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ABSTRACT

Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to
probe the rotational behaviour in their deep interiors using the observations of mixed modes.
Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and
fundamental stellar parameters.
Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red
giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution,
allows us to derive global information on stellar evolution.
Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are
dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small
increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump
stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with
increasing stellar mass.
Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed
rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-
down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured
in white dwarfs.
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1. Introduction

The internal structure of red giants bears the history of their evo-
lution. They are therefore seen as key for the understanding of
stellar evolution. They are expected to have a rapidly rotating
core and a slowly rotating envelope (e.g. Sills & Pinsonneault
2000), as a result of internal angular momentum distribution.
Indirect indications of the internal angular momentum are given
by surface-abundance anomalies resulting from the action of
internal transport processes and from the redistribution of an-
gular momentum and chemical elements (Zahn 1992; Talon &
Charbonnel 2008; Maeder 2009; Canto Martins et al. 2011).
Direct measurements of the surface rotation are given by the
measure of v sin i (e.g. Carney et al. 2008). The slow rotation

⋆ Appendices A and B are available in electronic form at
http://www.aanda.org

rate in low-mass white dwarfs (e.g. Kawaler et al. 1999) sug-
gests a spinning down of the rotation during the red giant branch
(RGB) phase. In addition, 3D simulations show non-rigid rota-
tion in the convective envelope of red giants (Brun & Palacios
2009). Different mechanisms for spinning down the core have
been investigated (e.g. Charbonnel & Talon 2005). Rotationally-
induced mixing, amid other angular momentum transport mech-
anisms, is still poorly understood but is known to take place in
stellar interiors. Therefore, a direct measurement of rotation in-
side red giants would give us an unprecedented opportunity to
perform a leap forward on our understanding of angular mo-
mentum transport in stellar interiors (e.g. Lagarde et al. 2012;
Eggenberger et al. 2012).

This is becoming possible with seismology, which provides
us with direct access to measure the internal rotation profile, as
shown by Beck et al. (2012) and Deheuvels et al. (2012a). They
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demonstrate that it is possible to measure the core rotation thanks
to the precision of asteroseismic results derived from the photo-
metric light curves of red giants provided by the NASA Kepler
mission (Borucki et al. 2010). Previous work on field star aster-
oseismic surveys shows that is possible to define evolutionary
sequences (e.g. Miglio et al. 2009; Huber et al. 2011). So, with
ensemble asteroseismology, we aim to get measurements in a
large enough sample of red giants to explore the variation of the
internal rotation with evolution.

After a decade of relatively uncertain ground-based measure-
ments, CoRoT has unambiguously revealed that red giants show
solar-like oscillations (De Ridder et al. 2009). Important scal-
ing relations have then been shown (Hekker et al. 2009) for de-
riving crucial information on the stellar mass and radius from
global seismic parameters (Kallinger et al. 2010). Specific fea-
tures of solar-like oscillations in red giants have been character-
ized (e.g. Bedding et al. 2010; Mosser et al. 2010; Huber et al.
2010). Mixed modes, which correspond to the coupling of grav-
ity waves in the radiative core region and pressure waves in the
envelope (Dziembowski et al. 2001; Dupret et al. 2009), have
been detected in red giants. They were first reported by Bedding
et al. (2010). Their period spacings were measured by Beck et al.
(2011). Bedding et al. (2011) and Mosser et al. (2011a) have
shown the capability of these modes to measure the evolution-
ary status of red giants. Mixed modes can be divided into two
categories, namely gravity-dominated mixed modes (hereafter
called g-m modes) which have large amplitudes in the core, and,
in contrast, pressure-dominated mixed modes (p-m modes). The
frequencies of the p-m modes are very close to the theoretical
pure p mode frequencies; they however appear to have a signif-
icant g component, and are therefore sensitive also to the core
conditions. We analyse in this work mostly stars showing a rich
mixed-mode spectrum.

Observations and data are presented in Sect. 2. The observed
properties of the rotational splittings are described in Sect. 3.
In Sect. 4, we derive scaling relations governing the rotational
splitting, independent of any modeling, but based on the obser-
vational evidence of a much higher rotation rate in the stellar
core. The way the core rotation is related to the measured rota-
tional splitting is quantified in Sect. 5. In Sect. 6, we then derive
unique information on the core rotation in red giants and probe
their internal angular momentum and its evolution.

2. Data

2.1. 25-month long observation

The red giant stars analyzed in this work have already been
presented (e.g. Hekker et al. 2011, and references therein). We
now benefit from longer time series. All red giants observed
up to Kepler’s quarter Q10 have been analyzed. Original light
curves were processed according to Jenkins et al. (2010) and
corrected according to the procedure of García et al. (2011). The
Fourier analysis of the 868-day long time series provides a fre-
quency resolution of about 11.5 nHz. Due to the characteristics
of the measurement, we have in principle access to rotation pe-
riods up to the observation duration. For a few RGB stars show-
ing large rotational splittings, a reprocessed set of Q0 to Q11
Kepler data has been used, based on the extraction of the stel-
lar fluxes using new custom masks from the recently released
pixel-data information (Bloemen et al. 2012). These new light
curves were then corrected applying the algorithms developed by
García et al. (2011) but using a refined new automatic procedure

(Mathur et al., in prep.). In practice, we measure rotational split-
tings with periods in the range 8–280 days.

2.2. Mixed-mode pattern

The complete identification of the red giant pressure oscillation
pattern is given by the description of the so-called universal os-
cillation pattern (Mosser et al. 2011b). This method alleviates
any problem of mode identification. The whole frequency pat-
tern of pure p modes is approximated by:

νnp,ℓ =

(

np +
ℓ

2
+ ε − d0ℓ +

α

2
[np − nmax]2

)

∆ν, (1)

where ∆ν is the mean large separation measured in a broad fre-
quency range around the frequency νmax of maximum power, np
is the p-mode radial order, ℓ is the angular degree, ε is the phase
offset, d0ℓ accounts for the so-called small separation, α is a
small constant, and nmax = νmax/∆ν. The parameters ε, d0ℓ and α
are considered as a function of the large separation; an updated
fit of ε is used, comparable to the expression of Corsaro et al.
(2012). The parameter α represents the second-order term of
the asymptotic development (Tassoul 1980) and accounts for the
mean curvature of the radial mode oscillation pattern (Mosser
et al. 2012a). It was considered as a constant by Mosser et al.
(2011b). Here, with much longer time series and large separa-
tions observed up to 20 µHz, we prefer to use the fit

α = 0.015 ∆ν−0.32, (2)

with ∆ν in µHz. This relation is derived from the detailed anal-
ysis of the radial modes with the method presented by Mosser
(2010).

