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We investigate spin conductance in zigzag graphene nanoribbons and propose a spin injection

mechanism based only on graphitic nanostructures. We find that nanoribbons with atomically straight,

symmetric edges show zero spin conductance but nonzero spin Hall conductance. Only nanoribbons with

asymmetrically shaped edges give rise to a finite spin conductance and can be used for spin injection into

graphene. Furthermore, nanoribbons with rough edges exhibit mesoscopic spin conductance fluctuations

with a universal value of rmsGs � 0:4e=4�.
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After their experimental discovery in 2004 [1], mono-

layers of graphite have attracted much experimental and

theoretical attention owing to their unusual band structure

[2]. Graphene has also been suggested as a good candidate

for spin-based quantum computing and spintronics [3], as

it is expected to have long spin decoherence or relaxation

times [4]. This prospect led to the recent interest in gen-

erating and manipulating net spin distributions in gra-

phene. Recently, spin injection from ferromagnetic metal

contacts into graphene has been achieved [5–8].

Transport properties of graphene nanoribbons (GNRs)

are expected to depend strongly on whether they have an

armchair or zigzag edge [9]. In GNRs with zigzag edges,

transport is dominated by edge states which have been

observed in scanning tunneling microscopy [10]. More-

over, owing to their high degeneracy, these states are ex-

pected to be spin-polarized [11], making zigzag GNRs

attractive for spintronics [12]. In addition, edge states are

expected to occur also in nanoribbons with other edge

orientations [13]. Recently, the first transport experiments

have been performed in narrow ribbons of graphene [14],

albeit with not well defined edges. Recent theoretical work

focused on charge transport through rough GNRs [15], but

spin transport properties have not been explored yet.

In the present work, we focus on spin transport in GNRs

with rough zigzag edges. Ideal zigzag GNRs are not effi-

cient spin injectors due to the symmetry between the edges

with opposite magnetization. In order to obtain net spin

injection, this symmetry must be broken. Existing pro-

posals to achieve this require very large transverse electric

fields [12]. We sidestep this difficulty by showing that edge

imperfections (such as vacancies), which usually cannot be

avoided experimentally, break the symmetry between the

edges and lead to a finite spin conductance of the GNR.

Thus, rough zigzag GNRs can be used as spin injectors or

detectors in graphene spintronics.

We start with a description of the electronic ground state

properties of the zigzag GNR, which captures the essential

physics relevant to spin transport, given by the single band

tight-binding Hamiltonian [11]

 H �
X

ij;s

tijc
y
i;scj;s �

X

i;s;s0
mi � cyi;s�s;s0ci;s0 : (1)

Here tij � t if i and j are nearest neighbors, tij � t0 if i and

j are next nearest neighbors [16], and � are the Pauli

matrices corresponding to the spin degree of freedom.

The local magnetization mi can be obtained from the

self-consistency condition or ab initio calculations.

Our ab initio results, obtained by using the spin-

polarized density functional formalism (DFT) [17], agree

with the reported finding [11,12,18] that the local magne-

tization is staggered in the electronic ground state, as

shown in Fig. 1(a). At zero doping, the antiferromagnetic

(AF) ordering generates a gap in the single-particle spec-

trum. We now dope the GNR in order to move into a

regime with open conduction channels. This can be

achieved in practice by applying a gate voltage or chemical

doping. Our DFT results indicate that a finite amount of

doping reduces the AF gap and the local magnetization but

does not destroy the AF ordering. We obtain the critical

value of this doping as � 0:5 electrons ( � 0:4 holes) per

zigzag edge atom. Furthermore, our DFT calculations

show that not only perfect but also rough zigzag ribbons

exhibit spin polarization [Fig. 1(b)]. In addition, the for-

mation of multiple spin domains at zigzag edges is ener-
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FIG. 1 (color online). Ground state spin density for (a) an ideal

and (b) an imperfect zigzag GNR. Blue (red) corresponds to up

(down) spin density. (c) Band structures of an ideal GNR

obtained from DFT and tight-binding approaches.
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getically prohibitive. In summary, our DFT calculations

show that it is possible (i) to dope the GNR to make them

conductive and (ii) to introduce disorder at the edges while

retaining the magnetic ordering.

