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We investigate the propagation of spin excitations in a one-dimensional ferromagnetic Bose gas. While

the spectrum of longitudinal spin waves in this system is soundlike, the dispersion of transverse spin

excitations is quadratic, making a direct application of the Luttinger liquid theory impossible. By using a

combination of different analytic methods we derive the large time asymptotic behavior of the spin-spin

dynamical correlation function for strong interparticle repulsion. The result has an unusual structure

associated with a crossover from the regime of trapped spin wave to an open regime and does not have

analogues in known low-energy universality classes of quantum 1D systems.
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Quantum interacting one-dimensional systems have for

many decades been a subject of ceaseless interest of both

theorists and experimentalists. This is mainly because of

the unique role of quantum fluctuations, which are so

strong in 1D that even for weakly interacting systems the

intuition based on the free-particle picture and the mean

field theory fails and the effects of strong correlations

become important [1]. Such effects have been encountered

in many experiments dealing with 1D conductors, like,

e.g., organic salts, quantum wires, or carbon nanotubes,

in which the constituent particles, electrons, are spin 1=2
fermions.

Recent advances in the creation and manipulation of

ultracold atomic gases [2] opened an access to a new class

of 1D systems where the constituent particles obey bosonic

statistics [3–7] and have a variable number of internal

(‘‘spin’’) states [8–10]. In the spinless case the theory

predicts an equivalence between the Bose and Fermi sys-

tems: both are described by the Luttinger liquid (LL)

theory at low energies [1]. In the presence of spin the

situation is more complex. The necessary condition for

the applicability of the LL theory is the linearity of the

dispersion of low-lying elementary excitations "�p� � jpj.
This is usually the case for fermions, which have a natural

tendency to antiferromagnetic ordering [11]. While under

special conditions linear dispersion relations, and, conse-

quently, the LL physics can be encountered in a multicom-

ponent Bose system [13], there exists a broad range of

Hamiltonians, in particular, those with spin-independent

interactions, whose ground state is ferromagnetic [14]. In

the latter case the softest low-lying excitation is the mag-

non with a quadratic dispersion relation

 "�p� ’ p2=2m�; p ! 0; (1)

where m� is an effective mass. This makes the straightfor-

ward application of the LL theory impossible and poses a

fundamental question of finding an alternative theory de-

scribing the dynamics of the low-energy excitations in a 1D

boson ferromagnet.

In this Letter we tackle this issue and compute the long-

distance properties of two-point correlation functions of

local spins at zero temperature. Focusing on the region of

strong interparticle repulsion, we show that the dynamical

properties of spin excitations in a 1D ferromagnetic Bose

gas are neither those of a localized ferromagnet nor of a

Luttinger liquid, pointing at the existence of a new low-

energy universality class. Our main results are presented in

Eqs. (13) and (14). We also discuss the connection of our

work with the problems of a moving impurity in a LL,

dynamics of a hole in the Hubbard-Mott insulator, and

quantum mechanics in a dissipative environment. Finally,

we describe recent experimental realizations [8–10] of

quasi-1D Bose gases with spin.

For simplicity of presentation the derivations are carried

out for two-component bosons; the generalization to higher

spins is straightforward [15]. We assume that the interac-

tion between the particles is spin-independent and the

model Hamiltonian has the form

 H �
XN

j�1

p2
j

2m
�

X

i<j

�g��xi � xj� �U�xi � xj�	 � hSz: (2)

Here m is the mass of a boson, h is the external magnetic

field, and Sz is the z component of the total spin. We are

interested in the limit of infinite number of particles, N !
1, and of infinite system size, L ! 1, at a fixed particle

density, �0 � N=L. Although for cold atoms the interac-

tion potential is well approximated by a � function, we

allow for a more general interaction g��x� �U�x�, where

U�x� is some smooth function. The strength of the short-

range repulsion is characterized by a dimensionless cou-

pling constant � � mg=@2�0. For U � 0 the Hamiltonian

(2) can be diagonalized by Bethe ansatz (BA) [16], provid-

ing us with a valuable source of intuition about the low-

energy dynamics studied here.

