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Electron transport through a one-dimensional ring connected with two external leads, in the presence of

spin-orbit interaction ~SOI! of strength a and a perpendicular magnetic field is studied. Applying Griffith’s

boundary conditions we derive analytic expressions for the reflection and transmission coefficients of the

corresponding one-electron scattering problem. We generalize earlier conductance results by Nitta et al. @Appl.

Phys. Lett. 75, 695 ~1999!# and investigate the influence of a , temperature, and a weak magnetic field on the

conductance. Varying a and temperature changes the position of the minima and maxima of the magnetic-field

dependent conductance, and it may even convert a maximum into a minimum and vice versa.

DOI: 10.1103/PhysRevB.69.155335 PACS number~s!: 72.25.2b, 71.70.Ej, 03.65.Vf, 85.35.2p

I. INTRODUCTION

Recently, much attention has been paid to the manipula-
tion of the spin degrees of freedom of conduction charges in
low-dimensional semiconductor structures. An important
feature of the electron transport in multiply connected sys-
tems is that the conductance shows signatures of quantum
interference that depend on the electromagnetic potentials:
Aharonov-Bohm and Aharonov-Casher effect.1–10 A compre-
hensive review of results for metallic rings is given in Ref.
11. Many devices have been proposed to utilize additional
topological phases acquired by the electrons traveling
through quantum circuits.1,12–15 Nitta et al. proposed a spin-

interference device1 allowing considerable modulation of the
electric current. This device is a one-dimensional ring con-
nected with two external leads, made of a semiconductor
structure in which the Rashba spin-orbit interaction ~SOI!
~Ref. 16! is the dominant spin-splitting mechanism. The key
idea was that, even in the absence of an external magnetic
field, the difference in the Aharonov-Casher phase3,6 ac-
quired between carriers, traveling clockwise and counter-
clockwise, would produce interference effects in the spin-
sensitive electron transport. By tuning the strength a of the
SOI the phase difference could be changed, hence the con-
ductance could be modulated. Nitta et al.1 found that the
conductance G is given approximatively by

G;
e2

h F11cosS 2pa
am*

\2 D G , ~1!

where a is the radius of the ring and m* the effective mass of
the carriers. It is of interest to verify the validity of this
strong sinusoidal modulation of the conductance, predicted
by Eq. ~1!.

The Rashba field involved in Ref. 1 results from the
asymmetric confinement along the direction ~z! perpendicu-
lar to the plane of the ring. A similar study but with this field
tilted away from the z direction, by an angle f, was made in
Ref. 17. The resulting Rashba field is weaker since the radial
part of the confinement is much weaker18 but this was not

elaborated in Ref. 17. The transmission coefficient of Ref. 17
coincides with ours for f50 but it is less general in two
important aspects: it is valid only for zero temperature and in
the absence of a magnetic field whereas ours is free from
these limitations.

In this paper we present an exact, analytic treatment of
the influence of the SOI on the electron transport through the
spin-interference device of Ref. 1. Applying Griffith’s
boundary conditions19,20 at the junction points we solve the
corresponding scattering problem analytically, obtain the
correct form of the conductance G, and show how for large
a it is modulated approximately as predicted by Eq. ~1!.
Further, we assess the influence of a weak magnetic field on
this conductance, indicate the spin-filtering properties of the
ring, and generalize the result to finite temperatures. These
latter aspects were not studied at all in Ref. 17.

The paper is organized as follows. In Sec. II we solve the
one-electron problem for a ring in the presence of SOI at
zero magnetic field and apply Griffith’s boundary conditions.
In Sec. III we evaluate in detail the transmission and reflec-
tion coefficients and the zero-temperature conductance. In
Sec. IV we reevaluate the conductance in the presence of a
weak magnetic field and point out the relevance of the results
to spin filtering. In Sec. V we present the finite-temperature
conductance and some numerical results. Concluding re-
marks follow in Sec. VI and details about the spin eigen-
states and probability currents are given in the Appendix.

II. ONE-ELECTRON PROBLEM

A. Hamiltonian

In the presence of SOI the Hamiltonian operator for a
one-dimensional ring structure is given by Ref. 21,

Ĥ52\V
]2

]w2
2i\vso~cos wsx1sin wsy!

