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SUMMARY

We construct a model for the spin-down of rapidly rotating, convective stars. We
assume that rotation and convection cause a star to rotate differentially, that differen-
tial rotation and convection generate a magnetic dynamo, that a magnetic dynamo
gives rise to mass loss and a magnetically controlled stellar wind, and that such a wind
results in angular momentum loss and hence stellar spin-down. Using the model, we
show that a protostar accreting from a circumstellar disc reaches an equilibrium rota-
tion period significantly below break-up. We also show that the spin-down rates we
derive are consistent with those required to drive the orbital evolution of cataclysmic
variables.
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1 INTRODUCTION

It has long been assumed that stars, as they form, accrete
most of their material through an accretion disc (von
Weizsacker 1948; Liist 1952; Lynden-Bell & Pringle 1974;
see the review by Shu, Adams & Lizano 1987). It has also
been realized that material deposited on a central object
from an accretion disc arrives with high angular momentum
and so should lead to a rapid spin-up of the central object
(Papaloizou & Pringle 1978; Pringle 1988; Hartmann &
Stauffer 1989). For these reasons it might have been
expected that the youngest stars, in particular the T Tauri
stars, should be rotating close to break-up. In fact, although a
few T Tauri stars do rotate rapidly, it has become evident
that most young stars do not. Instead, they have mean rota-
tional velocities of around one-tenth of break-up speed
(Vogel & Kuhi 1981; Smith, Beckers & Barden 1983;
Hartmann et al. 1986; Hartmann & Stauffer 1989; see the
review by Bouvier 1991). This implies that either during the
accretion phase or within about 10° yr thereafter, substantial
angular momentum loss must take place from the newly
formed star (Hartmann er al. 1986). An obvious way in
which this can be achieved is by magnetic wind braking
(Pringle 1988; Hartmann & Stauffer 1989). [For an alterna-
tive possibility, see Konigl (1991).]

In this paper, we investigate angular momentum loss from
a rapidly rotating, fully convective protostar. Although
protostars formed by spherical accretion are maintained in a
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radiative state by the entropy of the accreted material
(Larson 1969; Stahler, Shu and Taam 1980a,b, 1981), those
formed by accretion from a circumstellar disc appear to be
fully convective regardless of initial conditions (Mercer-
Smith, Cameron & Epstein 1984; Tout, in preparation). We
construct a model which is fully self-consistent in the sense
that the rotation plus convection give rise to dynamo action
within the star. This in turn gives rise to a magnetic field
which governs the wind structure, and energy deposition at
the surface of the star which drives the wind, thus leading to
angular momentum loss and spin-down. Since most of the
physical processes we consider here are poorly understood,
it is necessary to make what we hope are reasonable assump-
tions as we proceed. For this reason, the precise numerical
values we derive and the details of the functional depen-
dencies we find should not be taken at face value. Our aim in
this paper is to demonstrate that such a fully consistent
picture is a physical possibility, and moreover that credible
and sufficient spin-down rates can be achieved in such a
picture.