The global spin operator S � �Sx; Sy; Sz� can be repre-

sented as
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 S �
Z L

0
dxs�x�; s�x� �

1

2

XN

j�1

�
�j���x� xj�; (3)

where �
�j� � ��x; �y; �z� is the vector composed of the

three Pauli matrices acting nontrivially on the spin indices

of the jth particle. Spin-ladder operators s
�x� � sx�x� 


isy�x� flip the z component of a local spin. For h > 0 the

Hamiltonian (2) has a nondegenerate ground state, j *i,
which is fully polarized along the z axis, s��x�j *i � 0.

The degeneracy appears at h � 0 and is discussed in detail

in Ref. [14]. We investigate the dynamics of excitations

over the state j *i. For simplicity of the presentation, our

results are given for h � 0. In the case of h � 0 the right-

hand side of Eqs. (6) and (13) should be multiplied by the

oscillating factor eith.

Our main object of interest is the response of the system

to weak perturbations of local magnetization, encoded into

two correlation functions:

 Gk�x; t� � h*jsz�x; t�sz�0; 0�j*i (4)

 G?�x; t� � h*js��x; t�s��0; 0�j*i (5)

describing the longitudinal, Fig. 1(a), and transverse,

Fig. 1(b), spin dynamics, respectively. The longitudinal

dynamics over the state j*i coincides with that of density

fluctuations in the 1D spinless Bose gas. Their dispersion is

linear in the low-energy limit; therefore, the x; t ! 1
asymptotics of Eq. (4) can be calculated within the LL

theory [1], and decays as a power law [17].

In contrast to the longitudinal dynamics, transverse spin

waves are not sound waves, their dispersion is quadratic at

low momenta, Eq. (1). The effective mass m� in Eq. (1)

increases with increasing �. In the BA solvable case m�

can be calculated exactly [18] and shows a linear diver-

gence with � in the limit of strong repulsion: m�=m ’
3�=2�2 as � ! 1. This divergency was pointed out in

Ref. [18] as a signature of a slow dynamics of transverse

spin waves at large �. We show here that in the strong

coupling regime the effects are even more dramatic. To see

this, we start with the description of the long-wavelength

limit of Eq. (5) at � � 1.

Qualitatively, the propagation of the transverse spin

excitation at � � 1 can be described as follows: the

operator s��0; 0� flips a spin of a given particle, shown in

Fig. 1(c) with a down arrow. Because of the infinite re-

pulsion, the spin-down particle cannot exchange its posi-

tion with its neighbors, so it is trapped inside an interval of

average length 2��1
0 . However, since the spin-up particles

are mobile, the size and the position of this interval can

fluctuate, making it possible for the spin-down particle to

be detected at a distance larger than ��1
0 from its initial

position. Such fluctuations require a simultaneous dis-

placement of a large number of spin-up particles; thus,

the probability to observe the spin-down particle at a large

distance from the point where it was created must be small.

The correlation function (5) should thus decay very rapidly

with distance.

To quantify the above argument we obtain the analytic

expression for the long-wavelength asymptotics of Eq. (5).

The calculations are performed using, as in Ref. [19], a

combination of bosonization with a first-quantized path

integral. For the BA solvable case they can be underpinned

by the asymptotic analysis of the determinant representa-

tion of the correlation functions along the lines of

Refs. [20,21]. We give only the result here, the details

will be presented elsewhere [15]. The asymptotic form of

G?�x; t� is given for t � tF by

 G?�x; t� ’
1

����������������

ln�t=tF�
p exp

�

�
1

K

���0x�
2

2 ln�t=tF�

�

: (6)

It is similar to the diffusion propagator except that the

mean square deviation grows logarithmically with time.

This logarithmic diffusion is the mathematical manifesta-

tion of the spin trapping effect. The parameter tF controls

the smallest time scale in the problem:

 tF �
@

EF

; EF �
@
2

2m
���0�

2: (7)

The physical meaning of tF can be understood from the

fact that the spectrum of the �-interacting spinless bosons

at � � 1 is the same as that of free spinless fermions.

