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1 Introduction and summary

The study of line defects (i.e. one-dimensional defects) in critical conformal bulk theories is
of fundamental importance to the study of Quantum Field Theory (QFT). Line defects
have a variety of applications ranging from condensed matter and statistical physics, such
as models of magnetic impurities in metals and magnets [1, 2], to high energy physics, such
as Wilson and ’t Hooft lines in four-dimensional gauge theories [3, 4]. Studies of the Kondo
problem, which emerged from models of impurities in two-dimensional systems, led to
remarkable progress in the study of the renormalization group, as well as to developments
in integrability; see [5] for a review.

Even if the bulk is tuned to a critical point, i.e. a conformal field theory (CFT), it is
well known that line operators can undergo a nontrival defect RG flow, which generically
leads to a critical line at long distances. In two dimensions, Affleck and Ludwig conjectured
that a renormalization group flow on a line defect leads to gUV ≥ gIR, where gUV (gIR) refers
to the universal part of the defect free energy in the UV (IR) [6]. This was subsequently
proven in [7, 8]. A generalization of this statement to line defects in bulk CFTs of arbitrary
number of spacetime dimensions d was recently obtained in [9]. This was done by identifying
the following scheme-independent quantity1

sD =
(

1−R ∂

∂R

)
log g(MR), (1.1)

where R is the radius of the circular line defect, andM is a mass scale associated with the RG
flow on the defect. The defect g-function g(MR) is formally defined as the partition function
of the full theory normalized by the partition function of the bulk theory without the defect.
The above quantity sD in eq. (1.1), which is referred to as the defect entropy, monotonically
decreases under a defect RG flow and hence must obey the inequality gUV ≥ gIR for line
defects in any number of spacetime dimensions d.

In quantum critical models, point-like impurities in space at zero temperature can be
thought of as one-dimensional defects in spacetime. In this way the study of line defects in
CFTs makes contact with the study of the phases of impurities in condensed matter.

The class of models of interest to us here are bulk models with global symmetry SO(3)
where an impurity in the spin s representation is present and interacts with the bulk in an
SO(3) invariant fashion, see figure 1. Models in this family are particularly interesting due
to their relation with magnets in three spacetime dimensions. Indeed, lattice realizations
of SO(3) bulk critical points are known and the insertion of a spin s impurity is rather
straightforward to implement. Such spin s impurities are sometimes referred to as magnetic
impurities but we will refer to them as spin impurities throughout this manuscript.

An interesting question concerning spin impurities is about their infrared behavior.
Since the effective coupling on the impurity grows towards the infrared this is a very difficult
problem in three spacetime dimensions. The main focus of this paper is to solve this
problem in the large spin limit s� 1. This limit can be taken, of course, in any number

1In two dimensions, a quantity equivalent to the defect entropy and its monotonicity properties were
originally identified in the context of string field theory [10–14].
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Figure 1. An impurity of spin s under SO(3) interacts with the SO(3) symmetric bulk. The
operators ~S are the spin s representation of so(3) while the operators ~σ are the bulk spins (typically
in the spin 1/2 representation) of the nearest neighbors and the bulk Hamiltonian Hbulk is tuned to
a critical point.

of dimensions 3 ≤ d ≤ 4, but it goes without saying that the most interesting case for the
experimental setting is d = 3.

In a different context, several works focused on the study of conformal gauge theories
in the presence of line operators, especially in supersymmetric theories (see e.g. [15–17] and
references therein). Building on similarities with the description of large spin impurities, in
this work we will address the large representation limit of supersymmetric Wilson lines in
N = 2 superconformal gauge theories, that is 1/2-BPS Wilson loops in which the size s of
the labeling representation becomes large.

It has been recently become clear that the bulk physics of CFTs simplifies when various
quantum numbers are taken to be large.2 A natural question which arises in this context
is whether any simplification occurs for line defects with large quantum numbers and in
particular for spin impurities in the large s limit.

We will show that indeed vast simplifications occur for impurities with large spin and,
furthermore, we will see that similar simplifications occur in the context of supersymmetric
Wilson lines in the large representation limit. The sections about Wilson loops and the
spin impurities can be read independently of each other.

Let us now state briefly our main results before describing the setup in more detail.

• For the large s limit of spin impurities in the O(3) Wilson Fisher model, we find a
description which becomes increasing more useful as s→∞. The description consists
of two sectors, which are weakly interacting with each other: a quantum mechanical
sector with S2 target space and a first-order kinetic term, and another sector with
no free parameters, which describes a previously studied conformal defect called the
“pinning field defect” or “localized magnetic field defect” [28, 29]. While the pinning
field defect is a strongly coupled conformal defect, some properties of it are known
exactly and many others are known approximately. An example of an unexpected
prediction that stems from this analysis is that there exists a primary defect operator
in the vector representation of SO(3) which is nearly marginal ∆vector = 1 + O(1

s ).
Another prediction is that the dimension of the lightest SO(3) singlet should be

2Examples include CFTs in the regimes of large scaling dimensions [18–20], large spin [21–23] and large
global charges [24–27].
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approximately ∆singlet ' 1.55. Finally, we predict that the spin operator S on the
defect, which acts on the defect Hilbert space, has dimension ∆S ∼ 1/s2.

• The second subject of this paper is 1/2-BPS Wilson lines in four-dimensional rank-1
N = 2 SCFTs in a large representation of the gauge group. (This setup also makes
sense for non-Lagrangian theories, as we later explain.) Here we argue using results
from localization that the large s limit for protected observables leads to physics on
the Coulomb branch. 1/s corrections are captured by higher derivative terms on the
Coulomb branch. This allows us to make some universal predictions. For instance,
for the g function of such line operators we find

log g = g2
CBs

2

4 + 4∆a log s+O
(
s0
)
, (1.2)

where ∆a = aUV − aIR is the difference of the a-anomalies between the ultraviolet
and the Coulomb branch3 and gCB is a parameter in the effective theory that is
model-dependent. Interestingly, the g function of the 1/2-BPS Wilson loops grows
exponentially fast as s→∞ (1.2) while for the spin impurities the g function grows
only linearly as s→∞. We propose that (1.2) is valid also in non-Lagrangian theories.

We now delve into a more detailed summary of the content of the paper.

1.1 Spin impurities

We will consider two different scenarios of bulk theories with O(3) global symmetry: a
free field theory with global O(3) symmetry, and the interacting O(3) Wilson-Fisher
model [30–32].

In both cases, we will consider the theory in the presence of the following line defect
operator:

Ds = Tr2s+1

[
P exp

(
γ0

∫
dτ φ

)]
, (1.3)

where φa is the bulk scalar field (a = {1, 2, 3}), φ = φaT
a, and the matrices {T a} form a

2s+ 1 dimensional irreducible representation of the su(2) algebra. Such a setting describes
a spin s impurity inserted into a lattice site in the critical bulk and interacting with the
bulk in an SO(3)-invariant fashion, as in figure 1. The parameter γ0 is a coupling constant
and it is relevant for d < 4. We will see that for d = 4 it is marginally irrelevant for all s.

Even in the case of a free bulk theory, we cannot at present solve the model with the
defect (1.3) for arbitrary number of dimensions and arbitrary s. The complication lies in
the path-ordering in eq. (1.3) that makes the diagrammatic expansion rather intricate due
to the appearance of an increasing number of commutators between su(2) matrices at each
order in perturbation theory.

The limit we will focus on in this paper is the s� 1 limit. Understanding the large s
behavior of the defect QFT in both the free bulk case and the interacting O(3) Wilson-Fisher
bulk case will be our main goal throughout sections 2 and 3. Roughly speaking, the impurity

3We work in units such that an Abelian free vector multiplet contributes with aVM = 5/24 and a free
Hypermultiplet with aHM = 1/24.
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backreacts on the bulk substantially and a new saddle-point emerges at large s. Then a new
effective scale for quantum fluctuations emerges s−1 ∼ ~. We will see that this intuition is
partially true, indeed.

Several previous works already studied spin impurities in free theories and the O(3)
WF model [1, 2, 33–38].4 Of particular relevance for us are [1, 2, 33], that initiated the
study of impurities from the field-theoretical viewpoint within the ε expansion. We also
mention the Quantum Monte Carlo analysis of [36] for s = 1/2 impurities. No prior work
addressed the large spin limit to our knowledge.

While this paper is focused on the spin impurities, there are various other interesting
defects in the O(N) model. For instance, the effect of a magnetic field localized in space,
a setup which is particularly relevant for Monte Carlo simulations [44], was considered
in [28, 29, 45, 46]. The line defect that describes a localized magnetic field will be referred
to as the “pinning field defect QFT” (DQFT). The infrared conformal defect, when it exists,
is referred to as the “pinning field DCFT”. Perhaps surprisingly, the results of these works,
in particular of [29], will play an important role in our analysis later on. We will briefly
review it in due course. Symmetry (twist) defects (which are not genuine line defects, since
they are attached to a nontrivial topological surface) were considered in [47–52]. Finally,
let us mention that the multi-channel Kondo problem has a rich set of various large N and
large representation limits [5, 53–55].

Free bulk. In section 2 we discuss the defect (1.3) for a free scalar triplet. For any given
fixed s, the model can be studied in d = 4 − ε spacetime dimensions with ε � 1. In the
limit where ε is the smallest parameter, the model admits an IR stable perturbative fixed
point, that was studied in [2, 33].

As we will explain in detail in section 2.2, the perturbative expansion breaks down for
sufficiently large spin, when s & 1/ε. In section 2.3, we find that the model can be solved in
a semiclassical expansion in powers of 1/s for arbitrary values of the spacetime dimensions
d. Using this approach, we are able to chart the phases of the line defect (1.3). Let us now
summarize our main findings:

• For ε = 4−d� 1, the theory can be studied perturbatively in the double-scaling limit
s� 1 with γ2

0s =fixed. This regime includes the perturbative fixed point mentioned
above, which occurs at any fixed s for sufficiently small ε. However we find a richer
phase diagram. For εs < 1/π we find two fixed points, one of which is novel and
non-perturbative in the standard approach. For εs > 1/π we argue instead that
no infrared fixed point exists and the defect g-function approaches zero in the IR,
similarly to the free theory example discussed in [29]. The approach of g to zero
means that the flow does not terminate in a healthy conformal defect in the infrared
and instead one finds a certain runaway behavior.5 This is presumably only possible
because the theory of a free triplet of scalars has a moduli space of vacua.

4See also [39–43] and references therein for other field-theoretical studies of impurities in different models.
5As we derive in subsection 2.3.3, this implies that one-point functions of local operators decay with a

slower rate than in a DCFT as a function of the distance from the defect for d > 3, while in d = 3 they grow
logarithmically with the distance, see eqs. (2.47) and (2.50).
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Figure 2. Phase diagram of the impurity (1.3) in a free bulk theory. The blue shaded region
schematically represents the one that we could reliably study with our methods. The plot is obtained
from the union of the double-scaling regime, applicable for small 4− d = ε but arbitrary s, and the
fixed ε large s region, which requires εs to be sufficiently large (see section 2.3 for details). The red
solid line separates the region in which the theory admits two fixed points from the one in which
the RG flow never terminates in a DCFT. The red dashed line is its naive extrapolation in the
region that we do not control with present techniques. Notice that the extrapolation suggests that
all physical impurities (s ≥ 1/2) in d = 3 have no stable fixed points. Finally, the purple dotted
lines refer to the numerical example for s = 10 in the main text.

• For ε = 4− d fixed, the model can also be studied in a 1/s expansion, which is similar
in spirit to the usual large N expansion for the O(N) models [56] in the sense that s
becomes effectively 1/~. We find that there is no fixed point in the IR in this limit
for any finite ε > 0, and thus the flow never terminates in a DCFT. This result also
applies to the large s limit of the theory in d = 3 spacetime dimensions.

The phase diagram of the theory is summarized in figure 2, where we colored blue the
region of the (d, s) plane that we could analyze with our methods.

To further clarify the phase diagram we propose, let us give a “numerical” example:
consider for instance the case with spin s = 10 (corresponding to the purple dotted line in
figure 2). For 3 ≤ d < dc ' 3.97 we expect no infrared DCFT to exist, and instead the flow
from the trivial fixed point should never terminate and the defect entropy sD would tend
to −∞ in the infrared. At some critical dc ' 3.97 a nontrivial infrared fixed point would
emerge.6 This infrared fixed point has a smaller defect entropy sD than the trivial fixed
point. It has an operator which is marginally relevant if added with one sign and marginally
irrelevant if added with the other sign. For dc < d < 4 there exist two fixed points, where

6Such a merger of a stable and unstable fixed points and disappearance to the complex plane is the
standard situation, where Miransky scaling arises [57–59].
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one of them is continuously connected to the perturbative fixed point and is stable in the
infrared for SO(3) symmetric perturbations. The other fixed point has an SO(3) invariant
relevant operator, and has an increasingly large defect coupling as d→ 4, which is why it is
non-perturbative. At d = 4 the latter fixed point drifts to infinite coupling while the former
fixed point merges with the trivial fixed point.

As we said, for any fixed 3 ≤ d < 4, at large enough s, the flow never terminates in a
healthy conformal infrared defect. We find that this runaway behavior is analogous to the
one which is obtained considering the pinning field defect δS ∝

∫
dτφ1 in the free theory,

see [29]. Also in that case, the defect renormalization group (DRG) flow never terminates,
and the defect entropy sD tends to −∞ in the infrared. In fact, we will argue that to
leading order in 1/s, correlation functions of SO(3) invariant operators in the presence of
the defect (1.3) coincide with the ones in the presence of the pinning field defect. This
relation between the large s limit of the spin impurity and the pinning field defect (which is
a theory with no free parameters) will be especially useful in the interacting O(3) model.

It is tempting to conjecture that in 3d the DRG flow never terminates in a healthy
DCFT in the IR also for s = O(1). At present, we can only prove this in a 1/s expansion.

The recent general results of [60, 61] guarantee that free scalar theories in d = 3 do not
admit any nontrivial DCFT. This implies that the perturbative fixed points observed in
the epsilon expansion cannot be extrapolated to ε = 1 also for small values of s. This is
consistent with the DRG runaway behavior we find at large s.7 Let us reiterate that we
expect the runaway DRG behavior to be related to the existence of a moduli space of vacua
in the bulk.

Interacting bulk. In section 3 we consider the impurity (1.3) with an interacting O(3)
Wilson-Fisher bulk theory with potential λ(φ2

a)2. For d < 4, both the bulk and the defect
couplings are relevant, so that the physical three-dimensional model is strongly coupled in
the IR.

The simplest approach is to perform a perturbative analysis for small ε = 4 − d for
finite values of s = O(1) (see e.g. [1, 2, 34, 35]). In this limit it was found that, tuning the
bulk to the critical point, the defect coupling admits a nontrivial IR stable fixed point for
which γ2

∗ ∼ λ∗ ∼ ε. This fixed point is analogous to the one mentioned at the beginning of
section 1.1 for the free theory with O(3) symmetry.

We are interested in the phases of this impurity for arbitrary s, including s� 1. As in
the previous section, we should not trust the small ε expansion and some resummation is
required in order to understand the phase diagram.

The central questions we would like to address are whether the theory admits new fixed
points beyond the one seen in perturbation theory and whether the large s limit of the
impurity in three spacetime dimensions can be understood. A particularly important point
is that, unlike the free theory, the bulk interacting theory does not have a moduli space

7In principle, it could be that the DRG for s = O(1) in d = 3 terminates in a decoupled line defect, such
as one with sIR < s. This is why the case of s = O(1) in d = 3 is not yet entirely settled, however, given the
results about large s and fixed d and the results about the double scaling limit, it is reasonable to expect
that the DRG flow for s = O(1) in d = 3 indeed never terminates.
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of vacua due to the potential (φ2
a)2. Therefore, one should not expect an instability and

consequently we do expect a healthy DCFT in any 3 ≤ d < 4 for any s.8
Our main results are the following:

• The model can be studied for all s as long as we have d = 4− ε with ε� 1. For fixed
small s this can be accomplished using a standard perturbative analysis, while for
s & ε−2 a resummation is required. We are able to achieve this resummation and
obtain results that are trustworthy for all s using a new semiclassical limit, which
allows to reorganize the perturbative series and to make non-perturbative statements
at large s. (In particular, in this semiclassical limit, various terms in the beta function
are obtained from the solution of a classical differential equation.)