]

]w

2i
\vso

2
~cos wsy2sin wsx!, ~2!
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where sx , sy , and sz are the Pauli matrices. The parameter
V denotes \/2m*a2 and vso5a/\a is the frequency asso-
ciated to the SOI. The Rashba field we consider here results
from the asymmetric confinement along the direction ~z! per-
pendicular to the plane of the ring. The parameter a repre-
sents the average electric field along the z direction and is
assumed to be a tunable quantity. For an InGaAs-based two-
dimensional electron gas, a can be controlled by a gate
voltage with typical values in the range (0.5–2.0)
310211 eVm.22,23 Writing the Pauli matrices in cylindrical
coordinates,

sr5cos wsx1sin wsy , sw5cos wsy2sin wsx , ~3!

and using ]sr /]w5sw one can recast the Hamiltonian in the
more compact form,

Ĥ5\VS 2i
]

]w
1

vso

2V
srD 2

. ~4!

An irrelevant additive constant term vso
2 /4V has been ne-

glected in Eq. ~2!. It should be emphasized that this Hamil-
tonian is a Hermitian operator,21 under proper boundary con-
ditions, in contrast to the non-Hermitian one used in Ref. 1.
As can be seen above, the SOI enters Eq. ~4! as the spin-
dependent vector potential (vso/2V)sr . It is convenient to
introduce the dimensionless Hamiltonian

H5

1

\V
Ĥ5S 2i

]

]w
1

vso

2V
srD 2

. ~5!

Then, as outlined in the Appendix, one can solve the eigen-
value problem in a straightforward manner. The energy spec-

trum En
(m) and unnormalized eigenstates Cn

(m) ~the normal-

ization depends on the boundary conditions!, labeled by the
index m51,2, are found to be

En
(m)

5~n2FAC
(m)/2p !2, ~6a!

Cn
(m)~w !5e inwxn

(m)~w !. ~6b!

Here the mutually orthogonal spinors x (m)(w) can be ex-

pressed in terms of the eigenvectors (0
1), (1

0) of the Pauli

matrix sz as

xn
(1)~w !5S cos

u

2

e iwsin
u

2

D , ~7a!

xn
(2)~w !5S sin

u

2

2e iwcos
u

2

D , ~7b!

with the angle u given by

u52arctan~V2AV2
1vso

2 !/vso . ~8!

The spin-dependent term FAC
(m) is the Aharonov-Casher phase

FAC
(m)

52p@11~21 !m~vso
2

1V2!1/2/V# . ~9!

Until now we have not specified the boundary conditions and
solved only the time-independent Schrödinger equation.
However, it can be seen from Eqs. ~6a! and ~6b! that what-
ever the boundary conditions, in the presence of SOI the
solution of the Schrödinger equation differs from the unnor-
malized, free-energy eigenstates only in the phase factor

exp(iFAC
(m)/2p). In words Eq. ~6b! means that the unnormal-

ized spinor Cn
(m) picks up the Aharonov-Casher phase FAC

(m)

upon encircling the ring once.

B. Device geometry and boundary conditions

The ring connected to two leads is shown in Fig. 1 with
the local coordinate systems attached to the different regions
of the device. If the ring is not connected to any leads the
natural boundary condition is that the wave function has to
be single valued when the argument w is increased by an
integral multiple of 2p; this entails that the quantum number
n @see Eq. ~6b!# must be integer. Connecting the ring to ex-
ternal leads alters this condition. In this case it is appropriate
to apply a spin-dependent version of the Griffith’s boundary
conditions19,20 at the intersections as we will specify below.
This reduces the electron transport through the spin-
interference device to an exactly solvable, one-dimensional
scattering problem. According to these boundary conditions
at each junction: ~i! the wave function must be continuous,
and ~ii! the spin probability current density must be con-
served.

In the present problem the total wave function in the in-
coming and the outgoing lead can be expanded in terms of
spinors x (m) of Eqs. ~7a! and ~7b! as

C I~x !5 (
m51,2

C I
(m)~x !x (m)~p !, xP@2` ,0# , ~10a!

C II~x8!5 (
m51,2

C II
(m)~x8!x (m)~0 !, x8P@0,`# ,

~10b!

respectively. ~See Fig. 1 for the local coordinates x and x8.!

The coefficients are the single spin-wave functions C I
(m)(x)

and C II
(m)(x8) having the form

FIG. 1. Device geometry and the local coordinates (x , x8, w ,

and w8) pertaining to different parts of the ring.
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C I
(m)~x !5~e ikx f m1e2ikxrm!, ~11a!