Therefore, EF in Eq. (7) plays the role of a Fermi energy,

and tF is the time scale for the longitudinal spin fluctua-

tions. The dimensionless parameter K in Eq. (6) is the

Luttinger parameter, which can be calculated from the

thermodynamic properties of the system [1]. Note that

for U � 0 one has K � 1 and K ! 1 only at � ! 1.

Equation (6) is obtained for � � 1. For large but finite

� there is a small probability that spin-up and spin-down

particles exchange their positions, allowing the spin exci-

tation to escape from the trap. We estimate the escape time

t� by replacing the fluctuating gas of spin-up particles by a

static Kronig-Penney lattice with period ��1
0 and get t� �

�tF. Thus, for large � the escape time is parametrically

large and there exists a broad window tF 
 t 
 t� where

G?�x; t� has the asymptotics form (6).

FIG. 1. A 1D array of particles carrying spin. The propagation

of longitudinal (a) and transverse (b) spin waves over the fully

polarized state j*i is depicted. The state obtained by the action of

the spin lowering operator s��0; 0� onto j*i is schematically

illustrated in (c).
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For t * t�, there is a crossover to another, ‘‘open,’’

regime, which we investigate next. A rather general result

can be obtained from a minimal set of assumptions on the

analytic properties of the spectral function A�k;!�. By

definition,

 G?�x; t� �
Z dk

2�
eikx

Z d!

2�
e�i!tA�k;!�; (8)

with

 A�k;!� �
X

�

��@!� E��k��jh�; kjs��k�j *ij
2: (9)

Here Hj�; ki � E��k�j�; ki and � enumerates all the states

with a given momentum @k. Among these states there is a

state of a minimal energy "�k�; that is, "�k� � min�E��k�.
Our first assumption, supported by the calculations for the

BA solvable case [15], where "�k� can be found explicitly,

and variational considerations in the spirit of the Feynmann

single-mode approximation is that at small p � @k the

function "�k� has the form (1). Therefore, "�k� defines

the threshold frequency for the spectral function:

A�k;!� � 0 for @!< "�k�. Above the threshold a contin-

uum of states contributes to A�k;!�. They contain one

magnon (spin-flip) and multiple plasmon (density) excita-

tions close to zero momentum. The large t asymptotics of

Eq. (8) is dominated by the scale-free part of the spectral

function at the threshold, whose most generic form is

 A�k;!� ’ c�k��@!� "�k�	��k�; @! � "�k�; (10)

where ��k� and c�k� are some functions of k.

Our second assumption is that both c�k� and ��k� are

analytic functions of momentum in the vicinity of k � 0.

Taking into account the inversion symmetry, G?�x; t� �
G?��x; t�, which implies A�k;!� � A��k;!�, the general

form of c�k� and ��k� should be

 ��k� � �� 1� �k2 � � � � ; (11)

 c�k� � c0 � c1k
2 � � � � ; (12)

where �, �, c0, and c1 are some model-dependent coef-

ficients. We substitute Eqs. (10)–(12) into Eq. (8), and for

the function "�k� entering Eq. (10) we use formula (1) with

p � @k. The saddle point analysis of the resulting expres-

sion leads to our main result:

 G?�x; t� ’ t��

�

� ln

�
t

tF

�

�
it@

2m�

�
�1=2

� exp

�
im�x

2

2t@� 4i�m� ln�t=tF�

�

: (13)

Equation (13) contains two parameters, � and �, which

depend on both � and U. This dependence cannot be

extracted from the scaling and analyticity assumptions,

Eqs. (10) and (11). However, we can find � and � in the

trapped regime, � � 1, by letting m� � 1 in Eq. (13) and

comparing the resulting expression with Eq. (6). We get

 � � 0; � �
K

2���0�
2

(14)

at � � 1. In addition, for U � 0 we could treat the case of

large but finite � by BA and show that Eq. (13) remains

valid [15]. Whether this is an artifact of integrability or a

generic property of the model is an important open ques-

tion. The latter would mean that the asymptotic behavior of

the correlation functions in the ferromagnetic case is com-

pletely determined by thermodynamic properties of the

system, like in the LL theory.