The recent analysis of Kallinger et al. (2012) has shown
that this development is valid, independent of the stellar evolu-
tionary status, under the condition that the determination of the
large separation is global and not local. Their Fig. 6 illustrates
the important curvature of the ridges depicted by the quadratic
term of Eq. (1). The comparative work by Hekker et al. (2012)
shows that the extra hypothesis used by Mosser et al. (2011b),
expressed by the function ε(∆ν), helps to obtain very precise re-
sults. Using this constraint requires fitting each oscillation spec-
trum in a large frequency range around νmax and taking into ac-
count the mean curvature of the p-mode oscillation pattern.

Equation (1) holds precisely for radial modes and gives a
proxy for the pure pressure dipole (ℓ = 1) modes. However,
due to the significant coupling of pressure waves with gravity
waves in the inner radiative region, the dipole oscillation pat-
tern is dominated by mixed modes located around the position
of the pure p mode. The frequency interval between the individ-
ual mixed modes is not constant and is determined according to
the method presented in Mosser et al. (2011a). For stars show-
ing a large number of g-m modes, the oscillation pattern can
be precisely described by an asymptotic relation presented by
Goupil et al. (2012), following the ideas originally developed by
Shibahashi (1979) and Unno et al. (1989). We apply this method,
as explained in Mosser et al. (2012c), in order to locate precisely
the dipole mixed modes.

The échelle diagram of Fig. 1 shows the identification of
the radial modes provided by Eq. (1), with the mode curvature,
and the location of the mixed ℓ = 1,m = 0 modes defined by
the asymptotic relation. The remaining shifts between the ac-
tual and expected peaks positions, due for instance to a sharp
structure variation (Miglio et al. 2010), are small compared to
the mixed mode spacings. Hence, they do not hamper the mode
identification.
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Fig. 1. Échelle diagram of a typical RGB star (KIC 6144777) as a
function of ν/∆ν − (np + ε). The radial order np is indicated on the
y-axis. Radial modes (highlighted in red) are centered on 0, quadrupole
modes (highlighted in green), near −0.12 (with a radial order np − 1),
and ℓ = 3 modes, sometimes observed, (highlighted in light blue)
near 0.20. Dipole mixed modes are identified with the frequency given
by the asymptotic relation of mixed modes, in µHz. The fit is based on
peaks showing a height larger than eight times the mean background
value (grey dashed lines).

3. Measuring the rotational splittings

From the analysis of dipole mixed modes, Beck et al. (2012)
showed differential rotation in red giants. In this section, we pro-
pose a model for describing the rotational splittings of dipole
mixed modes and an automated method for measuring them.

3.1. Modulation of rotational splittings

Because of differential rotation, a simple interpretation of rota-
tional splittings in terms of mean rotation of the star is inade-
quate. The situation is made even more complicated by the fact
that rotational splittings are measured for dipole mixed modes.
Indeed, the mixed nature of the modes varies as a function of
mode frequency, as shown by Dupret et al. (2009). As a result of
those two interlaced effects, Mosser et al. (2012c) have shown
that rotational splittings are modulated in frequency, with a pe-
riod of ∆ν. The rotational splitting can be written

δνsplit = νn,1,m − νn,1 = m R(ν) δνrot, (3)

where m is the azimuthal order and δνrot is the maximum value
observed for g-m modes. Locally, around the position of a pure
dipole p mode of radial order np, Mosser et al. (2012c) have
shown that R can be empirically expressed as:

Rnp (ν) = 1 −
λ

1 +

(

ν − νnp,1

β∆ν

)2
(4)

for a mixed mode with frequency ν associated with the pres-
sure radial order np. The development, solely derived from

Fig. 2. Empirical rotation profile Rnp for dipole mixed modes associ-
ated to the pure p mode of radial order np, as a function of the reduced
frequency ν/∆ν − (np + ε).

the observed splittings, has currently no theoretical basis: the
Lorentzian form has been chosen similar to the observed vari-
ation of the mixed-mode spacing with frequency (Beck et al.
2011; Bedding et al. 2011).

The form ofR (Fig. 2) implies that the splittings are not sym-
metric, consistent with the findings of Deheuvels et al. (2012b).
For multiplets near p-m modes, the closest component to the the-
oretical pure p mode has the smallest splitting. The asymmetry
is expressed when considering Eq. (3) as an implicit equation,
the splitting of the frequency νn,1,m compared to the non-rotating
reference νn,1 depending on νn,1,m:

νn,1,m = νn,1 + m R(νn,1,m) δνrot. (5)

It assumes, as observed but with the limitation of the observed
frequency resolution, that the modulation of the splitting is the
same for all radial orders. In fact, the fits of the splittings, ob-
tained by supposing that the frequency of the m = 0 component
of the dipole mixed modes is given by the asymptotic develop-
ment, show that the terms λ and β are independent of the fre-
quency. Furthermore, we have verified that the values of λ and β
are always very close to 0.5 and 0.08, respectively, and hence do
not depend on the evolutionary stage.

Due to the large volume of data, we need an automated
method for deriving the rotational splittings, similar to the de-
termination of the global seismic parameters ∆ν and νmax (e.g.
Hekker et al. 2011; Verner et al. 2011). This method has to cope
with an interweaving of rotational splittings and mixed-mode
spacings.

3.2. EACF analysis

We can use the envelope autocorrelation function (EACF)
method (Mosser & Appourchaux 2009) to measure the rotational
splittings of non-radial modes. This method was developed to
measure the frequency spacing corresponding to the large sepa-
ration of solar-like oscillations. With narrow filters centered on
the expected ℓ = 1 pressure modes, it gives the spacing due to
the mixed-mode pattern (Mosser et al. 2011a). With ultra-narrow
filters centered on each individual mixed mode, it proves to be
able to measure the rotational splittings. The central positions of
the filters are chosen within the frequency ranges where mixed
modes are expected. Each range is wider than half the large sep-
aration ∆ν, as shown by Mosser et al. (2012b). Different central
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Fig. 3. Zoom on the oscillation spectrum of the target KIC 10777816.
Different narrow filters centered in the ℓ = 1 mixed mode range, indi-
cated with different line styles, allow us to measure a local rotational
splitting in each filter. For clarity, only those filters centered on possible
multiplets have been represented.

positions of the filters are tested within this range, independent
of the mixed-mode positions. The widths of the filters have to
be narrow enough to select only one mixed mode, in order to
avoid confusion between the g-mode spacing and the rotational
splitting (Fig. 3). They are varied, in order to test a large range
of splittings. We have tested five different widths, of the order
of 1 µHz or less, which encompass the observed values.

In the EACF method, the signature of any comb-like struc-
ture in the spectrum, here the rotational splitting, is provided
by the highest peak in the spectrum of the windowed spectrum.
The signal is normalized in such a way that the mean white-
noise level is 1. The reliability of the detection is derived from
an H0 test. Since we use ultra-narrow filters, only high signal-
to-noise time series can be analyzed.

