by b. G&~ is given by 

(4·5) 

where ((}., ¢.) are the polar angle coordinates of the v-th proton with respect to 
the coordinates system O~rjt;, illustrated in Fig. 1 and Y1m ((}, ¢) a spherical 
harmonic function. 

Now G&~ must be invariant under even permutation of protons. The requir
ed form is 

G~~ = I:; fq(Fa)gm (!) (Tli), (4·6) 
ra 

gm (!) (Tli) = I:; b,Yl (T) Tm <!J (T!-lli), (4·7) 

" 
where Tm<1l(T!-lli) is defined by Eq. (3·7) and the expansion coefficients b,Y>(T} 
are tabulated in Table II up to l=6. We note that the terms with T=E do 
not appear. We also note that b,Y> (T) is_ independent of li because of the in
variance property of G&~ mentioned above. 

If we use Eqs. (3 · 5) and (3 · 8), the matrix elements of G~~ with respect 
to the totally symmetric wave function (2 · 8) is written 
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Spin Correlation Effect on the Slow Neutron Scattering 1149 

Table II. Expansion coefficients b}.'> (F). 

b}.'> (A) b}.'> (F) 

0 o.o 0 

1 0 
1 

v3o.o 

2 0 
i 

- .vs0•1 

3 . .v50 2 
-z-3- •1 -3v3°• 0 

4 .v1 .2v50 
-3vs0•0 -z 9 •1 

5 0 
1 .vss 

-6v3 o.o- 6vs0•2 

6 4v20 9 .o 
. .vss 0 + . v11 0 
'6v6 •1 '1s.vs .s 

(4·8) 

where 

<r1fl.1; j1l1ll G<z> IIT:/1.2; j2I2> 

= (dr,dr,)- 112 ~ ~ (T1rJ1; ~.IIJ<rct>iiT:rJ2; Ir, > 
CT10'1 Fd 

.. 

x <r1P.1rJ1; j111g<Z> (TrJ) IIT2tM2; j:> (4·9) 

with 

<r1fl.1rJ1; j111g<z> (TrJ) IIT2P.:rJ 2; j2> 

= ~b~> (!) (r) (T1P.1rJ1; j1IIT<z> (r p.rJ) IIT2P.arJ:; j2>· (4·10) 

" 
Substituting Eq. ( 4 · 8) into Eq. ( 4 · 4) and using the well-known orthogonality 

relation of 3j-symbol,l'> we have 

(4·11) 

(4·12) 

where /3= 1/kiJT, e1=Bj(j+ 1) with rotational constant B and Z is the partition 

function 

(4·13) 

Here Ir=2, 1 and 0 respectively for T=A, F and E, and nr<J> Is the number of 
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1150 J. Hama and H. Miyagi 

representation r contained in the manifold with the same rotational quantum 

number j. 

If we use Eq. ( 4 · 6) with Eqs. (3 · 6), (3 · 9a), (3 ·lOa) and (3 ·11), Eq. C4 ·12) 

is written as 

x H<n (T!/.t!j!; T2/l.da) H<r'l (T1/l.dl; Ta/l.aj2)* , 

H<rl (T!/l.!jl; T2/1.2ja) = (dr,dr,)- 112 'E 
(J 1(1(1. ' 

{4·14) 

(4·14a) 

In the above expression, the double-bar matrix element of h<1l (T(J) is to be 

identified with that of g(!l(T(J) unless T 1=T=F and T 2=E or T 1=E and T=T2 
=F. If r~=T=F, T2=E, 

<F /1.1(J 1; j1IW1l (F(J) IIE./1.2; 'ia) = s-"' <Ffl,i(J~; jlllg<ll (F(J) IIE./1.2; j2) . ( 4 ·15) 

The coefficients !Jr,r, (T, T') are given on the first line of Table III. 

Table III. Non-vanishing values for the coefficients !Jr,r,(F,r'). 