In Section 2 we discuss the details of the magnetic wind.
As surmised by Hartmann & Stauffer (1989), we shall find
that the wind is not rotationally driven. Rather, at the high
mean loss rates we derive [being ~0.1-1.0 times the accre-
tion rate; ¢f. Edwards ez al. (1987), Hartmann & Raymond
(1989)], and for the surface fields which we find ( ~10° G),
the Alfvén radius is only a few stellar radii. In Section 3 we
consider angular momentum transfer through the star, and in
particular the generation of shear within the star by a com-
bination of rotation and convection, and also the magnitude
of ‘eddy viscosity’ which is the result of convective motions,
limited by rotation. In Section 4 we present our schematic
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dynamo model. We do not consider the details of the
dynamo process, nor do we attempt to consider time varia-
tions, solar-type cycles and the like. Rather, we consider gen-
eral (time- and space-averaged) balances between the
relevant physical terms. To be specific, we assume that the
shear converts poloidal flux to toroidal, and that the standard
process of convection and rotation converts toroidal to
poloidal at some rate which we parametrize. These are the
growth terms. We assume that the dominant loss mechanism
by which magnetic flux leaves the star is magnetic buoyancy
(Durney & Robinson 1982; Robinson & Durney 1982) and
that this energy loss process leads to energy deposition at the
stellar surface and the driving of a stellar wind. In Section 5,
we tie all the above ideas together in a specific model. We
calculate the shear present in the star self-consistently, by
balancing shear production from rotation and convection
with shear loss to the dynamo. Our general finding is that a
rate of angular momentum loss is attainable which is suffi-
cient to ensure that even a young pre-main-sequence star
emerging from its accretion phase can be spinning signifi-
cantly below break-up. In Section 6, we address briefly the
criticism (e.g., Bouvier 1991) that such models seem to
necessitate . a chance coincidence between angular
momentum gain and loss in a situation where the gain and
loss mechanisms are not directly physically related. Note
however, that at high accretion rates, this criticism loses
some of its force because the accretion drives the stellar
luminosity, and hence the convection and ultimately the mass
loss. In this section, however, we assume that the driving of
shear by anisotropic turbulence (convection plus rotation) is
less efficient than we had assumed, and consider the shear to
be driven by accretion of high angular momentum material at
the stellar equator and wind-driven angular momentum loss
from higher stellar latitudes. Under this assumption there is
less shear and hence less mass loss. Even so, we find that
rotation rates below break-up are achievable. In Section 7 we
undertake a critical discussion of the above model and also
consider its application to other types of stars. In particular,
we show that the angular momentum loss rates derived from
the model are comparable to those required from the secon-
dary stars in cataclysmic variables, to drive the mass transfer
and hence the evolution of those systems.

2 MAGNETIC WIND

We consider a protostar with mass M, radius R4 and angular
velocity Q. We assume that it is losing mass in a wind at a rate
M., For the cases under consideration, we shall find that the
stars are slow rotators in the sense that the radius, R ,, out to
which the wind is forced by the field to corotate with the star
is smaller than the corotation radius, R, at which centrifugal
force on the (corotating) wind is balanced by the star’s
gravity. We define Ry by RqoQ?= GM/R}. If we define the
‘break-up’ angular velocity for the star by

Q =(GM/R3)"", (2.1)
then we have

Ro/Rx=(Q/Q 3. (2.2)

In effect, we assume that the wind consists of two zones.

(i) The inner zone is given by R4y <R<R,. In this zone
the wind is accelerated to of order the escape velocity by
strong energy deposition at its base. Thus we shall take the
wind to have a constant velocity, v, which is of order the
escape velocity:

v, ~(2GM/R ). (2.3)

This requires the rate of energy input into the wind to be
L,~——. (2.4)

(ii) The outer zone comprises the region R>R,. The
Alfvén radius, Ry, is defined by the radius at which

v~ B’l4mp,, (2.5)

where B is the magnetic field and p,, the density of wind
material. Outside this radius the magnetic field can no longer
provide communication between the wind and the star, and
the wind then escapes freely. The angular momentum loss
rate in the wind is

Jj,~ M RQ. (2.6)
Using equation (2.4), we find
Lw~ij(R*/RA)2(QK/Q )2' (27)

Thus far the physics of the wind is more or less inevitable,
but we now come to a major uncertainty: the structure of the
magnetic field and of the outflow. Most discussions in the
literature concern themselves with low-density outflows (as
for the Sun) in which the Alfvén radius is much larger than
the corotation radius. For such flows there is an intermediate
zone, Ro<R<R,, in which the wind is centrifugally
accelerated and the field structure may need to be modified
to reflect this. Belcher & MacGregor (1976) adopt what they
call an ‘equatorial approacl’, treating the flow as essentially
two-dimensional. Verbunt (1984) argues, from Weber &
Davis (1967), that the wind flows along radial field lines and
so takes B R™2, equivalent to a monopole field. He also
assumes that flow streamlines are radial and that the wind is
spherically symmetric. Mestel & Spruit (1987) adopt a more
complicated picture with a mixture of inner dipole and outer
radial field lines. We take the view that the stellar magnetic
field is likely to fall off faster than a monopole, and also wish
to make some allowance for divergence of the flow in the
sense that the open field lines may not connect to the whole
stellar surface. To model this in a simpler manner, we shall
assume that the field strength depends on radius in the form:

B=B«(R«/R)", (2.8)

where n is a parameter. We work mostly with a ‘dipolar’ field
taking n =3, but comment below on the effect of varying n
(¢f. Taam & Spruit 1989).