• There is a unique nontrivial zero of the beta function for all values of s, describing an
IR stable fixed point. A major simplification occurs for s → ∞ for all d, including
both d → 4 and also for d = 3 which is the most interesting case experimentally.
The prediction is that for s → ∞ the theory breaks up into a weakly-decoupled
sector of fluctuations with target space S2 and a special DCFT that was studied
before [28, 29, 45, 46] called hereafter the pinning field DCFT.

• We are able to verify this prediction for the large s limit of the spin impurity within
the ε expansion. Additionally, we present the consequences of this prediction for the
physically interesting case d = 3, including a determination of the scaling dimensions
of certain operators, as well as some other observables. These predictions for d = 3
should be in principle testable.

• Finally, the nearly-decoupled sector of fluctuations with target space S2 and the
pinning field DCFT do couple to each other at finite large s, leading to some 1/s
corrections to observables. We determine the leading coupling and use it to compute
the anomalous dimension of the spin operator on the defect.

In figure 3 we summarize the validity regimes of the various approaches, namely
standard perturbation theory, the resummed ε expansion that we introduce, and the
effective description that we propose in terms of the pinning field defect and a weakly
coupled sector. As figure 3 clearly shows, there are overlapping regimes between the different
approaches. As a nontrivial benchmark of our ideas, we will verify explicitly the agreement
between the different approaches in these regions.

1.2 Wilson lines in large representations

The line defect (1.3) representing an impurity is remarkably similar to the familiar presenta-
tion of Wilson lines in gauge theories. It is therefore natural to wonder if ideas analogous to
those discussed in the previous section can be applied to Wilson lines in large representations
of the gauge group. In this paper we analyze in detail the case of some protected observables

8One can hope that there exist rigorous lower bounds on sD in d > 2 theories with no moduli space of
vacua. See [62, 63] for results in d = 2.
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Figure 3. Regimes of applicability of different methods to capture the nontrivial DCFT fixed point
of the spin impurity (1.3) in the O(3) WF model. We expect that this DCFT exists for all d and
s. The blue region corresponds to the standard ε expansion, the red hatched region to the new
semiclassical resummation method, and the green region to an effective field theory (EFT) involving
the pinning field DCFT weakly coupled to a first-order S2 sigma model. As we will explain in
section 3.4, the resummed perturbation approach theory is applicable for arbitrary s at small ε,
while the pinning field effective description holds for sufficiently large εs2 (including ε ∼ O(1), see
section 3.5 for details).

of 1/2-BPS Wilson lines in N = 2 superconformal field theories (SCFTs) in four dimensions.
For concreteness, we focus on rank-1 theories.9

1/2-BPS Wilson loops in N ≥ 2 superconformal field theories (SCFTs) are among
the most studied examples of DCFTs in the literature [68–85] (for a general approach to
supersymmetric line defects in diverse dimensions see [16, 17, 86]). Notice that, in general,
the large representation limit is of interest also for the study of non-Lagrangian theories, in
which case superconformal defects are roughly labeled by the electric and magnetic charges
of their IR representative in the Coulomb branch of the theory [75, 77, 81]. Importantly
for us, localization techniques allow for exact predictions for certain supersymmetric
observables [74, 87].

Analogously to the large s limit of the impurity in the free O(3) model, the analysis of
Wilson lines in large representations is carried out by identifying a new saddle-point. As a
reminder, in Lagrangian theories, the 1/2-BPS loops includes both the gauge and scalar
components of the vector multiplet:

DBPS
s = Tr2s+1

[
P exp

(∫
C
dt(iẋµAµ + |ẋ|Φ)

)]
. (1.4)

9For a complete classification of rank-1 N = 2 SCFTs see [64–67].
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Therefore, for s� 1, we expect that the classical trajectory dominating the path integral is
characterized by a large scalar profile Φ ∼ s and by a large Coulomb potential A ∼ s. Local-
ization arguments show that protected DCFT observables can be computed in a 1/s expan-
sion through the effective field theory on the Coulomb branch. We consider in particular the
g-function of the theory and the coefficient hD of the one-point function of the stress-tensor.
The result depends on a Wilson coefficient gCB, identified with the IR gauge coupling, and
on the difference in the “a”-conformal anomaly between the CFT and the Coulomb branch
contribution as quoted in (1.2). We additionally find a general relation between hD and log g.

1.3 Structure of the paper

The rest of this paper is organized as follows. In section 2 we study the spin impurity theory
in the free bulk case in the large s regime. In section 3 we study the impurity theory in the
interacting O(3) Wilson-Fisher bulk case in the large s regime. In section 4 we study the
large representation limit of 1/2-BPS Wilson lines in rank-1, N = 2 superconformal field
theories. Section 4 can be read without reading sections 2 and 3. In appendix A, technical
details associated with the diagrammatic calculations of section 2 are given. Appendix B
contains technical details related to the semiclassical calculations of section 2. In appendix C
we obtain the four-dimensional beta function for the defect coupling in the interacting bulk
theory studied in section 3 from the classical saddle-point equations.

Note added. While we were completing this work, we were informed of the upcoming
papers [88] and [89], whose results overlap with part of our section 2. In particular, [88]
and [89] also analyze a model equivalent to the spin s impurity in free theory in the
double-scaling limit γ0 → 0, s → ∞ with γ2

0s = fixed. We are grateful to the authors of
both works for sharing with us a preliminary version of their draft.

2 Spin defects at large s in free theory

2.1 Setup

In this section we consider a free, massless O(3)-symmetric scalar field theory in d spacetime
dimensions. The bulk action is given by the free, massless action in flat space:

Sbulk = 1
2

∫
ddx (∂φa)2 , (2.1)

where a = {1, 2, 3}, (∂φa)2 = ∂µφa∂
µφa, and µ stands for spacetime indices, µ = 1, · · · , d.

As was explained in the introduction, we couple the free bulk theory to a line defect,
physically representing an impurity in the spin s representation of the bulk global SO(3)
symmetry. This is achieved by adding the following line operator to the partition function:

Ds = Tr2s+1

[
P exp

(
γ0

∫
dτ φ

)]
, (2.2)

where γ0 is the bare coupling, and, as was explained in section 1.1, φ = φaT
a and {T a}

are the 2s + 1 dimensional representation of the su(2) algebra. The defect worldline is
parametrized by the embedding xµ = xµ(τ), where τ is a normalized affine parameter such
that |dx/dτ | = 1.

– 9 –
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We will be interested both in circular and linear defects throughout this section. An
equivalent representation of the defect in eq. (2.2) can be given in terms of a bosonic su(2)
spinor z = {z1, z2} on the line, subject to the constraint z̄z = 2s. In this formulation,
the total action (bulk and defect) of the defect quantum field theory (DQFT) reads (see
e.g. [90])10

S = 1
2

∫
ddx(∂φa)2 +

∫
D
dτ

[
z̄ż − γ0z̄

σa

2 z φa

]
, z̄z = 2s . (2.3)

The action (2.3) is invariant under U(1) gauge transformations z → eiα(τ)z, which makes
the target space into the two sphere. The canonical commutation relations imply that the
operators {Sa = z̄ σ

a

2 z} satisfy the su(2) algebra [Sa, Sb] = iεabcSc, while the constraint
implies SaSa = s(s + 1), so that the worldline Hilbert space indeed corresponds to that
of a spin s representation of su(2). Since the kinetic term of z is first order in derivative,
eq. (2.2) is just the evolution operator of the worldline variable. This proves the equivalence
between the action (2.3) and the expectation value of the operator (2.2).

For future purposes, it is important to comment on the ordering in the definition of
Sa. The variables z̄ and z form a canonical pair, and therefore do not commute. It turns
out that the correct definition of the composite spin operator is obtained via the following
point-splitting procedure (see e.g. [90, 93, 97] for similar discussions):

Sa(τ) =
(
z̄
σa

2 z

)
(τ) ≡ lim

η→0+
z̄(τ + η)σ

a

2 z(τ) . (2.4)

In terms of the path integral, such a definition prevents any issues with singularities at
coincident points. The ordering in eq. (2.4) ensures that 〈Sa(τ)Sa(τ ′)〉 = s(s+1) for γ0 = 0,
as required.11

As was mentioned in the introduction, the coupling γ0 is relevant for d < 4, and we will
see that it is marginally irrelevant for d = 4. We are implicitly fine tuning to zero a defect
cosmological constant term ∼ M

∫
D dτ in the action (2.3). Note also that there are no

wavefunctions renormalizations for the fields in the action (2.3). For φ this is obvious since
it is a free field. For z this is because a nontrivial wavefunction renormalization factor would
contradict the U(1) gauge invariance. To see this it is convenient to promote the sliding
scale to a spurionic function of the defect coordinate, M = M(τ), which transforms trivially
under the action of the gauge group. Since the kinetic term for z is only invariant up to
a total derivative under U(1) gauge transformations, the coefficient of z̄ż cannot depend
on the sliding scale M(τ), and it is therefore not renormalized at the quantum level.12

Our main findings which arise from the analysis presented in this section, including the
phase diagram of the model, were already summarized in the introduction part of this paper
(see section 1.1). In addition, we would like to comment that the results of this section will

10Similar actions to (2.3) have been studied in several different contexts, see e.g. [91–93]. In particular,
the constrained spinor z is equivalent to a charged particle moving on a sphere with a charge s monopole at
the center in the lowest Landau level [94–96].

11To verify this assertion, it is important to use the constraint in the form (z̄z)(τ)=limη→0+z̄(τ+η)z(τ)=2s.
12This result is similar to the nonrenormalization of the Chern-Simons term [98].
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also prove useful at a technical level, as a warm-up for the analysis of a large spin impurity
in the interacting O(3) Wilson-Fisher fixed point.

This section is organized as follows. In section 2.2 we review the diagrammatic analysis
of the theory in d = 4− ε. The results will be useful later on when matching between results
obtained by the semiclassical analysis with those obtained using standard perturbative
techniques in their overlapping regime of validity at weak coupling. In section 2.3 we study
the model in the large s limit. We will calculate various quantities, including the defect
g-function and, for ε� 1, the β function associated with the defect coupling.

2.2 Diagrammatic results

2.2.1 Perturbation theory and the beta function

In this section we review the standard diagrammatic approach by considering the calculation
of the one-point function of the operator φ2

a in the presence of a straight line defect. We
focus on the regime of small ε = 4− d where the coupling is only weakly relevant and the
full flow can be studied perturbatively. This will also allow us to extract the beta function
of the renormalized coupling γ.13

To calculate the one-point function of φ2
a, it is convenient to work in coordinates

xµ = (x, τ) with the defect located at xi = 0, where i = 1, · · · , d− 1. The propagator of
the free scalar is given by

〈φa (x)φb (0)〉γ0=0 = δabG(x) , G(x) ≡ 1
(d− 2)Ωd−1

1
(x2)

d−2
2
, (2.7)

where Ωd−1 = 2πd/2
Γ(d/2) is the volume of the d − 1-dimensional sphere. Working with the

representation (2.2) of the defect, the leading contribution to the one-point correlation
function 〈φ2

a(x)〉 arises at order γ2
0 from the diagram in figure 4. It reads:14

〈φ2
a(x, 0)〉 ' γ2

0
Tr[T aT a]

2s+ 1

[∫
dτ G (x− x(τ))

]2
= γ2

0s(s+ 1)
16πd−1|x|2d−6 Γ

(
d− 3

2

)2

d=4= γ2
0s(s+ 1)
16π2x2 ,

(2.8)

where we used T aT a = s(s+ 1).
13As usual, the coupling is renormalized according to:

γ2
0 = Mε

[
γ2 + δγ2

ε
+ δ2γ

2

ε2 + . . .

]
, (2.5)

whereM is the sliding scale and γ is the renormalized coupling constant. We work in the minimal subtraction
scheme (MS) to one-loop order, for which only δγ2 is non-vanishing, and the beta function can be extracted
by requiring that γ2

0 is independent of the sliding scale. This yields [99]:

βγ2 = −εγ2 + γ2 dδγ
2

dγ2 − δγ
2 . (2.6)

14Here and in the following all correlation functions are normalized by the expectation value of the unit
operator in the presence of a straight line defect. The expectation value of the unit operator is 2s+ 1 up to
order γ4

0 (this is because the O(γ2
0) correction vanishes in dimensional regularization), which is all we shall

use for the results in the main text.
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Figure 4. Diagram that contributes the leading order term in the one-point function 〈φ2
a(x)〉.

Dashed lines represent bulk scalar field propagators. The solid line represents the defect.

The first correction to the tree-level result (2.8) in four dimensions is given by the
diagrams displayed in figure 5. After some matrix algebra only the diagrams in figures 5(d)
and 5(e) remain, giving:

(1-loop) = −4γ4
0s(s+ 1)

∫
τ1>τ2>τ2>τ4

d4[τ ]G (x− x(τ1))G (x(τ2)− x(τ4))G (x− x(τ3))

= −1
ε

γ4
0s(s+ 1)
32π4x2 +O

(
ε0
)
. (2.9)

The evaluation of the integral in eq. (2.9) is detailed in appendix A.1.
Requiring that the one-point function 〈φ2

a(x, 0)〉 is finite for ε → 0 we obtain the
counterterm δγ2 = γ4/(2π2) and the one-loop beta function for the physical coupling γ2

(see footnote 13 for our conventions)

βγ2 = −εγ2 + γ4

2π2 +O
(
γ6
)
. (2.10)

Eq. (2.10) is in agreement with previous studies in the literature [33, 34], and it implies the
existence of a perturbative IR stable fixed point at

γ2
∗ = 2π2ε+O

(
ε2
)
. (2.11)

Note that the coupling γ is marginally irrelevant in four dimensions so the free DCFT with
decoupled 2s+ 1 states is attractive in d = 4. For 0 < ε� 1 sufficiently small, for any fixed
s, we get a nontrivial infrared DCFT.

We also report the result for the one-point function to one-loop order:

〈φ2
a(x,0)〉= Nd

xd−2
γ2s(s+1)

4
√

6

{
1+ε

[
log(4M |x|)+ 1

2(γE+logπ)
]

−γ2 2log(M |x|)+γE+2+log4π
4π2 +O

(
γ4,γ2ε,ε2

)}
,

(2.12)

where γE is the Euler constant and Nd is the normalization of the bulk two point-function
without the defect:

〈φ2
a(x)φ2

a(0)〉 = N 2
d

x2d−4 , Nd =
√

6
(d− 2)Ωd−1

. (2.13)
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(a) (b) (c)

(d) (e) (f)

Figure 5. Diagrams contributing the next to leading order terms in the one-point function 〈φ2
a(x)〉.

At the infrared fixed point this implies the result:

〈φ2
a(x, 0)〉 = Nd

xd−2
π2s(s+ 1)ε

2
√

6

[
1− ε (1− log 2) +O

(
ε2
)]

. (2.14)

We will later see that the various higher order corrections that we have neglected
in (2.12) and (2.14) are enhanced by powers of s for s� 1 and can become important if ε
is not the smallest parameter in the problem.

Further perturbative results involving this defect, including the two-loop beta function
and various thermal susceptibilities, can be found in [2, 33]. In particular in [2] it was
argued diagrammatically that the defect spin operator Sa has exactly scaling dimension
∆S = ε/2, without further corrections. Let us briefly comment on an alternative proof of
this fact which relies on the representation (2.3) of the defect. To this aim, notice that
the bulk theory, besides the su(2) currents, has three dimension d/2 conserved currents
Jµashift = −∂µφa associated with the invariance under shifts of the scalars. This symmetry is
explicitly broken at the defect. Indeed from eq. (2.3) we see that the bulk Ward identity is
modified to

∂µJ
µa
shift = γ0S

aδd−1
D , (2.15)

where δd−1
D is a delta function localized at the defect. Since the bulk current has protected

dimension, the Ward identity (2.15) implies that at the fixed point the scaling dimension of
Sa is ∆S = ε/2.15

2.2.2 The g-function and the breakdown of perturbation theory at large s

We denote by gγ the defect g-function, defined according to the conventions in [9], as the
partition function in the presence of the defect on a circle of radius R normalized by the
partition function without it:

log gγ ≡ logZbulk+defect − logZbulk, (2.16)
15Defect operators which appear in Ward identities for internal symmetries broken by the defect are

sometimes called tilt operators. The arguments about tilt operators having protected dimension date back
to [100], a modern treatment is given in [101, 102] (see also [103]).
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(a) (b)

Figure 6. Sample diagrams contributing to the defect g-function.

where Zbulk+defect refers to the partition function of the full theory including the defect (2.2),
and Zbulk refers to the partition function of the bulk theory alone. Note that for γ = 0 the
defect is completely decoupled and g0 = 2s+ 1 regardless of the radius of the circle (in a
scheme where a cosmological constant term is absent).