C II
(m)~x8!5e ikx8tm , ~11b!

respectively, where k denotes the incident wave number, f 1

5cos(g/2) and f 25sin(g/2). As it can be seen, rm is the
reflection coefficient while tm is the transmission coefficient
for spin polarization m (m51,2). In a similar fashion the
wave functions corresponding to the upper and lower arms of
the ring can be written as

Cup~w !5 (
m51,2

Cup
(m)~w !x (m)~w !, wP@0,p# , ~12a!

C low~w8!5 (
m51,2

C low
(m) ~w8!x (m)~2w8!, w8P@0,p# ,

~12b!

respectively ~see Fig. 1 for coordinates!. The corresponding
wave functions read

Cup
(m)~w !5(

j51

2

a j
me in

j
m

w, ~13a!

C low
(m) ~w8!5(

j51

2

b j
me2in

j
m

w8. ~13b!

Here the real numbers n j
m ( j51,2),

n j
m

5~21 ! jka1FAC
(m)/2p , ~14!

are the solutions of the equation k2a2
5E

nm
m

ensuring the

conservation of energy. The coefficients rm , tm , a j
m , and b j

m

are not independent: they are connected to each other via
Griffith’s boundary conditions. First applying the continuity

conditions for the wave functions C II
(m)(0)5Cup

(m)(0)

5C low
(m) (0) and C I

(m)(0)5Cup
(m)(p)5C low

(m) (p), one finds

(
j51

2

a j
m

5(
j51

2

b j
m

5tm , ~15a!

(
j51

2

a j
me in

j
m

p
5(

j51

2

b j
me2in

j
m

p
5rm1 f m . ~15b!

Now let us turn to the second boundary condition. If one
assumes that there are no spin-flip processes at the junctions,
one requires that the spin probability currents Jm for each

spin direction m should be conserved, i.e.: Jup
m

1J low
m

1J I(II)
m

50. As shown in the Appendix, the dimensionless spin cur-
rents in the ring arms are found to be

Jup
m ~w !52Re$~Cup

(m)x (m)!†~2i]/]w1vsosr/2V !

3Cup
(m)x (m)%, ~16a!

J low
m ~w8!52Re$~C low

(m) x (m)!†~2i]/]w82vsosr8/2V !

3C low
(m) x (m)%, ~16b!

where sr8(w8)5sr(w52w8)5cos w8sx2sin w8sy because

of the orientation of the coordinate system in the lower arm
is opposite to that in the upper arm. The currents in the leads
are given by

J I
m~x !52aRe$~C I

(m)x (m)!†~2i]/]x !C I
(m)x (m)%,

~17a!

J II
m ~x8!52aRe$~C II

(m)x (m)!†~2i]/]x8!C II
(m)x (m)%.

~17b!

Here it should be emphasized that the spinors x (m) (m
51,2) are obviously the eigenstates of the operator

2i]/]w1(vso/2V)sr , which commutes with Ĥ given by
Eq. ~4!. Therefore Jm are well-defined conserved spin-
current densities in the ring. Using the previous requirement

C I(II)
(m)

5Cup
(m)

5C low
(m) at the junctions, the conservation of the

spin-current densities can be simply written as

]Cup
(m)uw50(p)1]C low

(m) uw850(p)1a]C II(I)
(m) ux8(x)5050.

~18!

Evaluating the derivatives, one obtains

(
j51

2

a j
m

n j
m

ka
2(

j51

2

b j
m

n j
m

ka
1tm50, ~19a!

(
j51

2

a j
me in

j
m

p
n j

m

ka
2(

j51

2

b j
me2in

j
m

p
n j

m

ka
1 f m2rm50.

~19b!

The variables rm , tm can be eliminated using Eqs. ~15a! and
~15b!. Then the set of Eqs. ~19a! and ~19b! is replaced by the

linear set of algebraic equations for the coefficients $a j
m ,b j

m%:

(
j51

2

a j
m

n j
m

1ka

ka
2(

j51

2

b j
m

n j
m

ka
50, ~20a!

(
j51

2

a j
me in

j
m

p
n j

m
2ka

ka
2(

j51

2

b j
me2in

j
m

p
n j

m

ka
522 f m .

~20b!

III. TRANSMISSION AND REFLECTION COEFFICIENTS

AND CONDUCTANCE

The linear Eqs. ~15a! and ~15b! together with Eqs. ~20a!

and ~20b! for the variables a j
m and b j

m can be written in the

matrix form,

M mF a1
m

a2
m

b1
m

b2
m

G522F 0

0

0

f m

G , ~21!

with the matrix M m depending only on the wave number ka

and n j
m :
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M m
53

1 1 21 21

e in1
m

p e in2
m

p
2e2in1

m
p

2e2in2
m

p

n1
m

1ka

ka

n2
m

1ka

ka
2

n1
m

ka
2

n2
m

ka

n1
m

2ka

ka
e in1

m
p

n2
m

2ka

ka
e in2

m
p

2

n1
m

ka
e2in1

m
p

2

n2
m

ka
e2in2

m
p
4 . ~22!

