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In this section, we examine the stability of the conventional diamagnetic 

ground state of long even numbered polyenes by applying the criteria derived 

in § 4. 

The polyenes considered here are those without bond alternation. The 

polyenes are employed as the simplest example of long conjugated molecules. 

The essense of the following discussions holds also for anyone-dimensionally 

long conjugated molecules with metallic level distribution, that is, the energy gap 

between the highest occupied and lowest unoccupied orbitals tending to zero 

. when the length of the molecule tends infinite. 

In order to avoid unnecessary complication, we consider the 4J,i + 2 numbered 

ring polyenes. 

The conventional LCAO MO DMO solution of ring polyene with 2N=(4v+2) 

electrons are given by 

1 2N-l 

~ 0 ( ) _ " in"-(} ( ) '1'''- X - j== L...J e n X , 
V 2N n=O . 

(6 ·1) 

where (}n (x) is the L6wdin atomic orbital of the n-electron of n-th carbon and 

the pseudomomentum k takes the values 

k=!l~ 
N' 

n=N, N-1, ... - (N-I). (6·2) 

The orbitals with the momentum k, jkj <n/2, are occupied and those with k, 

j k j >n /2, are unoccupied. 

The orbital energy W,,-o is given by 

(6 ·3) 

*) Editorial note: For an editorial reason, this paper has been separated into two parts. This 

is the second part which contains § 6---- References. The first half has appeared in Vol. 40, No.5. 
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1228 H. Fukutome 

where C is the core Coulomb integral and - tV / 4is the core resonance integral. 

By using the conservation law for the pseudomomentum, the instability con­

ditions (4·12) and (4 ·13) for ring polyene become 

:E' fl+k,d(W~H- WTt;°)o\~~+4<K+k, kll, K+Z)O 
Tt;,l 

-<K+k, K+lII, k)O-<K+k, -Ii -k, K+I)O}fIi+l,l<O, (6·4) 

~'jIl+Tt;,d(1VJclk-1VTt;°)oTt;l-<K+k, K+III, k)O 
k,l 

(6· 5) 

where we have denoted the momentum of the unoccupied orbital forming a pair 

with the occupied orbital with momentum k by K + k, that is, K is the total 

momentum of the electron-hole pair, and the summation for k and I in (6·4) and 

(6·5) must be carried out in the range such that 

IK+kl>rr/2, 

IK+II>rr/2, . 

Ikl<n/2, 

III <rr/2 . 
) _ (6· 6) 

By neglecting the differential overlap between the atomic orbitals, the in­

stability conditions (6·4) and (6·5) become 

~'fl+Tt;,Tt; {(~V;+k - WTt;°) OTt;~ 
k,l 

+~-(4G(K) -G(k-l) -G(K+k+I»} fIiH l<O, (6·7) N -, 

(6·8) 

where 

G(K) =_1_(0010.0) + ~ cos (nK) (nnj'OO) +-~ eiNIi(NNIOO) , (6·9) 
2 n=l 2 

and (nnIOO) is the two-center Coulomb repulsion integral between the atomic 

orbitals of n-th and O-th carbon atoms. 

We have similarly 

tV~-I-Tt;- W1Go=~-(cos k-cos(K+k» +1 L: (G(k-l) -G(K+k-I». 
2 N III <-n:/2 

(6 ·10) 

Now, let us cohsider the case in which the deformation parameters fIi+1G,Tt; 

. and jIi+Tt;,Tt; have non-vanishing values only at a fixed value of k. Then the in­

stability conditions (6·7) and (6 -8) be~ome 
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Spin Density Wave and Charge Transfer Wave 

~Vl+Tc- ~vTc°+l_(4c(K) -C(O) -C(K+2k)) <0, 
N 

WlH - Wlc°-~(C(O) +C(K+2k)) <0. 
N 

1229 

(6 ·11) 

(6 ·12) 

Let. the momentum k be close. to either of the Fermi momenta ± n/2 

and the total momentum K of the electron-hole pair be close to the mo­

menta =Fn: 

k= ± (v-n)n , 

2v+l 

( 
mn) 

K = =F n - 2v + 1 ' 

(6 ·13) 

where the restrictions on nand m in (6 ·13) are imposed to satisfy the condi­

tion (6· 6) and the double sign must be taken in the same order. When the 

length 2N of the polyene is large, the conditions (6 ·11) and (6 ·12), with the 

momenta k and K given by (6 ·13), become 

nW (1+2n-m) + ~(4C(n) -2C(0)) <0, 
2N N 

(6 ·14) 

(6 ·15) 

where we have neglected the terms of the order of N- 2
• 

On the other hand, we see from (6·9) that, when N becomes large, C (0) 

tends to have the value of the order of 10gN since the two center Coulomb 

integral (nnIOO) tunis' out to have the value e2/na for large n, where a is the 

distance for C-C bond. 

1 N-1 1 
C(O) =---(00100) + L;(nnIOO) +-(NNIOO) 

2 n=l 2 

1 N e2 e2 

"'--'--(00100) + L; --/'J-log N, 
2 ri.= l na a -

(6 ·16) 

while, C (re) converges to a finite value. 

C (n) = 1_ (00 I 00) + is1 

( _l)n (nn I 00) + (-l)N (NNf 00) 
2 n=12 

1 . N e2 1 e2 -

"-'--(00100) + ~ (-lt~",--,-(OOIOO) - ·--log 2. 
2 1t=1 na 2 a . 

(6·17) . 