Next, we further simplify the mean field description of

Eq. (1) by ignoring the variation of mi within a sublattice.

A spatial dependence of mi changes the amount of band

dispersion, modifying the energy window within which the

transport predominantly involves the edge states. This

leads to the single-particle Hamiltonian

 Hmf � ��k��1 � ��k��2 � A�k�I �m � ��3; (2)

where ��k�, ��k�, and A�k� are obtained by Fourier trans-

forming Eq. (1) and �i are the Pauli matrices corresponding

to pseudospin (sublattice) degrees of freedom [19]. The AF

exchange field m is obtained by fitting the band structure to

DFT results [see Fig. 1(c)].

In the following, we focus on transport properties of the

GNR. We work in the linear response regime so that all of

the transport properties of the GNR are specified by the

effective single-particle Hamiltonian (2). The spin conduc-

tance [20] of a GNR is given by Gs � �e=4���T" � T#�,
where T"�#� is the transmission probability for spin up

(down). The conducting channels with energies closest to

the Fermi energy of the undoped system reside on a single

sublattice and are fully spin-polarized owing to the stag-

gered magnetization. These states are extended along the

ribbon axis but localized near the (zigzag) edges, with the

spin up channel localized at one edge and the down chan-

nel on the opposite edge. The transverse localization length

of these states depends on their Fermi momentum kF that

may be modified by shifting the Fermi energy EF. As one

moves away from the X point, the transverse localization

length increases as �edge � �a= ln�2 cos�kFa=2�	, where

a � 2:46 �A is the hexagonal lattice constant [11]. Owing

to the spatial separation of the edge states, the scattering of

spin up and spin down carriers occurs only at the edge,

where they reside, and is unaffected by the opposite edge.

Distinguishing a left (l) and a right (r) edge of the nano-

ribbon, we approximate T"�#� by Tl�r�, where Tl�r� is the

transmission probability of the corresponding edge state,

assuming that the opposite edge is not disordered. The

transport properties of the zigzag GNR are thus essentially

those of two independent wires, oppositely spin-polarized

and connected in parallel between the reservoirs. We note

that previous studies of edge state transport [21] assumed

vanishing next nearest neighbor hopping t0 and obtained

results in apparent contradiction to the picture presented

above: If t0 were zero, the charge density would be local-

ized at the edges, but the current density would be extended

through the GNR. This leads to the incorrect conclusion

that edge states would scatter equally from impurities at

both edges. In reality, the edge states show nonzero dis-

persion (such as due to t0 � 0). In this case, the current

flow is also localized at the edges [22] validating the two-

wire model, as we show below.

For an ideal, impurity-free GNR, we have Tl � Tr,

which leads to vanishing spin conductance. This is con-

firmed by quantum transport simulations [23], and an

illustrative example is shown in Fig. 2(a): Both edge

channels transmit equally. However, as the edge states

enter the bulk graphene, they are deflected: In the GNR,

the pseudospin is predominantly in the z direction and tied

to the electron spin, whereas in the bulk, the pseudospin is

in-plane and tied to the current direction. At the interface,

the z component splits into states with positive and nega-

tive velocity perpendicular to the boundary. The state with

velocity towards the boundary is scattered [22], and thus,

upon entry, states at opposite edges (which carry opposite

spins) deflect in opposite directions, leading to a finite spin

Hall conductance [Fig. 2(a)]. Finite spin conductance can

be obtained, however, for imperfect GNRs: An obstacle

scatters the spin channel localized at the same edge more

effectively, leading to a nonvanishing spin conductance

and spin injection [Fig. 2(b)]. Whereas the efficiency of

the spin Hall effect is limited by the mean free path, and

thus ballistic microstructures are needed to observe it, the

efficiency of spin injection with edge defects is limited

only by the spin relaxation length and can be used to inject

spins into diffusive systems.