In this subsection we compute the defect g-function for a circular defect of radius R
diagrammatically by expanding eq. (2.2) in terms of the bare coupling constant γ0. We will
use this calculation to illustrate the structure of the diagrammatic expansion at large s.
The discussion in this section will be largely analogous to the one in [104], where similar
properties were observed in the study of the multi-legged amplitudes associated with large
charge operators in the O(2) Wilson Fisher point in 4− ε dimensions.16 We will also use
the result to provide an explicit check of the g-theorem recently proven in [9].

We can compute the defect partition function expanding the exponential in eq. (2.2):

gγ/g0 = 1 + γ2
0
2
Tr
[
T aT b

]
2s+ 1

∫
C
d2[τ ]〈P [φa (x(τ1))φb (x(τ2))]〉γ0=0

+ γ4
0

4!
Tr
[
T aT bT cT d

]
2s+ 1

∫
C
d4[τ ]〈P [φa (x(τ1))φb (x(τ2))φc (x(τ3))φd (x(τ4))]〉γ0=0

+ . . . , (2.17)

where P denotes the path-ordering and all the integrals are over the circle C parametrized
by τ ∈ [0, 2πR) via the embedding xµ(τ) = {R cos (τ/R) , R sin (τ/R) , 0, . . .}.17 At order
γ2

0 we have a unique contraction, represented in the diagram in figure 6(a), while at order γ4
0

the path-ordering allows for several inequivalent contractions, see the diagram in figure 6(b)
for an example.

We focus now on the regime s� 1. We can evaluate the traces in the expansion (2.17)
using T aT a = s(s+ 1) and the commutator [T a, T b] = iεabcT c. At each loop order ` we find
contributions that range from γ2`

0 s
2` down to γ2`

0 s. Every time we commute two matrices
a suppression factor 1/s is brought about, as follows from the schematic scaling T a ∼ s.
One might therefore conclude that perturbation theory breaks down when s & 1/γ0. This
would be too quick however. A more careful analysis indeed shows that a remarkable

16The breakdown of perturbation theory for multilegged amplitudes, and its relation to semiclassics, was
first analyzed in the context of multi-particle production — see e.g. [105, 106].

17The bare coupling is related to the renormalized one as in eq. (2.5).
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exponentiation takes place.18 As a result, the logarithm of the g-function admits the
following expansion in perturbation theory:

log gγ/g0 = s
∑
`=1

γ2`
0 P`(s) , (2.18)

where the P`(s) are polynomials of order `. We have checked eq. (2.18) diagrammatically
only up to two-loops, but in the next section we shall give a simple general argument which
bypasses the intricate diagrammatic analysis.

The structure of eq. (2.18) suggests the existence of a different expansion, directly in
powers of 1/s. Indeed by formally collecting all the leading order terms of the polynomials
P`(s) in a new function f̃−1(γ2

0s), and similarly for the subleading powers, we recast the
partition function in a double expansion as

log gγ/g0 =
∑
k=−1

s−kf̃k(γ2
0s) = sf̃−1(γ2

0s) + f̃0(γ2
0s) + . . . . (2.19)

As eq. (2.19) already suggests, we will show in the next section that the rewriting (2.19) is
associated with a different loop expansion, valid for s→∞ with γ2

0s = fixed. This will be
obtained by expanding the path integral around a new non-trivial classical trajectory.

We now present the explicit diagrammatic computation of the g-function to order
O(γ4

0):

log gγ/g0 = πγ2
0s(s+ 1)

(d− 2)Ωd−1Rd−4 I
(d)
1 − γ4

0s(s+ 1)
[(d− 2)Ωd−1Rd−4]2

I
(d)
2 +O

(
γ6

0

)
, (2.20)

where we defined the following integrals

I
(d)
1 =

∫ 2π

0
dφ

1[
4sin2 φ

2

] d−2
2

=−
π sec

(
πd
2

)
Γ
(
d
2−1

)
Γ(d−2)Γ

(
−d

2 +2
) =−π2 ε+O

(
ε2
)
, (2.21)

I
(d)
2 =

∫ 2π

0
dφ1

∫ φ1

0
dφ2

∫ φ2

0
dφ3

∫ φ3

0
dφ4

1(
16sin2 φ13

2 sin2 φ24
2

) d−2
2

=−3π2

2 +O (ε) . (2.22)

To obtain these expressions we used that the propagator of the scalar fields on the circle is
given by:

〈φa (x(τ))φb (x(0))〉γ=0 = δab
(d− 2)Ωd−1

1[
4R2 sin2 τ

2R
] d−2

2
. (2.23)

The integral in eq. (2.22) is computed in appendix A.2. Notice that the O(γ2
0) contribution

in eq. (2.20) vanishes for ε = 0 due to the vanishing of the integral (2.21) in four dimensions.
This is because in four dimensions γ0 is a marginal parameter at the classical level, and the
g-function cannot depend on marginal defect couplings [9].

18For instance, it is easy to verify that the sum over diagrams of order γ2`
0 s

2`, which are simply obtained
by neglecting the path-ordering (i.e. dropping all the commutators) exponentiates the first γ2

0s
2 contribution

in figure 6(a). A similar exponentiation property of the one-loop contribution to the g-function was observed
in the study of supersymmetric Wilson loops in N = 4 SYM in [107, 108].
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Rewriting the answer in terms of the physical coupling γ we obtain:19

log gγ/g0 = −εs(s+ 1)
8 γ2 + γ4s(s+ 1)

32π2 +O
(
γ6, εγ4, ε2γ2

)
. (2.24)

The result (2.24) depends on the radius R through the beta function (2.10) of the coupling
γ = γ (MR) (where M is the sliding scale); in particular, evaluating the coupling at the
scale M = 1/R resums the leading logarithimic corrections from higher orders in eq. (2.24).
Specializing to the fixed point (2.11) we find the g-function of the DCFT:

log(gγ∗/g0) = −π
2

8 s(s+ 1)ε2 +O
(
ε3
)
. (2.25)

We will use the results (2.24) and (2.25) to verify the validity of the semiclassical approach
that we present in the next section.

We end this section by using our results to test the g-theorem recently proven in [9]
(see also [6, 7, 109, 110]). To this aim, we consider the defect entropy sD defined as:20

sD =
(

1−R ∂

∂R

)
log gγ/g0 . (2.26)

The differential operator cancels the contribution from a possible cosmological constant
counterterm on the defect (which we have ignored thus far) and ensures that sD is a
scheme-independent observable. The defect entropy is an important observable of the
theory, since it decreases monotonically under the defect renormalization group flow. Using
the Callan-Symanzik equation (R∂/∂R + βγ2∂/∂γ2) log(gγ/g0) = 0, we see that log(gγ/g0)
and sD in general coincide up to order O(γ6) corrections, and they are equal at the fixed
points.21 This implies:

gγ∗ ≤ g0 , (2.27)

in agreement with eq. (2.25). Additionally, the defect entropy obeys the following gradient
equation [9]:

M
∂sD
∂M

= −
∫ 2πR

0
dτ1

∫ 2πR

0
dτ2 〈TD(τ1)TD(τ2)〉

[
1− cos

(
τ1 − τ2
R

)]
, (2.28)

where TD is the defect stress tensor. We may verify this equation in perturbation theory
using that TD = βγT

aφa, where 2γβγ = βγ2 . Evaluating the derivative on the left hand
side of eq. (2.28) using the Callan-Symanzik equation, the formula (2.28) to the leading
non-vanishing order is equivalent to the following equality

∂ log gγ
∂γ2 =

βγ2

4γ2

Tr
[
T aT b

]
2s+ 1

∫ 2πR

0
dτ1

∫ 2πR

0
dτ2 〈φa (x(τ1))φb (x(τ2))〉

[
1− cos

(
τ1 − τ2
R

)]
.

(2.29)
This is easily verified using eq. (2.23) and the beta function (2.10).

19Notice that the renormalizability of the defect action ensures that all terms proportional to inverse
powers of ε are canceled by the coupling counterterm.

20The definition of sD in eq. (2.26) differs by a constant amount with respect to the definition (1.1) in the
introduction due to the normalization factor g0.

21This is true only in mass independent schemes, such as the one we are using, where no cosmological
constant counterterm is generated.

– 16 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
2

2.3 Semiclassics and the double-scaling limit

2.3.1 General considerations

In section 2.2.2 we showed that as the impurity spin s becomes large, standard diagrammatic
perturbation theory breaks down. An alternative framework should be used in order to
address the physics at large s. For instance, in (2.24) there could well be terms of order
γ6s3 which would render our analysis invalid for εs ∼ O (1). Similarly, the analysis of the
fixed point in (2.10) would have to be revisited for εs ∼ O (1) due to terms such as γ6s

which we have not yet computed. Physically this is associated with the fact that a large
spin has a strong backreaction on the bulk, and thus the expansion around the trivial bulk
background becomes inadequate.

We now introduce a different semiclassical approach to study the theory in the large s
regime. That a quasi-classical approach should exist is intuitively obvious, since an impurity
with large spin classically sources a large response in the bulk order paramater φa ∼ γs.
The proper classical profile therefore resums all the s-enhanced contributions, allowing for
a perturbative study of the theory.

Concretely, consider the one-point function of the operator φ2
a. Rescaling the bulk fields

in eq. (2.3) as φa →
√
sφa and z →

√
s z, one writes the corresponding path integral as22,23

〈φ2
a(x, 0)〉 =

s

∫
DφaDz φ2

a(x, 0) exp [−s Srescaled]∫
DφaDz exp [−s Srescaled]

, (2.30)

where we defined a rescaled action which depends only on γ0
√
s:

S = s

[1
2

∫
ddx(∂φa)2 +

∫
D
dτ

(
z̄ż − γ0

√
s z̄
σa

2 zφa

)]
≡ s Srescaled , z̄z = 2 . (2.31)

It is clear from the above action that the model can be analyzed in a saddle-point expansion
in the limit s→∞ by treating γ0

√
s as a fixed parameter. Therefore the correlator admits

the following double expansion

〈φ2
a(x, 0)〉 = Nd

|x|d−2

[
sh̃−1(γ2

0s, |x|, d) + h̃0(γ2
0s, |x|, d) + . . .

]
, (2.32)

where for convenience we isolated the factor Nd, defined in eq. (2.13), in front of the
right-hand-side. From eq. (2.32) it is clear that s−1 plays the role of the loop counting
parameter similarly to ~. γ2

0s instead is a fixed coupling, which near 4d is analogous to a ’t
Hooft coupling.

The interpretation of (2.32) is slightly different between the case of ε = 4− d� 1 and
the case of finite ε. For ε = 4− d� 1 there are logarithmic corrections (e.g. terms such as

22〈φ2
a(x, 0)〉 stands for the expectation value of the unscaled bulk field; we only do the field redefinition

under the path integral.
23In the following, to account for the trace in eq. (2.2), periodic boundary conditions on z are understood

in the path integral: z(τi) = z(τf ).
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γ2
0s log |x|) that can be nicely accounted for using the power of the renormalization group.

Therefore we will switch to the physical coupling γ and consider the double-scaling limit24

γ → 0 , s→∞, γ2s = fixed . (2.33)

For ε that is O(1) (and in particular in d = 3) one might similarly worry that terms such
as γ2

0s|x|4−d become increasingly large in the infrared and would destroy the utility of the
expansion (2.32). We will see that this does not happen and no large enhancement occurs
in the infrared. The large s limit is fully analogous to the usual large N limit in the O(N)
model. All large IR effects are consistently resummed by the saddle-point, and the full
renormalization group flow can be studied perturbatively in a 1/s expansion as in (2.32).
Similar comments apply to other observables.

As promised, for ε = 4−d� 1, we rewrite equation (2.32) using the physical coupling γ:

〈φ2
a(x, 0)〉 = Nd

|x|d−2

[
sh−1(γ2s, |x|M, ε) + h0(γ2s, |x|M, ε) + . . .

]
, (2.34)

where γ is defined so that h−1 and h0 are finite for ε→ 0.
The beta function in the double-scaling limit takes the general form:

βγ2 = γ2
[
−ε+ β

(4d)
0 (γ2s) + 1

s
β

(4d)
1 (γ2s) +O

( 1
s2

)]
. (2.35)

In section 2.3.3 we will find that
β

(4d)
0 (γ2s) = 0 . (2.36)

Furthermore, we will compute β(4d)
1 (γ2s) (see eq. (2.59)). This will enable us to obtain the

phase diagram of the theory summarized in section 1.1. At the fixed points the dependence
on |x| in eq. (2.34) of course drops out.

Analogous considerations about the existence of a double scaling limit apply to other
observables of the theory.25 We will consider in particular the g-function. Rescaling the
fields as in (2.31), we see that the g-function admits the double scaling expansion

log gγ/g0 = sf̃−1(γ2
0s,R, d) + f̃0(γ2

0s,R, d) + s−1f̃1(γ2
0s,R, d) + . . . (2.37)

where R is the circle radius. For ε� 1 eq. (2.37) is conveniently rewritten in terms of the
physical coupling as:

log gγ/g0 = sf−1(γ2s,RM, ε) + f0(γ2s,RM, ε) + s−1f1(γ2s,RM, ε) + . . . . (2.38)

When specialized to a fixed point, there is no dependence on the size of the defect R and
one finds the conformal defect entropy.

24This double-scaling limit is analogous to similar ones considered in the context of the large charge
expansion [104, 111–114].

25It would also be interesting to analyze in a semiclassical expansion the fusion of two line defects [115, 116],
maybe along the lines of earlier studies of OPE coefficients of large charge operators [117]. See [118, 119]
and references therein for some results on the fusion of defects in similar models.
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For d < 4 with fixed ε = O(1), sD → −∞ for R→∞ for large enough s. This indicates
the lack of an infrared DCFT, as we anticipated in section 1.1. Instead, for ε� 1 there is a
rich phase diagram.

As a final comment, we notice that the above expansions in the double-scaling limit (2.33)
should match the result of the diagrammatic calculations discussed in section 2.2 for small
γ2s. This is because in this regime the term proprotional to γ

√
s in eq. (2.31) only represents

a small perturbation of the free action, and consequently the saddle-point profile is close
to the trivial one (around which the usual loop expansion is performed). As previously
noticed, this exponentiation is a very nontrivial fact from the diagrammatic viewpoint. We
will therefore use the diagrammatic results as a benchmark of our semiclassical approach in
the overlapping regime, thus providing a strong consistency check of our methodology.

The rest of this section is organized as follows. In subsection 2.3.2 we consider a
nonlocal one-dimensional theory on the defect that we obtain upon integrating out explicitly
the bulk scalar field. This will set the stage for all the other calculations that we perform
in this section. In subsection 2.3.3 we study the one-point function of the operator φ2

a and
derive the phase diagram of the theory in the large s limit as a function of d. Finally in
subsection 2.3.4 we compute the partition function of a circular defect and use our results
to test the g-theorem.

2.3.2 The nonlocal theory on the line and the saddle-point

Let us consider the DQFT (2.3) for an arbitrary line geometry x(τ). Due to the simplicity
of the bulk theory, we can integrate out explicitly φa on its equations of motion. Rescaling
z →

√
sz, this gives:

φa(x) = − γ0s

(d− 2)Ωd−1

∫
D
dτ

(
z̄ σ

a

2 z
)

(τ)

|x− x(τ)|d−2 + δφa(x) , (2.39)

where δφa(x) is a free field fluctuation that completely decouples from the line. The defect
action then reduces to the following nonlocal quantum mechanical model:

S = s

[∫
D
dτ z̄ż − α0

2

∫
D
dτ

∫
D
dτ ′

z̄ σ
a

2 z z̄
′ σa

2 z
′

|x(τ)− x(τ ′)|d−2

]
, (2.40)

where z̄z = 2, z′ stands for z(τ ′) and we defined

α0 ≡
γ2

0s

(d− 2)Ωd−1
. (2.41)

To proceed with the large s limit, we need to expand the action (2.40) around its
saddle-point solution. By regulating the short distance divergence for τ → τ ′ in dimensional
regularization, the saddle-point is simply given by:

z = z0 = const . (2.42)

There is a S2 manifold of saddle-points: this is accounted for by the integration over the
zero modes which rotate the solution as z0 → Uz0, where U is an arbitrary element of U(2)
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modulo the U(1) gauge transformations. The integration over the zero modes enforces
the symmetry; for instance it implies that only SO(3) singlet bulk operators can acquire a
non-trivial one-point function.