Therefore, the second terms in (6 ·14) and (6 ·15) come to have negative values 

exceeding the positive first term when N becomes large. Thus, the conventional 

diamagnetic ground state of long ring polyene is unstable t~ both of number 

density and spin density fluctuations. 
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1230 H. Fukutome 

The above proof of instability indicates that the essential reason of the in­

stability is that the Coulomb attraction and exchange energies between the electron 

and hole closely lying to the Fermi surface are of the order of log NIN due to 

long range nature of Coulomb interaction, while the energy gaps between these 

levels are of the order of liN, so that the gain of the interaction energy between 

the electron and hole exceeds the loss of the orbital energy by the excitation of 

the pair. This situation is common for all one-dimensionally long conjugated 

molecules with metallic level distribution. 

It is interesting to estimate the minimal length of polyene at which the in­

stability arises. The instability conditions (6· 11) an~ (6 ·12) come to be satisfied 

for smallest N when the momenta k and K of the transition causing the instability 

are 

))n 
k = ± --------- , 

2)) + 1 . } (6 ·18) 

](=n. 

( - n is equivalent to n) 

The instability to spin density fluctuation arises at smaller N than that to number 

density fluctuation. 

The values of (6 ·11) and (6 ·12) were evaluated by using the semi-empirical 

method of Pariser and Parr.ll) The result IS shown in Table I. From Table I, 

Length 

Length 

CTa) 

. Csa) 

30 

-0.209 

-0.035 

34 

-0.257 

-0.104 

Table 1. 

18 

0.193 

0.487 

38 

-0.288 

-0.151 

22 

-0.012 

0.227 

26 

-0.133 

0.068 

46 

-0.322 

-0.209 

a) C T and Cs are respectively the values of (6·12) and (6·11) in eV. The distance of C-C bond 

is assumed to be 1.39 A. 

we see that, in the case of ring polyenes, the minin~al lengths to give nse to 

the instabilities to spin density and number density fluctuations are 22 and 30 

respectively. Similar calculation was performed also for lin,ear polyenes with all 

trans-configuration. The result is shown in Table II. In the case of linear 

polyenes the instability. to spin density fluctuation arises at the length 10 which 

is shorter than that of the ring polyenes, while the instability to number density 

fluctuation was found not to arise below the length 100, on account of slow de­

crease of the energy transfer type interaction (ma[am) for increasing length. 
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Spin Density Wave and Charge Transfer Wave 1231 

Table. II. 

Length 2 4 6 8 10 ,I 12 

CTa) 1.63 0.834 0.369 0.115 -0.033 I -0.125 

Csa) 7.93 6.72 5.80 5.15 4.65 
1 

4.25 

Length 14 I 16 18 20 
1 

30 60 100 
I -----

I 

I 
CTa) -0.183 -0.222 -0.248 -0.266 -0.293 -0.255 -0.204 

Csa) 3.93 3.66 3.43 3.24 2.54 1.62 1.13 

a) The orbitals in the form of ~lO(X) = (1/Y2N)'"2j;;:1 sin (nlrr/(2N+ 1)) (}n(x) , l=1···2N, were used. C T 

and Cs are respectively (4·13) and (4·12) with fma and fma having the non-vanishing value 1 

only for the transition between the highest occupied and lowest unoccupied levels. 

Thus, we arrive at an important conclusion that the instability, at least' to 

spin density fluctuation, may arise in the. length realized by the polyenes now 

available. 

When the length of the polyene becomes more and more longer exceeding 

the critical lengths, more transitions with the momenta in the form of (6 ·13) , 

come to contribute to the instability. However, since the total momentum K 

of the electron-hole pair is a good quantum number in the ring polyenes, the 

instabilities due to transitions with different values of K will not mutually in­

terfere. Therefore, in the case of ring polyenes, the instability may be classified 

according to the value of the total momentum K of the electron-hole paIr caus111g 

the instability. 

Finally,!we note that the transitions with the momenta 111 the form 

v-n 
k = ± ------ n , 

2v + 1 

111 
K=±-~-n, 

2v + 1 1 
(6 ·19) 

may also cause the instability to spin density fluctuation, but transitions of this 

type do not cause the instability to number density fluctuation. 

§ 7. The spin density wave and charge transfer wave solutions of 

the Hartree-Fock equation of long ring polyenes 

Since the conventional diamagnetic ground state of long polyene is unstable, 

as shown in the preceding section, it is expected that the Ha~tree-Fock equation 

has another solution with lower ground state energy than it. We consider here 

the solutions which appear accompanying the instability caused by the electron­

hole pair with the total momentum n. Such solutions are expected to appear 

as soon as the length of polyene exceeds the critical lengths described in the 
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1232 H. Fukutome 

preceding section. 

Such new solutions will be constructed by mixing the conventional DMO's 

with momenta k and k + re. We put the new solution in the 'following form: 

CfJrk(S, x) =r;r(s)cos Wk(COS fh¢kO(X) +sin fh¢~+rc(x» 

+ (r; (s) e' u)r sin Wk (cos {Jk¢~+rc (x) - sin {Jk¢ko (x». (7 ·1) 

The orbital (7 ·1) is an ASWO, and may be re'written in the form of (3·19): 

(j)rk (s, x) = t {r; (s) (1 + e . 0') } r¢ k + (x) + t {r; (s) (1 - e . CT) } r¢ k - (x) , (7 . 2) 

where 

¢k± (x) = cos Ak±¢ko (x) + sin Ak±¢~+rc (x), 

Ak± = Wk± {Jk' 1 
The Dirac density matrix of the solution (7 ·1) is given by 

(7 ·3) 

Q(rx, sy) =t(l+e,u)rsQ+(x, y) +t(l-e'O')rsO-(x, y), (7·4) 

where 

From (7·4) and (7·5), the. deformation matrix G has non-vanishing matrix ele­

ments only between the states with momentak + re and k. 