Then, using equations (2.5) and (2.8), and assuming
roughly spherical outflow at the Alfvén surface so that we
may write at that radius

pw~ M [(47R.,), (2.9)
we obtain

RA BiRi 1/(2n-2)

R_*= Mo (2.10)
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3 ANGULARMOMENTUM

One of the driving terms for the stellar dynamo is the shear,
dQ/dR, which converts poloidal field to toroidal (see below).
Thus we need to estimate dQ2/dR. We shall work in terms of
a quantity AQ, which we take to be an appropriate mean
within the star of the quantity R(dQ/dR). Roughly, AQ
should be the change in angular velocity between the star’s
centre and its outer edge.

In non-accreting single stars, the differential rotation is
presumably maintained by an interaction between convec-
tion and rotation (e.g., Ridiger 1989). This must be true for
the regions in the Earth where the terrestrial dynamo is
maintained (Moffatt 1978; Cook 1980). For stars there is
also the possibility that the stellar wind provides a latitude-
dependent torque and so maintains differential rotation. In
either case, the energy for driving the dynamo comes essen-
tially from the rotational kinetic energy of the star. We shall
assume therefore that the effect of convection in a differen-
tially rotating star is to give rise to a non-isotropic viscosity,
which in turn would, in the absence of other processes, give
rise to a variation of Q through the star. In other words, we
assume that a convective, rotating and non-magnetic star has
differential rotation such that AQ~Q, and such that the
shear energy, E;, is comparable to the rotation energy of the
star, E,,=3k*MR%Q, where k is the dimensionless stellar
radius of gyration. Thus the rate, L, at which energy is fed
into the shear is

L, ~ik’MR+Q*/1,, (3.1)
where 7, is the viscous time-scale. We expect
7,~ R/v, (3.2)

where v is a measure of the kinematic (convective) viscosity.
In a non-rotating star, the convective viscosity would be of
the form:

v~iv l, (3.3)

where v is the convective velocity and /; the mixing length.
However, in a rapidly rotating star, in which the rotation
period is less than the convective turnover time-scale, 7~
I.[v,, the effect of angular momentum transport by the
largest convective cells is likely to be curtailed (see also the
discussion in Section 4). This problem was considered by
Goldreich & Keeley (1977; see also Campbell & Papaloizou
1983, Goldman & Mazeh 1991) who argued that rotation
does not affect the convective motions, nor indeed the
convective turbulent spectrum and concluded, by assuming a
Kolmogorov spectrum for the turbulence, that the viscosity is
reduced by a factor of (Qz.)* for Qz.>1. We show below
that an upwardly (or downwardly) moving fluid element
rotates once after it has gone a distance of ~(Q7.)"'H,,
where H( ~ [ ) is the local scaleheight. Thus it seems reason-
able to assume that advection of angular momentum is
restricted by a factor of Q7,, while advection of energy is
essentially unchanged. In view of this, we adopt a viscosity of
the form:

v~iv 1 (Q1,)77, (3.4)

where p=0. For the above reasons, we shall adopt p=1 in
this paper and take

v~iv2Q7". (3.5)
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To estimate the.convective velocity, v, we use standard
mixing-length theory (Schwarzschild 1958) and obtain

Ly~ MRy, (3.6)

where the constant #~3R4/l.~30 (¢f. Campbell &,
Papaloizou 1983).

4 THE DYNAMO MODEL

The dynamo equations (e.g., Moffatt 1978; Parker 1979;
Cowling 1981) can be written in a schematic form as:

dB
Ef= AQB,- B,[1,, (4.1)

and

dA,
——=TB,— A,/1,. (4.2)
dt [ ¢/ “p

Here B, is a measure of the toroidal field strength in the star,
and A, is a measure of the azimuthal component of the
magnetic vector potential, and so represents the poloidal
field, B,,. Indeed, since B,~ Ay Ry, we may rewrite (4.2)
schematically as

B r
%=(— B,— B,/t,. (4.3)

The quantities 7, and 7, are the time-scales on which
poloidal and toroidal flux are lost or destroyed, and the
quantity I is the standard dynamo regeneration term (also
called a).