From an experimental perspective, unless the GNRs are

specifically fabricated with edges of different roughness,

the average conductance of both spin channels is equal,

quenching the ensemble-averaged spin conductance. Yet,

in the mesoscopic regime, sample-to-sample fluctuations

of T";# lead to a nonvanishing variance of the spin conduc-

tance. In the two-wire model, we have

 VarGs �
�

@

2e

�

2

VarGtot �
�

e

4�

�

2

�VarTl � VarTr�:

By treating both edges as one-dimensional wires, we map

the transport problem onto that of a disordered 1D chain.

Transmission eigenvalue statistics in 1D disordered chains

is known to be described by the Dorokhov-Mello-Pereyra-

Kumar (DMPK) equation [24]. By using the full distribu-

tion function of resistance [25], we find that the universal

maximum value of the root mean square (rms) spin con-

ductance rmsGs �
��������������

VarGs

p � 0:4e=4�. In order to dem-

onstrate this universality, we investigate GNRs of different

FIG. 2 (color online). Spin injection profile from (a) an ideal

GNR and (b) a GNR with a distorted edge into a region of

n-doped graphene. Nonequilibrium densities for spin up (down)

electrons are shown in blue (red).
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length L and width W and various models of edge disorder

(see Fig. 3).

First, we focus on dilute disorder, where the average

distance between scatterers d 
 a. The typical behavior of

charge and spin conductances (average and fluctuations) is

shown in Fig. 4. We first note that over the whole energy

region, where the edge states are present, @

2e
rmsGtot �

rmsGs, confirming the validity of the two-wire model. As

the Fermi level is raised by gating or doping, the relevant

states are extended and feel both edges. Then the assump-

tion of uncorrelated channels breaks down, and
@

2e
rmsGtot > rmsGs.

For an n-type GNR, when the Fermi level is near the

band edge, the states at EF are localized, and both the

average conductance and the fluctuations are suppressed

exponentially. By raising EF, we observe in Fig. 4 a cross-

over to the ballistic regime, where the conductance rises up

to the quantum limit of conductance 2e2=h. Cor-

respondingly, we see a maximum in the conductance fluc-

tuations before they vanish again in the ballistic regime.

The average or fluctuations of the conductances of a

p-doped GNR are different from an n-doped one, but a

description based on the DMPK equation holds well for

either case. The scattering strength of impurities depends

on the overlap of the impurity potential with the unper-

turbed channel wave function and therefore on �edge �
�edge�EF�. In the n-doped GNR, there is one channel whose

momentum is a monotonic function of EF. On the other

hand, in the p-doped GNR, due to the band dispersion

(Fig. 1), there are two channels: one localized near the edge

and the other extended further into the ribbon but still with

a considerable density at the edge. Lowering EF thus

localizes one state even more towards the edge, whereas

the other state spreads out, making the density more uni-

form. This leads to different functional dependences of the

localization length on the Fermi energy for n- and p-doped

ribbons.

In order to compare n- and p-doped ribbons as well as

different disorder models, we extract the energy depen-

dence of the longitudinal (transport) localization length

��EF� from exphln�G"=#�EF; L�	i � exp��2L=�� [26,27],

as shown in the inset in Fig. 5(a). In Fig. 5(a), we show

rmsGs as a function of �=L for all three disorder models

(see Fig. 3) with different values of d and a wide range of

ribbon lengths L. The data collapse onto a single curve,

demonstrating the universality of the spin conductance

fluctuations (SCFs), independent of the particular type of

edge disorder. Slight deviations from this universality can

be observed in Fig. 5(a), in the ballistic regime for the

special case of single vacancies. In this case, the system

reaches the ballistic limit only for high Fermi energy

values, where the two-wire model breaks down. The rms

spin conductance of the n-doped GNR agrees very well

with the results obtained from the DMPK equation. For the

p-doped ribbon, where there are two conducting channels,

we see a small increase in the rms conductance, presum-

ably due to the crossover to a multichannel quasi-1D wire,

where rmsG � 0:52 [27]. In Fig. 5(b), we concentrate on

n-doped graphene for step disorder (upper panels in Fig. 3)

and show again the universality of the SCF with respect to

a wide range of parameters characterizing edge roughness,

ribbon length, and width. There is little dependence on the

ribbon width W, confirming that the observed effect is

entirely due to the edges.

