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Antiferromagnetic condensates are generally believed not to display modulational instability and subsequent
spin-domain formation. Here we demonstrate that in the presence of a homogeneous magnetic field antiferro-
magnetic spin-1 Bose-Einstein condensates can undergo spatial modulational instability followed by the sub-
sequent generation of spin domains. Employing numerical simulations for realistic conditions, we show how
this effect can be observed in sodium condensates confined in an optical trap. Finally, we link this instability
and spin-domain formation with stationary modes of the condensate.
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I. INTRODUCTION

The appearance of spin degrees of freedom in atomic mat-
ter waves opens up possibilities for different phenomena
such as spin waves �1�, spontaneous magnetization �2�, and
spin mixing �3�. However, perhaps the most intriguing effect
is associated with complex patterns, such as spin textures �4�
or domains �5�, which may appear either as stationary low-
energy states or emerge spontaneously due to condensate in-
stabilities. Pattern formation is a common feature in the dy-
namics of extended nonlinear systems ranging from optics
�6� to fluids �7�. Such patterns often develop through the
exponential growth of unstable spatial modulations, known
as modulational instability. In the spinor condensates we
have the opportunity to examine such effects in an environ-
ment which is remarkably easy to control and manipulate,
simply through the addition of an external magnetic field.

The origin of the intriguing physics of spinor condensates
lies in the spin interaction between atoms, which allows for
an exchange of atoms between different spin components.
The parametric nature of this interaction mirrors similar ef-
fects observed in nonlinear optics, where the interaction of
several optical modes may lead to the generation of different
frequencies �6�. Of particular interest to our case is the pos-
sibility that instabilities of an intense light beam may occur
even when the wave is coupled to a spatially stable eigen-
mode and propagates in the normal-dispersion regime �8�; in
this case, the interplay of natural and self-induced birefrin-
gence leads to nonlinear polarization symmetry breaking and
polarization modulational instability. By analogy, we thus
might expect similar instabilities in an initially stable polar
condensate subjected to additional spin component coupling
through an external magnetic field.

In the absence of an external magnetic field, the develop-
ment of spatial modulational instability in three-component
�or spin-1� ferromagnetic condensates and the subsequent
formation of spin domains has been well established both
theoretically �9–11� and experimentally �12�. However, early
work on the zero-field case �9� determined that antiferromag-
netic �or polar� condensates are modulationally stable. Ex-
perimental observations suggested this is also true for a weak
magnetic field; however, these experiments were carried out
with a condensate smaller than a spin domain �13�.

In this paper we reveal that in fact the presence of a weak
magnetic field ��175 mG� leads to spin-domain formation
in antiferromagnetic condensates, provided the condensate is
larger than the spin healing length. Furthermore, we show
that this spin-domain formation is initiated by a novel type of
modulational instability, reminiscent of instabilities observed
in nonlinear optics �8� and not seen before in Bose-Einstein
condensates. While spin-domain formation in antiferromag-
netic condensates has been observed before in the presence
of a magnetic field gradient �5�, we show here that it occurs
equally well in the presence of a homogeneous magnetic
field. Furthermore, we reveal that this modulational instabil-
ity and spontaneous spin-domain formation is associated
with stationary states which exist in the presence of a weak
magnetic field and which intrinsically break the validity of
the single-mode approximation �as seen earlier in �14��. We
discuss realistic experimental conditions for the observation
of these effects.

The paper is organized as follows. Section II introduces
the theoretical model of spin-1 condensates in a homoge-
neous magnetic field. In Sec. III we investigate homoge-
neous stationary states in a magnetic field and analyze their
stability with respect to plane-wave perturbations �modula-
tional stability�. Section IV presents results of numerical
simulations corresponding to experimentally relevant con-
densate evolution, demonstrating the possibility of the obser-
vation of instability in an antiferromagnetic condensate. In
Sec. V we link this instability and spin-domain formation
with stationary modes of the condensate, and Sec. VI con-
cludes the paper.