The usual form for the loss terms is some effective
magnetic diffusivity, and the usual assumption about I is in
terms of convective motions (e.g., Noyes, Weiss & Vaughan
1984). Thus the standard dynamo equations are effectively
linear in the magnetic field and are unable to predict the field
strength. For this reason, from a physical point of view, some
kind of non-linearity must be introduced in order to model a
realistic dynamo (e.g., Weiss, Cattaneo & Jones 1984). The
simplest assumption to make about flux loss is that the domi-
nant mechanism for the star as a whole is loss caused by
magnetic buoyancy (ie., the Parker instability). Although
magnetic diffusivity must be acting on the smaller scales [in
particular the I'mechanism cannot operate without it at
some level (Parker 1979)], we take the view that magnetic
flux is escaping from the star on a time-scale comparable to
the growth time-scale for the Parker instability. Thus we
follow Parker’s assumption (Parker 1977) that the field
escapes at a velocity some fraction of the Alfvén speed (see
also Horiuchi et al. 1988; Matsumoto et al. 1988). We shall
take the velocity at which flux escapes to be ~0.1v ,, where
v, is an appropriate mean Alfvén speed in the star
(Matsumoto et al. 1990). We note that the exact fraction
assumed, here 0.1, does not play an important role in the
resulting model. Thus we conclude that 7,~7,~107,,
where 7,~ Ry/v, is the Alfvén-wave crossing time in the
star.

We note further that since we expect the shear term (AQ )
to act more rapidly than the regeneration term (I'), we also
expect that B;>> B . We shall write B, ~ ¢B, and expect that
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£ < 1. This also means that we may write

VA~ B¢/(4JT/0*>”2, (4.4)
where
0%~ M/(47R3/3). (4.5)

The origin of the T’ (or a) term is discussed by Cowling
(1981), and the usual idea goes back to Parker’s (1955)
suggestion of cyclonic turbulence. If convective or turbulent
motions are present, then rising eddies expand and so rotate
relative to the local medium. This rotation is the basis of the
twist which produces poloidal flux from toroidal, and so
completes the feed-back loop and enables the self-sustaining
dynamo. In these circumstances the standard formula for I" is
of the form (Cowling 1981)

r~03rv,w, (4.6)

where 7, is the turbulent turnover time-scale, v the velocity
of a typical turbulent cell, w, the component of the vorticity
parallel to v, in the cell induced by the vertical motion, and
the factor 0.3 comes from a specific model. Within an
upwardly moving parcel of matter one expects

o~ Q(d/H,), (4.7)

where d is the vertical distance travelled and H, the pressure
scaleheight. Again, for a turbulent cell one expects d ~ v, t,.
For a slowly rotating star the angle through which a cell twists
before it dissolves is small compared to s - this is the
implicit assumption used by Parker (1979) in his derivation
of I'. However, for a rapidly rotating star there is the possi-
bility that a cell could twist many times before dissolving. We
shall assume therefore that a typical turbulent cell dissolves
before it twists once. This corresponds to assuming that 7w,
is fixed and less than or of order unity. From equation (4.3),
we can see that we may write

I'~yv, (4.8)

where y is an unknown parameter which measures the effi-
ciency of the regeneration term (cf. Parker 1979). We assume
that the regeneration of field is inefficient and adopt a
canonical value of ¥ ~ 1072 (see below).

For a fully convective star we take v to be the convective
velocity within the star, v ., which is given roughly in terms of
the stellar luminosity L, by equation (3.6). We note that for
consistency we shall require v 2 0.1v 5.

We now assemble the various ideas and assumptions and
look for a steady-state solution of the schematic dynamo
equations. From equation (4.3) we find that

e~ 17,T/Ry, (4.9)

and hence using equations (4.4) and (4.8), the definitions of ¢
and the assumption about 7, we obtain

B,~ 10y (47mo4)' /. (4.10)
Similarly, from equation (4.1) we find
e~0.1(AQ ) 'w o/Rx. (4.11)

The dynamo process not only creates magnetic field, but
also leads to a continual expulsion of flux from the star. It is
this mechanical output of energy that we assume drives the
stellar wind, at least in the inner zone (c¢f. Hartmann &

MacGregor 1980). Thus we write approximately:

d |B; 4 B _,4
~= 1= —aRi~ ;' = aRi~01Mv:/R
. dt(Sn) o3 X ag " 3T AR
(4.12)
(¢f equation 3.6).