For each filter width, multiplets were searched in seven ra-
dial orders around νmax, at ten different positions per radial order.
As a consequence, seventy possible signatures of the rotational
splittings are analysed for a given filter. The criterion for a posi-
tive detection is the measurement of similar splittings for at least
three positions centered on different dipole mixed modes cor-
responding to different radial orders np, with a signature of the
EACF above the threshold level (Mosser & Appourchaux 2009).
In order to account for the modulation of R towards p-m modes
(Fig. 2), we allow relative differences of 1/3 between the indi-
vidual measurements. This threshold level has been determined
empirically. It takes into account the fact that splittings are mea-
sured mainly in the wings of the function R: the splittings of
p-m modes are not easily measured, due to their shorter lifetime,
whereas the amplitudes of the g-m modes located far from the
p-m modes are too low to give a reliable signature.

3.3. Performance

All results found by the automated method have been verified
individually by visually comparing the spectrum with itself af-
ter a shift corresponding to the rotational splitting. The method
appeared to be dominated by g-m modes since they have nar-
rower widths and are more numerous than p-m modes. Hence,
they contribute much more efficiently to the EACF signature, as
shown by the careful examination of numerous individual spec-
tra. Therefore, the method mainly gives the rotational signature
of the core. This is also clear from the close examination of the
extracted splittings.

For stars with a low signal-to-noise ratio oscillation spec-
trum, generally faint stars or stars with low νmax, we sometimes
obtain spurious results. These results are clearly caused by the
stochastic nature of the oscillation excitation, which occasion-
ally resembles the complex pattern of multiple peaks shown by

the dipole mode, and were discarded. Finally, depending on the
stellar inclination i, the multiplets have two components (when
sin i is close to 1), three components (intermediate i values), or
only one component (low i). In this latter case, measuring the
splitting is not possible. The correct identification of the mul-
tiplets has been possible in most of the cases, allowing us to
remove the confusion between δνsplit and 2 δνsplit.

Possible confusion between rotational splittings and mixed-
mode spacings has been investigated. Such a confusion is usu-
ally eliminated by limiting the width of the filter. However,
RGB stars may show a rotational splitting very close to the
g-mode spacing. We therefore explored the frequency domain
where the solutions are ambiguous. Ambiguous detections are
identified by the fact that, even if the rotational splitting and the
mixed-mode spacing are both modulated in frequency, with a
period ∆ν, their signatures are different. On the one hand, the
g-mode frequency spacing varies as ν2 since it approximately
corresponds to a regular spacing in period (Bedding et al. 2011;
Mosser et al. 2012c); on the other hand, the modulation R is the
same all along the spectrum (Eq. (4)).

As expected, the automated method fails when the rotational
splittings are larger than half the mixed-mode spacings. This oc-
curs for giants ascending the RGB, with ∆ν ≤ 12 µHz. For these
stars, a dedicated method, presented in the next paragraph, is
needed to disentangle the rotational splittings from the mixed-
mode spacings. We finally measured reliable rotational splittings
in 265 red giants with the automated method, in the clump and
in the early stages of the RGB. The combined effect of the tiny
width of the filter and of the limited frequency resolution makes
the method much more precise at high frequency than at low
frequency. The relative precision is of about 5% in δνrot for stars
with ∆ν = 15 µHz and 25% when ∆ν = 5 µHz.

3.4. Validation with direct measurements

The values of the rotational splitting provided by the
EACF method can be compared to a direct fit of the modulation
of the splitting based on Eqs. (4) and (3). A tutorial for fitting
the rotational multiplets is given in Appendix A; different fits are
shown, in order to illustrate cases with rotational splittings lower,
comparable or larger than the mixed-mode spacings. Using such
fits, we measured the rotational splitting δνrot in 102 red giants.
Among them, 54 had already a rotational splitting measured with
the EACF method. The remaining 48 stars had rotational split-
tings too large compared to the mixed modes spacings to be mea-
surable with the EACF method. As a result, the total number of
red giant stars with splittings measured with one or the other
method is 313 (=265+102−54). The analysis of the detection
and non-detection as a function of the large separation is summa-
rized in Table 1. Non-detection at large ∆ν occurs for RGB stars
with depressed mixed modes (identified by Mosser et al. 2012b)
or with very low inclination. In this latter case, the components
m = ±1 are too low to allow the identification of multiplets.
At small ∆ν, the non-detection is explained by the limited fre-
quency resolution, but also by the poorer quality of the spectra,
as expressed by the EACF coefficient (Mosser & Appourchaux
2009). For ∆ν in the ranges [4, 5 µHz] and [5, 6 µHz], the suc-
cess of the detection depends mainly on the evolutionary status:
small rotational splittings in clump stars with large mixed-mode
spacings can be detected more easily than larger rotational split-
tings of RGB stars embedded in narrow spacings. We expect the
number of positive detections to increase with prolonged obser-
vations: the frequency resolution will give access to rotational
splittings in the upper RGB, and the better signal-to-noise ratio
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Table 1. Positive detections as a function of ∆ν.

∆ν range Reference Detections
(µHz) (a) (b) (c) (d) (e)
0 3 323 323 49 0 0.0%
3 4 257 250 76 37 48.7%
4 5 412 387 167 146 87.4%
5 6 97 86 82 21 25.6%
6 8 92 81 75 31 41.3%
8 12 68 51 49 48 98.0%
12 20 50 38 36 30 83.3%

all 1299 1216 534 313

Notes. (a): total number of red giants in a given frequency range.
(b): same as case (a), but spectra with depressed dipole mixed modes are
excluded. (c): same as case (b), but spectra with an EACF signature less
than 100 are also excluded. (d): number of positive detections in each
frequency range. (e): percentage of positive detections with respect to
reference (c).

Fig. 4. Comparison of the splittings measured with the EACF auto-
mated method to the splittings measured with the fit of the mixed modes
(Eq. (4)). Red asterisks correspond to rotational splittings too large to
be accurately measured in an automated way and hence excluded from
the sample.

will allow the identification of tiny m = ±1 components at low
stellar inclination.

We have noted that the automated EACF approach provides
values that are 10% smaller than δνrot derived from the individ-
ual fits (Fig. 4). This small correction is consistent with the dif-
ferent principles of the methods: the inferred value of δνrot from
Eqs. (3) and (4) is larger than any observed splitting, whereas the
EACF method, even if dominated by g-m modes, also includes
narrower multiplets in the vicinity of the p-m modes. This indi-
cates that the 10% difference can be considered as a bias of the
automated method. For homogeneity, all splittings obtained with
the EACF method have been multiplied by a factor 1.10.