Grkh, •• =i (1 + e· O')"Gt+",.+ l (1- e' rr)"G,+",'.' 1 
G~rc,T.::=tan Ak±' ' . 

(7·6) 

The spin dependence of the Hartree-Fock operator is given similarly by 

and from (5·9) the matrix elements of the operators H± are gIven by 

x (sin 2A~+ + sin 2A~-) - «k + re, l + rell, k/ + (k + re, III + re, k)O) sin 2A~±}, 

H1c~1c=WT.::°+ ~ {C<k, kll+re, l+re)O-(k, kll, l)O) 
III <.rc/2 

x Csin2A~++sin2A~-) - «k, l+rell+re, k)O-(k, lll, k)0)sin2A~±}, 

HT.::~rc,k+rc=W~+rc+ ~ {C(k+re, k+rell+re, l+re)O~<k+re, k+rell, l)O) 
III <:rc/2 

x (sin2A~+ + si~]?A~-) 

- «k+re;l+rell+re, k+re)O-<k+re, lll, k+re/)sin2A~±}. 

(7·8) 
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The orbital (7 ·1) is an ASWO, and may be re'written in the form of (3·19): 

(j)rk (s, x) = t {r; (s) (1 + e . 0') } r¢ k + (x) + t {r; (s) (1 - e . CT) } r¢ k - (x) , (7 . 2) 

where 

¢k± (x) = cos Ak±¢ko (x) + sin Ak±¢~+rc (x), 

Ak± = Wk± {Jk' 1 
The Dirac density matrix of the solution (7 ·1) is given by 

(7 ·3) 

Q(rx, sy) =t(l+e,u)rsQ+(x, y) +t(l-e'O')rsO-(x, y), (7·4) 

where 

From (7·4) and (7·5), the. deformation matrix G has non-vanishing matrix ele­

ments only between the states with momentak + re and k. 

Grkh, •• =i (1 + e· O')"Gt+",.+ l (1- e' rr)"G,+",'.' 1 
G~rc,T.::=tan Ak±' ' . 

(7·6) 

The spin dependence of the Hartree-Fock operator is given similarly by 

and from (5·9) the matrix elements of the operators H± are gIven by 

x (sin 2A~+ + sin 2A~-) - «k + re, l + rell, k/ + (k + re, III + re, k)O) sin 2A~±}, 

H1c~1c=WT.::°+ ~ {C<k, kll+re, l+re)O-(k, kll, l)O) 
III <.rc/2 

x Csin2A~++sin2A~-) - «k, l+rell+re, k)O-(k, lll, k)0)sin2A~±}, 

HT.::~rc,k+rc=W~+rc+ ~ {C(k+re, k+rell+re, l+re)O~<k+re, k+rell, l)O) 
III <:rc/2 

x (sin2A~+ + si~]?A~-) 

- «k+re;l+rell+re, k+re)O-<k+re, lll, k+re/)sin2A~±}. 

(7·8) 
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SjJin Density T-Vave and Charge Transfer lVave 1233 

All other matrix elements of H± are zero. By neglecting the differential overlap 

between the atomic orbitals, (7·8) are simplified as 

(7·9) 

Substituting (7·6), (7·7) and (7·8) into (5·18), we have the equation to de­

termine 1", ± : 

ak ± sin 2Ak ± = 13k ± cos 2Ak ±, (7 ·10) 

where 

ak±=Hk~7t,1c-I-7C-Hk\ , 

I (7 ·11) 
/3 ±- ~2H± 

k - k+7C,1c' 

From (7 ·10), we have 

cO,s 2Ak± =0k± (Ak±)-t, 

) sin 2Ak± = /3k± (Ak±)-l, (7 ·12) 

Ak± = {(al/Y + (/3",±Y} 1/2. 

By substituting (7 ·12) into (7 ·9), the equations In (7·11) become 

(7 ·13) 

Equations (7 ·13) are the equations to determine al/ and /3k±' Note th~ close 

resemblance of the equations in (7 ·13) to Bogoliubov's equation of superconduc­

tivity.12) Equations (7 ·13) may be written in terms of Ak± as 

Ak± cos 2Ak± = W kO+ 7C - wI•
o 1 

1 . I 

+- L: (G(n+k-l) -G(k-l» (I-cos 2AL±) , 
- Nlq<77:/2 

Ak± sin2Ak±=1- L: '{(G(n+k-l) +G(k-I»sin2AL± J 
Nl l l<7t/2 

- 2G (n) (sin 2A~ + + sin 2AL-) }.' 

(7 ·14) 
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1234 H. Fukutome 

It IS extremely difficult to get a strict solution of the equations in (7 ·13) 

or (7 ·14). However, in the case of two-electron system, that is, the case N = 1 

corresponding to ethylene or hydrogen molecule, we may get a strict solution. 

In the case of two-electron system, Eq. (7: 14) becomes 

A± cos 2)'±= W".o- Woo + (C(n) -C(O» (I-cos 2)'±) , .) 