5 APPLICATION

We are now in a position to tie the above ideas together.
From equation (3.1), convective forces put energy into the
differential rotation at a rate L, . Energy is removed from the
shear by the magnetic field at a rate (equation 4.1)

2
4
_~gt (%;) %nRi~AQ(BPB¢/4”)§ aR:~ eAQMu,.
gain

(5.1)

Equating L, (equation 3.1) and L_, and using equations
(4.11) and (4.12), we then find

L, ~+k2MQu? (5.2)
and that, assuming k2= 0.1,
VA~ §(R«Q 2. (5.3)

For illustration, we consider the case of a fully convective
protostar descending the Hayashi track with mass M=1 M,
radius Ry =3 R and luminosity L4=4 L 5. From equation
(2.1) we have the Keplerian angular velocity:

Qy=0.61(M/M )" (Ry/3R )" *?rad d-". (5.4)
From equation (3.6), we find
v~ 38X 10%(L4/4Lo)"(n/30) " M/M o) '*(R«/3R o)/

cms~ L (5.5)
From equation (5.3), we find

VA~ 39X 10V Ly/AL o V(n/30) (MM o)~ 118
X(Rx/3Ro)"®cms™!, (5.6)

where we have defined f=Q/Q,. Hence, using equation
(4.5), viz.

0%x=0.052(M/M o) R«/3Ry) " 3gem™3, (5.7)
we find
By=3.2X 104fU3( L /4L o )?°(5/30)~29(M|M 5 )*°

X(R4/3R )3 G. (5.8)

Using equation (4.10), we find
B,~3.1x 10X L4/4L ) 3(n/30)"3(M/M . )'
X(R«/3R5)™"%(y/107%) G, (5.9)
and hence,
£~ 9.6 X 1073f “VA(Ly /4L o)"(n/30) P(M]M )~ 51"
X(Rx/3Ro)"¥(y/1072),

which is much less than unity.

(5.10)
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From equation(5.2), and again using k%= 0.1, we find

L, =5.7x10%f(Ls/4L )**(n/30)"23(M[M /¢
X(R4/3R) oergs™! (5.11)
and hence (equation 2.4),
M, =14x1078f(Ly/AL 5)**(n/30)" 2} MM ;)= 16
X (Ry/3R)MOM o yr~1. (5.12)

We note in passing that if one assumes that surface
emission from a magnetically active star is proportional to
L., which we assume to be the rate at which the dynamo
deposits energy at the stellar surface, then we predict a
surface emissivity per unit area of the form (L,/R?)«
QM'3R-43L2%3, This dependence of surface emissivity on
rotation period is similar to the one found by Vilhu &
Rucinski (1983; see also Rucinski 1985).

We now identify By with B,,. That is, we assume that the
magnetic field in the wind is predominantly caused by the
poloidal component of the stellar field. Then using equations
(5.9) and (5.12) together with the expression (equation 2.3),
viz.,

0, ~3.6X10"(M/M o) (Ry/3R)™ 1 cms™, (5.13)

we obtain from equation (2.10), using n= 3 (i.e., a dipole-like

field):

Ra/Ry=1.1f"14{(y/1072)12, (5.14)

We note that R,= Ry, provided that f<1.3(y/1072)2. We
also note that

R,y/Rq~ L1f*"(y[1072)!/2, (5.15)
which is less than unity for f<0.9(y/1072)7%5 We now
define the spin-down time-scale, 74, as

_K’MRiQ

, 5.16
7. (5.16)

Tsd

where J,, is given by equation (2.6). Thus we obtain

Ty~ 6.2X 104 = (y/1072)7(n/30) (L /AL o)~

X(M/M o)""*(R«/3R )™ "/® yr. (5.17)
For a protostar accreting at a rate
M,.~63%x10%mgs™!, (5.18)

where #1 is the accretion rate in units of 107'M, yr™!, we
may define a spin-up time-scale, 7, as
K MR3Q

Tw= = 10X 10°(M/Mo) frir ' yr.