We have tested that the differential-rotation term R of Eq. (4)
holds for red giants in all stages of their evolution. Residuals of
the fit of the splittings are much smaller than δνrot. We observe
a coefficient λ (Eq. (4)) of 0.5 ± 0.1 for an early RGB star such
as KIC 7341231 studied by Deheuvels et al. (2012a), with ∆ν =
28.9 µHz, as well as for clump stars with ∆ν ≃ 4.0 µHz. The pa-
rameter β is about 0.08±0.015 for all giants, except a very small
number of exceptions, at the bottom of the RGB. Measuring a
modulation profile R almost independent of the evolution may
indicate that its origin obeys to generic properties, similar for all
red giants ascending the red giant branch (RGB).

Fig. 5. Zoom on the rotational splittings of the mixed modes corre-
sponding to the radial orders np = 8→ 11 in the giant KIC 9574650, in
an échelle diagram as a function of the reduced frequency ν/∆ν−(np+ε).
All triplets (m = −1, 0, 1) are identified with the function R defined by
Eq. (4). At low frequency, multiplets are overlapping.

For clump stars and early RGB stars, we note that the rota-
tional splittings are significantly smaller than the mixed-mode
spacings. In these cases, the individual fits confirm the auto-
mated measurement. However, when the rotational splittings are
larger than the mixed-mode spacings, the EACF method was
ineffective for extracting the correct large splitting: it derived
wrong values that result from a combination of the mixed-mode
spacing and rotational splitting. Application of Eq. (4) allowed
us to provide the correct splittings even with large values com-
parable to the mixed-mode spacing. We stress that, in practice, it
seems impossible to disentangle such multiplets from the mixed-
mode pattern without the use of the asymptotic relation of mixed
modes. We were able to investigate complicated cases, with ro-
tational splittings significantly larger than the mixed-mode spac-
ings, for RGB stars with ∆ν down to 7 µHz. Finally, even in
the case where multiplets overlap, that is νnm+1,1,−1 < νnm,1,+1,
with nm the mixed-mode order, we do not observe any modi-
fication of the profile R (Fig. 5). This indicates the absence of
avoided crossings between dipole mixed modes with consecu-
tive mixed-mode orders nm and different azimuthal orders m. In
other words, this shows the absence of coupling between such
modes.

4. Scaling relations

We have derived estimates of the stellar mass and radius from
the seismic global parameters and from the effective tempera-
tures given by the Kepler Input Catalog (Brown et al. 2011), so
that we can present the rotational splitting as a function of the
stellar radius R (Fig. 7). The evolutionary status of the stars was
determined by Mosser et al. (2012c). Among the helium-burning
stars, we consider those with a mass greater than 1.8 M⊙ to be-
long to the secondary clump. The uncertainties arising from the
effective temperatures and the imprecision of the scaling rela-
tions do not impact the following analysis.
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Fig. 6. Rotational splitting δνrot as a function of the large separation ∆ν,
in log-log scale. The dotted line indicates the frequency resolution. The
dashed and dot-dashed lines represent the confusion limit with mixed
modes in RGB and clump stars, respectively, derived from Mosser et al.
(2012c). Crosses correspond to RGB stars, triangles to clump stars, and
squares to secondary clump stars. The color code gives the mass esti-
mated from the asteroseismic global parameters. The vertical bars indi-
cate the mean error bars, as a function of the rotational splitting.

4.1. Rotational splittings δνrot

Rotational splittings δνrot are shown as a function of the large
separation ∆ν (Fig. 6). We see that the detection is difficult at
low ∆ν, due to the limited frequency resolution. This precludes
an analysis of the core rotation in the high-luminosity RGB stars,
but allows us to measure rotation in the clump stars.

We first consider the RGB stars, indicated by crosses in
Fig. 6. We note that the rotational splitting slightly decreases
when ∆ν decreases, that is, when the star evolves on the RGB.
For clump stars and secondary clump stars, splittings are much
smaller. At this stage, ensemble asteroseismology indicates ei-
ther that the core rotation spins down, or that the splitting of g-m
modes is not dominated by the core rotation. This last result is
unlikely since g-m mode splittings are significantly larger than
p-m mode splittings (Fig. 3), consistent with the observations
reported by Beck et al. (2012) and Deheuvels et al. (2012a) for
four early RGB stars.

4.2. Scaling relations

We have examined how the rotational splittings evolve with the
stellar radius along the RGB (Fig. 7). Only RGB stars with a
mass in the range [1.2, 1.5 M⊙] were considered, to avoid a bias
from the fact that high-mass stars are under-represented in the
early stages of the RGB, whereas low-mass giants are under-
represented in the later stages. With 49 RGB stars in this case,
we find

δνrot ∝ R−0.5± 0.3 (RGB). (6)

In the first stages of the RGB, the splittings δνrot show a slow de-
crease. Assuming the local conservation of angular momentum,
such a decrease seems in contradiction with the core contraction:
this has to be investigated.

The same exercise can be done for the clump stars. The fit,
conducted over a much broader range of mass (Mosser et al.
2012c), gives

δνrot ∝ R−1.3± 0.4 (clump) or ∝ R−1.4± 0.4 (2nd clump). (7)

Fig. 7. Rotation splitting δνrot as a function of the asteroseismic stellar
radius, in log-log scale. Same symbols and color code as in Fig. 6. The
dotted line indicates a splitting varying as R−2. The dashed (dot-dashed,
triple-dot-dashed) line corresponds to the fit of RGB (clump, secondary
clump) splittings.

This indicates a different behaviour compared to RGB stars. We
first note that the slopes are independent of the stellar mass.
Closer to −2 than for RGB stars, they certainly relate the in-
fluence of the stellar expansion. We also note that secondary
clump stars, which are more massive, show larger splittings than
clump stars.

4.3. Intermediate conclusions

From the analysis of the rotational splittings with the stellar ra-
dius, we note the weak decrease of RGB stars. According to the
exponent of the fit reported by Eq. (6), this g-m mode splitting
cannot be related to the surface rotation if it evolves at constant
local angular momentum. The large change in the rotation evo-
lution from the RGB to the clump can be related to the expan-
sion of the non-degenerate helium burning core (Iben 1971; Sills
& Pinsonneault 2000). This increase of the core radius is how-
ever limited and cannot explain the entire observed decrease of
the rotational splittings, so that we are left with the most plausi-
ble conclusion that the strong decrease of the rotational splitting
is the signature of a significant transfer of internal angular mo-
mentum from the inner to the outer layers. This transfer should
preferably occur at the tip of the RGB, out of reach with cur-
rent Kepler observations due to a limited frequency resolution.
One could also imagine that the rotational splittings are sensitive
to different layers, depending on the evolutionary status. This is
investigated in the next section, where we aim to interpret the
signification of the observed splittings δνrot.

5. Linking the rotational splittings to the core

rotation

To go a step further, we intend to qualitatively link the observed
rotational splittings to the rotation inside the red giants.