A± sin2).±= (C(n) +C(0»sin2)'±-2C(n) (sin 2).++ sin 2),-), 
(7 ·15) 

where W".O and Woo are the orbital energies of the antibonding and bonding or­

bitals of the standard solution and 

C (n) =t{ (00100) - (11100)}, 

C(O) =t{(OOIOO) + (11100)}. 
) (7 ·16) 

Eliminating A ± from the equations in (7 ·15) and rearranging the resultant equa­

tion, we have 

(7 ·17) 

Equation (7 ·17) has two non-trivial solutions (it has also the trivial solution 

sin 2)'± =0), 

cos 2),+ = cos 2).- = (W".o- Woo + C (n) - C (0» /2C (n), sin 2}.- = - sin 2)'+, 

(7 ·18) 

cos 2).+=cos 2).-'= -(W".o- Woo+C(n) -C(0»/2C(n), sin 2).-=sin 2),+. 

(7 ·19) 

In order for the solutions (7 ·18) and (7 ·19) to gIVe real values for ).±, the fol­

lowing inequalities must respectively be satisfied. 

W".o- WoO-C(n) -C(O) <0, W".o- Woo + 3C (n) -C(O) >0, C(n) >0, 

(7·20) 

W".o- W oo+3C (n) -C (0) <0, W".o- Woo-C (n) -C (0) >0, C(n) <0. 

(7·21) 

The first inequalities in (7·20) and (7·21) are· respectively nothing but the in­

stability conditions (6 ·12) and (6 ·li) for the two-electron system.· Therefore, 

the solution (7 ·18) is the solution which appears when the conventional solution 

becomes unstable to spin density fluctuation. As easily be seen from (7 ·16) the 

inequalities (7·20) come to be satisfied when the interatomic distance of the 

two atoms tends to be large. It is well known that the conventional Hartree­

Fock ground state of the two-electron system tends to wrong limit when the 

jnteratomic distance tends to infinity. This classic discrepancy is a manifestation 

of the instability of the conventional diamagnetic ground state at large interatomic 

distance. The new solution (7 ·18)· gives the bonding orbital in the following 

form; 
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Spin Density Wave and Charge Transfer Wave 

CPr (S, x) =t {r; (S) (1 + e· 0-) L(cos ACPoo (x) + sin ACP,..o (x)) 

+t{r;(s) (l-e·o-)}r(cosACPoO(x) -sin ACP,..O(X)) , 

1235 

(7·22) 

where cos A = cos A + = cos A-and cpo 0 and cP,.. ° are respectively the conventional 

bonding and antibonding orbitals. From (7 ·18), we see that A tends to n/4 

when the interatomic distance tends to infinity. Therefore, the orbital (7·22) 

converges correctly to the atomic orbitals of the two atoms when the distance 

between the two atoms tends to infinity. 

On the other hand, (7 ·19) is the solution which appears accompanying the 

instability of the conventional solution to number density fluctuation. However, 

on the contrary to (7·20), the inequalities (7·21) are never satisfied for the 

two-electron system with repulsive Coulomb interaction. They may come to. be 

satisfied for the fictitious two"electron system with attractive interaction. The 

important point, however, is the fact that Eq. (7 ·15) may have two distinct 

solutions corresponding to the two kinds of the instability. The solution (7 ·19) 

. leads to the orbital in the following form: 

(7·23) 

The orbital (7·23) is diamagnetic. 

The above analysis on the solutions of Eq. (7 ·15) for the two-electron system 

suggests that Eq. (7 ·13) may have two types of solutions which are characterized 

respectively by the relations 

sin 2Ak + = - sin 2Ak-, cos 2Ak + = cos 2Ak-, 

sin 2Ak + = sin 2Ak -, cos 2Ak + = cos 2Ak-, 

) 

) 

(7·24) 

(7·25) 

The solution of the former type is expected to appear when the conventional 

diamagnetic solution becomes unstable to spin density fluctuation and the solution 

of the latter type accompanying the instability to number density fluctuation. 

With the postulate (7·24), Eq. (7 ·13) becomes 

ak=W~+rc- W k
o+ ~ L: (G(n+k-l) -G(k-l)) (1- V a~ ), 

N III <rc/2 a~2+ /3~2 

(7·26) 

where ak=ak+=ak- and /3k=/3k+= -/3k-. The solution of this type leads to the 

orbitals of ASWO type. 

CP1-k(S, x) =t{r;(s) (l+e·o-)}r(COs AkCPkO(X) +sin AkCP~+rc(X)) 

(7·27) 
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1236 H. Fukutome· 

The same kind. of solution of the Hartree-Fock equation was discussed by 

Matsubara and Yokota13
) in their split band model of antiferromagnet. 

With the postulate (7·25), Eq. (7 ·13) becomes 

13k = ~ ~ (G(rr+k-l) +G(k-l) -4G(rr» V ~~ .2' 

N III <77:/2 a~ + 13l 
) 
(7·28) 

where 13Tc = 13k + = 13k -. The solution of this type leads to the DMO type orbitals. 

(7·29) 

We call the o;bital in the form of (7·29) the charge transfer wave orbital 

(CTWO). Meaning of this name will be discussed in the next section. The 

same kind of solution as (7·29) for low density electron gas has recently been 

discussed by Kohn5
) and he call it the excitonic phase which we do not think 

a good naming. 