=— = 1
Macc( GMR*)1/2 (5 9)

For an equilibrium rotation rate, we equate 7, and 74 to
find

F=0.16m3(y[1072)~23(n/30)(L 4 /AL o)~ (MIM ;)"
X (Ry/3R o)1 (5.20)

We note that, strictly speaking, the luminosity we have
used for a star descending the Hayashi track is valid only if
the accretion rate is small enough. We may write the accre-
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tion energy as

L acc GMMacc/R*

~4.0x10%(M/Mo)Ru/3Ro) 't ergs™.  (5.21)

As a matter is accreted on to the star, enforced gravitational
contraction generates an internal stellar luminosity of order
L ... Thus the above equations hold only if L ... S L, i.e,, if

acc

MS Mg~ 3.8(La/4L o (M/M o)™ (R«/3R ). (5.22)-

At higher accretion rates we substitute L ~ L . in equation
(5.20) to obtain

f~029m*°(y[1072)72(n/30)"(M[M o)™ "*(Rx/3R 5)'F*.
(5.23)

6 ACCRETION-DRIVEN SHEAR

From the calculations of Section 5, it can be shown that the
amount of shear required in the star, for m < m1_, is

AQ —2p-13(_Y o -1/9 -1/9
o ~16x107f 3(10_2) (L4/ALs)™""(n/30)
X (MM o) "8 (R4/3R o)*/'3. (6.1)

This shear comes about by a balance between an increase
caused by the combination of convection and rotation and a
decrease caused by magnetic torques. In such a situation one
expects dQ/dR <0. In an accreting protostar, however, there
is another source of shear which is caused by the star being
spun up at the equator by accretion and being spun down by
the stellar wind torques operating at higher latitudes. The
accretion-induced shear AQ, . can be estimated by equating
the rate at which angular momentum is added to the star,
Jooe ™ M. (GMR )2, to the rate at which the convective
viscosity can transfer the angular momentum through the
star, viz.

Joe ™ AQ,. OVATRE R . (6.2)

From this we deduce

AQ B} _
—Q“°°~ 1.1x 10’ ri(L4/4Lo) " (n/30)(M/M o)

X (Ru/3R o)1, (6.3)

Note that for such a shear we expect dQ/dR > 0.

We conclude that neglect of accretion-induced shear in
Section 5 was justified. However, it is instructive to ask how
the model outlined above might operate if this mechanism,
that we have assumed gives rise to convection-induced shear,
either does not operate or is less efficient than we suppose. In
this case, if we use the same assumptions as above, but use
the accretion-induced value for AQ, we find fairly similar
results. In particular, we find that

32
M (acc)~2.6 %10 *m*? (W”z) Y LaJ4Lo) Y (5/30)

X(M/Mo)'"(Rx/3Ro)™12M o yr~1. (6.4)
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We find a spin-down time-scale of

-7/4
74acc) ~ 4.6 X 10°m (F"z) fM(LyfaL) ™

X (1/30)'"(M[Mo)*/(Rx/3R 5)"° yr, (6.5)

and hence deduce an equilibrium rotation rate of

-1
fueo ™ 0641 1—0y—2) (Laf4L o)™ "™ (n/30) (MM o) ™"

X(Rx/3R o). (6.6)

7 DISCUSSION

We have constructed a model to investigate the spin-down
rate of a rapidly rotating fully (or mainly) convective star.
The model is self-consistent in the sense that the convec-
tively driven shear coupled with the rotation gives rise to
dynamo action within the star. The energy loss from the
dynamo gives rise to a magnetically driven, and magnetically
controlled, stellar wind which results in stellar angular
momentum loss and hence in spin-down. For a fully convec-
tive protostar accreting from a circumstellar disc, the balance
between gain and loss of angular momentum leads to an
estimate of the stellar rotation rate for a given accretion rate.
We find that such rotation rates can be significantly below
break-up (equations 5.20 and 5.23).

However, in order to construct such an all-embracing
model it has been necessary to gloss over a large number of
physical uncertainties. To do so, we have made what we hope
are reasonable or plausible assumptions. Indeed, many of the
ideas adopted in various parts of the models are, as we have
indicated, to be found already in the literature. Nevertheless,
there are three major areas of uncertainty in the model as a
whole. The first two are intimately linked and are concerned
with the effect of convection on the generation of poloidal
magnetic fields.