Now let us calculate the transmission (tm) and reflection
(rm) coefficients which are connected to the incoming spinor
according to the following equations:

S t1

t2
D 5TS cos

g

2

sin
g

2

D 5FT1 0

0 T2
GS cos

g

2

sin
g

2

D , ~23a!

S r1

r2
D 5RS cos

g

2

sin
g

2

D 5FR1 0

0 R2
GS cos

g

2

sin
g

2

D . ~23b!

Both diagonal matrices T and R can be expressed in terms of
the inverse of the 434 matrix M m in the manner

Tm522@~M m!1,4
21

1~M m!2,4
21# , ~24a!

Rm522@e in1
m

p~M m!1,4
21

1e in2
m

p~M m!2,4
21

11/2# . ~24b!

Calculating the fourth row of the inverse matrix gives

Tm528icos~Qmp !sin~Lmp !/dm , ~25a!

Rm5@cos~2Lmp !21#ka/Lmdm14@cos~2Qmp !

2cos~2Lmp !#Lm /kadm , ~25b!

with the following notations:

dm5@cos~2Lmp !21#ka/Lm14@cos~2Lmp !

2cos~2Qmp !#Lm /ka24isin~2Lmp !, ~26a!

Lm5~n2
m

2n1
m!/2, Qm5~n2

m
1n1

m!/2. ~26b!

One can verify that for each spin polarization m (m51,2),

uTmu2
1uRmu2

51. ~27!

Here we would like to point out that the expressions for Tm

and Rm above are quite general. They are still valid for other
Hamiltonians than the one used, provided the spinors xn

1
m

and xn
2
m, which travel clockwise and counterclockwise, re-

spectively, are along the same direction.

In the present case Lm5ka and Qm5FAC
(m)/2p . Conse-

quently the concrete expression for the transmission ampli-
tudes reads

Tm5

8icos~FAC
(m)/2!sin~kap !

125cos~2kap !14cos FAC
(m)

14isin~2kap !
.

~28!

In the Landauer formalism the conductance is given by

G5

e2

h (
m ,l51

2

uTmlu2. ~29!

In the present case the off-diagonal elements T12 and T21 of
the transmission matrix are zero. Inserting Eq. ~28! in Eq.
~29! we obtain the exact conductance at zero temperature in
the form

G5~e2/h !g0~k ,DAC!@12cos~DAC!# , ~30!

where the dimensionless coefficient g0 is

g0~k ,DAC!

5

64sin2~kap !

@125cos~2kap !24cos~DAC!#2
116sin2~2kap !

.

~31!

Here DAC5(FAC
(1)

2FAC
(2))/25p@(2m*a/\2)2a2

11#1/2 is

the half of the difference between the phases accumulated by
the different spinors. Comparing Eq. ~30! with the approxi-
mate formula ~1! one can see that the conductance oscillates
with cos(DAC) in a more complex manner. For large values of
the Rashba parameter a an essential difference is a p phase
shift in the oscillation; however, the period remains the same.
An important feature is the presence of the factor cos(DAC) in
the denominator of Eq. ~31!. This makes g0 not a constant
equal to 1, as found in Ref. 1, but a quantity that depends on
DAC and the incident energy through k. The full dependence
of g0 on DAC for different temperatures, including T50, is
shown in Sec. V.

Figure 2 shows the conductance G versus DAC at different
wave numbers k. Because G is an even and periodic function
of ka ~with period 1), it is sufficient to consider only the half
period kaP@0,1/2# . One can see that k'0 ~or for ka'l

PN) the conductance tends to a discontinuous function
which is nonzero only at DAC5p12np (n is integer! with
value 2e2/h . This dependence of G on ka is absent in Eq.
~1!. We note in passing that a transmission coefficient for-
mally equivalent to Eq. ~30! was derived earlier in Ref. 17
with very few details and starting with a Hamiltonian in
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which the Rashba field is tilted away from the z direction by
an angle f. It coincides with ours for f50. As shown be-
low, however, ours takes into account finite temperatures and
a weak magnetic field whereas that of Ref. 17 does not. In
addition, we give the reflection coefficient in Eq. ~25b!.