II. MODEL

The evolution of a dilute spin-1 �F=1� Bose-Einstein con-
densate �BEC� in a homogeneous magnetic field is given by
the coupled Gross-Pitaevskii equations �GPEs�

i�
���

�t
= �L + c̃2�n� + n0 − n����� + c̃2�0

2�
�
* ,

i�
��0

�t
= �L − �E + c̃2�n+ + n−���0 + 2c̃2�+�−�0

*, �1�

where L=−�2�2 /2m+ c̃0n+V�r�, nj = �� j�2, n=n++n0+n−,
and V�r� is an external potential. The nonlinear coefficients
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are c̃0=4��2�2a2+a0� /3m and c̃2=4��2�a2−a0� /3m. The
total number of atoms, N=��n�r��2dr, and the total magneti-
zation M =���n+�r��2− �n−�r��2�dr are conserved quantities.
The Zeeman-energy shifts for each component can be calcu-
lated using the Breit-Rabi formula �15�

E� = −
1

8
EHFS�1 + 4�1 � � + �2� � gI�BB ,

E0 = −
1

8
EHFS�1 + 4�1 + �2� , �2�

where EHFS is the hyperfine energy splitting at zero magnetic
field and �= �gI+gJ��BB /EHFS, where �B is the Bohr mag-
neton, and gI and gJ are the gyromagnetic ratios of electron
and nucleus. The linear part of the Zeeman effect does not
affect the condensate evolution, except for a change in the
relative phases �16�, and so we remove it with the transfor-
mation ��→�� exp�−iE�t�, �0→�0 exp�−i�E++E−�t /2�.
We thus consider only the effects of the quadratic Zeeman
shift, �E= �E++E−−2E0� /2	�2EHFS /16, which is always
positive.

III. MODULATIONAL INSTABILITY OF HOMOGENEOUS
STATIONARY STATES

First, we are interested in the stability analysis of the ho-
mogeneous condensate and consider the case of vanishing
potential, V�r�=0. We look for the homogeneous solutions in
the form 	 j =�nje

−i�jt+i
j. The “phase-matching condition”
for Eqs. �1� gives �++�−=2�0. We find that both in the case
of B=0 and in the case of M =0, the steady state fulfills the
stronger condition �+=�−=�0. However, if both magnetic
field and magnetization are nonzero, which is the case in real
experiments, the chemical potentials will be different, satis-
fying the less stringent phase-matching condition.

We define the density fraction in each component as � j
=nj /n. If we assume that all three spin components � j are
nonvanishing, the relative phase between them, 
=2
0−
+
−
−, can take the value 0 or � only. We will describe the
corresponding stationary states as phase-matched �
=0� and
anti-phase-matched �
=��. Note that both types of states can
in general exist in both ferromagnetic and polar condensates
�16–18�. However, phase-matched states are energetically fa-
vorable in ferromagnetic condensates and anti-phase-
matched states in polar condensates �14,16�. For that reason,
they were named ferromagnetic and polar states, respec-
tively, in Ref. �16�. In Fig. 1 we present the existence dia-
gram for three-component homogeneous stationary states.
For generality we also include the results for ferromagnetic
condensates. The ferromagnetic condensates, such as 87Rb,
occur in the lower half �where c2 is negative�, while polar
condensates, such as 23Na, occur in the upper half �c2 is
positive�. There is clearly a region of coexistence of anti-
phase-matched �APM� and phase-matched �PM� states for a
polar condensate in nonzero magnetic field. In addition, a
two-component solution with �0=0 and one-component so-
lutions with � j =1 exist. Our results are in agreement with a
previous analysis of homogeneous ground states �14�.

The energy density is related to the Hamiltonian of the
system, from which Eqs. �1� are derived, by H=�E dr. In
addition to the anti-phase-matched ground state �14�, the po-
lar condensate in the coexistence region of Fig. 1 has an
excited phase-matched state corresponding to the energy
maximum at 
=0. This state is stable with respect to spa-
tially homogeneous spin mixing, because the possible dy-
namical trajectories in the ��0 ,
� plane correspond to a con-
stant energy value; hence, both minima and maxima are
stable.

The stability properties of these states change when we
consider the possibility of a spatial, or modulational, insta-
bility �MI�. We calculate the growth rate of the Bogoliubov
modes �19�:

	 j = ��nj + uj�t�eik·x + v j
*�t�e−ik·x�e−i�jt+i
j . �3�

After substituting the above into Eq. �1� we obtain a set of
equations for the vector z= �u+ ,u0 ,u− ,v+

* ,v0
* ,v−

*� in the form
dz /dt= iAz, where A is a sixth-rank matrix �20�. For an equi-
librium state, it is possible to eliminate � j and �E from A,
expressing it in terms of nj, c0, c2, and k only for specific 
.
The Bogoliubov modes are the solutions of the characteristic
equation det�A−���=0, with � being the eigenfrequency of
the excitation. The form of this equation is too cumbersome
to present here, in contrast to the B=0 case considered before
�11�. In general, one has to use numerical methods to obtain
a set of solutions.