The first, the interaction between convection and rotation,
is an area about which much has been written [see, for
example, Durney (1983, 1985), Hathaway (1984), and the
reviews in Tassoul (1978) and Riidiger (1989)], but about
which few firm conclusions have been drawn. For the regime
we are considering, the Rossby number [R,=(Q7,)"!] is
given by

Ry=1.5x10"%(L4/4L )" (n/307 f (MM o)~°
X (R4/3R )", (7.1)

and is much less than unity. We have taken the viscosity
v« Ry ?, with p=1 (equation 3.5). We note that since R is so
small in this case, our results are sensitive to the precise value
of p. By taking p=1, we assume in effect that although rota-
tion has some effect, it is not as strong at these small Rossby
numbers as would be implied by taking the extreme value of
p=2 which can be found in the literature. We feel that the
assumptions we have adopted here are close to the main-
stream of current thinking, but certainly do not encompass
all the possibilities. We stress, however, that the calculations
in this paper are valid only in the limit of rapid rotation and
should not be extrapolated to slow rotators.

The second uncertainty, the rate of regeneration of
poloidal flux, is of course highly uncertain and widely
discussed. Here we have made an assumption consistent with
that adopted for the convective viscosity, but have also
included the parameter, v, which we have carried through
the calculations. We adopted a canonical value of y=1072
for no reasons other than the fact that we expect y to be
smaller than unity (i.e., field regeneration to be inefficient)
and this value seems to give rise to reasonable model para-
meters.

The third major area of uncertainty is in how the magnetic
energy generated by the dynamo manages to drive the stellar
wind, and what the field strength and structure in the wind is.
We have assumed that all the magnetic energy generated by
the dynamo process (and the major contributor is toroidal
flux generated by shear) is advected to the stellar surface by
the Parker instability and there dissipated, being converted
efficiently into driving the stellar wind. This is of course
over-optimistic, and we expect therefore the stellar wind
mass-loss rates derived in this paper to be corresponding
overestimates. Conversely, we have taken the magnetic field
in the wind to be derived from the general poloidal field
within the star. This is probably an underestimate, since
much of the poloidal flux at the base of the wind is likely to
come from the non-linear development of the Parker insta-
bility operating on the stellar toroidal field (cf. Shibata et al.
1990). Our assumption of a dipole-like radial flux distribu-
tion within the wind may go some way towards compensating
for this, since the actual surface field is likely to have a higher
multipole structure. However, since the Alfvén radius is not
far from the stellar surface in the models presented here, the
exact power law with which the magnetic field drops with
radius does not play a large role in determining the outcome.
It would of course have been possible to introduce further
unknown parameters to allow for some of these incalculable
effects, but we feel the proliferation of free parameters would
have served merely to distract from the clarity of the paper
without adding anything of useful or physical significance.
Suffice it to say that in view of the above remarks, we expect
the stellar mass-loss rates predicted here to be overestimates
and the stellar surface field strengths (taken to be B,) to be
underestimates. We hope that the net outcome is to give
plausible estimates of spin-down time-scales and rotation
rates.

Even so, we should note that with spin-down rates as
rapid as those predicted by equation (5.17), we would have
expected all completely or deeply convective stars to have
spun down on time-scales much shorter than their evolu-
tionary time-scales. However, in the young clusters a Persei
and the Pleiades (ages around 6 X 107 yr), although most of
the stars do rotate slowly, there is a large minority (about 30
per cent) which rotate rapidly with f~0.1-0.5 (Jones 1991,
personal communication; Prosser 1991; see also Stauffer
1988). As Hartmann (1991) remarks: ‘It is difficult to under-
stand why stellar wind angular momentum loss is efficient on
time-scales < 10° yr in the T Tauri phase, but inefficient on
time-scales 2107 yr during post-T Tauri contraction’
Soderblom et al. (in preparation) point out that all models of
spin-down appear to have difficulty in accounting for the
almost bimodal distribution of rotation rates, which is
independent of stellar mass, and suggest that there must be
something complicated going on, if such similar stars appear
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to be undergoing such different spin-down histories. Such
complications, they consider, might include intermittent,
late-time accretion which might spin up perhaps just the
outer layer of a few stars, and/or differential rotation
between a rapidly spinning (radiative) core and a convective
envelope which have erratic and occasionally efficient
coupling between them. It is worth stressing, for example,
that magnetic dynamos are in reality a highly non-linear and
chaotic phenomenon (e.g., Weiss 1985), and that the simple
modelling in terms of time- and space-averaged quantities
which we have used here may simply not apply straight-
forwardly to all stars. Thus it may not be unreasonable in
practice to expect that superficially similar stars have differ-
ent modes of dynamo activity and so have different spin-
down histories.