It is useful to write z in terms of polar and azimuthal angles θ and φ, in the so called
Bloch sphere parametrization:

z =
√

2
(

cos θ2
sin θ

2e
iφ

)
. (2.43)

We choose to expand around θ = π
2 and φ = 0.26 It is further convenient to recast the

fluctuations δθ and δφ in terms of a complex variable χ as

χ =
√
s

2 (δθ + iδφ) . (2.44)

The action then reads:

S = −sα0
2

∫
D
dτ

∫
D
dτ ′

1
|x(τ)− x(τ ′)|d−2

+
∫
dτ χ̄χ̇− α0

2

∫
dτ

∫
dτ ′

(χ̄χ′ + χ̄′χ− χ̄χ− χ̄′χ′)
|x(τ)− x(τ ′)|d−2

+O

(1
s

) (2.45)

The first line of eq. (2.45) will be important when we study the defect partition function,
even though it does not depend on the fluctuation χ. The second line is the quadratic
action for the fluctuations around the saddle-point, and it allows studying 1/s corrections
to observables. The previous remark above eq. (2.4) implies that the equal time product
χ̄χ is a formal notation for limη→0+ χ̄(τ + η)χ(τ), and similarly for χ̄′χ′. Finally 1/s
suppressed quartic vertices arise both from the expansion of the kinetic term and the
nonlocal interaction. The theory nonetheless remains under perturbative control at all
scales for large s, since in the semiclassical approach the α0 term behaves like a mass
term for the fluctuations, so that the 1/s suppressed relevant couplings remain always
parametrically small.27 In this sense, the large s limit of the theory (2.40) resembles the
large N limit of the three-dimensional O(N) model, since in both cases the saddle-point
allows resumming the leading effects of the relevant interaction term [56].

2.3.3 The one-point function of φ2
a and the phase diagram

Here we illustrate our ideas by performing the semiclassical calculation of 〈φ2
a(x)〉, for a

straight defect located at xi = 0, to the first subleading order in the 1/s expansion. We will
use this calculation to extract the beta function (2.35) in the double-scaling limit (2.33),
and thus extract the phase diagram of the theory as a function of d in the large s limit. We
will also comment on other observables.

26Notice that the parametrization (2.43) is singular at the south and north poles θ = 0 and θ = π.
27This is analogous to the case of a three-dimensional theory with potential V (φ) = m2φ2 + λφ4, which is

perturbative at all scales for λ/m� 4π.
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To perform the calculation, we use (2.39) to express the one-point function of φ2
a as:

〈φ2
a(x, 0)〉 = sα0

(d− 2)Ωd−1

∫
dτ

∫
dτ ′

〈z̄ σa2 z z̄
′ σa

2 z
′〉

(x2 + τ2)
d−2

2 (x2 + τ ′ 2)
d−2

2
. (2.46)

To obtain the leading order result for the one-point correlation function, we simply plug
the saddle-point solution (2.42) in eq. (2.46). This gives:

〈φ2
a(x, 0)〉 = sα0

(d− 2)Ωd−1

∫ dτ
1

(x2 + τ2)
d−2

2

2

+O
(
s0
)

= s
γ2

0s

16πd−1|x|2d−6 Γ
(
d− 3

2

)2
+O

(
s0
)
.

(2.47)

In terms of the expansion (2.32) this implies:

h̃−1(γ2
0s, |x|, ε) = N−1

d

γ2
0s

16πd−1|x|4−dΓ
(
d− 3

2

)2
. (2.48)

Eq. (2.48) exactly agrees with the leading order diagrammatic result (2.8), which is therefore
exact in the double-scaling limit. We shall see in a moment that the first correction h̃0 takes
a more intricate (and interesting) form.

Before focusing on the next to leading order correction, a few comments are in order.
The one-point function (2.47) in d = 4 reads:

〈φ2
a(x, 0)〉 d=4= γ2

0s
2

16π2x2 +O
(
s0
)
. (2.49)

The one-point function is conformally invariant in d = 4, in agreement with the marginal
nature of the coupling at tree level. We will soon show that quantum corrections provide
logarithmic corrections in four dimensions, leading to a rich phase diagram for ε = 4−d� 1.
For ε = O(1), the result instead deviates from the conformal scaling 〈φ2

a(x, 0)〉 ∝ 1/|x|d−2,
due to the relevant nature of the coupling.28 As anticipated in the discussion below eq. (2.45),
we shall see that 1/s corrections do not change this qualitative behavior at long distances, and
thus the theory never reaches an infrared fixed point. Finally we notice that the result (2.47)
has a double pole in d = 3, associated with an infrared logarithmic divergence of the integral
in three dimensions. To regulate the result, we introduce a cutoff length L� |x| on the
extension of the line, so that to leading logarithmic accuracy the result reads:29

〈φ2
a(x, 0)〉 d=3' γ2

0s
2

(4π)2 log2
(
x2/L2

)
+O

(
s0
)
. (2.50)

One conceptual point that will be crucial later is that the leading in s behavior is
analogous to the one which is obtained by considering a symmetry breaking source localized
on a line in the free theory, δS ∝

∫
dτφ1, i.e. the external field (or pinning field) defect,

28Note that in general, in d = 3, a term of the form (φa)2 on the line must be taken into account as well,
as it is classically marginal. However, as was shown in [29], such a term turns out to be marginally irrelevant.

29Alternatively, we could regulate the infrared divergence by considering a circular defect.
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see [29]. In fact, as eq. (2.39) shows, the impurity behaves precisely as a localized source up
to the zero-mode integration. This is also reflected in the result for the g-function, that we
discuss in the next subsection. From this point of view, the lack of a fixed point for large s
at any fixed d < 4 is therefore due to the same physics as the lack of a fixed point in the
external field defect, which was explained in [29]. In other words, it is due to the moduli
space of vacua in the bulk.

Let us now focus on the O
(
s0) correction to the result (2.47). To this aim, we write

explicitly the quadratic action for the fluctuations in eq. (2.45) for a straight line:

S(2) '
∫
dτ χ̄χ̇− α0

2

∫
dτ

∫
dτ ′

(χ̄χ′ + χ̄′χ− χ̄χ− χ̄′χ′)
|τ − τ ′|d−2

=
∫
dω

2π χ̄(ω)G−1
χ (ω)χ(ω) ,

(2.51)

where Gχ(ω) is the propagator associated with the fluctuations:

Gχ(ω) = 1
−iω − α0c̄(d)(ω)

. (2.52)

The function c̄(d)(ω) is defined by

c̄(d)(ω) =
∫
dτ
e−iωτ − 1
|τ |d−2 = −2|ω|d−3Γ(3− d) sin

(
dπ

2

)
for d > 3 . (2.53)

The case of d = 3 is special due to the infrared logarithmic divergence that we encountered
before and we will discuss it separately at the end. Expanding eq. (2.46) in terms of the
fluctuations around the saddle-point solution, we may now use the propagator (2.52) to
write the next-to-leading order contribution to the one-point function as

δ〈φ2
a(x, 0)〉 = α0

(d− 2)Ωd−1

∫
dτ

∫
dτ ′
〈χ̄′χ+ χ̄χ′ − χ̄χ− χ̄′χ′〉

(x2 + τ2)
d−2

2 (x2 + τ ′ 2)
d−2

2

= lim
η→0+

2α0
(d− 2)Ωd−1

∫
dω

2πGχ(ω)
[
|hx(ω)|2 − eiωη |hx(0)|2

]
,

(2.54)

where the factor eiωη arise from the point-splitting regularization mentioned around eq. (2.4)
and we have defined

hx(ω) =
∫
dτ

e−iωτ

(x2 + τ2)
d−2

2
=
√
π2 5−d

2 |x|
3−d

2 |ω|
d−3

2 K d−3
2

(|x||ω|)

Γ
(
d
2 − 1

) . (2.55)

In the above Kν(x) is the modified Bessel functions of the second kind. Eq. (2.55) simplifies
in d = 4:

hx(ω) d=4= π

|x|e
−|ω||x| . (2.56)

The expression (2.54) holds for any value of d > 3. Nonetheless it is technically hard
to obtain an explicit general result. Therefore, to proceed, it is technically convenient to
discuss separately the case of small ε = 4− d and that of 4− d = O(1).
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We consider first the case of small ε. Noticing that Gχ(ω) ∼ 1/|ω| for ω →∞ in four
dimensions, we see that the integral (2.54) would lead to a logarithmic divergence in the
η → 0+ limit due to the integration over the Gχ(ω) |hx(0)|2 term. The divergence needs to
be renormalized by the coupling counterterm, and therefore leads to a nontrivial RG flow.

Explicitly, studying the integral in 4− ε dimensions, we find that the next-to-leading
order correction to the one-point function (2.47) is:

δ〈φ2
a(x, 0)〉 = −1

ε

α0 arctan(πα0)
2πx2 + α0

4πx2 −
2α2

0(log |x|+ 1 + log 2)
4(1 + π2α2

0)x2

− α0 arctan(πα0)(4 log |x|+ γE + log 16 + log π)
4πx2 +O (ε) .

(2.57)

We detail the computation in appendix B.1. Here we only remark that the second term on
the right hand side of eq. (2.57), which is linear in α0, arises because of the point-splitting
in eq. (2.4). When added to the leading order (2.49), it modifies the prefactor γ2

0s
2 to

γ2
0s(s+ 1), as expected.

Comparing eq. (2.57) with the leading order expression in four dimensions (2.49), we
see that one obtains a finite result for the one-point correlation function of 〈φ2

a(x)〉 upon
renormalizing the coupling α0 according to:

α0 = 4π2M ε

(2− ε)Ω3−ε

(
α+ δα

ε

)
, δα = 2α arctan(πα)

πs
, (2.58)

where the prefactor 4π2

(2−ε)Ω3−ε
= 1 +O (ε) is there to compensate the ε-dependence in the

definition (2.41). This ensures that eq. (2.58) corresponds to the same renormalization
scheme used in section 2.2, allowing for a comparison with the results in that section also
away from the fixed points. Using the above result, we find the following beta function:

βα = −εα+ 1
s

2α2

1 + π2α2 . (2.59)

Notably, this result for the beta function agrees with the diagrammatic one (2.10) in the

small α limit, as can be seen using α = γ2s

4π2 . In eq. (2.35) it implies:

β
(4d)
0 = 0 , β

(4d)
1 = 2α/(1 + π2α2) . (2.60)

Eq. (2.59) admits nontrivial zeros for:

εs = 2α
1 + π2α2 . (2.61)

The solutions depend on the value of the double-scaling parameter εs and are summarized
in figure 7. Strictly in d = 4, there is only one fixed point, which is stable and trivial (at
α = 0) — see the black curve of figure 7. Interestingly, there are two solutions in the regime
where 0 < εs < 1/π, as is demonstrated by the blue curve of figure 7. These are given by:

α =


1−

√
1− π2(sε)2

π2sε
≡ α1 = εs

2 +O
(
(εs)3

)
,

1 +
√

1− π2(sε)2

π2(sε) ≡ α2 = 2
π2εs

+O(εs) .
(2.62)
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Figure 7. Plot of the beta function (multiplied by a factor of s) as a function of α for various
values of fixed εs: strictly in four dimensions with εs = 0 (black), in the range 0 < εs < 1

π with
εs = 1√

2π (blue), εs = 1
π (green) and in the range εs > 1

π with εs =
√

2
π (orange).

The fixed point with the smaller α, α = α1, reduces to the weak-coupling perturbative fixed
point studied in section 2.2 and it is the only stable fixed point. However, the semiclassical
approach used in this subsection reveals the existence of a new fixed point, which appears
for α = α2; this is a nonperturbative fixed point in the standard perturbative approach
valid only for εs � 1. This new fixed point is unstable towards the first fixed point for
α < α2, and it flows to the strongly coupled regime for α > α2; we expect that this latter
flow never reaches an endpoint (with a behaviour analogous to the one discussed above
eq. (2.50) about the large s limit for 3 < d < 4).

The two solutions coincide at εs = 1/π (as can be seen from the green curve of figure 7).
No solutions exist for εs > 1/π (see the orange curve of figure 7).30 We will indeed see that
for finite ε and large s the infrared limit of the defect is not described by a DCFT, rather,
the flow never terminates and tends towards sD → −∞.

We also comment on the defect operator spectrum at the fixed points. The comment
below eq. (2.15) implies that the impurity spin operator Sa has dimension ∆S = ε/2 for
both fixed points in eq. (2.61). The anomalous dimension of the operator Saφa is extracted
from the beta function and to the first nontrivial order it reads

γS·φ = ∆S·φ − 1 = ∂βα
∂α

∣∣∣∣
βα=0

'

+ε
√

1− π2s2ε2 for α = α1 ,

−ε
√

1− π2s2ε2 for α = α2 .
(2.63)

As expected, the anomalous dimension is positive at the stable fixed point and negative at
the unstable one. The operator is marginal when the two fixed points collide.

30Interestingly, a technically analogous double-scaling limit unveils a similar fixed point annihilation
phenomenon for the SU(2)k Wess-Zumino-Witten model in 2 + ε dimensions [120].
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Finally, we provide the result for the one-point correlation function to the next-to-leading
order. In terms of the expansion (2.34), we find:

h−1(γ2s, |x|M,ε) = γ2s

4
√

6

{
1+ε

[
log(4M |x|)+ 1

2(γE+logπ)
]
+O

(
ε2
)}

,

h0(γ2s, |x|M,ε) = γ2s

4
√

6
− γ4s2
√

6(16π2+γ4s2)
[2 log(M |x|)+γE+2+log4π]+O (ε) . (2.64)

The expansion of eqs. (2.64) for γ2s� (4π)2 is in perfect agreement with the diagrammatic
results (2.12). From eq. (2.64) we also obtain the correlator at the fixed points α1 and α2
in eq. (2.62):

〈φ2
a(x, 0)〉 = Nd

|x|2−ε
s
(
1∓
√

1− π2ε2s2
)

√
6εs

{
1 + 1

s
[1 + εs (log 2− 1)] +O

( 1
s2

)}
, (2.65)

where the − and + sign refer, respectively, to the fixed points α1 and α2. This concludes
the discussion for ε� 1.

We now wish to evaluate the 1/s correction in eq. (2.54) for generic d with ε = O(1).
In this case no renormalization is required since there are no divergences in (2.54). Thus,
we will work directly in terms of the bare coupling α0.

To obtain an analytic expression, we focus on the long distance limit of 〈φ2
a(x, 0)〉,

specified by α0|x|4−d � 1. In this limit, the leading result arises from the second term in
square parenthesis in eq. (2.54), which is proportional to a tadpole integral of the propagator.
This term indeed behaves as |hx(0)|2 ∝ 1/|x|2d−6 like the leading order (2.47), while we
shall soon see that the first contribution in the square parenthesis in eq. (2.54) decays faster
at large distances. We find:

lim
η→0+

∫
dω

2π e
iωηGχ(ω) = 1

2(4− d) −
1
2 . (2.66)

While the propagator (2.52) depends on α0 the result is independent of it, as expected from
dimensional analysis.31 The −1/2 arises from the point-splitting prescription (2.4). We
may also evaluate the leading long distance contribution from the first term in the square
parenthesis of eq. (2.54) by expanding the propagator (2.52) for small ω:32∫

dω

2πGχ(ω)|hx(ω)|2 = −1
α0c̄(d)(1)

∫
dω

2π
|hx(ω)|2
|ω|d−3

[
1 +O

(
1

α2
0|x|2(4−d)

)]

=
πΓ
(
d−3

2

)2

Γ
(
d−2

2

)2
σ(d)

α0|x|d−2

[
1 +O

(
1

α2
0|x|2(4−d)

)]
,

(2.67)

where for convenience we defined a positive coefficient σ(d) as:

σ(d) =
(3− d) cot

(
πd
2

)
Γ
(
d
2 − 1

)2

25−d πΓ(d− 3) > 0 for 3 < d < 4. (2.68)

The coefficient σ(d) has a pole for d→ 4 and vanishes in d = 3.
31Technically, this can be seen rescaling ω → ωα

1
4−d

0 in the integral (2.66).
32This can be seen explicitly rescaling ω → ω/|x| in the integral (2.67).
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Using eqs. (2.47), (2.66) and (2.67) in the expression (2.54), we write the final result
for the one-point function (2.47) in 3 < d < 4 as

〈φ2
a(x, 0)〉 =

sα0πΓ
(
d−3

2

)2

(d− 2)Γ
(
d−2

2

)2
Ωd−1|x|2d−6

×
{

1 + 1
s

[
3− d
4− d + σ(d)

α0|x|4−d
+O

(
1

α3
0|x|3(4−d)

)]
+O

( 1
s2

)}
.