IV. WEAK MAGNETIC PERTURBATION

Our analytic result can be easily extended to the case of a
weak magnetic perturbation. Let us suppose that an external

magnetic field BW normal to the plane of the ring is present.
Then the vector potential can be chosen to be tangential

AW 5~Ba/2!eWw . ~32!

First we take the effect of the magnetic flux F5arAW dwW

encircled by the ring into consideration. It means that we
have to change the momentum operator 2i\“ in the Hamil-

tonian with 2i\“2eAW ~‘‘minimal coupling’’ substitution!.
This leads to the appearance of the magnetic flux F/F0 in
the Hamiltonian, where F05h/e is the unit of flux, if the

Zeeman term g*BW •SW is neglected.5 Then the Aharonov-
Bohm phase picked up by an electron encircling this mag-
netic flux

FAB52pF/F05peBa2/\ , ~33!

and the dimensionless Hamiltonian in question reads

H5S 2i
]

]w
2

FAB

2p
1

vso

2V
srD 2

. ~34!

When the Zeeman term is present, the interaction between
the electron spin and a relatively weak magnetic field B can
be treated by perturbation theory. Using the dimensionless
field strength b5g*eB/4mV the perturbation of the Hamil-
tonian ~34! is

Hp5bsz5~g*m*/m !FABsz , ~35!

where m is the bare electron mass and g* the effective gy-
romagnetic ratio. The matrix elements of Hp in the basis of

the normalized eigenstates uCn
m&5Cn

(m)(w)/A2p are ob-

tained as

^Cn
muHpuCn

m&5~21 !m11~g*m*/m !FABcos q

5~21 !m11Cq , ~36a!

^Cn
1uHpuCn

2&5~g*m*/m !FABsin q . ~36b!

In the first-order approximation one neglects the off-diagonal
elements; this is reasonable if they are small, i.e., if
(g*m*/m)FAB!k2a2. To first order the eigenspinors are
not perturbed and their direction is still specified by the angle
q given by Eq. ~8!. Using the identity

cos q5

12tan2~q/2!

11tan2~q/2!
5p/DAC , ~37!

we obtain the energies, including the first-order corrections,

En
m

5S n2

FAB

2p
2

FAC
(m)

2p
D 2

2~21 !m
g*m*p

mDAC

FAB . ~38!

The equation of energy conservation k2a2
5E

nm
m

has the so-

lutions

n1
m

52Ak2a2
1~21 !mCq1FAB/2p1FAC

(m)/2p ,
~39a!

n2
m

5Ak2a2
1~21 !mCq1FAB/2p1FAC

(m)/2p . ~39b!

Because the eigenspinors are not modified within this ap-
proximation the transmission matrix elements are given
again by Eq. ~25a! but with the parameters Lm and Qm re-
placed, respectively, by

Lm5~n2
m

2n1
m!/25Ak2a2

1~21 !mCq, ~40a!

and

Qm5~n2
m

1n1
m!/25FAB/2p1FAC

(m)/2p5F/F01FAC
(m)/2p .

~40b!

This leads to the transmission coefficient

FIG. 2. Dependence of the conductance G on the Aharonov-

Casher phase DAC for different incident wave numbers ka at zero

temperature. G is a periodic and even function of ka , hence ka was

considered only in the interval @0,1/2# .
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Tm5

8icos~FAB/21FAC
(m)/2!sin~Cmkap !

Cm
21

2~Cm
21

14 !cos~2Cmkap !14cos~FAB1FAC
(m)!14isin~2Cmkap !

, ~41!

where Cm5A11(21)mCq /k2a2. The resulting magneto-
conductance reads

G5

e2

h
@ uT1u2

1uT2u2# . ~42!

At this point one can envisage an application of the device
as a spin filter. Assuming one can tune the phases FAB and

FAC
(m) ~via the magnetic field and the Rashba strength a)

independently, one can make the ring almost transparent with
high transmission probability only for electrons with spin
quantum number m51 ~2! and totally opaque with m52 ~1!.

For instance, if one sets FAB1FAC
(1) and FAB1FAC

(2) to be

(2p11)p and 2qp into Eq. ~41!, where q and p are inte-
gers, respectively, one obtains

uT1u2
50,

uT2u2
5S 11

118C2

32~C2!2
@12cos~2C2kap !# D 21

. ~43!