The general numerical results are presented in a system-
atic way in Table I. These results have been calculated for
the specific cases of the 87Rb condensate �upper half� and
23Na condensate �lower half� with scattering lengths given in
�16� and hyperfine energy splitting given in �21�. As we are
considering the homogeneous case, the result is applicable to
one-, two-, and three-dimensional condensates. We do not
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FIG. 1. �Color online� Diagram of existence of stationary states
in spin-1 condensates. In addition to the three-component phase-
matched and anti-phase-matched solutions shown in the diagram,
two-component solutions with �0=0 exist for arbitrary M and one-
component solutions � j =1 exist with j=−,0 ,+. Dark shading �top�,
anti-phase-matched state; light shading �bottom�, phase-matched
state; cross hatching, both states. The dotted and dashed lines at
M =0 indicate the absence of a phase-matched or anti-phase-
matched state, respectively.

MATUSZEWSKI, ALEXANDER, AND KIVSHAR PHYSICAL REVIEW A 78, 023632 �2008�

023632-2



consider here the trivial case of ��=1 states, which have an
extremal value of magnetization of M = �N. All the cases
presented in this table were double checked by direct nu-
merical integration of Eq. �4� �see Sec. IV�. The results cover
the area of Fig. 1 and do not apply to the case of very high
magnetic field, when the quadratic Zeeman energy
dominates.

We find that our results are in agreement with the existing
data for the vanishing magnetic field case. In Ref. �9� the
authors found that all the three-component equilibrium states
are stable, with the exception of one state in the ferromag-
netic condensate, which corresponds to the “ferro-APM,”
M =0 state in Table I. In Ref. �16�, it was also found that
ground states of both ferromagnetic and polar condensates
�“ferro-PM” and “polar-APM”� are modulationally stable.
The authors of Ref. �11� considered mainly non equilibrium
�spin-mixing� states, but their general conclusion was that all
polar condensate states are dynamically stable and ferromag-
netic are not. Here we report that, in fact, specific ferromag-
netic condensate states are stable, while polar condensates
may become unstable. Furthermore, as discussed below, we
see that dynamic domain formation may occur for polar con-
densates and lead to convergence to different stationary
states.

As one can see in Table I, the magnetic field affects the
stability of polar condensates. We investigate this phenom-
enon in detail by calculating the growth rate =Im��� cor-
responding to unstable Bogoliubov modes. In Fig. 2, we
present results for a “polar-PM” state of a sodium condensate
as a function of the magnetic field strength. The growth rate
is proportional to the square of the quadratic Zeeman shift,
which is in turn proportional to the square of the magnetic
field strength. Hence, one has to apply a relatively strong
magnetic field to observe MI on a reasonable time scale.
Another interesting feature is the range of wave vectors k
corresponding to unstable modes. In contrast to the typical
case where this range starts from k=0, here the unstable
region begins at a nonzero minimum value. This type of
“optical mode” branch has been reported before in the case
of parametric optical solitons �20�.

IV. DYNAMICS OF THE CONDENSATE
IN A CIGAR-SHAPED TRAP

We now consider the implications of these results in the
experimentally relevant case of a 23Na condensate localized
in a cigar-shaped harmonic trap, V�r�= 1

2m��
2 �y2+z2�

+ 1
2m�


2x2. Specifically we consider the case ����
 in
which the Fermi radius of the transverse trapping potential is
smaller than the spin healing length and the nonlinear energy
scale is much smaller than the transverse trap energy scale,
which allows us to reduce the problem to one spatial dimen-
sion �16,22�. Following the standard dimensionality reduc-
tion procedure we obtain the one-dimensional model

i�
�	�

�t
= �L̃ + c2�n� + n0 − n���	� + c2	0

2	
�
* ,

TABLE I. Stability of spin-1 condensate states in the absence and presence of the magnetic field: PM,
phase-matched; APM, anti-phase-matched; X, state does not exist.

Condensate
type

State
type

B=0
M =0

B=0
M �0

B�0
M =0

B�0
M �0

Ferro PM Stable Stable Stable Stable

APM Unstablea X X X

�0=0 Unstable Unstable Unstable Unstable

�0=1 Unstable X Unstable X

Polar PM Stable Stable Unstable Unstable

APM Stablea,b X X Unstable

�0=0 Stable Stable Unstable Unstable

�0=1 Stable X Stable X

aA family of stationary states.
bNeutral stability with respect to spatially homogeneous spin mixing.