(2.69)

Notice that the expansion breaks down for d → 4, which is why we had to perform
renormalization in that case. Otherwise, we see that 1/s corrections only change the
prefactor of the leading 1/|x|2d−6 term at large distances. From eq. (2.69) we also see that
the first subleading correction at long distances is independent of α0 (but depends on s)
and obeys a conformal scaling law 1/|x|d−2.

A qualitatively similar behavior describes other correlation functions. For instance, an
analogous calculation shows that the two-point function of the spin operator on the line
takes the following form:

〈Sa(τ)Sb(0)〉= δab

3 s2

1+ 1
s

3−d
4−d+

(3−d) cot
(
πd
2

)
πα0|τ |4−d

+O

(
1

α3
0|τ |3(4−d)

)+O

( 1
s2

) .
(2.70)

We see from these examples that 1/s corrections for d < 4 are indeed small and do not alter
the long distance behavior. In addition, as promised, we see that the long distance behavior
is not compatible with a DCFT (which would require a leading 1/|τ |4−d dependence because
of eq. (2.15)), rather, the RG flow at large s and fixed d < 4 never terminates.

While our treatment so far focused on 3 < d < 4, a similar discussion applies in d = 3,
provided one carefully regulates the infrared logarithmic divergences associated with the
infinite extent of the line. In particular, 1/s corrections again do not lead to a well defined
DCFT at long distances. Technically, these infrared singularities arise because c̄(3)(ω)
in (2.52) reads:

c̄(3)(ω) =
∫
dτ
e−iωτ − 1
|τ |

= −2 log(|ω|L) + const , (2.71)

where L is the IR cutoff length of the defect. Because of the ambiguities related to how
precisely we perform the IR regularization, we postpone the discussion of d = 3 to circular
defects, for which no ambiguities of this sort arise.

We summarize: at fixed 3 ≤ d < 4, for large s, there is no infrared DCFT. Our large
s-result leads to a never-ending flow with correlation functions scaling as in the presence
of a localized external source (up to the zero-mode integration). We expect (but cannot
prove) that the DQFT behaves analogously also for s = O(1) in 3 ≤ d < 4.

2.3.4 The g-function

In this subsection we compute the defect g-function for a circular defect of radius R in the
large s limit. We will also use our results to check the g-theorem for the fixed points we
have found at ε� 1.
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To perform the calculation, we consider the defect on a circle of radius R, xµ(τ) =
R(cos τ/R, sin τ/R, 0 . . .). The leading order result arises from the classical value of the
action (2.45) on the saddle-point z = const. In terms of the expansion (2.37), we find

f̃−1(γ2
0s,R, d) = α0R

4−d

2

∫
dφ

∫
dφ′

1(
4 sin2 φ−φ′

2

) d−2
2

= πα0R
4−dI

(d)
1 , (2.72)

where we set τ = Rφ and I(d)
1 is defined in eq. (2.21). As for the leading h̃−1 contribution

to 〈φ2
a(x, 0)〉 before, eq. (2.72) exactly agrees with the leading order diagrammatic result

in eq. (2.20). As expected, the result (2.72) also exactly coincides with that of a localized
source

∫
dτφ1 on the defect discussed in [29], where the result was also shown to satisfy the

gradient formula (2.28).
The function I

(d)
1 in eq. (2.21) vanishes for d = 4, in agreement with the classical

marginality of the coupling. Notice that, since I(d)
1 = −πε/2 +O

(
ε2), to obtain the value

of log g for small ε ∼ 1/s we also need to compute the one-loop correction f̃0 in eq. (2.37).
We will soon do that.

Before discussing subleading corrections, let us comment on the result for d < 4 with
ε = O(1). We find that I(d)

1 has a pole for d = 3. The divergence can be renormalized by
adding a cosmological constant counterterm on the line, since it is linear in R, and results
in a R logR contribution33 to log g in d = 3:

f̃−1(γ2
0s,R, 3) = 2πα0R log(RM) + const×MR , (2.73)

where M is an arbitrary cutoff scale. To obtain a scheme-independent quantity for arbitrary
d we compute the defect entropy as in eq. (2.26),

sD = −sπα0R
4−dρ(d)

[
1 +O

(1
s

)]
, (2.74)

where we defined a function ρ(d) which is positive and regular for 2 < d < 4 and vanishes
in d = 4:

ρ(d) ≡
√
π24−dΓ

(
5
2 −

d
2

)
Γ
(
2− d

2

) =

0 for d = 4 ,
2 for d = 3 .

(2.75)

The result (2.74) therefore implies that sD → −∞ in the infrared (R → ∞) for fixed
d < 4 and large s. This is compatible with the previously discussed scenario of a defect
renormalization group flow that does not terminate in a healthy DCFT (that would have
g > 0). At the end of this section we will see that 1/s corrections do not change the IR
behaviour of sD.

Let us now discuss the first 1/s correction to the result for small ε ∼ 1/s. In particular,
to obtain the g-function at the previously discussed fixed points we need to compute the next
to leading order correction h̃0 strictly in d = 4. This follows from the one-loop determinant

33As commented in footnote 9 of [29] for the case of localized symmetry breaking source, this term is
associated to an anomaly in coupling space [121–123].
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Figure 8. Plot of log(gγ/g0) at the fixed
points as a function of α.
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Figure 9. The difference log g(2) − log g(1)

as a function of εs.

of the fluctuations χ defined in eq. (2.44). The details of the calculation can be found in
appendix B.2, while here we report the main result:

f̃0(γ2
0s,R, 4− ε) = 1

2 log
(
1 + π2α2

0

)
+ πα0 arctan(πα0) +O (ε) . (2.76)

We now have all the information we need in order to compute the physical g-function to
the leading nonvanishing order in the double-scaling limit (2.33). In terms of the physical,
renormalized, coupling, we find the following results for the coefficient f−1 and f0 (2.38):

f−1(γ2s,RM, ε) = −ε2π
2α+O

(
ε2
)
,

f0(γ2s,RM, ε) = 1
2 log

(
1 + π2α2

)
+O (ε) . (2.77)

Using α = γ2s

4π2 and expanding for small γ2s, eqs. (2.77) can be seen to agree with the
previous diagrammatic result in eq. (2.24). As already commented below eq. (2.24), the
result depends on RM through the running of the coupling constant α = α(RM). This
implies in particular that log g and sD coincide to the first nontrivial order.

At the fixed points that satisfy (2.61), the g-function is conveniently expressed in terms
of α as

log gγ/g0 = 1
1 + π2α2 + 1

2 log
(
π2α2 + 1

)
− 1 +O

(1
s

)
. (2.78)

Eq. (2.78) is plotted in figure 8. It has a minimum at α = 1/π, where the two fixed
points (2.62) coincide.

We may use eq. (2.78) to further test the g-theorem as in section 2.2.2. To this
aim, we denote by g(i) the values of the defect g-function at the fixed points (2.62), i.e.
g(i) = gγ/g0|α=αi . One can verify that the (normalized) g-function at the fixed points
satisfies:

log g(1) ≤ 0 , log g(1) ≤ log g(2) , (2.79)

for εs ∈ [0, π−1]. This is in agreement with the g-theorem [9], which predicts that the most
stable fixed point corresponds to the lowest value of g. The difference log g(2) − log g(1) is
plotted in figure 9.
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We may also use eq. (2.77) to verify explicitly the gradient formula (2.28). On the right
hand side of the above, the defect stress tensor reads TD = βγO, where O is the following
defect operator:

O = s z̄
σa

2 zφa = −sα0
γ0

∫
dτ ′

z̄ σ
a

2 z z̄
′ σa

2 z
′

|x(τ)− x(τ ′)|d−2 + s z̄
σa

2 z δφa . (2.80)

To obtain the connected two-point function of the defect stress tensor we also have to
expand the z field around the saddle z = z0. All field fluctuations are of order 1/

√
s, hence

to leading order we can make the replacement O = s z̄0
σa

2 z0 δφa, and the condition (2.28)
then reads:

− βα
∂

∂α
log gγ/g0 = −s2β2

γ2π
∫
dφ〈δφa(x(φ))δφb(x(0))〉z̄0

σa

2 z0 z̄0
σb

2 z0 [1− cos(φ)] .
(2.81)

Proceeding similarly to the discussion around eq. (2.29), the above condition (2.81) reduces
to:

∂

∂α
log gγ/g0 = π2sβα

2α , (2.82)

which is easily verified using eq. (2.59) and plugging in eq. (2.77).
We now discuss the 1/s correction f̃0 for fixed d < 4. As for the correlation function

discussed in the previous section, we focus on the IR limit α0R
4−d � 1. The calculation is

detailed in appendix B.2. For d > 3 the result reads:

f̃0(γ2
0s,R, d) = πR4−dα0I

(d)
1

5− d
4− d + c.c. +O

((
R4−dα0

)0
,
(
R4−dα0

)1− d−3
4−d

)
, (2.83)

where we neglected a scheme-dependent cosmological constant term, denoted by c.c..
Eq. (2.83) scales as R4−dα0 in the IR, like the leading order (2.72). From eq. (2.83) we
compute the 1/s corrections to the defect entropy (2.74) in the R→∞ limit:

sD
R→∞= −sπα0R

4−dρ(d)
[
1 + 1

s

5− d
4− d +O

( 1
s2

)]
. (2.84)

The case of d = 3 needs to be discussed separately, as the expansion in eq. (2.83) takes
a more intricate form due to the logarithmic behavior of the propagator mentioned above
eq. (2.71). Neglecting again a cosmological constant contribution, the final result reads:

f̃0(γ2
0s,R, 3) = −2πα0R log (log(α0R)) + c.c. +O

(
α0R

log2 (log(α0R))
log(α0R)

)
. (2.85)

Eq. (2.85) scales as R log(logR) in the IR, differently than the leading order (2.72) which
is proportional to R logR. Subleading terms in the expansion are suppressed by powers of
log(log(α0R))

log(α0R) . From eq. (2.85), we find that the defect entropy reads:

sD
d=3= −s2πRα0

{
1− 1

s

[
1

log(α0R) +O

(
log2 (log(α0R))

log2(α0R)

)]
+O

( 1
s2

)}
, (2.86)

and indeed in the infrared sD → −∞, consistently with the absence of an infrared DCFT.
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3 Spin defects at large s: the interacting theory

3.1 Setup

In this section we consider the O(3) Wilson-Fisher model:

Sbulk =
∫
ddx

[1
2(∂φa)2 + λ0

4! (φa)4
]
, (3.1)

where a mass term has been tuned to zero. We will be interested in the model (3.1) in the
presence of a spin s impurity. As in the free theory, this is modeled by inserting in the path
integral the line operator (2.2). We can write the corresponding DQFT action with our
constrained bosonic spinor satisfying z̄z = 2s similarly to eq. (2.3):

S =
∫
ddx

[1
2(∂φa)2 + λ0

4! (φa)4
]

+
∫
D
dτ

[
z̄ż − γ0z̄

σa

2 zφa

]
, z̄z = 2s . (3.2)

The same comments below eq. (2.3) apply to the action (3.2). In this section we will analyze
the theory (3.2) for s� 1. Our main findings were already summarized in the introduction
in section 1.1.

The rest of this section is organized as follows. In subsection 3.2 we review the
diagrammatic perturbative approach to the impurity. In subsection 3.3 we study a certain
triple scaling limit, and obtain the classical beta-function in four dimensions. In section 3.4
we study the large spin fixed point within the ε expansion. Finally in section 3.5 we analyze
the large spin limit in an arbitrary number of spacetime dimensions d < 4 and make some
concrete predictions for the physical case of the O(3) model in three spacetime dimensions.

3.2 Diagrammatic results

As well known, the theory (3.1) flows to a weakly coupled fixed points in d = 4−ε dimensions
with ε� 1.34 The theory admits the following beta function:

βλ = −ελ+ 11
48π2λ

2 +O

(
λ3

(4π)4

)
, (3.4)

which leads to an IR stable perturbative fixed point at:

λ∗
(4π)2 = 3

11ε+O
(
ε2
)
. (3.5)

The fixed point (3.5) describes the critical O(3) Wilson-Fisher model.
34We remind that the bare coupling λ0 in the minimal subtraction scheme is renormalized according

to [124]:

λ0 = Mε
[
λ+ δλ

ε
+ δ2λ

ε2 + . . .
]
, δλ = 11

3
λ2

(4π)2 +O

(
λ3

(4π)4

)
, (3.3)

where λ is the renormalized coupling associated with the quartic interaction of the bulk theory, M is the
sliding scale and, as in the previous section, we work in the MS scheme. We will not need higher orders or
the value of δ2λ for what follows. Also note that the wavefunction renormalization of the fundamental field
starts at two-loop order and it will not be needed in what follows.
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Figure 10. Diagram for the O
(
λγ4s4) two-loop contribution to 〈φ2

a(x, 0)〉.

We now consider the theory in the presence of the defect (3.2). The diagrammatic
analysis in the limit where ε is the smallest parameter proceeds similarly to that in section 2.2
and was performed first in [1, 2]. Here we reproduce a few results that will be necessary for
what follows.

By considering corrections to the one-point function 〈φ2
a(x, 0)〉, one easily finds that

to one-loop order the beta function of the defect coupling coincides with the free theory
result (2.10).35 At two loops order there are several new contributions. The most important
one for our purposes scales as λγ4s4 and arises from the two-loop diagram correction
described in figure 10. From this diagram we extract a contribution to the counterterm,
which we add to the counterterm for the free bulk to obtain δγ2 = γ4

2π2 + λγ4

96π2 s(s+1)+O
(
λ3s0),

from which one obtains the following beta function:

βγ2 = −εγ2 + γ4

2π2 + λγ4

48π2 s(s+ 1) +O
(
ε3s0

)
. (3.6)

In deriving the above result we have used the counting λ ∼ γ2 ∼ ε and neglected O
(
ε4)

(three-loop) contributions. Furthermore, we neglected O
(
ε3s0) contributions (of order

γ6s0, λγ4s0 and λ2γ2s0), since we would like to think about s which is s� 1 (but not as
large as to require a resummation, yet). Later on we will reproduce the λγ4s2 term from a
classical calculation. Eq. (3.6) implies that the coupling in the IR flows to a perturbative
fixed point at:

γ2
∗ = 2π2ε

[
1− 2π2

11 εs(s+ 1) +O
(
εs0
)]

. (3.7)

Various quantities of interest were computed to two-loop order in the ε expansion
in [1, 2, 34, 35]. For instance, differently from the free theory case discussed in the previous
section, the scaling dimension of the defect spin operator is not protected by the Ward
identity (2.15) anymore, and receives a correction at order ε2 [2]:

∆S = ε

2

[
1− 2π2

11 εs(s+ 1) +O
(
εs0
)]

, (3.8)

where again we retained only the largest two-loop contribution for s � 1 and neglected
three-loop corrections. Clearly, the above expressions should only be trusted for ε→ 0 with
fixed s, since otherwise one may get a negative γ2

∗ and ∆S , which is of course disallowed.
35There is a divergent O(λγ2s2) contribution to the correlation function, but this is renormalized by the

φ2
a wavefunction.
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Figure 11. Diagram that contributes the leading order new contribution to the defect g-function
defined in (2.16) due to the bulk self-interaction.