If m� <1, Eq. (13) coincides with (6) for sufficiently

small times, 2t@ 
 4�m� ln�t=tF�. At a time t� when this

relation becomes an equality a crossover to an open regime

occurs [22]. For U � 0 the dependence of t� on � can be

found explicitly:

 t� ’
3�K

4�2
ln

�
3�K

4�2

�

tF: (15)

We stress that this estimate is valid if � is large enough to

ensure t� � tF. This confirms and completes our naive

estimate of t� given in the paragraph below Eq. (6).

In the open regime, t * t�, the function (13) factorizes

into a product of the transverse spin correlation function of

the localized Heisenberg ferromagnet, GH
?, exhibiting

exchange-induced oscillations, and a rapidly decaying fac-

tor, which we attribute to the excitation of the charge

degrees of freedom:

FIG. 2 (color online). Shown is the intensity plot of

t� ReG?�x; t� in the x; t plane at � � 100. The spin wave is

strongly suppressed at a distance x� ‘�t�, Eq. (16), long before

it reaches the light cone, x � vt, shown as dashed green lines.

The onset of the spin precession is seen in the space oscillations

of t� ReG? developing above the crossover time t� ’ 15tF,

shown by the white dotted line.
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 G? ’ e��x2=2‘2�t��GH
?; ‘�t� �

2K��1=2�

��0

t=tF
�������������

lnt=tF
p

m

m�

:

(16)

The strong suppression of G? for x > ‘�t� ensures the

absence of the light-cone singularities at x � vt, where v
is the sound velocity for the charge excitations, v �
@��0=m for � � 1. This is illustrated in Fig. 2.

We now discuss the relation of our work to several

previously studied problems. The threshold singularity,

Eq. (10), of A�k;!� is identical to the Fermi edge singu-

larity in a 1D quantum fluid with a mobile impurity [23–

25] in a special case of equal impurity and host particles

masses. Our results, therefore, have interesting implica-

tions for the latter problem. In particular, the relation of

��k� to the parameters of the model has only been under-

stood at k � 0 [23,24]. The finite k case was addressed in

Ref. [25] by using an effective field theory. We, however,

found that ��k� calculated from Ref. [25] disagrees with

our Eqs. (11) and (14). In particular, it does not reproduce

Eq. (6), which we obtain by two independent methods [26].

There is also an analogy with the problem of a mobile hole

in a 1D Hubbard-Mott insulator [27]. There the parabolic

branch of spectrum is due to holon excitations, while the

gapless mode with a linear dispersion corresponds to spi-

nons. The spectral function given by Eq. (3) of Ref. [27]

shows the same critical properties as A�k;!�, Eqs. (10) and

(11). We thus hope that the results presented in this Letter

can be extended to a broader class of models. Finally, by

bosonizing the gas of spin-up particles one maps the

Hamiltonian (2) onto that of a quantum particle nonlinearly

coupled to a harmonic environment. A linearized version

of this problem was studied in Refs. [28,29], and the

comparison of the long-time asymptotics remains an

open question.

Experiments on quasi-1D Bose gases with internal de-

grees of freedom started recently [8–10]. In the experi-

ment [8] a pseudospin 1=2 system was created by loading
87Rb atoms into a highly elongated magnetic trap and

selecting two hyperfine states, jF � 1; mF � �1i and

jF � 2; mF � 1i, while in [9,10] the true spin 1 system

was created by loading 87Rb atoms into a highly elongated

optical trap and selecting the states composing F � 1 spin

triplet. In both [8–10] long-lived fully polarized states

were achieved and a possibility to excite and image

(pseudo)spin waves in real space and time was demon-

strated. Although in the above experiments the systems

were not truly 1D (about 50 bands of transverse quantiza-

tion were populated), a possibility to further reduce the

number of occupied bands is suggested by the successes in

the creation of 1D spinless systems [3–7], thus paving the

way to the investigations of the ferromagnetism in 1D Bose

gases.
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