5.1. Linear rotational splittings and average rotation

We assume that the rotation is slow enough that a first-
order perturbation theory is sufficient to compute the rotational
splittings. This yields the following expression for rotational
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splittings (Ledoux 1951; Christensen-Dalsgaard & Frandsen
1983; Christensen-Dalsgaard & Berthomieu 1991; Goupil 2009;
Goupil et al. 2012)

δνrot,n,ℓ =

∫ 1

0
Kn,ℓ(x)

Ω(x)
2π

dx, (8)

where x = r/R is the normalized radius and Ω is the angular ro-
tation (in rad/s). The rotational kernelKn,ℓ of the mode of radial
order n and angular degree ℓ takes the form

Kn,ℓ =
1

In,ℓ

[

ξ2r + (Λ − 1)ξ2h − 2ξrξh
]

n,ℓ
ρx2 (9)

where In,ℓ is the mode inertia

Inl =

∫ 1

0

[

ξ2r + Λ ξ
2
h

]

n,ℓ
ρx2dx. (10)

The quantities entering these equations are the fluid vertical and
horizontal displacement eigenfunctions, ξr, ξh respectively; ρ is
the density, and Λ = ℓ(ℓ + 1).

The mode inertia is much larger for g-m modes that have a
large amplitude in the inner cavity than for p-m modes. For a
red giant, several mixed modes exist in the frequency vicinity of
each radial mode. As a result, the variation with frequency of the
dipole mode inertia shows a regular variation with a periodicity
roughly equal to the large separation (see Dziembowski et al.
2001; Dupret et al. 2009; Christensen-Dalsgaard 2011; Goupil
et al. 2012). This has been observationally confirmed (Mosser
et al. 2012c). The linear rotational splittings (Eq. (8)) are found
to follow closely the same behavior as the mode inertia for the
same reason. However a significant amplification of the variation
of the splittings with frequency compared to that of mode iner-
tia should exist when the rotation is large in the central region
(Goupil et al. 2012).

Because the red giants are characterized by an inner dense
region and an outer envelope, it is convenient to consider the
rotational splittings as the sum of two contributions

δνrot,n,ℓ =
1

2π

(

〈ΩK〉core, n,ℓ + 〈ΩK〉env, n,ℓ

)

, (11)

where 〈ΩK〉core, n,ℓ is the angular rotation, weighted by the kernel,
averaged over the central layers enclosed within a radius rcore
and 〈ΩK〉env, n,ℓ the angular rotation averaged over the layers
above xcore = rcore/R,

〈ΩK〉core, n,ℓ ≡

∫ xcore

0
Ω(x) Kn,ℓ(x) dx, (12)

〈ΩK〉env, n,ℓ ≡

∫ 1

xcore

Ω(x) Kn,ℓ(x) dx. (13)

The core boundary xcore must be understood here as the limit
where Ω(x) Kn,ℓ(x) no longer contributes to the integrant
in 〈ΩK〉core, n,ℓ. Numerical calculations show that xcore remains
the same for all modes (Marques et al. 2012). Equation (11) is
then equivalent to

δνrot,n,ℓ =
〈ΩK〉core, n,ℓ

2π
(

1 + αrot
)

, (14)

where αrot can be written

αrot =

(

Kenv, n,ℓ

Kcore, n,ℓ

) (

〈Ω〉env, n,ℓ

〈Ω〉core, n,ℓ

)

, (15)

with the definitions

Kcore, n,ℓ ≡

∫ xcore

0
Kn,ℓ(x) dx, (16)

Kenv, n,ℓ ≡

∫ 1

xcore

Kn,ℓ(x) dx, (17)

and

〈Ω〉core, n,ℓ ≡

∫ xcore

0
Ω(x) Kn,ℓ(x) dx

Kcore, n,ℓ
=
〈ΩK〉core, n,ℓ

Kcore, n,ℓ
, (18)

〈Ω〉env, n,ℓ ≡

∫ 1

xcore
Ω(x) Kn,ℓ(x) dx

Kenv, n,ℓ
· (19)

We then consider dipole g-m modes that have the largest rota-
tional splittings; they coincide with the largest inertia (Dupret
et al. 2009). These modes are furthest away from the nomi-
nal pure pressure dipole modes and close to the radial modes.
The splittings associated with these modes do not vary with fre-
quency, i.e. from one radial mode to the other. Hence, we retrieve
the observed splittings (Eqs. (3) and (11)):

δνrot = max
(

δνrot,n,ℓ=1
)

= max
(

δνsplit
)

. (20)

As a consequence, we can drop the subscripts n, ℓ from now on.
One expects, for red giants, a more rapid rotation rate in the inner
layers hence 〈Ω〉env/〈Ω〉core < 1 and ≪ 1 for very fast rotating
cores (Goupil et al. 2012). For the g-m modes, numerical calcu-
lations show that Kenv/Kcore ≪ 1 (Fig. 8), hence αrot ≪ 1. Thus,
from Eqs. (14) and (18):

δνrot ≃
〈ΩK〉core

2π
≃
〈Ω〉core

2π
Kcore. (21)

For these modes, the displacement is essentially horizontal in
the core, therefore ξr ≪ ξh. We also have I ≃ Icore, so that, from
Eqs. (9) and (10), one can derive that the core kernel reduces to
about 1/2, in agreement with the Ledoux coefficient of g modes
(Ledoux 1951). Finally, we have

δνrot ≃
1
2
〈Ω〉core

2π
· (22)

Hence, rotational splittings of g-dominated modes provide a
measure of the rotation averaged over the central region. The
averaged rotation roughly corresponds to the value of the rota-
tion at the radius where the mode amplitude of the horizontal
displacement ξh is maximum. This happens away from the cen-
ter, in a core region where the rotation can have significantly de-
creased compared to the central rotation. In that case, the average
rotation value gives a lower limit of the rotation of the very deep
layers. If the rotation happens to be nearly solid in the central
region, then the average rotation gives the rotation of the nearly
uniformly rotating core.

Keeping in mind these limits, δνrot can be considered as a
proxy of the mean rotation period of the core 〈Trot〉c, i.e.

〈Trot〉c ≡
2π
〈Ω〉core

≃
1

2 δνrot
(23)

for dipole mixed modes.
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Fig. 8. Top: mode inertia for radial and dipole modes of a 1 M⊙
RGB star at the bump. The evolution model has been calculated with
CESAM (Morel 1997) and the oscillation frequencies were obtained
with ADIPLS (Christensen-Dalsgaard 2011). Bottom: normalized inte-
grated rotational kernels of three dipole modes: M1 and M2 are g-m
modes, whereas M3 is a p-m mode. The vertical triple-dot-dashed line
indicates the mean location of the hydrogen-burning shell, and the ver-
tical dashed line indicates the base of the convective envelope.