When the length of the polyene is large, the summation in (7·26) and (7·28) 

may be replaced by the integration, and they become 

77:/2 

ak = W lc°+77: -,-- W kO + ~ ) g (k; l) (1 
-77:/2 

al ) 
/. 2 (.) 2 dl, 
va~ + jJl 

(7·30) 

where 

g (k, l) = G (rr + k -l) - G (k -l) (7·31) 

and 

Q(k, l) =G(rr+k-l) +G(k-l) (7·32) 

for the ASWO- type solution, and 

Q(k, l) =G(rr+k-l) +G(k-l) -4G(rr) (7·33) 

for the CTWO type solution. 

Equation (7·30) is quite the same form as the Bogoliubov equation of 

superconductivity, and an approxifuate solution may be obtained in the same way 

as employed in it. 12
) Assuming that {3k is exponentially small quantity decreasing 

rapidly to zero except the neighbourhoods of the Fermi momenta kF= ± rr/2, we 

have the solution near the Fermi momenta: 

ak::::::yV(k - kF ), 

{1k:::::: rr 1V Q(k, kF
) exp ( -rr lV /2Q(kF' kF». 

. . g(kF~ kF) 
(7·34) 
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Spin Density 1Vave and Charge Transfer 1Vave 1237 

However, in the present case,· the solution (7·34) contradicts the assumption 

from which it is derived. Since 

or G(O) -3G(n), (7·35) 

and G (0) is the quantity with the value of the order of log N, {j-l (kF , kF ) tends 

to zero when N tends to infinity. Therefore, in the limit of infinite N, we have 

lim I1kF=nW. 
]1;->00 

(7·36) 

Thus, 11k gIven by (7 ·34) takes a value of the order of 30 e V at the Fermi mo­

menta, which contradicts the assumption for 11k to be a small quantity. Therefore, 

the validity of the approximate solution (7·34) is dubious, but it suggests that 

11k satisfying (7·30) is a quantity which might take a value of several e V at 

the Fermi momenta. 

§ 8. Properties. of the spin density wave and 

the charge transfer wave solutiQns 

Solving the eigenvalue equation (5·25) and using (7 ·11), we have the or­

bital energies of the ASWO and the CTWO solutions as 

Ikl<n/2 I (S·l) 

Since 11k has a finite value at the Fermi momenta ± n/2, the formula (S ·1) means 

that the occupied and unoccupied orbitals in the ASWO and CTWO solutions 

are separated by a finite energy gap. The energy gap persists even in the polyene 

with infinite length and, as discussed in the previous section, it might have the 

value of the order of several e V. 

Substituting (7·6), (7 ·11) and (7 ·12) into (5·23), we have the ground 

state energy of the ASWO and the CTWO solutions as 

Eo = E o
o + ~ L; (Wko+", - W ko - Vak2 + I1k2) (1- V ~k 2)·' 

2 llel <",/2 ak + 11k 
(S·2) 

Since Pk is considered to have a finite value near the Fermi momenta and de­

crease rapidly when the momentum k departs from them, the summands of (S· 2) 

with the momentum k near the Fermi momenta will mainly contribute to (S· 2), 

leading to a lower ground state energy than Eoo. Lowering of the ground state 

energy than E o
o is strictly demonstrated for the two-electron system. From 

(7 ·15), (7 ·lS) and (7 ·19), the ground state energy (S· 2) for the two-electron 

system becomes for the ASWO solution 

(S· 3) 
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(7 ·15), (7 ·lS) and (7 ·19), the ground state energy (S· 2) for the two-electron 

system becomes for the ASWO solution 

(S· 3) 
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1238 H. -Fukutome 

and for the CTWO solution 

Eo=Eoo+ __ 1_(W7t°- W oo+3G(n) -G(O))2. 
4G(n) _ 

(S·4) 

From (7·20) and (7·21), the second terms in (8·3) and (8·4) are negative. 

From (3·21), (3·6) and (7·27), the number density distribution in the 

ASWO ground state is given by 

(S· 5) 

By neglecting the differential overlap between the atomic orbitals, (S· 5) becomes 

2N-l 

<n(x)= ~ 18n (x) 12. (S· 6) 
n=l 

Thus, the electrons in the ASWO ground state are uniformly distributed at every 

carbon atoms as in the case of the conventional DMO ground state. 

From (3·21), (3·7) and (7·27), the spin density distribution in the ASWO 

ground state is given by 

(S· 7) 

where Re X denotes the real- part of X. By neglecting the differential overlap 

between the atomic orbitals, (S ·7) becomes 

(8· S) 

Thus, in the ASWO ground state, spin is distributed to the carbon -atoms with 

equal weight but with alternatingly reversing direction. 

The number density distribution in the CTWO ground state IS given by 

(S·9) 

By ne'glecting the differential overlap between the atomic orbitals, (S· 9) becomes 

2N-l 

<n(x)= ~ (1+ (-l)nc) 18n(x) 1\ 
n=o 

c =~ ~ sin 2Ale. 
Nl lc l<n:/2 I (S ·10) 

Thus, in the CTWO ground state, electrons are distributed to the carbon atoms 

with non-uniform and alternatingly modulated weights, that is, the effective number 

of the electrons around the carbon atoms takes two values 1 ± c alternatingly 

from atom to atom. Therefore, the CTWOground state may be regarded as a 

state of corrective charge transfer complex, the electron donating and accepting 

carbons being arranged alternatingly. 

In the case of ~ven numbered linear polyene, the CTWO ground state i~ a, 
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Spin Density Wave and Charge Transfer Wave 1239 

state with spontaneous polarization, since' the effective charge of the carbon p.toms 

is reversed alternatingly, so that the carbon atoms at' the two terminals have 

effective charges with opposite signs. 