As can be seen, uT2u2 has maxima equal to 1 and minima
equal to (111/4C2)22 at integer and half-integer values of

C2ka , respectively. Due to the inequality (g*m*/m)FAB

!k2a2 we have C2;1; hence the efficiency of the filtering
process is higher than 64%.

V. TEMPERATURE DEPENDENCE OF THE

CONDUCTANCE

A. Explicit expression

The conductance at finite temperatures is given by

G~T !52

e2

h (
m51,2

E
0

`

dE
] f ~E ,m ,T !

]E
uTm~E !u2, ~44!

where f (E ,m ,T) is the Fermi function, T is the temperature,
and Tm(E) is the single spin-transmission coefficient. In the
absence of magnetic field the conductance can be written as

G5~e2/h !gT~kF ,DAC!~12cos DAC!, ~45!

where the explicit form of the temperature depending coef-
ficient gT(kF ,DAC) is given by

gT~kF ,DAC!5E
0

`

dzz
~32TF /T !cosh22@~z2

2m̄ !TF/2T#sin2~zkFap !

@125cos~2zkFap !24cos~DAC!#2
116sin2~2zkFap !

. ~46!

Here m̄ is the ~dimensionless! chemical potential in units of
the Fermi energy EF and TF denotes the Fermi temperature.
At T50 the derivative of the Fermi function becomes a d
function, the integration in Eq. ~46! can be carried out, and
one obtains the previous result g0 @Eq. ~31!#.

In the present of a weak magnetic field (Cm'1) the mag-
netoconductance reads

G5

e2

2h (
m51,2

gT@kF ,FAB1~21 !mDAC#

3$12cos@FAB1~21 !mDAC#%. ~47!

As can be seen, the total magnetoconductance for weak fields
is the sum of the two single spin magnetoconductances hav-
ing the same functional form (e2/2h)gT(kF ,f)@12cos f#
but due to the presence of the SOI they are shifted by the
spin-depending phase 6DAC according to Eq. ~47!.

B. Numerical results

To stress the difference between our result and the one of
Ref. 1 we plot in Figs. 3~a! and 3~b! the coefficient g0 for

different values of ka as indicated. As shown, the coefficient

g0(DAC) varies in a rather large range, 0–16, depending on

the value of ka . The largest deviations from 1 occur at the

end of the period DAC /p52 and 4. Agreement with Ref. 1

is obtained only for values DAC /p in the neighborhood of 3.

This range is the widest ~approximately between 2.5 and 3.5)

for ka half integer. For ka integer this range collapses into

one single point because with this wave number the coeffi-

cient g0 is discontinuous having the value 1 only at

DAC /p53 and otherwise zero.

In Figs. 4~a!–4~d! we investigate the temperature depen-

dence of the amplitude gT of the oscillations for different

values of wave number kFa520, 20.25, and 20.5. The tem-

perature is expressed in units of the Fermi temperature TF .

As seen, for kFa half integer raising the temperature reduces

the value of gT ; however, for values kFa closer to an integer

the coefficient gT increases until its peaks reach a value

around 4. This happens for temperature T'0.05TF ; and as

one can see, by then the dependence on the fractional part of
kFa has already been washed out, too. For a ring of radius
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a50.25 mm and a Fermi wave number kF520.5/a , with the
effective mass of InAs: m*50.023, the Fermi energy EF and
the Fermi temperature TF are 11.13 meV and 129.27 K, re-
spectively. With this choice of parameters T50.05TF above
corresponds to 6.46 K. Further increasing the temperature,
now by larger steps as shown in Fig. 4~d!, we find that gT

decreases more slowly. We also notice that the curves in Fig.
4~d! for different kFa and these high temperatures practically
collapse onto a single curve since for small differences in
kFa , DkF /kF'0.025, the difference in gT is always less
than 1025 and results from this high-temperature behavior of
the integrand in Eq. ~46!.

For the sake of completeness, in Figs. 5~a!, 5~b!, and 5~c!
we present the conductance G5(e2/h)gT@12cos(DAC)# for
the same temperatures and values of kFa as in Fig. 4. One
can see that by increasing the temperature the ‘‘camel
hump–like’’ pattern for kFa around half integers disappears
and G becomes less sensitive to the fractional part of kFa . A
more complete dependence of the conductance on ka and a
at zero temperature is shown in Fig. 6. As can be inferred,
e.g., by moving along lines of constant a or ka , the conduc-
tance depends in a complex manner on a and ka . Note that
the dependence of the conductance on ka is completely ab-
sent in Eq. ~1!.