5.2. Information from the kernels

With the CESAM code for stellar evolution (Morel 1997) and the
ADIPLS code for adiabatic oscillations (Christensen-Dalsgaard
2011), we estimate the kernels in red giant models at different
evolutionary states. Figure 8 shows the normalized integrated

rotational kernels
∫ r

0
K(r) dr/

∫ R

0
K(r) dr derived for a p-m mode

and two g-m modes in an RGB star at the bump, with ∆ν ≃
5 µHz. We verify that the kernels in g-m modes are dominated
by the core, since the normalized integrated kernels reach a value
larger than 0.95 at the core boundary.

These integrated kernels allow us to derive a refined esti-
mate of the core rotation. With a 2-layer model presented in
Appendix B.1, a small correction to Eq. (23) can be introduced
by a factor η (Eq. (B.3))

〈Trot〉c =
1

2 η δνrot
· (24)

The correction factor η, slightly larger than unity, accounts for
the propagation of the oscillation in the envelope. This correction
is intended to provide a more accurate result than the proxy pro-
vided by Eq. (23). Values of η can be calculated for RGB stars at
different evolution stages (Appendix B.1). They show that δνrot
is less dominated by the core rotation for early RGB stars com-
pared to more evolved stages.

As the value of η results from a balance between the contri-
butions of p and g modes, we can assume that its value depends
on the mean pressure and gravity radial orders. We therefore
propose a phenomenological proxy of the parameter η, justified
by a simple model presented in Appendix B.2, as a function of
global seismic parameters. The analysis of the integrated kernels
calculated for red giant models at different evolutionary stages
provides the fit

η ≃ 1 + γ
ν2max∆Π1

∆ν
, (25)

where ∆Π1 is the period spacing of gravity modes derived from
the fit of the mixed modes and γ ≃ 0.65 (see Appendix B.2). The
model indicates that the coefficient η decreases towards unity
when a star evolves along the RGB, due to the significant in-
crease of the gravity radial orders (Mosser et al. 2012c). The
model, based on RGB stars, is assumed to be valid also for clump
stars, since it only relies on global properties of the oscillation
eigenfunction.

In all cases, the maximal splitting of g-m modes is highly
dominated by the core rotation, and its measure is close to the
core rotation. Furthermore, as found by Beck et al. (2012) and
Deheuvels et al. (2012a), we note that there is no immediate
link between the minimum splitting (1 − λ) δνrot of p-m modes
(Eq. (4)) and the surface rotation. The minimum splitting mea-
sured for p-m modes is still strongly dominated by the core
rotation. Extracting the surface rotation, which is supposed to
be small, requires a very accurate description of the kernels,
which is out of the scope of this work dedicated to ensemble
asteroseismology.

6. Discussion

The relation between the maximum rotational splitting and the
mean core rotation period (Eq. (23)) allows us to revisit the scal-
ing relations established in Sect. 4. We have to reiterate that
Eq. (24) is based on a strong hypothesis, resulting from the lin-
ear relation between the splitting and the core rotation rate. A
high radial differential rotation profile in the core, as shown by
Goupil et al. (2012) and Marques et al. (2012), would invalidate
the relation.

6.1. Internal angular momentum transfer

The scaling relations in Eqs. (6) and (7) can be written in terms
of 〈Trot〉c rather than δνrot. We find, for RGB and clump stars,
respectively:

〈Trot〉c ∝ R0.7± 0.3 (RGB) (26)

〈Trot〉c ∝ R1.4± 0.4 (clump) (27)

〈Trot〉c ∝ R1.5± 0.4 (2nd clump). (28)

We note that the absolute values of the exponents are similar to
the exponents found in Eqs. (6) and (7). This comes from the fact
that the correction factor η of Eq. (25) is close to unity and does
not show important variation. As a consequence, the regime seen
in the rotational splitting translates into a similar regime of the
mean core rotation period (Fig. 9).

6.1.1. On the RGB

On the RGB, the spinning down of the core is moderate, much
smaller than a variation in R2 expected in case of homologous
spinning down at constant total angular momentum. Angular
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Fig. 9. Mean period of core rotation as a function of the asteroseismic stellar radius, in log-log scale. Same symbols and color code as in Fig. 6. The
dotted line indicates a rotation period varying as R2. The dashed (dot-dashed, triple-dot-dashed) line indicates the fit of RGB (clump, secondary
clump) core rotation period. The rectangles in the right side indicate the typical error boxes, as a function of the rotation period.

momentum is certainly transferred from the core to the envelope,
in order to spin down the core. However, a strong differential ro-
tation profile takes place when giants ascend the RGB (Marques
et al. 2012; Goupil et al. 2012).

6.1.2. Clump stars

The extrapolation of the fit reported by Eq. (26) to a typical stel-
lar radius at the red clump shows that cores of clump stars are
rotating six times slower. This slower rotation can be partly ex-
plained by the core radius change occurring when helium fusion
ignition removes the degeneracy in the core. This change, esti-
mated to be less than 50% (Sills & Pinsonneault 2000), can how-
ever not be responsible for an increase of the mean core rotation
period as large as a factor of six. As a consequence, the slower
rotation observed in clump stars indicates that internal angular
momentum has been transferred from the rapidly rotating core
to the slowly rotating envelope (Fig. 9).

6.1.3. Comparison with modeling

The comparison with modeling reinforces this view (Fig. 1 of
Sills & Pinsonneault 2000). Their evolution model assumes a
local conservation of angular momentum in radiative regions and
solid-body rotation in convective regions. It provides values for
the core rotation in a 0.8 M⊙ star of about 50 days on the main
sequence, about 2 days on the RGB at the position of maximum
convection zone depth in mass, and about 7 days in the clump.
This means that, even in a case where the initial rotation on the
main-sequence is slow (certainly much slower than the main-
sequence progenitors of the red giants studied here) and where
angular momentum is massively transferred in order to insure
that convective regions rotate rigidly, the predicted core rotation
periods are much smaller than observed. The expansion of the
convective envelope provides favorable conditions for internal
gravity waves to transfer internal momentum from the core to
the envelope to spin down the core rotation (Zahn et al. 1997;
Mathis 2009). Talon & Charbonnel (2008) have shown that the

conditions are favorable for these waves to operate at the end of
the subgiant branch and during the early-AGB phase. There is
observational evidence that the spinning down should have been
boosted in the upper RGB too.

The comparison of the core rotation evolution on the RGB
and in the clump shows that the angular momentum transfer is
not enough for erasing the differential rotation in clump stars.
The line representing an evolution of 〈Trot〉c with R2 extrapo-
lated to typical main-sequence stellar radii gives a much more
rapid core rotation than the extrapolation from the RGB fit. This
indicates that the interior structure of a red-clump star has to sus-
tain, despite the spinning down of the core rotation, a significant
differential rotation. This conclusion, implicitly based on the as-
sumption of total angular momentum conservation, is reinforced
in case of total spinning down at the tip of the RGB. However,
the large similarities of the values of the core rotation period ob-
served in clump stars, together with an evolution of 〈Trot〉c close
to R2 (Eq. (27)), should imply that a regime is found with a core
rotation of clump stars much more rapid than the envelope rota-
tion but closely linked to it.