!Jrr(A, A) I .QFA I .QAF I .QFE I .QEF I .QF~ I !J:n I .QFF 
(F, F) (F, F) . (F, F) (F, F) (F, F) (A,~F) (F, A) 

Exact lrClr+1) (2Ir+1) 10 10 4 4 6 6 6 

ZG lrClr+1) (2lr+1) 10/3 10 10/3 4 5 0 0 

Uncorrel. 3dr 3 3 3 3 9/2 0 0 

We finally introduce 'fiYl (T(J) by the following: The double-bar matrix 

element of h <t) (T(J) is identical to that of h <t) (T(J) unless T1 = r = T 2 =F. If 

r~=T=T2=F, 

<Ffl.!(J!; j1llh<1l (F(J) liFfl.a{J2; j2) 

=e~,~~. 'E b/1l(F)<Ffl.ll; j~IIT(!l(Ffl.2)11Ffl.23; jl). (4·16) 

" 
The above quantity, 'h<1l (T(J), will be used in § 5. 

§ 5. ZG· and uncorrelated approximations 

(a) ZG-approximation According to ZG, the intermediate scattering function 

is written 

'Ex:~n-rot=s(s+l) 'E {Z(Ir) "E<f •. ,(t))r+[l-Z(Ir)] "E<f •• (t))r}, (5·1) 
vP' r vv' 11 

where f .. , (t) = exp [ite ·b. (t)] exp [- ite ·b., (0)1 and Z (I) is the ZG correlation 

factor defined by Eq. (1· 3). And < )r means a contribution from the states 

with representation r to the average: 
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<f>r=Z-1 :E <TiralfiTlra)e-flea, (5·2) 
a 

where a represents a set .of quantum numbers (JL; j, m; M). By the same 

procedure as was taken in the preceding section, Eq. (5 ·1) is written in the 

form (4·3), where ft(t) is now given by 

with 

ft(t) =s(s+l) :E {Z(Ir) :E <g}!~(t)-g}!~;(O))r 
· mr ~ 

+ [1-Z(Ir)] :E <g}!!(t)g}!~*(O))r} 
v 

g}!~ = [ 4n/ (2l + 1) )112 :E fD}!),., (a(3r) Y1~m' (8., ¢.). 
m' 

Comparison of Eq. (5 · 4) with Eq. ( 4 · 5) leads to 

GCI> = "'g<l>s 
qm "'-.! mv qJI • 

v 

(5·3) 

(5·4) 

(5·5) 

Substituting Eq. (3 · 2) into Eq. ( 4 · 6) and comparing the resulting expression 

with Eq. (5 · 5), we have 

(I)_ "' (I) g,..- .t....J Cv,ragm, ra , (5·6) 
ra . 

where a suffix r in Eq. (3 · 2) is replaced by (T6) and gg: ra=g,. CL> (T6). 

If we substitute the above expression into Eq. (5 · 3) and use Eqs. (3 · 3) and 

(3 · 4), / 1 (t) becomes 

ft(t) =4s(s+ 1) :E {4Z(Ir)<gg:A(t)g}!:~(O))r 
mr 

(5·7) 

where the sum inside the brace runs over T' =A and F. 
In accordance with SV's tre~tment, we replace the above average by the 

average over the totally symmetric states, while the intermediate states are taken 

to be the symmetrized rotational states. The resulting expression can be writ

ten in the form ( 4 ·11), where / 1 (j1 ; j 2) is given by Eq. ( 4 ·14) with h<L> (T6) 

= l/Y> (T6) and with different coefficients t2r,r, (T, T') shown on the second line 

of Table III. The approximation h(l> (T6) = liY> (T6) violates the selection rule 

for transitions T1=T=T2 =,F, which states that H<F>(F!Ldl; Fp2j2) should vanish 

identically if tt1 + tt + JL2 is an even integer according to Eq. (3 · 9a). 

As is seen in Table· III, the microscopic reversibility breaks down in ZG's 

approximation. Therefore the condition of detailed balance cannot be valid in 

this approximation. In Table IV, we explicitly compare the exact values of 

I<T1JL1 ; j 1l 1[[G(l>[[T2tt2 ; j 212)[ 2 with those of SV, which is based on the ZG ap

proximation, for the pa:r:ticular case l = 1. 

(b) [Jncorrelated approximation In this approximation, we have 
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1152 J. Hama and H. Miyagi. 