Currently there is not much experimental control over

the edges of nanoribbons. Considering GNRs with dense

disorder d � O�a�, the observed maximum of SCFs de-

creases with increasing disorder density, i.e., decreasing d,

as shown in the inset in Fig. 5(b). We observe that for d >
5a the SCFs are independent of the maximum height of the

steps. Moreover, we find that the maximum value of the

SCFs is retained for d * 5a. As an example, the system

depicted in the upper right corner in Fig. 3 shows spin

conductance � 0:4e=4�. The finite spin conductance of

d=15ad=15a

d=15a, s=3 d=5a, s=6

single vacancies extended vacancies

step disorder

FIG. 3. Step disorder: Edge disorder created by a random

walk, where the width of the nanoribbon is changed by one

hexagon at every step. Steps are made with probability a=d, and

the maximum deviation of the width is � s hexagons. Single

vacancies: Edge atoms are removed randomly with the proba-

bility a=d. Extended vacancies: Similar to single vacancies, but

also neighboring edge atoms are removed.
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FIG. 4 (color online). Average total conductance hGtoti (solid

blue line), rms of the total conductance rmsGtot (dashed black

line), and rms of the spin conductance rmsGs (solid red line) as a

function of EF (EF � 0 is chosen to correspond to zero gate

voltage). The data were averaged over 1000 configurations of

single vacancies with d � 40a and L � 800a. For comparison,

the inset shows the same quantities for the singular case of t0 �
0. In this situation, the spin conductance and its fluctuations

vanish completely.
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GNRs predicted above, and thus the existence of the edge

state magnetism, can be detected by measuring charge

conductance, e.g., by attaching ferromagnetic leads in a

two- or four-probe measurement similar to Ref. [5], with

one lead being a zigzag GNR.

In conclusion, we have discussed the spin transport

properties of graphene nanoribbons. We have shown that

an ideal GNR has zero spin conductance but nonzero spin

Hall conductance. Moreover, only GNRs with imperfect

edges exhibit a nonzero spin conductance. The fluctuations

of the spin conductance are universal with a maximum rms

conductance � 0:4e=4�. Thus, graphene nanoribbons can

be used as an efficient alternative to ferromagnetic leads,

paving the way to all-graphene spintronics devices.
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FIG. 5 (color online). Spin conductance fluctuations:

(a) rmsGs as a function of �=L for n- and p-doped graphene:

step disorder for n-type, d � 20a, s � 3 (black), single vacan-

cies for n- and p-type, d � 40a (red and blue, respectively) and

extended vacancies for n-type, d � 30a (green). Inset: �=a as a

function of EF for different disorder models (colors as in the

main panel). (b) rmsGs as a function of �=L for step disorder in

n-doped graphene: d � 20a and s � 3 (red; orange for W �
92a=

���

3
p

), d � 35a and s � 2 (black), d � 35a and s � 6 (blue;

violet for W � 92a=
���

3
p

), d � 20a and s � 6 (green).

Inset: Maximum value of rmsGs as a function of d=a for the

step disorder models. In both (a) and (b), the solid line corre-

sponds to the DMPK prediction. The data are shown for GNR

lengths L � 800a (�), 1000a (�), 1200a (4), 1400a (+), and

1600a () and width W � 32=
���

3
p

a unless specified otherwise.

The rmsGs is estimated from 1000 (W � 32a=
���

3
p

) and

750 (W � 92a=
���

3
p

) disorder configurations.
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