Both of the ASWO and CTWO ground states are deg~nerated. 

In the case of the ASWO solution, the direction e of spin is quite arbitrary 

and the ground states ?]Ia
e with different e are different states and degenerated, 

as discussed before. The inner product between two ASWO ground states is 

given, from (2·21) and (7·27), as 

(?]Ioel ?]Ioe') = II {1- t (1- e· e') sin22AJ.J. (8 ·11) 
Ikl <:"7</2 

We have, on the other hand, from (3·22) and (7·27) the expectation value of 

the square of the total spin by the ASWO ground state: 

(8·12) 

The square of the total' spin (8·12) is presumed to be large for very long poly­

enes, and the inner product (8 ·11) to be very small. If (8 ·12) is divergent 

for infinite N, then the inner product (8 ·11) tends to zero, that is, the degenerated 

ASWO ground states become orthogonal for infinite polyene. 

From the degenerated ASWO ground states, we may construct the grouhd 

states as, (3·35) which are eigenstates of total spin. The degeneracy of the 

ASWO ground states is split off in the ground states (3·35) and the magnitude 

of the energy splitting is of the order of the inner product (8 ·11) . Therefore, 

we get a series of closely lying states with different total spin for long polyenes. 

In the limit of infinite polyene, the energy splitting tends to zero, and the' ground 

states (3·35) again become degenerated. 

In the case of the CTWO solution, the ground state is degenerated two-fold. 

As seen from (7·28), if {3k is a solution of (7· 28) then - {3k too IS. The solu­

tion - {3k corresponds to the' orbital 

CP~k (s, x) = /jr (s) (cos Ak¢k
o (x)- sin Ak¢~+n (x)). (8 ·13) 

The solution (8 ·13) leads to the number density distribution as 

2N-l 

<n (x»' = ~ (1- (-I)nc) 18n(x) 12. (8 ·14) 
n=O 

Therefore, the CTWO ground state ?]Io' constructed from the CTWO (8 -13) has 

an effective charge distribution with sign reversed to that of the ground state ?Yo 

constructed from (7·29), that is, the electron excess and electron deficient carbons 

in the state ?Yo' become electron deficient and electron excess respectively in the 

state Wo'. Both of the CTWO ground states Wo and Wa' violate the space in­

version symmetry of molecule. However, we may construct the ground states 

satisfying the symmetry requirement: 

(8 ·15) 
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1240 H. Fukutome 

where the mner product between two CTWO ground- sta.tes IS given by 

(Wol WOf) = II cos22Ale 
llel <rr/2 

(8 ·16) 

and the ± sign m (8 ·15) represents the parity for space inversion. 

In the new CTWO ground states (8 ·15), the degeneracy in the states Wo 

and Wo' is split off and the uneven charge distributions in them are also elimi­

nated. 

§ 9. Other possible solutions of the Hartree-Fock equation 

in long polyenes 

The solutions discussed above are those which appear accompanying the 

instabilities caused by the electron-hole pair with total momentum Jr. When the 

length of polyene is sufficiently lQng, the instabilities caused by the transitions 

of the types (6 ·13) and (6 ·19) may arise. Accompanying the instabilities caused 

by the electron-hole pair with total momentum not equal to Jr, other types of 

the solutions appear. We describe briefly these solutions which are expected 

to appear in very long polyenes. 

i) S1iVO solution with spiral spin arrange1Jlent 

Accompanying the instability to spin density fluctuation caused by the triplet 

electron-hole pair with total momentum K in the form of (6 ·13) and (6 ·19) 

the SWO type solution in the following form appears: 

CjJrle (s, x) = L; 'lJu (s) {cos Ale¢le° (x) + t U" (el + ie2) sin Ale¢Z-~K(x) 
. u 

(9 ·1) 

where el and e2 are unit vectors mutually orthogonal and, m order for the or­

bitals (9 ·1) to be orthonormal, the parameter Ale must satisfy the relation 

(9·2) 

The solution in the form of (9 ·1) is the analogue of Overhauser's spiral spin 

density wave 4
) in polyene. The parameter Ale is determined from the following 

equations. 

x (1- vc/!;~~~2)' (9·3) 

(Jle=}- {L;(±)G(k-l) + L;(+)G(±I(+k--l)}~f/l' ___ - , 
N l l Val2 + (3l2 

where the upper or the lower of the double signs in (9·3) must be taken ac­

cording to whether k is in either of the ranges 

1240 H. Fukutome 

where the mner product between two CTWO ground- sta.tes IS given by 

(Wol WOf) = II cos22Ale 
llel <rr/2 

(8 ·16) 

and the ± sign m (8 ·15) represents the parity for space inversion. 

In the new CTWO ground states (8 ·15), the degeneracy in the states Wo 

and Wo' is split off and the uneven charge distributions in them are also elimi­

nated. 