Finally, we consider the g-function of the theory. The leading order result for the defect
partition function coincides with the free theory one (2.24). At the next order we find a
γ6s2 correction, while the coupling λ contributes at order λ2γ2s2 and λγ4s4.36 We compute
this last contribution, which is dominant for s� 1. It comes from a diagram in which four
defect insertions are connected through a bulk quartic vertex (see figure 11). The leading
s4 term is obtained by neglecting all commutators and it reads:

δgγ/g0 = − lim
ε→0

γ4
0λ0
4! [s(s+ 1)]2

∫
d4[τ ]

∫
d2−εx⊥ d

2x‖

4∏
i=1

1

4π2
[
x⊥ + x‖ − x‖(τi)

]2−ε
= [s(s+ 1)]2 γ

4
0λ0

384π2 , (3.9)

where x‖ and x⊥ are in the plane of the defect and perpendicular to it respectively and in
the last line we used the result obtained in appendix B of [29] for the value of the integral.
Adding (3.9) to the leading order (2.24) and writing the result in terms of the physical
couplings γ and λ (see footnotes 13 and 34 for our conventions) we obtain:

log gγ/g0 = −ε8s(s+ 1)γ2 + γ4s(s+ 1)
32π2 + γ4λ[s(s+ 1)]2

768π2 +O
(
ε3s2

)
fix.pt.= −π

2

8 s(s+ 1)ε2 + π4

44 [s(s+ 1)]2ε3 +O
(
ε3s2

)
.

(3.10)

3.3 The all-orders structure of perturbation theory

To begin our exploration into the physics of large s it is very useful to understand systemat-
ically the structure of the beta function and other physical quantities as a function of γ, λ, s.
Our analysis in the previous subsection only allows to understand the regime of small γ, λ
and fixed s, and we clearly need to go beyond that to understand the true large s limit.

By the same arguments as in the free bulk theory in section 2, as the spin s of the
impurity increases the standard perturbative approach becomes less and less accurate, and
eventually breaks down. It turns out that perturbation theory nicely reorganizes as an
expansion in γ2 with arbitrary functions of γ2s, λs. This reorganization would be very

36One might naively expect a contribution λγ2s2, but this is proportional to a bulk tadpole and vanishes
in dimensional regularization.
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useful to us, so let us prove it: we implement the rescalings φa → φa/
√
λ and z →

√
sz in

eq. (3.2):

S = 1
λ

∫
ddx

[1
2(∂φa)2 + 1

4!(φa)
4
]

+ s

∫
dτ

[
z̄ż − γ√

λ
z̄
σa

2 zφa

]
, z̄z = 2 . (3.11)

From requiring that all terms in the action scale the same way, we obtain a new semiclassical
limit:

s→∞ , γ → 0 , λ→ 0 ,

α = γ2s

4π2 = fixed , y ≡
√
λ γs

4π = fixed .
(3.12)

This of course reduces to the semiclassical limit (2.33) for y = 0, i.e. a free bulk.37

From this it follows that the beta function and ∆S admit the following expansions:

βγ2 = γ2
[
−ε+ β

(4d)
0 (α, y) + γ2β

(4d)
1 (α, y) + · · ·

]
, (3.13)

∆S = γ2
[
∆0(α, y) + γ2∆1(α, y) + · · ·

]
. (3.14)

In (3.14) we have extended the notion of ∆S away from the fixed point — to obtain the
physical scaling dimension of the spin operator at the fixed point we must evaluate ∆S for
solutions of βγ2 = 0.

The perturbative result (3.6) corresponds to β0 = 1
3y

2 + . . . and β1 = 1
2π2 + . . .. Unlike

in the free theory case, for the bulk interacting theory the leading term β
(4d)
0 (α, y) in

eq. (3.13) is nonzero.
Due the semiclassical nature of the expansion (3.13), β(4d)

0 can be completely understood
from the properties of a new classical solution. Since developing this direction is somewhat
tangential to our main thrust, we detail this conceptually and technically interesting analysis
in appendix C.

For us, the most important conclusion is that β(4d)
0 is only a function of y, β(4d)

0 = β
(4d)
0 (y)

and that β(4d)
0 (y) is a monotonically increasing function, implying that β(4d)

0 (y) has no
zeroes other than at y = 0. From this and figure 12 we conclude that there is no interacting
DCFT fixed point in 4 dimensions, which is not surprising. The only fixed point is the
decoupled one with y = 0. However, the major difference from the previous section, in that
we have a nonzero β(4d)

0 , leads to rather different conclusions also in 4− ε dimensions. Since
now β

(4d)
0 6= 0 we must solve ε = β

(4d)
0 (y) in order to find fixed points in 4− ε dimensions.

Since β(4d)
0 (y) has no zeroes other than at y = 0 and does not tend to zero at infinity, the

only solution is at infinitesimal y,

y∗ =
√

3ε . (3.15)

37Notice that, as for the double-scaling limit (2.33), the small α and y limit of the semiclassical ap-
proach (3.12) matches the results of the standard diagrammatic expansion.
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Figure 12. Plot of the 4-dimensional beta function βy(y) as a function of y, extracted from the
solution of the saddle-point equation (given by the ODE (C.5)).

The semiclassical approach (3.12) is very useful to understand the form of the beta
function, scaling dimensions etc. We will use it further below. But there are no new fixed
points in this semiclassical limit.38

3.4 The phase diagram in 4 − ε dimensions

With the large amount of results that we have amassed both in the standard ε expansion
and the semiclassical regime (3.12) we can now systematically understand the phases of the
defect for small ε but arbitrary s. We will see that a major simplification occurs in the large
s limit and we will argue that the same simplification happens in any number of dimensions,
which would lead us, finally, to a solution of the model in d = 3 for large s as well.

In our exploration of the phase diagram we will fix a finite small ε and let s vary.
The bulk coupling is going to be fixed to its fixed point (3.5). For small s the standard
perturbative analysis holds. We find a healthy infrared DCFT. The defect coupling scales as

s ∼ O(1), d→ 4 , γ∗ ∼
√
ε . (3.17)

As we keep increasing s the corrections of order εs2 in (3.7), (3.8) begin to increase in
importance and eventually, for εs2 ∼ 1 we must switch to a different description, which is
accurately provided by our analysis around (3.15). Therefore for large s we find

s→∞ , d→ 4 , γ∗ =
√

11
s

. (3.18)

38Yet the results from the classical analysis, which allow to fix β(4d)
0 (y), lead to a wealth of information

about various perturbative corrections to the β function which correspond to high-order effects in the usual
diagrammatic methods. For instance, from the next to leading order in the expansion of β(4d)

0 (y) around
y = 0 given in (C.19) (and remembering that the running of λ is subleading in four dimensions), we infer
that in four dimensions

β
(4d)
γ2 = λγ4s2

48π2 −
λ2γ6s4

1536π4 + . . . . (3.16)

We have thus reproduced the s2 piece of the third term from (3.6) and essentially computed a new (scheme-
independent) 4-loop term which should be possible, in principle, to verify also from the standard diagrammatic
approach.
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Throughout this whole regime, and for arbitrary s, the terms beyond the three terms
quoted in (3.6) always remain parametrically small, provided only that ε is sufficiently small
and regardless of s.39 Therefore we can in fact find results that cover the whole range of s
near four dimensions:

γ2
∗ = 2π2ε

1 + 2π2εs2/11

[
1− ε1/2 2π2

√
εs2

11 + 2π2εs2 +O (ε)
]
. (3.19)

This formula clearly interpolates between the regimes (3.17) and (3.18). For εs2 � 1 the
fixed point (3.19) reduces to the one in eq. (3.7) that was analyzed in [1, 2, 34, 35]. In the
opposite regime, εs2 � 1, we get the scaling (3.18) and in this regime our results are new
to the best of our knowledge.

We can compute many other observables in this framework. Let us quote a few. All of
them apply for arbitrary s and small ε.

Let us consider first the correlation function 〈φ2
a(x, 0)〉. Up to order O(ε) corrections,

the one-point function 〈φ2
a(x, 0)〉 coincides with the tree-level free theory result (2.8). Using

eq. (3.19), at the fixed point we obtain

〈φ2
a(x, 0)〉 fix.pt.≡ Nd

xd−2aφ2 , (3.20)

aφ2 = π2εs2

2
√

6 (1 + 2π2εs2/11)

[
1 + ε1/2 1√

εs2 (1 + 2π2εs2/11)
+O (ε)

]
. (3.21)

Next we consider the spectrum of defect operators, and in particular the spin operator S.
Using the two-loop result in [2] and combining with (3.19) we can read the dimension of
the spin operator Sa:40

∆S = γ2
∗

4π2 [1 +O (ε)] = ε/2
1 + 2π2εs2/11

[
1− ε1/2 2π2

√
εs2

11 + 2π2εs2 +O (ε)
]
. (3.22)

From the beta-function we obtain the scaling dimension ∆S·φ of the perturbation Saφa:

γS·φ = ∆S·φ − 1 =
∂βγ2

∂γ2

∣∣∣∣
βγ2=0

= ε+O
(
ε2
)
. (3.23)

Finally we consider the g-function of the theory at the fixed point. We find that this is
given by the diagrammatic result (3.10) up to relative O(ε) corrections. At the fixed point
the result reads:

log gγ/g0
fix.pt.= − π2s2ε2

8 (1 + 2π2s2ε/11)

[
1 + ε1/2 1√

εs2 (1 + 2π2s2ε/11)
+O (ε)

]
. (3.24)

The result is negative for arbitrary values of εs2 in agreement with the attractive nature of
the fixed point. Away from the fixed points, the result (3.10) satisfies:

γ2∂ log gγ/g0
∂γ2 = s(s+ 1)

8 βγ2 , (3.25)

39This can be justified by a careful analysis of the implications of the structure (3.13) in the perturbative
regime, together with the observation that powers of s are always multiplied by a greater than equal power of γ.

40Incidentally, we notice that the extrapolation of eq. (3.22) to ε→ 1 and s = 1/2 gives ∆S ≈ 0.1÷ 0.3,
which is not too different from the result ∆S = 0.20(1) of Quantum Monte Carlo simulations [36].
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from which it is possible to check that the defect entropy obtained from eq. (3.10) obeys
the gradient formula (2.28).

3.5 Large spin impurity as a pinning field

3.5.1 An interpretation of the small ε results for large s

Above we have quoted several predictions, valid for small ε and large s. Here we would like
to give an alternative description of the large s limit. To motivative it consider (3.22) in
the large s limit: ∆S ∼ 1/s2. Therefore the spin operator on the defect becomes decoupled
at large s. This suggests that the large s theory might have a free sector.

We claim that at large s the defect (2.3) flows to the pinning field DCFT in which the
symmetry O(3) is explicitly broken to O(2) but in addition there is a decoupled QM with
2s+ 1 degrees of freedom which induces, at large s, an integral over the direction of the mag-
netic field inside SO(3) so that the full system at large s is still manifestly SO(3) invariant.

Therefore, the large s limit is identified with the DCFT that describes a localized
(pinning) magnetic field, averaged over the two sphere. The z variables do not fluctuate at
large s, which is why the dimension ∆S tends to zero in that limit. This picture receives
1/s corrections that we will later compute.

The advantage of this new description at very large s is that a lot is known about
the O(N) theories with a localized magnetic field [29]. (We will also briefly review it in
the next section.) In particular a lot is also known about the pinning field also away
from the ε expansion, allowing us to make rigorous predictions also in d = 3. For now,
however, we focus on matching some of the explicit calculations above at large s with the
previously-known results about the pinning field DCFT, finding remarkable agreement.

The mysterious
√

11 factor in (3.18) can now be simply understood. Since the z degrees
of freedom do not fluctuate at large s, γ∗s is simply the magnitude of the effective localized
magnetic field in the fixed point. The magnitude of the effective localized field was found
to leading order in [29] to be

√
N + 8 in the O(N) theory. Plugging N = 3 we see that

this nicely matches the
√

11 factor. As another example, the large s limit of (3.24) gives
log gγ/g0 → −11ε

16 , while for the localized magnetic field defect it was found in [29] that the
leading order result for log g is −8+N

16 ε, which again nicely matches our present result upon
plugging N = 3. Finally, for the one-point function (3.21) we obtain in the large s limit
aφ2 = 11

4
√

6 . The corresponding one-point function in the pinning field DCFT was computed
in [29] for small ε and exactly the same result was found.

The fact that the large s limit of the spin impurity is described by the pinning field
with an integration over the direction of the external magnetic field is correct not only at
the infrared DCFT — it extends to the RG flow, as the reader can verify.

3.5.2 Equivalence with the pinning field defect at large s

On the one hand, we have the large s limit of the spin impurity which, in the lattice system,
would describe an external atom with large spin interacting with the bulk in an SO(3)
invariant fashion. On the other hand, we have the SO(3) system with an external, localized
in space, magnetic field, explicitly breaking SO(3) to SO(2).
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These two systems are essentially claimed to be equivalent at s→∞, after properly
averaging over the direction of the external localized magnetic field inside SO(3). We have
demonstrated this equivalence close to four dimensions above.

In fact this equivalence extends to any d. Furthermore, at large finite s one can set
up a systematic perturbation theory around the pinning field DCFT and hence we have a
systematic 1/s expansion at hand in any d. The leading coupling between the two sectors is
through the tilt operator of the pinning DCFT which allows us to control the 1/s expansion.

The purpose of this section is to formalize the above statements and show some examples
of how the 1/s expansion around the pinning field DCFT can be performed. We will use
this correspondence to write down some explicit predictions about the large s limit of the
spin impurity in d = 3 as well as to discuss 1/s corrections in d = 3.41

Let us formally consider the path integral for an arbitrary observable O in the DQFT
that we obtain by coupling the O(3) critical model in arbitrary d ≤ 4 to the spin s impurity:

〈O〉 = Z−1
∫
z̄z=2
DφDzO exp

(
−SO(3) − s

∫
D
dτ z̄ż − γ0s

∫
D
dτ z̄

σa

2 zφa

)
, (3.26)

where as usual we work in the normalization z̄z = 2, Dφ e−SO(3) is a formal notation for
the measure of the (generically strongly coupled) path integral describing the O(3) critical
point and Z is the vacuum partition function.

We have argued that in the large s limit the fluctuations of the z variables are suppressed
and hence in the s� 1 limit we should expand around a constant profile for the quantum-
mechanical spinor:

z̄
σa

2 z = n̂a = const . (3.27)

We therefore recast the path integral (3.26) as:

〈O〉 = Z−1
∫
S2
d2n̂

∫
DφDχO exp

[
−SO(3) −

∫
D
dτχ̄χ̇− γ0s

∫
D
dτn̂aφa +O

( 1√
s

)]
,

(3.28)
where we separated the two-dimensional integral over the zero-mode rotating n̂ from the
path integral over the τ -dependent fluctuations defined similarly to eq. (2.44). In eq. (3.28)
we neglected a ∼ γ0

√
s coupling between φa and the fluctuation χ, as this is 1/

√
s suppressed

compared to the γ0sn̂
aφa term. Therefore (3.28) is a useful description at very large s.

Let us now imagine performing the path integral over φ and the fluctuations χ for a
fixed direction n̂. The variable χ is decoupled from the bulk field up to 1/

√
s corrections.

The path integral over φ coincides with the one obtained by perturbing the critical O(3)
model with a pinning magnetic field h = γ0s localized on a line. This is precisely the setup
which defines the pinning field DCFT studied in [29]. Let us briefly review this construction.

Consider for a moment a general Wilson-Fisher O(N) fixed point. We can consider
perturbing it with a magnetic field h localized on a line as:

δS = h

∫
D
dτ n̂aφa . (3.29)

41As in the rest of this paper, our analysis will concern only with the DCFT at zero temperature; in the
future it would be interesting to study with this method also thermal susceptibilities, for which results from
Quantum Monte Carlo simulations are available [36, 37].
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The coupling h breaks O(N)→ O(N − 1) explicitly and constitutes a relevant perturbation
of the trivial line defect. The g-theorem implies that the RG flow results in a stable
nontrivial DCFT in the IR; we will call such a DCFT the pinning field DCFT in the
following. The pinning field DCFT is obviously strongly coupled in d = 3, but it admits a
perturbative description in the ε expansion or in the large N -limit, for which several results
were obtained in [29] (see also [46]). Additionally, a few Monte Carlo results for N = 1 and
N = 3 were obtained in [28] (see also [45]).