Table IV. Comparison of the exact values of J(r1.al;jd11lG<llJjr2.a2 ;jJ:!)J2 with those based 
on the ZG approximation. In the second column, the states are designated by (r .a). A, 
E and F in the third column refers to the initial state. 

il~h Exact 
I 

ZG 

0~1 (AO)~(FO) 10 
I 

A 10' 

1~0 (FO)~(AO) 10 F 10/3 

1 (FO)~(FO) 0 F 10 

2 (FO)~(EO) 

1 ~}2o (Fl) 
F 50/3 

2~1 (Fl)~(FO) 12 F 10 

(EO)~(FO) 8 E 8 

2 CFl)~(Fl) 

40/~}40/3 (EO) 
F. 50/3 

(EO)~(F1) 40/3 E 40/3 

3 (F1)~(A1) 

50~! (FO) ~ 74/3 F 70/3 

(F1) 

(EO)~(FO) 
12} 

(Fl) 20/3 56/3 E 56/3 

L: x~~n-rot = s(s+ 1) L: <J •• (t))' (5·8) 
vv' " 

in place of Eq. (5·1), where the average is to be taken over the unsymmetriz
ed rotational states. Now the symmetrized- and unsymmetrized-rotational states 

are transformed to each other through a unitary transformation. Owing to the 

invariance of diagonal sum in the unitary transformation, the above expression 

leads to Eq. (5 ·1) without the ZG factor Z Clr ), where < )r is to be regarded 

as a contribution from the symmetrized rotational states with representation r 
to the average. 

By the same procedure as ~as taken before, / 1 (t) in the uncorrelated ap

proximation is written in the form (5 · 7) without 

the ZG factor, where the average is to be taken z;z• 

over the symmetrized rotational states. Thus fz (t) 

in the approximation concerned can be written in 

the form(4·11), in which/1(j1 ;j2) is given by Eq. 

( 4 ·14) with h<1l (T6) = hYl (T6) and with different 

coefficients !Jr,r, (T, T') shown on the third line of 

Table III. However, one should note that the parti

tion function Z' in the considered approximation is 

to be given by 

(5·9) 

4.0 

2.0 

4/3 

0.0 

0 10 

Fig. 2. Z/Z' versus kBT/B C8 
=7.545K). 
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Spirz Correlation Effect on the Slow Neutron Scattering 1153 

in place of Eq. (4·13): It is more relevant to compare t2r,r,(T,T')Z/Z' with 

t2r,r, (T, T') in the other theories. In Fig. 2, we plot Z/Z' as a function of 

temperature. One should also note that the condition of detailed balance is valid 

in the uncorrelated approximation. 

§ 6. Differential scattering cross section 

The ineoherent part of the partial differential cross section 1s written 

00 

X (2rcM{3'/JCY1' I:; (21+ 1) Vt(Jeb)}'Z-1 L;J(j1; j,)exp( -{3s1,) 

!=0 '"' 

(6·1) 

which is computed for methane gas for the following three cases. 

The first case is the one taken up by SV,9> i.e., the scattering of 25 me V 

neutrons with scattering angle 10° by a hypothetical methane gas at 10 K. The 

results are shown in Fig. 3, in 

which the results based on ZG's 

formula and those on the un

correlated theory of Gri:ffing6> 

are also shown. Notice a con

siderable deviation of ZG spectra 

from the exact ones at the side 

of high energy; a result due to 

failure of the condition of de

tailed balance. 

Secondly the computations 

are done for the case when the 

incident neutron energy is 4.6 

me V with scattering angle 20° 

at temperature, 293 K, which 

corresponds to one of Webb's 

2.0 

0.0 

19 

T = 10 K 

E= 25 meV 

e = 10' 

21 

-exact 

--- Zemach-G!auber 

··· ·· uncorrela ted 

23 ' 25 meV 

Fig. 3. Partial differential incoherent scattering cross 

section of a hypothetical methane gas at lOK 

with the incident neutron energy 25 meV and the 

scattering angle w·. 