§ 9. Other possible solutions of the Hartree-Fock equation 

in long polyenes 

The solutions discussed above are those which appear accompanying the 

instabilities caused by the electron-hole pair with total momentum Jr. When the 

length of polyene is sufficiently lQng, the instabilities caused by the transitions 

of the types (6 ·13) and (6 ·19) may arise. Accompanying the instabilities caused 

by the electron-hole pair with total momentum not equal to Jr, other types of 

the solutions appear. We describe briefly these solutions which are expected 

to appear in very long polyenes. 

i) S1iVO solution with spiral spin arrange1Jlent 

Accompanying the instability to spin density fluctuation caused by the triplet 

electron-hole pair with total momentum K in the form of (6 ·13) and (6 ·19) 

the SWO type solution in the following form appears: 

CjJrle (s, x) = L; 'lJu (s) {cos Ale¢le° (x) + t U" (el + ie2) sin Ale¢Z-~K(x) 
. u 

(9 ·1) 

where el and e2 are unit vectors mutually orthogonal and, m order for the or­

bitals (9 ·1) to be orthonormal, the parameter Ale must satisfy the relation 

(9·2) 

The solution in the form of (9 ·1) is the analogue of Overhauser's spiral spin 

density wave 4
) in polyene. The parameter Ale is determined from the following 

equations. 

x (1- vc/!;~~~2)' (9·3) 

(Jle=}- {L;(±)G(k-l) + L;(+)G(±I(+k--l)}~f/l' ___ - , 
N l l Val2 + (3l2 

where the upper or the lower of the double signs in (9·3) must be taken ac­

cording to whether k is in either of the ranges 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

0
/6

/1
2
2
7
/1

8
7
1
5
4
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Spin Density Wave and Charge Transfer Wave 1241 

Ik+KI>n/2, . (9·4) 

or 

Ik-.:KI>n/2, Ikl <n/2. (9 ·5) 

The summation I:(+) and I:(-) are carried out respectively 111 the ranges (9·4) 

and (9·5). ak, {3k arid }Ik are related il1 the same way as (7 ·12) . In the SWO 

ground state constructed from the solution (9 ·1), the direction of spin at the 

position of carbon atom is rotated by the angle K around the axis el X e2 relative 

to the spin direction at the nearest neibouring carbon. 

ii) CT~VO solution witli beated number density wave 
/ 

Accompanying the instability to number density fluctuation caused by the 

singlet electron-hole pair with total momentum K in the form of (6 ·13), the 

CTWO solution in the following form appears: 

({Jrk(S, x) =r;r(s) (cos AdYkO(x) + sin Ak¢~+K(X)). 

The parameter }'k must satisfy (9·2) and 

sin Ak=O 

for k In the range 

Ik+KI<n/2, 

Ak is determined from the equations 

Ikl<n/2. 

(3!G= ~{I:(+)(G(k-l) -2G(K))+ ~(-)(G(K+k-l)-2G(K))} 
N ~ L 

X va-~~-/i?' 

(9·6) 

(9· 7) 

(9·8) 

(9·9) 

where ak, {3k and Ak are related by the same way as (7 ·12) and k is in the 

range (9·4). 

The solution (9·6) leads to the ground state number density distribution 

in the following form: 

2N-l 

<n(x»=,~ (l+c cos(nK)) IOn(x) 1\ I. 
c =1: L.;(I) sin 2Ak . 

N 

(9 ·10) 

Since the total momentum K is close to ± n, the number density distribution 
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1242 H. Fukutome 

(9 ·10) gives a beated wave. 

iii) CTWO solution with non-vanishing ground state current 

Accompany;ing each CTWO solution (7·29) or (9·6), there are CTWO 

solutions in the following form: 

CfJrle(s, x) =rh'(s) (cos AleCfJZ+p(x) +sinAleCfJZ+p+K(x)). (9 ·11) 

The parameter Ale is determined from the equations 

(9 ·12) 

/3le= ~{:E(+) (G (k-l) -2G (K)) + ~(-) (G (K + k-l) -ZG (K))} 
Nt· L 

X (3L' 
vaL2+ (3/. 

When the momentum p IS sufficiently small, then Eq. (9 ·12) has solution' if 

Eq. (9·9) has solution. 

The orbitals (9 ·11) represent the state in which all electrons in the orbitals 

(9·6) move with momentum p relative to the nuclei. Therefore, the ground 

state obtained from the orbitals (9 ·11) has non-vanishing electric current. The 

solution of this type is possible only for ring molecules or infinite linear molecules 

without terminals. 

These solutions discussed above appear when the length of polyene becomes 

much longer than the critical lengths, and seem to give higher ground state 

energies than those of the solutions discussed in § 7 and §8. Since the ASWO 

type solution appears at shortest length, they are presumed to be the' solution 

that give the lowes,t ground state energy. 

§ 10. Discussion 

i) Experimental implications 

Existence of the converging limit of the maximum absorption wave-lengths 

In series of polyenes with increasing lengths/4
) has been a subject of wide dis­

cussion and controvercy. The explanation of the phenomenon based upon bond 

alternation15
) has been considered to be the most satisfactory one. However, 

firm experimental verification of bond alternation has been lacking and the present 

theory offers an entirely new. explanation of the phenomenon based upon the in­

stability of the conventional ground state of polyene without bond alternation. 

The conventional ground state of polyene without bond alternation becomes 

unstable to spin den~ity fluctuation when the length of polyene exceeds a critical 
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Spin Density Wave and Charge Transfer Wave 1243 

length, which is estimated to be about 10 for the linear polyene, and new kind 

of ground state having spin density wave appears. The new ground state is 

separated by a finite energy gap from the excited state even in the limit of in­

finite polyene. Reliable numerical estimation of the energy gap is extremely 

difficult but is presumed to be of the order of several e V. If this suggested 

figure is correct, the energy gap may explain the convergence of the maximum 

absorption wavelength. 