We conclude that, neglecting 1/s corrections, the φ path integral in the IR coincides
with that of the O(3) pinning field DCFT. We therefore obtain

〈O〉IR = Z−1
IR

∫
S2
d2n̂

∫
DφDχO exp

[
−Spinning(n̂)−

∫
D
dτχ̄χ̇+O

( 1√
s

)]
, (3.30)

where Dφ e−Spinning(n̂) is a formal notation for the path integral measure associated with the
pinning field DCFT, which is obtained perturbing the O(3) Wilson-Fisher critical point with
a localized magnetic field in the direction n̂. The observable 〈O〉IR is therefore computed in
a product of the free theory of the fluctuations χ and the pinning field DCFT.

We will discuss the 1/
√
s corrections in the next subsection. Finally, the zero-mode

integral in eq. (3.30) restores the SO(3) symmetry by averaging over the direction of the
symmetry breaking field hn̂. Notice that the partition function ZIR has a similar expression,
and thus for s� 1 it factorizes as follows:

ZIR = 4π ×Zpinning ×Zχ ×
[
1 +O

(1
s

)]
, (3.31)

where the factor 4π =
∫
d2n̂ arises from the zero-mode integral, and the remaining terms

are associated with the two decoupled path integrals.
The relation (3.30) between the pinning field DCFT and the s → ∞ limit of the

impurity is one of our main results, as it provides access to the large s limit of the spin
impurity and also, as we will see, allows to consider 1/s corrections systematically.42 In the
following we will illustrate some implications by discussing specific observables.

The simplest observables to be discussed are bulk one-point functions. In the pinning
field DCFT, one finds the following results for the normalized one-point functions of φa
and φ2

a:43

〈φa(x, 0)〉pin√
〈φ1(∞)φ1(0)〉O(3)

= n̂a
a
(pin)
φ

|x|∆φ
,

〈φ2
a(x, 0)〉pin√

〈φ2
a(∞)φ2

b(0)〉O(3)
=

a
(pin)
φ2

|x|∆φ2
,

(3.32)

where ∆φ and ∆φ2 are the corresponding bulk scaling dimensions (see e.g. [30–32]), the
subscript 〈. . .〉pin denotes pinning field correlators and we normalized by the two-point
functions in the absence of a defect, distinguished by the subscript 〈. . .〉O(3). The coefficients

42In fact, as eq. (3.28) shows, the relation holds also for the DQFTs away from the fixed points.
43We use the notation 〈O(∞)O(0)〉 = limx→∞ x2∆O 〈O(x)O(0)〉 where ∆O is the scaling dimension of O.
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a
(pin)
φ and a(pin)φ2 were computed in [29] in the ε expansion (to one-loop order) and in the

large N limit.
To relate (3.32) with one-point functions in the presence of a spin s� 1 impurity all

we have to do is to integrate over the zero-mode. Clearly this simply projects one-point
functions onto the singlet sector and thus we find:

〈φa(x, 0)〉√
〈φ1(∞)φ1(0)〉O(3)

= 0 ,

〈φ2
a(x, 0)〉√

〈φ2
a(∞)φ2

b(0)〉O(3)
=

a
(pin)
φ2

|x|∆φ2

[
1 +O

(1
s

)]
.

(3.33)

We have already checked in the previous section that this method agrees with explicit
computations in the large s limit of the spin impurity near four dimensions, as both
approaches give aφ2 = 11

4
√

6 . For d = 3 there is not yet a prediction for a(pin)φ2 of the pinning
field DCFT that is entirely reliable, however, even in the absence of such a prediction, our
methods show that the two quantities should agree between an impurity at large spin and
an localized magnetic field in the infrared.

The lowest dimensional operator (other than the unit operator) of the pinning field
DCFT is the tilt operator t̂â, where the index â runs over the components orthogonal to n̂.
The tilt is thus an O(2) vector and its dimension is protected to be 1 nonperturbatively in
the pinning field DCFT. This predicts that at large s the spin impurity DCFT must have
an SO(3) vector defect operator that we denote φ̂a, whose scaling dimension is therefore
marginal to leading order in s:

∆φ̂a
= 1 +O

(1
s

)
. (3.34)

The existence of a marginal operator is a highly non-generic fact for the spin impurity
DCFT and therefore constitutes a very nontrivial prediction of our approach!

In fact, one can construct several marginal composites made out of φ̂a and S, since
they are decoupled at leading order in the 1/s expansion and S has scaling dimension 0 at
leading order.

We will now analyze these composites and their quantum numbers. First let us construct
the SO(3) vector φ̂a from the tilt operator t̂â of the pinning field DCFT. The procedure
is completely analogous to the one used in the pion Lagrangian to construct operators
transforming in a SUL(Nf )×SUR(Nf ) representation out of operators linearly transforming
in a representation of the diagonal subgroup [99]. We discuss it below for completeness.

It is convenient to define a SO(3) matrix Ω̃−1
n which aligns the saddle-point in the

direction “1”:
(Ω̃−1

n )abn̂b = δa1 . (3.35)

Using this matrix we can now parametrize the space dependent fluctuations χ and χ̄

precisely as in eqs. (2.43) and (2.44) of section 2.3.2. For our purposes, it is convenient to
do this as follows

z̄
σa

2 z = (Ω̃n)ab(Ωχ,χ̄)bcδc1 = (Ωfull)abn̂b , (3.36)
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where we defined two other matrices as

Ωχ,χ̄ = e−iδφQ3e−iδθQ2 , Ωfull = Ω̃nΩχ,χ̄Ω̃−1
n ; (3.37)

the relation between δθ, δφ and χ, χ̄ is as in eq. (2.44), and (Qa)bc = −iεabc are the SO(3)
matrices in the fundamental representation.

It is now straightforward to use the SO(3)/SO(2) coset in eq. (3.37) to construct a
vector out of the pinning field tilt operator t̂â. This is simply done as:

φ̂ = Ωfull · t̂ = Ω̃n · Ωχ,χ̄ ·

 0
t̂2
t̂3

 = Ω̃n ·


t̂3
χ+χ̄√

2s + it̂2
χ−χ̄√

2s +O
(

1
s3/2

)
t̂2 +O

(
1
s

)
t̂3 +O

(
1
s

)
 , (3.38)

where we defined in obvious notation 0
t̂2
t̂3

 ≡ Ω̃−1
n · t̂ . (3.39)

A similar analysis allows to reconstruct operators in the 2n′ + 1 dimensional SO(3) rep-
resentation out of pinning field operators with charge n under O(2) as long as n′ ≥ |n|.
Notice also that the operator (3.38) so defined is orthogonal to the impurity spin, S · φ̂ = 0,
and therefore we cannot build O(3) singlets by considering composites of S and φ̂. In the
large s limit there is therefore no marginal singlet of SO(3) but there is a marginal vector
of SO(3) (and in fact there is a marginal operator of any positive integer spin), as we said.

It was argued in [29] that the lowest dimensional neutral defect operator (besides
the identity) in the pinning field DCFT is irrelevant and it is identified with the infrared
version of the perturbation φ̂n ≡ n̂aφa|x=0 on the defect. On the impurity side of our
correspondence, this operator is naturally identified with the infrared version of the operator
coupling the impurity spin with the bulk order parameter, (S ·φ) ≡ Saφa ' sn̂aφa+O (

√
s).

From the results of [29] we conclude that its scaling dimension reads:44

∆S·φ̂ = ∆φn

∣∣
pin +O

(1
s

)
, ∆φ̂n

∣∣
pin =

1 + ε+O
(
ε2) ε = 4− d� 1 ,

∼ 1.55 d = 3 .
(3.40)

Again, we happily find that the epsilon expansion result from the pinning field DCFT
in eq. (3.40) matches the independent calculation of the previous section, whose result
in eq. (3.23) does not depend on s to one-loop order. In d = 3, eq. (3.40) makes a
concrete prediction for the scaling dimension of the leading irrelevant (symmetry preserving)
perturbation of the spin impurity DCFT for s� 1. This concludes our discussion of the
defect operator spectrum to leading order.

44The result for d = 3 was obtained in [29] interpolating between a two-loop epsilon expansion calculation
and the two-dimensional exact value; it is in agreement with the large N prediction and the Monte Carlo
estimate of [28].
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Finally, we comment that the equivalence (3.30) implies that the g-function of the defect
is given by the product of the pinning field g-function and that of a decoupled spin s impurity:

g = gpin g0

[
1 +O

(1
s

)]
, (3.41)

where g0 = 2s + 1. Since the pinning field g function satisfies gpin < 1, we see that
g < 2s+ 1 and is hence consistent with the g theorem. Further, in the previous subsection
we checked (3.41) near four dimensions.45

3.5.3 Subleading corrections

The 1/s corrections to the factorized ansatz (3.30) are quite interesting. As we show below,
their form is fixed by the requirement that the path integral is SO(3) invariant. The
interesting problem is to write down the couplings that restore the SO(3) invariance of the
fixed point using the pinning field infrared DCFT operators. Our analysis will be analogous
to and inspired by that in [125]. In what follows, we assume for simplicity that all bulk and
defect operators of the pinning field DCFT have canonically normalized two-point functions.

Working at leading order in the fields, the most general form of the interaction term
involves a linear coupling between the angular fluctuations δθ, δφ ∼ O(1/

√
s) and the

pinning field tilt operator. In the notation (3.39) this reads:

Sint = −κ
∫
D
dτ(t̂2δφ− t̂3δθ) + δS + . . . , (3.44)

where the structure of the coupling is fixed by SO(2) invariance, δS consist of counterterms
that are adjusted to ensure SO(3) invariance order by order in 1/s and we neglected
additional interactions that will not play a role in what follows, including those arising from
the expansion of the kinetic term z̄ż and nonlinear couplings between the tilt operator and
the angular fluctuations. Because the tilt operator has dimension 1, the coupling (3.44) is
dimensionless.

We now want to argue that the coupling κ is fixed by SO(3) invariance. To this aim,
we momentarily consider the pinning field theory that we obtain by freezing n̂a = δa1 . In
this theory we have:

〈φ1(x, 0)〉 =
a
(pin)
φ

|x|∆φ
, 〈φ2(x, 0)〉 = 〈φ3(x, 0)〉 = 0 . (3.45)

45One can similarly extend the discussion to correlation functions, matching large s correlators of the spin
impurity and the pinning field correlation functions. Consider for concreteness the two-point function of
the bulk order parameter φa. In the pinning field DCFT it is convenient to decompose it in parallel and
orthogonal components to the magnetic field hn̂:

φa
pinning= n̂aφn + φ⊥a . (3.42)

We then obtain for the two-point function of φa in the SO(3) invariant impurity case:

〈φa(x)φb(0)〉 = δab
3
[
〈φn(x)φn(0)〉pin + 〈φ⊥c (x)φ⊥c (0)〉pin

]
+O

(1
s

)
. (3.43)
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If we rotate n̂ by an infinitesimal angle α in the direction “2”, we should find:

〈φ2(x, 0)〉 ' α
a
(pin)
φ

|x|∆φ
. (3.46)

At the same time, an infinitesimal rotation of the unit vector n̂ can be understood as
originating from an infinitesimal perturbation proportional to the tilt operator. Since for
constant angular fluctuations the impurity action coincides with the pinning field one, the
coefficient of this perturbation coincides with the coupling in eq. (3.44). Therefore, setting
δθ = 0 and δφ = α in eq. (3.44) we conclude that we can express the one-point function of
φ2 as:

〈φ2(x, 0)〉 ' ακ
∫
D
dτ〈φ2(x, 0)t̂2(τ)〉 = ακ

∫
D
dτ
bφt̂|x|1−∆φ

(x2 + τ2)

= α
πκ bφt̂

|x|∆φ
.

(3.47)

In eq. (3.47) we used that the scaling dimension of the tilt operator is 1 and that the
bulk-to-defect two-point function of φ and the tilt is completely fixed in terms of a single
OPE coefficients b(pin)

φt̂
[126, 127], defined as:

φâ(x, 0) ∼
b
(pin)
φt̂

|x|∆φ−1 t̂â(0) + · · · (3.48)

By comparing eqs. (3.46) and (3.47) we conclude:

κ =
a
(pin)
φ

πb
(pin)
φt̂

. (3.49)

We have therefore expressed κ in terms the pinning field DCFT data, a(pin)φ and b(pin)
φt̂

.
We can now use the result (3.49) to compute the leading nontrivial correction to the

scaling dimension of the impurity spin operator in terms of the DCFT coefficients a(pin)φ

and b(pin)
φt̂

. To this aim, we notice that the free propagator for the fluctuations χ reads:

Gχ(τ) = 〈χ(τ)χ̄(0)〉s→∞ = 1
2sgn(τ) + const , (3.50)

where the constant term drops from all physical observables (its value depends on the
boundary conditions, which are not important for what follows). Using eq. (3.50), we
immediately find that:

〈Sa(τ)Sa(0)〉 = s2 + s〈χ̄(τ)χ(0) + χ̄(0)χ(τ)− χ̄(τ)χ(τ)− χ̄(0)χ(0)〉s→∞ +O
(
s0
)

= s(s+ 1) +O
(
s0
)
, (3.51)

where we remind that, as explained below eq. (2.4), the equal time product is regulated
by a point-splitting procedure χ̄(τ)χ(τ) = limη→0+ χ̄(τ + η)χ(τ). To obtain the anomalous
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dimension of the operator Sa we need to compute the logarithmic O(s0 log |τ |) corrections
to eq. (3.51). These arise upon lowering twice the interaction term between the tilt and the
angular fluctuations (3.44), which in terms of χ reads:46

Sint ⊃ −
κ√
2s

∫
D
dτ
[
χ(t̂3 + it̂2) + χ̄(t̂3 − it̂2)

]
. (3.52)

Using that 〈t̂â(τ)t̂b̂(0)〉 = δâb̂/τ
2, the logarithmic correction arises from47

δ〈Sa(τ)Sa(0)〉 = κ2
∫
D
dτ1

∫
D
dτ2

Gχ(τ − τ1)Gχ(τ2) +Gχ(−τ1)Gχ(τ2 − τ)
(τ1 − τ2)2 + . . .

∼ −2κ2 log(|τ |Λ) , (3.53)

where Λ is a cutoff scale and we neglected all τ -independent contributions. Using eq. (3.53)
we can write:

〈Sa(τ)Sa(0)〉 = s(s+ 1)− 2κ2 log(|τ |Λ) +O
(
s0|τ |0

)
≈ s(s+ 1)
|τ |2κ2/s2

. (3.54)

Therefore, using (3.49), we finally obtain the result:

∆S '
κ2

s2 = 1
s2

 a
(pin)
φ

πb
(pin)
φt̂

2

. (3.55)

This prediction for the dimension of the spin field can be explicitly tested in the epsilon
expansion. To this aim, we use that at leading order in the epsilon expansion the tilt
and the fundamental field coincide in the pinning field DCFT, and thus bφt̂ = 1. Using
a
(pin)
φ =

√
11
4 +O(ε) which was derived in [29], we find:

∆S ≈
11

4π2s2 . (3.56)

Eq. (3.56) exactly agrees with the large εs2 limit of the anomalous dimension explicitly
computed in eq. (3.22). This provides a very nontrivial check of our methodology.

By using eq. (3.49) in eq. (3.44) we can in principle compute (or parameterize) 1/s
corrections to other observables as well. In practice, this is generically hard to do without
more data about the pinning field DCFT, since, for instance, corrections to bulk one- and
two-point functions are proportional to integrals of three- and four-point bulk to defect
correlation functions, whose form is not fully constrained by symmetry and about which we
generically know little at the moment.

46The 1/s interaction terms arising from the expansion of the kinetic term exist also for a free decoupled
impurity and thus cannot change the result (3.51); the counterterms in δS are needed instead only to
compute the τ -independent term.

47A simple way to isolate the logarithmic contribution that we are interested in is to compute
∂2

∂τ∂τ ′ 〈S
a(τ)Sa(τ ′)〉 for τ 6= τ ′ and then integrate the result twice. To order O(s0), only the terms

explicitly shown in the first line of eq. (3.53) yield a nontrivial contribution to the derivative (where for
arbitrary τ ′ 6= 0 we should change Gχ(τ2) → Gχ(τ2 − τ ′) and Gχ(−τ1) → Gχ(τ ′ − τ1)). The result then
follows immediately using eq. (3.50).
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4 Wilson lines in large representations

In the previous section we demonstrated that impurities in the large spin limit can be
studied in a semiclassical expansion in inverse powers of s. It is therefore natural to wonder
if similar results hold for other line defects. A natural setup is provided by Wilson and ’t
Hooft lines in four-dimensional conformal gauge theories, in the limit in which the size s of
the labelling representation becomes large.48

In this section we briefly compare our previous findings with exact localization results
for 1/2-BPS Wilson lines at large s in rank-1 Lagrangian SCFTs. We show that the large s
expansion for protected observables coincides the derivative expansion for the theory on the
Coulomb branch. This will lead us to conjecture universal formulas for non Lagrangian
theories as well.