6.2. Mass dependence

We have calculated, for different mass ranges [M1,M2], a mean
core rotation period defined by

〈〈Trot〉c〉[M1,M2] =

∑M2
M1
〈Trot〉c R−r

∑M2
M1

R−r
(29)

where r is the exponent given by Eqs. (26) or (27), depending on
the evolutionary status.

This expression allows us to derive a mean value even for
RGB stars, in the mass range [1.2, 1.5 M⊙] where the RGB star
sample can be considered as unbiased. We do not detect any
mass dependence. The situation changes drastically for clump
stars, with a clear mass dependence: the mean value of 〈Trot〉c is
divided by a factor of about 1.7 from 1 to 2 M⊙. This reinforces
the view that angular momentum is certainly exchanged in the
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upper RGB, since it may indicate a link between the amount of
specific angular momentum transferred and the evolution time:
high-mass red giants evolve more rapidly than lower mass stars,
loose less mass, and keep a more rapidly rotating core after
the tip.

7. Conclusion

Rotational splittings were measured in about 300 red giants ob-
served during more than two years with Kepler. As first mea-
sured by Beck et al. (2012) for three red giants in the early stages
of the RGB, a strong differential rotation is noted for all these
red giants.

We have first shown that the rotational splitting pattern, mod-
elled as a function of the mode frequency, is largely indepen-
dent of the stellar evolution. The empirical pattern found by
Mosser et al. (2012b) has been used and verified in a large set
of stars and has proven to be very efficient for analysing the
splittings. Independent of any modeling, we have shown that the
scaling relations observed for the maximum rotational splittings
in RGB stars may suggest that transfer of angular momentum
must occur in their interiors.

Then, assuming that the relation between the rotational split-
ting and the rotation rate is linear, we have shown that the mea-
sured splittings provide an estimate of a rotation period repre-
sentative of the mean core rotation. We observe that this period
is larger for clump stars compared to the RGB. This requires
a transfer of angular momentum in the star to spin down the
core. Despite the angular momentum loss expected at the tip of
the RGB, the core rotates more rapidly in clump stars than ex-
pected from an evolution as the square of the radius. This indi-
cates a strong differential rotation in clump stars as well as in
RGB stars. In other words, the mechanism responsible for the
redistribution of angular momentum is efficient enough to spin
down the mean core rotation but with a time scale too long for
reaching a solid rotation.

The indirect estimate of the specific angular momentum
shows that massive red giants observed in the secondary clump
have a significantly higher specific angular momentum than in
the main red clump.

This ensemble asteroseismic analysis of rotation in red gi-
ants will have to be extended to subgiants, since subgiants also
show mixed modes that give access to the inner rotation profile.
As Kepler continues to observe, we will have access to longer
observation runs. This will provide more resolved observations
of the rotational splittings at low frequency, so we hope to mea-
sure the mean core rotation on the upper part of the RGB and,
if mixed modes are also present, on the asymptotic giant branch.
Our findings provide strong motivation for further stellar model-
ing including rotation.
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Appendix A: How rotational splittings are fitted

A.1. Large separation and gravity mode spacing

The first step for identifying the red giant oscillation spectrum is,
as for all stars showing solar-like oscillations, the correct iden-
tification of the radial mode pattern, in order to locate precisely
the location of the theoretical pure dipole pressure modes. The fit
of the radial modes depends mainly on the accurate determina-
tion of the large separation. According to the universal red giant
oscillation pattern (Mosser et al. 2011b), the surface offset and
the curvature of the ridge are functions of the large separation.
In practice, small residuals due to glitches (Miglio et al. 2010)
can induce a frequency offset of about, typically, ∆ν/50. Thus, a
second free parameter, simply a frequency offset, or equivalently
an offset of ε less than 0.02 (Eq. (1)), is useful for providing the
best fit of the radial ridge. The location of the dipole ridge with
respect to the radial ridge is given by the small separation d01
(Eq. (1)), which is a function of the large separation (Mosser
et al. 2011b).

The fit of the mixed-mode pattern is based on two free pa-
rameters: the period spacing ∆Π1 and the coupling constant q,
as defined by Eq. (9) of Mosser et al. (2012c), which closely fol-
lows the formalism of mixed modes given by Unno et al. (1989).
In order to determine ∆Π1 on the RGB, it is worthwhile to con-
sider that this period is a function of the large separation. For
the low-mass stars of the RGB with a degenerate helium core, a
convenient proxy is given by the polynomial development

∆Π1 = 62.5 + 1.40∆ν + 0.081∆ν2 (A.1)

with ∆ν in µHz and ∆Π1 in s, according to Fig. 3 of Mosser
et al. (2012c). When the rotational splitting is larger than half
the mixed mode spacing at νmax, this step cannot be done inde-
pendent of the next one.

A.2. Rotational splittings

Great care must be taken to disentangle the splittings from the
mixed mode spacings. Three major cases have to be considered
for fitting the rotational splittings.

– If splittings are small and almost uniform with frequency,
except the modulation depicted by R (Eq. (4)), then the esti-
mate is straightforward. The unknown stellar inclination can
be derived from the mode visibility, which depends on the
azimuthal order m. According to the probability of having
an inclination i proportional to sin i, in most cases doublets
with m = ±1 are observed. Note that, even if the components
m = −1 and +1 have the same visibility, they may in prac-
tice present different heights, due to the stochastic excitation
of the modes. Such splittings smaller than the mixed-mode
spacings are seen in the lower stages of the RGB and in the
clump (Fig. A.1).

– If apparent splittings at νmax seem to increase with increas-
ing frequency, then the most plausible solution is that δνrot is
close to half the mixed-mode spacing at νmax. These apparent
splittings result in fact from a mixing of the splittings em-
bedded with the spacings. Such a situation occurs when the
apparent splittings are composed of the m = ±1 component
of the mixed mode order nm and of the m = ∓1 component
of the adjacent orders nm ± 1. The true splittings, signifi-
cantly larger than the apparent splittings, are almost uniform
for g-m modes. This uniformity is used for iterating the so-
lution. Such cases occur most often for RGB stars with ∆ν in
the range [9–12µHz] (Fig. A.4).

Fig. A.1. Fit of rotational splittings, for the RGB star KIC 6144777,
with an échelle diagram as a function of the reduced frequency ν/∆ν −
(np + ε). The radial orders are indicated on the y-axis. Radial modes
(highlighted in red) are centered on 0, quadrupole modes (highlighted
in green), near −0.12 (with a radial order np − 1), and ℓ = 3 modes,
sometimes observed, (highlighted in hell blue) near 0.20. Rotational
splittings are identified with the frequency of the m = 0 component
given by the asymptotic relation of mixed modes, in µHz. The fit is
based on peaks showing a height larger than eight times the mean back-
ground value (grey dashed lines). In order to enhance the appearance of
the multiplets, highest peaks have been truncated; to enhance the short-
lived radial and quadrupole modes, a smoothed spectrum is also shown,
superimposed on the corresponding peaks.