Another important consequence of the present theory is concerned with the 

magnetic property of long conjugated molecules. As discussed in § 8, the ground 

state of long conjugated molecule is approximated by the wave function (3·35) 

constructed by superposition of the degenerated ASWO ground states, and there 

appears a series of the ground states with different values of total spin. When 

the length of the molecule is very long, the spacing between these states is pre­

sumed to be small. Among these states, the state with total spin zero is pre­

sumably the state with lowest energy, but in long molecule the states with non­

zero spin may come to mix thermally with it, and the molecule becomes para­

magnetic. In the limit of infinitely long molecule, they become again degenerated 

and the ASWO ground state itself becomes a good approximation to the true 

ground state. Therefore, the infinitely long conjugated molecule is expected to 

behave as an antiferromagnet. In the case of very long but finite molecule, many 

states with non-zero total spin may become thermally accessible, and complicated 

magnetic behavior is expected. It will be interesting to examine magnetic prop­

erty of long conjugated molecule in both of experimental and theoretical points 

of view. 

ii) Instability zn two-dimensionally. large molecules 

In the case of one-dimensionally long conjugated molecules, the instability 

IS considered to be a universal situation, but, in the case of two-dimensionally 

large conjugated molecules, the situation is different and we may show that in 

some cases no instability arises. As discussed in § 4, the instability arises when 

the sum of the Coulomb attraction energy between electron and hole and the 

exchange energy between the pairs exceeds the energy gap between the highest 

occupied and the lowest empty orbitals. The magnitudes of the Coulomb attrac­

tion energy and the exchange energy. in two-dimensional molecules are of the 

order of 1/ J N, where N is the total number of n-electrons. In the case of the 

polyacene having the same symmetry as graphite/6
) the energy gap is also of the 

order of 1/ J N, and no instability by the size effect arises. Diamagnetism of 

infinite polyacene graphite is consistent with this conclusion. 

iii) Electron correlation in large conjugated molecules 

This work was motivated from the finding that the calculation of configura­

tion interaction of long polyene in the Sawada approximation17
),18) or equivalently 
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sumed to be small. Among these states, the state with total spin zero is pre­

sumably the state with lowest energy, but in long molecule the states with non­

zero spin may come to mix thermally with it, and the molecule becomes para­

magnetic. In the limit of infinitely long molecule, they become again degenerated 

and the ASWO ground state itself becomes a good approximation to the true 

ground state. Therefore, the infinitely long conjugated molecule is expected to 

behave as an antiferromagnet. In the case of very long but finite molecule, many 

states with non-zero total spin may become thermally accessible, and complicated 

magnetic behavior is expected. It will be interesting to examine magnetic prop­

erty of long conjugated molecule in both of experimental and theoretical points 

of view. 

ii) Instability zn two-dimensionally. large molecules 

In the case of one-dimensionally long conjugated molecules, the instability 

IS considered to be a universal situation, but, in the case of two-dimensionally 

large conjugated molecules, the situation is different and we may show that in 

some cases no instability arises. As discussed in § 4, the instability arises when 

the sum of the Coulomb attraction energy between electron and hole and the 

exchange energy between the pairs exceeds the energy gap between the highest 

occupied and the lowest empty orbitals. The magnitudes of the Coulomb attrac­

tion energy and the exchange energy. in two-dimensional molecules are of the 

order of 1/ J N, where N is the total number of n-electrons. In the case of the 

polyacene having the same symmetry as graphite/6
) the energy gap is also of the 

order of 1/ J N, and no instability by the size effect arises. Diamagnetism of 

infinite polyacene graphite is consistent with this conclusion. 

iii) Electron correlation in large conjugated molecules 

This work was motivated from the finding that the calculation of configura­

tion interaction of long polyene in the Sawada approximation17
),18) or equivalently 
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by the time dependent Hartree-Fock approximation19
) leads to imaginary excitation 

energy. Appearance of imaginary excitation energy in the Sawada approximation 

is equivalent to the instability of the Hartree-Fock ground state. The coincidence 

of the stability· conditions for the Hartree~Fock approximation and the Sawada 

approximation was first noted by Sawada and· Fukuda.1
) As discussed in § 6, 

the instability of the conventional Hartree-Fock ground state is a universal situa­

tion in long conjugated molecules, and equivalently the conventional Sawada 

approximation fails to be applIcable to them. Even for moderately long conjugated 

molecules or two-dimensionally large molecules in which no instability arises, 

the Sawada approximation cannot be considered to be a good approximation. 

The Sawada approximation is a good approximation in weakly excited system, 

that is, when the electron density of the system is high or the excited state of 

the system is separated by a. large energy gap from the ground state. Large 

conjugated molecules are, however, not weakly excited system, both of the electron 

density and the energy gap being small. Therefore, approximation method be­

yond the Sawada approximation is needed. It is a very difficult task to get such 

an approximation. When the instability arises, the new solutions of the Hartree-· 

Fock equation may be used as ali initial approximation. However, as shown in 

this paper, the new solutions always lead to degenerated ground states, and direct 

use of them as the approximation for the true ground state is inappropriate. 

But, the superposition of these degenerated ground state in the form of (3·34), 

(3·35) or (8 ·15) might be a. good approximation for the true ground state. 

Further study of this type of approximation is needed. For instance, treatment 

of excited state in this approximation remains to be uninvestigated problem. 

In the case of large molecules without instability, use of the new solution 

of the Hartree-Fock equation is impossible, and other method must be developed. 

The variation procedure to the wave function in the form of (3·34) or (3·35) 

might be a promising approach. 
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