Figures 7~a! and 7~b! show the oscillations of the magne-
toconductance versus magnetic field B in units of B0

5F0 /(a2p)521.06 mT for various values of the SOI
strength a and for fixed Fermi wave number kFa520.5 at
T50.001TF and T50.05TF , respectively. In both figures the
values of a were chosen such that with the above parameters
m* and a they correspond to an Aharonov-Casher phase shift
DAC equal to 5p/4, 3p/2, and 2p for a50.497a0 ,
0.741a0, and 1.148a0, respectively, with a0510211 eV m.
One can see that the presence of SOI can alter the period of
the oscillations, which in its absence is equal to B0.11

In order to get better insight into the positions of extrema
in the magnetoconductance we plotted in Figs. 8~a! and 8~b!
those positions as function of the SOI strength a for fixed
temperatures ~a! T50.001TF and ~b! T50.05TF , respec-
tively. Comparing the figure at large temperature with the
one at low temperature, it can be seen that the additional
substructure of two maxima and a minimum, which is
present at T50.001TF and connected with the ‘‘camel
hump’’ pattern of the magnetoconductance oscillation, has
been contracted into a single maximum. Further, at both tem-
peratures, near certain values of a , minima ~maxima! disap-
pear, and instead of them, a new maximum ~minimum! ap-
pears, in other words a bifurcation occurs, in the oscillation
of the magnetoconductance at B50, B0/2, and B0. These
intersections of maximum and minimum curves correspond
to saddle points on the surface of the conductance G depend-
ing on both B and a . To show more clearly how changing
the strength a can convert a minimum ~maximum! to a

FIG. 3. Dependence of the zero-temperature coefficent g0 on the

Aharonov-Casher phase DAC for different wave numbers ka .

FIG. 4. Dependence of the coefficent gT on the Aharonov-

Casher phase DAC for different temperatures T and different values

of the Fermi wave number kFa .
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maximum ~minimum!, we plot in Figs. 9~a! and 9~b! the

magnetoconductance in the neighborhood of two saddle
points for temperatures T50.001TF and T50.05TF , respec-
tively. For instance, in Fig. 9~b! one can see that for a rela-

tively small increase ~decrease! in a around 0.40a0 (1.02a0)
a minimum turns into a maximum surrounded with two
minima at B5B0/2 (B5B0).

VI. CONCLUDING REMARKS

We derived an exact expression for the zero-temperature
conductance of a one-dimensional ring connected to two
leads in the presence of SOI. In addition, we generalized the
result to finite temperatures and weak magnetic fields for
which the Zeeman term can be treated by perturbation
theory. Since we used the Landauer-Büttiker formalism, the
conductance expressions are valid in the ballistic regime.

As specified in the text, the zero-temperature conductance
is not as simple as presented in Ref. 1. Apart from the phase
shift p between the two expressions cf., Eqs. ~1! and ~30!,
the quantity g0 is not equal to 1, as deduced from Eq. ~1!,
but depends on the strength a of the SOI, on the incident
energy, and the temperature, cf. Sec. V. We attribute this
difference to the non-Hermitian Hamiltonian and also to the
boundary conditions used in Ref. 1. However, the sinusoidal
dependence of G on a as predicted in Ref. 1 is recovered by
our exact expression only in the limit of large values of a .

The results presented here are valid for a strictly one-
dimensional ring. They can be extended to rings of finite
width w provided the inequality w!a holds and an infinite-

FIG. 5. Dependence of the conductance G on the Aharonov-

Casher phase DAC at different temperatures T and Fermi wave num-

bers kFa .

FIG. 6. Dependence of G on the SOI strength a and ka at zero

temperature; a0 is the value 10211 eV m.

FIG. 7. Magnetoconductance for various values of a , in units of

a0510211 eV m, and at low ~a! and high ~b! temperatures.
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wall confinement is assumed along the radial direction. In
this case the radial and angular motion are decoupled and the
energy levels are shifted by \2l2/2m*w2, where l is an inte-
ger. The results presented in our paper correspond then to the
lowest l51 mode.
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APPENDIX

Below we give some details of the derivation of the un-

normalized eigenstates Cn
m , Eq. ~6b!, and of the spin prob-

ability currents in Eqs. ~16a! and ~16b!.

~i! Eigenfunctions Cn
(m)(w): It is sufficient to solve the

eigenvalue problem HC(w)5EC(w),

~2i]/]w1vsosr/2V !C~w !5LC~w !, ~A1!

with energy eigenvalue E5L2. Writing C(w) in the form

C~w !5e inwx~w !5e inwS a

be iwD , ~A2!

we obtain

~2i]/]w1vsosr/2V !x~w !5~L2n !x~w !. ~A3!