Fig. A.2. Same as Fig. A.1, for the RGB star 5858947. In such a spec-
trum where the total splitting 2δνrot is equal to half the mixed-mode
spacing at νmax, the fit allows to correctly identify the multiplets.
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Fig. A.3. Same as Fig. A.1, for the clump star KIC 4770846. The ap-
parent low quality of the fit for p-m modes at large frequency is due to
their short lifetimes (Baudin et al. 2011).

– If apparent splittings seem very irregular, then the most plau-
sible solution is that δνrot is much larger than half the mixed-
mode spacing at νmax. In fact, the apparent splittings are
complex structures resulting from a mixing of components
of two or three different mixed-mode orders. A careful vi-
sual inspection is necessary to disentangle them. The mixed-
mode asymptotic expression and the empirical expression
of the rotational splitting are accurate enough for resolving
complex cases that occur for RGB stars with ∆ν ≤ 9 µHz
(Fig. A.5).

We have used gravity échelle diagrams to represent the mixed
modes (Bedding et al. 2011; Mosser et al. 2012c). Due to the
complexity of the features caused by embedded splittings and
mixed modes spacings, the échelle diagrams cannot be used to
identify the rotational splittings, but are useful for improving the
accuracy of the fit. In the examples shown (Fig. A.6), a 10-s
shift between the periods of the observed and modeled peaks
correspond to an accuracy in frequency of about ∆ν/100.

A.3. A dipole mode forest?

The complete fit of the rotational splittings is based on three pa-
rameters: the maximum splitting δνrot and the two parameters λ
and β entering the definition of R. The best fit is provided by
correlating the observed multiplets with synthetic multiplets.

Since the parameters λ and β are found to vary in narrow
ranges, the solution for inferring δνrot (and simultaneously ∆Π1
on the RGB with low ∆ν) is based on considering them as con-
stants. As a result, five free parameters are enough for fitting the
whole red giant oscillation spectrum. Variation of λ and β allows
a better fit. The stellar inclination can be derived from the ra-
tio of the visibility of the m = ±1 components compared to the
central component.

Fig. A.4. Same as Fig. A.1, for the RGB stars KIC 9267654 and
KIC 10866415, where the total splitting 2δνrot is nearly equal to the
mixed-mode spacing at νmax. Apparent narrow multiplets are artifacts
due to close combinations between components of different mixed-
modes radial orders.

In a typical spectrum, more than 30 mixed-mode orders, rep-
resenting about 60 to 120 individual modes with a height larger
than eight times the background are simultaneously fitted. The
typical accuracy of the fit, of about ∆ν/200 or better, is enough
for avoiding any confusion in almost all cases, except for the
most evolved RGB stars.

Finally, with the identification of the mixed mode spacings
and of the rotational splittings, the dipole mode forest becomes
a well-organized garden à la française.
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Fig. A.5. Same as Fig. A.4, for the RGB star KIC 11550492. The non-
negligible amplitudes of the m = 0 components complicate the analysis.

Fig. A.6. Gravity échelle diagrams of the two RGB stars KIC 5858947 and 11550492. The x-axis is the period 1/νmodulo the gravity spacing ∆Π1;
for clarity, the range has been extended from −0.5 to 1.5 ∆Π1. The size of the selected observed mixed modes (red diamonds) indicates their height.
Plusses give the expected location of the mixed modes, with m = −1 in light blue, m = 0 in green and m = +1 in dark blue.

Appendix B: Two-layer model

B.1. Core and surface contributions

In order to estimate the contribution of the core and surface ro-
tation, we simplify the stellar stratification to a 2-layer model.
We denote by δνc and δνs the rotational frequency of the core
and at the surface, respectively, and δνg/2 and δνp the mea-
sured splitting on g and p modes, respectively. The factor 1/2
in δνg/2 accounts for the Ledoux coefficient. The contributions
of the surface and of the core are written
{

δνg = xg δνc + (1 − xg) δνs
δνp = xp δνc + (1 − xp) δνs.

(B.1)

The coefficient xp and xg are derived from the rotational kernels.
From the solution

δνc =
1 − xp

xg − xp
δνg +

xg − 1

xg − xp
δνp (B.2)

and from the observation of the splitting of p-m modes indicating
δνp ≃ δνg/4 (a factor of about 1/2 comes from 1 − λ in Eq. (4),
an another factor of 1/2 comes from the Ledoux coefficient), one
derives that the measure of δνg is an indicator of the core rotation

δνc = η δνg. (B.3)
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For an RGB star at the bump with ∆ν = 5 µHz, the values xp
and xg derived from the kernels give η = 1.06 ± 0.04, very close
to unity. A less evolved star, as considered by Beck et al. (2012),
whose mixed modes correspond to much smaller radial gravity
orders, has η = 1.45+0.30

−0.15. Deheuvels et al. (2012a) derived a
similar result for a giant with ∆ν ≃ 29 µHz at the bottom of
the RGB. This shows that δνrot is less dominated by the core
rotation for early RGB stars. One also derives that, in all cases,
the surface rotation δνs is small, and that measuring it precisely
from the g-m mode-splitting is not possible.

B.2. Link to the eigenfunction properties

The value of the coefficients xg and xp introduced in Eq. (B.1)
can be approximated by the expression of the rotational splitting
(Eqs. (8) and (9)). Basically, the integration of the wave function
has a contribution varying as the number of nodes in the core
and in the envelope, respectively. As a consequence, xg ∝ ng
and xp ∝ np. In order to more precisely account for the complex
form of the wave function, we suppose:
{

xg = γgng / (γgng + γpnp)
xp = γpnp / (γgng + γpnp) (B.4)

with γg < 0 to account for the negative value of ng. The validity
of this development implicitly assumes that γp and |γg| are con-
stant not so far from unity. Hence, neglecting δνs in Eq. (B.1),
we derive:

δνc ≃

[

1 +
γp

γg

np

ng

]

δνg ≃

[

1 − γ
np

ng

]

δνg. (B.5)

The radial order np and ng have to be estimated at the fre-
quency νmax where the oscillation amplitude is maximum. Then,
we can derive that η = δνc/δνg is related to the global seismic pa-
rameters∆ν and ∆Π1, where∆Π1 is the period spacing of gravity
modes:

η ≃ 1 + γ
ν2max∆Π1

∆ν
· (B.6)

The fit of the integrated kernels calculated at different evolution-
ary stages gives γ ≃ 0.65. This phenomenological result based
on a simple two-layer model is to be considered as a proxy only.
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