Although most of this paper has been concerned with the
rotation of pre-main-sequence stars, we note that angular
momentum loss from rapidly rotating stars is thought to play
a crucial role in determining the evolution of cataclysmic
variables. These stars consist of a low-mass quasi-main-
sequence star (the secondary) filling its Roche lobe and trans-
ferring material on to a white dwarf (the primary). For the
longer period systems, it is thought that the evolution (i.e., the
mass transfer) is driven predominantly by an unseen magne-
tic wind from the mainly convective secondary star. The
wind removes spin angular momentum from the secondary,
and since the secondary is strongly tidally coupled, this has
the net effect of removing angular momentum from the orbit.
This process was introduced by Verbunt & Zwaan (1981)
and later used by Rappaport, Verbunt & Joss (1983) to make
detailed calculations of the evolution of these systems. We
also note that for these systems, it has been hypothesized that
when the secondary star’s mass has been reduced so much
that it becomes fully convective, the magnetic braking pro-
cess becomes suddenly less effective (Rappaport et al. 1983;
Spruit & Ritter 1983; Taam & Spruit 1989). Thus the argu-
ments in this paper, in favour of efficient magnetic braking of
fully convective stars, are somewhat in contradiction to some
suggested theories of cataclysmic variable evolution. Never-
theless it is instructive to compare the spin-down rates
required in cataclysmic variables and those computed here.
The torque formula used by Rappaport et al. is of the form

Jy=38%10"MRE(R4/R )" Q’ dyn cm, (72)

where the parameter I’ is taken in the range 2 to 4. This is to
be compared with our derivation that

Jy=52X10%f%2(y/1072)( L /4L o )**(n/30)~23( MM o)'/3
X (R4/3R 5)** dyn cm. (7.3)

The comparison between these two is not straightforward.
This is because in the case of cataclysmic variables, as the
evolution proceeds, the mass M, radius R, and spin rate Q
(or equivalently binary orbital period P=2x/Q) are all
strongly correlated. Thus the required functional depen-
dence of J_, on each of these quantities separately is not well
determined. Indeed, it is apparent from figs 2 and 3 of
Rappaport et al. that as the evolution proceeds we have the
approximate relation Mx R, <Q~! and thus the effective
dependence of J., on Q is much weaker than the J, < Q3
apparent from equation (7.1). To make a more direct com-
parison, we evaluate the formulae (7.1) and (7.2) for two par-
ticular models given by Rappaport ef al. (1983). For the first,
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we take M=0.3M,, Ry=03R,, L=10"2L,, I'=4 and
P =3 hr. For such binaries where the mass ratio g is of order
0.1, we find f=0.3. Then, evaluating the above we find
J,=8.7x10° dyn cm and J,=2.2x 103 dyn cm. For the
second model we take M=03M,, Ry=04R,,
L=2%x10"%Ly, T'=2 and P=4 hr. For this model we find
Jew=7.3%x10% dyn cm and J, = 5.2 x 10> dyn cm. We con-
clude that the rates of angular momentum loss predicted by
our model are not greatly out of line with those required for
driving the evolution of cataclysmic variable systems.

In summary, it is evident that the model presented here
should be regarded as neither definitive nor inevitable. In
each part of the model there are a number of other possibili-
ties which need to be explored. We regard it as encouraging,
however, that such a model might be able to account for the
observed relatively slow rotation rates of the youngest low-
mass stars, and to tie in with the evolution of cataclysmic
variables. We hope therefore that at the least the above anal-
ysis will provide a useful framework for future discussion.
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