FIG. 2. �Color online� Modulational instability growth rate in a
phase-matched steady state of a sodium condensate �circles� versus
the quadratic Zeeman shift in the case M =0. The solid line is a
square fit to the numerical data. The upper shaded area shows the
range of k vectors corresponding to the unstable �imaginary�
frequencies.
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i�
�	0

�t
= �L̃ − �E + c2�n+ + n−��	0 + 2c2	+	−	0

*, �4�

where L̃=−��2 /2m��2 /�x2+c0n+ 1
2m�


2x2 and the interaction
coefficients have been rescaled and now include the trans-
verse trap frequency: c0=4����2a2+a0� /3 and c2
=4����a2−a0� /3.

The experimental scenario we consider here consists of
several phases. Initially, the condensate is prepared in the
m=−1 ground state �12�. Next, short microwave field pulses
are applied to transfer the atomic population to the desired
state �23�. We consider two cases: a phase-matched state
�
=0� with �+,0,−=0.351,0.3,0.349 and an anti-phase-
matched state �
=�� with �+,0,−=0.4,0.01,0.59. Simulta-
neously, the magnetic field is set to the value of 175 mG
�12�. The results of the corresponding numerical simulations
of Eqs. �4� are presented in Fig. 3. The MI develops after
tens of milliseconds and leads rapidly to spin-domain forma-
tion. We see what appears to be initial oscillations, followed
by instability dynamics, leading to an apparent oscillating
state. In the case of the phase-matched initial condition and
almost zero magnetization, we ultimately see conversion to
the 	0 component, as observed in experiment �13�. In the
anti-phase-matched initial condition, however, with nonzero

magnetization, the spin domains become well defined and
persist in the dynamics. We have verified that the nonlinear
energy at peak density c0nmax /2 is much smaller than the
transverse energy separation ���, which justifies the use of
a reduced one-dimensional GPE �22�.

V. STATIONARY SPINOR STATES

The existence of MI suggests that domain-type stationary
states may be expected in the trap, just as plane-wave insta-
bility and solitons are typically found together in optics. In-
deed, as can be seen in Fig. 4, we find that in the stationary
picture the profiles always break the single-mode approxima-
tion for both the phase-matched and anti-phase-matched
states �as found in Ref. �14� for the case of an anti-phase-
matched state in a polar condensate�. As predicted by the MI
analysis, an initially smooth profile will therefore become
modulated with the ensuing instability dynamics reflecting
the nearby stationary-state profiles. For instance, comparing
Figs. 3�b� and 4�a� we see that profiles similar to the station-
ary states appear in the evolution. Significantly, but unsur-
prisingly, in a polar condensate, we find that the phase-
matched state is generally unstable, while the anti-phase-
matched state is stable. The stability of these states appears
to reflect the ultimate dynamics of the condensate with the
phase-matched state breaking up while the anti-phase-
matched state has highly persistent spin domains. A complete
analysis of the stability of the stationary states will be
presented elsewhere.

VI. CONCLUSIONS

We have demonstrated that an antiferromagnetic spin-1
condensate can undergo a different type of spatial modula-
tional instability followed by subsequent spin-domain forma-
tion in the presence of a homogeneous magnetic field. We
have employed realistic conditions to demonstrate, with the
help of numerical simulations, that this modulational insta-
bility can be observed in a sodium condensate confined in an
optical trap potential and that the ensuing instability dynam-
ics connect with the stationary states in the trap.
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FIG. 3. �Color online� Spin-domain formation in a 23Na conden-
sate confined in an optical harmonic trap. Top panels: evolution of
n0 �darker shading higher density�. Bottom panels: densities at
given times. �a�, �b�, �c� Phase-matched initial state, �+,0,−

=0.351,0.3,0.349; �d�, �e�, �f� anti-phase-matched initial state,
�+,0,−=0.4,0.01,0.59. The thin dotted line corresponds to the total
condensate density n, and the dashed, solid, and dotted lines corre-
spond to n+, n0, and n−, respectively. Parameters are N=3.7�103,
B=175 mG, ��=2��103 Hz, and �
 =2��32 Hz.
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FIG. 4. �Color online� Examples of �a� phase-matched and �b�
anti-phase-matched stationary states in a 23Na condensate. Shown
are the total density n �thin dotted line� and component densities
n+,0,− �dashed, solid, and dotted lines, respectively�.
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