experimental conditions.17> The resulting inelastic spectra are shown in Fig. 4, 

where contributions to the total spectra from the incoherent scattering with 

given l and those from the coherent. scattering are separately shown in the same 

figure. In the present result the terms up to jh i2 = 15 have been taken into 

account. The corresponding result in the ZG approximation is almost com

pletely in agreement with the present result. As was mentioned by SV,9l the 

spin correlation effect is negligibly small at high temperature. This is manifest

ed by comparing the above result with the exa,ct one based on the uncorrelated 

assumption/> which is given' also in Fig. 4. 
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N 

0 

X 

TE 
u 

"' 5.0 ~ 

"-----.. 
T 
'0 

~ 

"' 1ii 
c: 
.0 

0.0 

J. Hama and _H. Miyagi 

T = 293 K 

E = 4.6 meV 

1Zemach--Giauber 

1 uncorrelated 

e= 2o' 

. .. 
... 

. . 
•.. . . 

· coh. • 

.. ·:·. ·~·::. :.:.1~·.·~·~ •. 
500 1000 p sec m-1 

Inverse velocity 

Fig. 4 

1.0 T = 100 K 

E = 4.6 meV 

N~ e = 20' 

X I= 1 

'E 

0:5 ~ 
"-

' •, 

~ 
c: 
.0 

-F: exact 

······ F: Zemach-Giauber 

sao· 1000 

Inverse velocity 

Fig. 5 

Fig. 4. Partial differential scattering cross section of methane gas at 293K with the incident neutron 
energy 4.6meV and the scattering angle 20·. The contributions to the total spectra from the 
incoherent scattering with given l ahd those from the coherent scattering are designated re
spectively by dotted and dot-broken lines. 

Fig. 5. Scattering spectra with l=1 at lOOK with the incident energy 4.6meV and the scattering angle 
zo·. A, F and E represent symmetries of the initial states of transitions. 

The third case is the one with the same incident energy and scattering angle 

as in the second case but at the lower temperature 100 K. For this case the 
total spectra come out almost from l = 0, 1 and 2 terms. The scattering spectra 

for l = 1 are compared with those based on the ZG approximation in Fig. 5, where 
A, F and E refer to symmetries of the initial states of transitions. For A and 
E symmetries the ZG approximation gives a result identical to the exact one, 

while a small but appreciable deviation occurs for the transitions from F-states. 
We may conclude that the ZG approximation becomes worse at lower tempe

rature. The deviation comes from the transitions related to F-states. This ap

proximation may be serious in applying it to the scattering by molecules in 
condensed states at low temperature, wh,ich may be subjected to the crystalline 
and/or molecular fields due to surrounding molecules.18h 19> 

We finally compare our theoretical results with Webb's measurements17> as 
shown in Fig. 4.*> In this figure, we observe an appreciable difference to exist 
between the theoretical and experimental ones. There may· be two possible 
reasons for the mentioned deviation. First, the effect of multiple scattering might 

*> In Fig. 1 of Ref. 17), which has also been reproduced in the standard text,22> the curve 
related to SV's approximation deviates appreciably from the measured data at the side of high 
energy transfer, in .contradistinction with our corresponding one shown in Fig. 4 .. The discrepancy 
is supposed to come from an insufficient account of the contributions from higher values of land/or 
h and h- We note that SV's result has proved to be almost identical with the one in the uncor
related approximation, which must approach Krieger and ·Nelkin'-s result at the side of high energy 
transfer as has been proved in the previous paper.7> 
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still be effective, though Webb's sample was so thin.20' Secondly, the C-H distance 

in a molecule is not perfectly rigid due to the zero-point motion of atoms. This 

effect has partly been taken into account in the form of the De bye-Waller factor. 

However, the most accurate theoretical calculation21' shows that the .mean value 

of the proton distance, <r), in hydrogen molecule is about 2% larger than the 

same distance estimated from another average <r~ 2 ). The difference may be 

more considerable in methane. If it is the case, {j2 (!Cb) }2 with higher l will be 

more effective in comparison with the rigid-molecule approximation. A preliminary 

calculation shows that the above effect is in the right direction, though an as

sumed C-H distance larger than its current value by 5% is not sufficient to get 

a satisfactory agreement. 
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