Using sr5(
e1iw
0

0
e2iw

) ~in the basis (0
1),(1

0) of the eigenstates

of the Pauli matrix sz) we obtain

S 0 vso/2V

vso/2V 1
D S a

b
D 5~L2n !S a

b
D . ~A4!

The eigenvalues of the latter equation are 1/2

1(21)mA1/41vso
2 /4V2

52FAC
(m)/2p , where m51,2. The

coefficients of the corresponding eigenvectors can be chosen
as a15cos u/2, b15sin u/2, a25sin u/2, and b2

52cos u/2, with tan u/25@1/22A1/41vso
2 /4V2#

3(2V/vso)5@V2AV2
1vso

2 #/vso . The resulting energy

eigenvalues and unnormalized eigenfunctions are given, re-
spectively, by Eqs. ~6a! and ~6b!.

~ii! Spin probability currents: The derivation is given as
follows.

~a! We denote a two-component spinor by C5(
C2

C1) and

its complex conjugate by C̄ . Further, we introduce the bilin-

FIG. 8. Positions of extrema in the magnetoconductance oscil-

lation as a function of a at low ~a! and high ~b! temperature.
FIG. 9. Minimum-maximum conversions in the oscillations of

the magnetoconductance due to changes in the SOI strength a for

two values of the temperature.
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ear product by (F ,C)5F1C11F2C2. Notice that this is

not a scalar product of the Hilbert space. One can show that
the following continuity equation is valid for the spinor C
obeying the Schrödinger equation i]C/]t5HC with H

given by Eq. ~5!:

]r

]t
1

]J

]w
50, ~A5!

where the probability density is r5(C̄ ,C) and the probabil-

ity current density J52Re$(C̄ ,(2i]C/]w
1(vso/2V)srC)%.

Proof. We start with the Schrödinger equation i]C/]t

5HC written explicitly as

i
]C

]t
52

]2C

]2w
2i

vso

V
sr

]C

]w
2i

vso

2V

]sr

]w
C1

vso
2

4V2
C ,

~A6!

take its and complex conjugate, and consider the products

(C̄ ,HC) and (HC ,C),

~C̄ ,HC !52S C̄ ,
]2C

]2w
D 2i

vso

V
S C̄ ,sr

]C

]w
D

2i
vso

2V
S C̄ ,

]sr

]w
C D1

vso
2

4V2
~C̄ ,C !, ~A7!

~HC ,C !52S ]2C̄

]2w
,C D 1i

vso

V
S s̄r

]C̄

]w
,C D

1i
vso

2V
S ]s r̄

]w
C̄ ,C D 1

vso
2

4V2
~C̄ ,C !. ~A8!

Using the fact (srF ,C)5(F̄ ,srC) the latter product can be
written as

~HC ,C !52S ]2C̄

]2w
,C D 1i

vso

V
S ]C̄

]w
,srC D

1i
vso

2V
S C̄ ,

]sr

]w
C D1

vso
2

4V2
~C̄ ,C !. ~A9!

The derivative ]r/]t is given by (]C̄/]t ,C)1(C̄ ,]C/]t)

5i$(HC ,C)2(C̄ ,HC)%. Therefore ]r/]t can be written
as

]r

]t
5iH S C̄ ,

]2C

]2w
D 2S ]2C̄

]2w
,C D 1i

vso

V
S C̄ ,sr

]C

]w
D

1i
vso

V
S ]C̄

]w
,srC D 1i

vso

V
S C̄ ,

]sr

]w
C D J . ~A10!

The resulting continuity equation takes the form

]r

]t
5iH ]S C̄ ,

]C

]w
D2S ]C̄

]w
,C D

]w
1i

vso

V

]~C̄ ,srC !

]w
J
~A11!

and the current J is given by

J5H S 2i
]C

]w
1

vso

2V
srC ,C D 1S C̄ ,2i

]C

]w
1

vso

2V
srC D J

~A12!

or

J52ReH S C̄ ,2i
]C

]w
1

vso

2V
srC D J

52ReH C†S 2i
]C

]w
1

vso

2V
srC D J . ~A13!

~b! Because the orientation of the coordinate system in the
upper arm is opposite to that in the lower arm, the current in

the latter is given by J low
m (w8)52Jup

m (w52w8). The result-

ing forms of the two currents are given, respectively, by Eqs.
~16a! and ~16b!.
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