As a reminder, in Lagrangian theories, the 1/2-BPS loops take a form similar to
standard Wilson loops except that we must also include the real part of the vector multiplet
scalar [72]:

DBPS
s = Tr2s+1

[
P exp

(∫
C
dt(iẋµAµ + |ẋ|Φ)

)]
. (4.1)

There is a SUSY-breaking generalization of these line operators where the coefficient of the
vector multiplet scalar is arbitrary but we will not discuss it here.49 1/2-BPS lines exist
also for non-Lagrangian theories, in which case superconformal defects are roughly labeled
by the electric and magnetic charges of their IR representation in the Coulomb branch of
the theory [75, 77, 81].

4.1 Exact results from localizations

In this section we focus on two specific Lagrangian examples of SU(2) superconformal gauge
theories: N = 4 SYM and N = 2 SQCD with Nf = 4 Hypermultiplets in the fundamental
representation. In these theories localization provides exact expressions for the g-function
and the hD coefficient of the stress tensor one-point function in terms of a one-dimensional
integral. We will evaluate these integrals in the double-scaling limit for weak coupling
g2
YM and large representation s with fixed g2

YMs.50 We will also briefly discuss the large
representation limit s→∞ with fixed arbitrary values of the coupling g2

YM.
Let us study first the defect partition function on the equator of the four-sphere. This

can be written in terms of a one-dimensional integral as [74, 138]:

g =
∫
R da(2a2)e

− 16π2
g2

YM
R2a2

Z(aR)∑s
q=−s e

4πRqa

∫
R da(2a2)e

− 16π2
g2

YM
R2a2

Z(aR)
, (4.2)

48Previously, Wilson lines in large representations were studied within holography, see e.g. [128, 129].
49We note that we do not obtain a conformal line for arbitrary values of this coefficients. An interesting

defect RG flow related to this coefficient in N = 4 SYM was the subject of some previous studies [130] (see
also [109, 131, 132]).

50An analogous double-scaling limit was explored for large R-charge correlators within localization
in [133–137], where it was also shown to be associated with a dual matrix model description.

– 44 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
2

where R is the sphere radius and Z(aR) represents the contribution from the fluctuations
determinant. The denominator is the sphere partition function with no Wilson loop insertion.
In the first line, the Wilson loop is represented as a sum over all eigenvalues q of the Cartan
generator in the 2s + 1-dimensional representation. In N = 4 we have Z = 1, while in
N = 2 with Nf = 4 we can write Z as the product of the one-loop contribution and the
instanton partition function: Z = Z1-loopZinst. In the following we will need the explicit
expression for the one-loop part:

Z
(N=2)
1-loop (aR) = H(2iaR)H(−2iaR)

|H(iaR)H(−iaR)|4
, H(x) = e(1+γE)x2

G(1 + x)G(1− x) , (4.3)

where γE is the Euler constant and G is the Barnes G-function. For details about the
instanton contribution see [139–141]; instantons are exponentially suppressed in the limit of
s→∞ with fixed g2

YMs and therefore we will neglect them in what follows. It is further
convenient to rescale a→ a/R, so that the dependence on R drops explicitly, and perform
the sum in eq. (4.2) in order to write the localization integral as:

g =

∫
R da(2a2) exp

[
−16π2

g2
YM

a2 + (2s+ 1)2aπ
]
Z(a)/ sinh(2aπ)

∫
R da(2a2)e

− 16π2
g2

YM
a2

Z(a)
. (4.4)

Physically, the integration variable a in eq. (4.4) is associated with the value of the bottom
component of the vector multiplet in the theory deformed by a Q-exact term [74]. We
will show below that the integral is peaked around large values of a for s � 1. This is
reminiscent of the saddle-point analysis that we discussed in section 2.3 for the impurity in
free theory.

In the double-scaling limit s→∞ with fixed g2
YMs we can compute the first integral in

eq. (4.4) by expanding around the saddle-point obtained via extremizing the exponent:

asaddle = g2
YM(2s+ 1)

16π . (4.5)

The partition function in the denominator is obtained by expanding Z(a) around a = 0.
Accounting for the measure, the general structure of the result is:

log g = 1
g2
YM

f−1
(
g2
YMs

)
− log g2

YM + f0
(
g2
YMs

)
+O

(
g2
YM

)
, (4.6)

where the − log g2
YM term arises since the numerator and the denominator in eq. (4.4) are

expanded around different saddle-points. We are interested in the regime g2
YMs� (4π)2,

where asaddle � 1 as anticipated.
For N = 4 SYM we find the following result:

f−1
(
g2
YMs

)
|N=4 = (g2

YMs)2

4 , (4.7)

f0
(
g2
YMs

)
|N=4 = 2 log

(
g2
YMs

)
+ e−g

2
YMs/2 +O

(
e−g

2
YMs

)
. (4.8)

– 45 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
2

Interestingly, we see that the g-function of the Wilson line grows exponentially with s. We
will see later that the structure of 1/s corrections can be nicely understood in terms of the
derivative expansion for the theory in the Coulomb branch, where the coefficient of the
term log

(
g2
YMs

)
is associated with the Wess-Zumino term.

Similarly, in N = 2 SQCD with Nf = 4 we find:

f−1
(
g2
YMs

)
|N=2 = (g2

YMs)2

4 , (4.9)

f0
(
g2
YMs

)
|N=2 = −g

4
YMs

2 log 2
8π2 + 3 log

(
g2
YMs

)
+O

(
(g2

YMs)0
)
. (4.10)

The leading order results (4.7) and (4.9) in the double-scaling limit are the same for
both theories. For N = 2 SCQD with Nf = 4 however the one-loop contribution (4.10)
also corrects the ∼ s2 term, differently from eq. (4.8). Notice that the coefficient of the
log

(
g2
YMs

)
term in f0 is different between the two examples. The expansion in eq. (4.10)

also contains exponentially suppressed terms, but we did not display them explicitly.
We now comment on the results in the large s limit with fixed coupling g2

YM. In this
limit it is useful to use the representation (4.2) of the integral. To perform the calculation we
retain only the weights q = −s and q = s in the sum, since all the other give an exponentially
small contribution in this limit. In N = 4 SYM the integrals can be performed exactly and
one finds:

log g|N=4
s→∞= g2

YMs
2

4 + log
(
g2
YMs

2

2 + 1
)

+ log 2 +O
(
e−

1
2g

2
YMs

)
. (4.11)

To perform the same calculation in this limit in the N = 2 with Nf = 4 theory in
principle we should retain the full instanton contribution in Z(a). However, most of this
can be avoided by the following observation: we can organize the full integrand besides the
Wilson loop term in (4.2) according to the genus expansion as

eF−1a2R2+F0 log(aR)+F1
1

a2R2 +... . (4.12)

The large Ra expansion is tantamount to the standard expansion at small ε1 = ε2, which
is analogous to the genus expansion of topological string theory, see for instance [142].
If we now insert the highest weight contribution from the Wilson line, e4πsRa, then the
saddle-point occurs for aR ∼ s and hence the genus expansion becomes the 1/s expansion.

The instantons are needed to determine the Fi. But for large s we only need F−1 and
F0. The latter however does not receive instanton corrections due its relation with the
conformal anomalies. Hence all the instantons would do in the large s limit is to dictate the
exact expression for the coefficient of the s2 term. Denoting the latter by gCB, we therefore
find in the large s limit with fixed gYM:

log g = g2
CBs

2

4 + 3 log s+O
(
s0
)
. (4.13)

In general g2
CB = g2

CB(g2
YM) is a complicated function that receives contributions from instan-

tons, but it is easy to determine it to all orders in perturbation theory: g2
CB = g2

YM

1+
g2

YM
2π2 log 2

.
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Therefore, the expansion of (4.13) for small gYM agrees with the double-scaling limit
results (4.9) and (4.10).

Let us now focus on the coefficient hD of the one-point function of the stress-tensor.
We define it according to the conventions of [78]:

〈T00(x)〉R4 = hD
r4 . (4.14)

In supersymmetric theories hD is related to the Bremsstrahlung function parametrizing the
energy radiated by the line and it has been computed in various examples [76, 79, 80, 84, 85].
In localization this is given by the derivative with respect to the squashing parameter b of
the ellipsoid partition function gb [80, 84]:

hD = 1
12π2

∂ log gb
∂b

∣∣∣
b=1

, (4.15)

for b close to one gb is obtained from eq. (4.2) by replacing q → qb:

gb =
∫
R da(2a2)e

− 16π2
g2

YM
R2a2

Z(aR)∑s
q=−s e

4πRqba

∫
R da(2a2)e

− 16π2
g2

YM
R2a2

Z(aR)
+O

(
(1− b)2

)
. (4.16)

We may evaluate this integral in the s→∞ limit with fixed g2
YMs. Dropping exponentially

small corrections, we retain only the terms with q = −s and q = s in eq. (4.16). One can
therefore trade derivatives with respect to b for derivatives with respect to s in eq. (4.15) in
this limit. We thus obtain the relation:

hD '
s

12π2
∂ log g
∂s

. (4.17)

Exactly the same argument allows to conclude that eq. (4.17) holds up to exponentially
small corrections in the limit s→∞ with g2

YM = fixed. The relation (4.17) thus holds for
the Lagrangian N = 2 rank-1 SCFTs up to theory-dependent exponentially small corrections
in the large s limit.

4.2 Coulomb branch interpretation

We previously observed that for large s the localization integrals are peaked around large
values of a ∼ s. Since a represents the bottom component of the vector multiplet, we expect
that we should be able to reproduce the previous results by studying the Wilson loop using
the effective theory on the Coulomb branch. In this section we show explicitly that this is
indeed case.

Coulomb branch action. Let us first review the Coulomb branch EFT. To leading
order in derivatives the action consists of the free action for a single N = 2 vector multiplet
plus, in some cases (as in N = 4 SYM), some free decoupled Hypermultiplets:

L/√g = 1
g2
CB

(
∂µφ

†∂µφ+ 1
6Rφ

†φ+ 1
4F

2
)

+ fermions + Hypers , (4.18)
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where R is the Ricci scalar. The free action of the vector multiplet in particular depends
on a unique Wilson coefficient gCB.

Higher derivative corrections are suppressed by inverse powers of φ†φ and naively
start at order O

(
|φ|0

)
(see e.g. [143] for examples). However, there is an exception to this

expectation: the (supersymmetric) Wess-Zumino term. Its presence is required to match the
UV conformal anomaly in the EFT [144, 145] and scales as O (log |φ|). Its supersymmetric
form on the Coulomb branch of N = 2 theories can be found in [146–148] (see also [149] for
the explicit integration over superspace). Here we will only need the leading term, whose
form is:

LWZ ⊃ −∆aE4 log
(
φ†φ

)
, (4.19)

where E4 is the Euler invariant, normalized so that
∫
S4 E4 = 2. The contribution from the

c-anomaly is proportional to W 2, the square of the Weyl tensor, but we will work only
on conformally flat manifolds, for which W 2 = 0, so we do not discuss it further. The
coefficient ∆a = aUV − aIR represents the difference in the conformal a-anomalies between
the SCFT and the Coulomb branch contribution, in units such that an Abelian free vector
multiplet contributes with aVM = 5

24 and a free Hypermultiplet with aHM = 1
24 . We will

not need additional subleading EFT terms for what follows.
Finally, the 1/2-BPS Wilson loop in the Coulomb branch is represented as follows [72]:51

DBPS
s −→ exp

[
is

∫
C
dτ

(
ẋµAµ−i

φ+φ∗√
2

)]
+exp

[
−is

∫
C
dτ

(
ẋµAµ−i

φ+φ∗√
2

)]
, (4.20)

where we omit for simplicity the possibility that there are nontrivial integer multiplicities
for some of the lines (adding multiplicities is straightforward, of course). The relative sign
in front of the scalar terms in (4.20) is fixed by supersymmetry.

Results. We can now use equations (4.18) and (4.20) to reproduce the results of the
previous subsection for the g-function and the stress tensor one-point function. To this aim,
we expand the gauge field and the scalar around the saddle-point profile. In flat space, the
scalar profile reads

φ = ± 1√
2
g2
CBs

4π2

∫
C
dσ

1
[x− x(σ)]2

, (4.21)

where the two signs refer to the two different simple components in eq. (4.20) and we left
the line contour unspecified. As before, a Weyl rescaling allows to obtain the profile on
other manifolds of interest. Notice that φ ∼ s, analogously to the localization result (4.5).
We saw that, at least for protected observables, this implies that the derivative expansion
on the Coulomb branch coincides with the 1/s2 expansion.

We can use the classical solution as we did before to evaluate the expectation value
of the circular loop (i.e. the g function). It turns out that the scalar contributes only to a

51More formally, the loop is represented through the sum of its components on the Coulomb branch [75].
Those with maximal electric charge (in the duality frame in which the magnetic one is zero) provide the
leading contribution, while the other simple line contributions are exponentially suppressed in s; these are
negligible in the EFT. Therefore in the appropriate duality frame the loop generically reduces to a sum of
two electric lines as in eq. (4.20).
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perimeter divergence without affecting the defect entropy. The leading order contribution
to the defect entropy arises from the gauge field and is given by52

log g = s2g2
CB

4 +O (log s) . (4.23)

The leading correction arises from the Wess-Zumino term (4.19) and it is of order
O (log s). To evaluate it, it is convenient to consider the theory on the sphere. The results
is obtained by integrating eq. (4.19) with φ evaluated on the saddle-point profile (4.21); in
practice we only need that φ scales as g2

CBs since we neglect O
(
s0) contributions and the

field appears as the argument of a logarithm. In conclusion, we find the following result for
the g-function53

log g = g2
CBs

2

4 + 4∆a log
(
g2
CBs

)
+O

(
s0
)
. (4.24)

A table with the values of ∆a for all rank-1 N = 2 theories can be found in [149].
We can compare (4.24) with the previous localization results. Using the known value

∆a = 1/2 for N = 4 [149], we see that (4.24) agrees with the double-scaling limit result (4.7)
and (4.8), as well as with the result (4.13) for fixed g2

YM and large s, with the identification
gYM = gCB (as expected since the gauge coupling does not receive corrections in this case).54
Similarly, using that ∆a = 3/4 for N = 2 with Nf = 4 [149], we find that eq. (4.24) agrees
with the previous results (4.9), (4.10) and (4.13).

We now compute the coefficient hD of the one-point function. At leading order in s,
this is just given by the sum of the results for a free gauge field and a free real scalar. To
leading order in s we find

hD = hgaugeD + hscalarD = s2g2
CB

32π2 + s2g2
CB

96π2 = s2g2
CB

24π2 . (4.25)

We can rewrite this formula in terms of a derivative of the partition function (4.24)

hD '
s

12π2
∂ log g
∂s

. (4.26)

This is in perfect agreement with eq. (4.17).
52Let us review the g function in Abelian gauge theory. The saddle-point solution in Feynman gauge

reads:
Aν± = ±i g

2
CBs

4π2

∫
C
dσ

ẋν(σ)
[x− x(σ)]2

, (4.22)

where the + (−) refers to the solution sourced by the first (second) simple line in eq. (4.20). The profile (4.22)
can be translated to S4 or AdS2 × S2 by a Weyl rescaling. In particular, the solution (4.22) can be used to
compute the defect partition function by evaluating the DCFT action, e.g. in flat space or on S4, with the
defect placed on a great circle. Subtracting a perimeter divergent term, the result for the universal part is
quoted in the text, see for instance [110].

53The one-loop contribution to the partition function of the theory coincides with the partition function
of a relativistic free theory; its UV divergent part is associated with the Weyl anomaly aIR [150] and its
finite part contributes to (4.24) at order O

(
s0).

54The exponentially small correction in eq. (4.8) instead are interpreted as the worldline action associated
with the propagation of a massive BPS particle — see e.g. [136, 151–153] for discussions of similar contributions
in a related context.
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Comments. We have seen that for protected observables the derivative expansion on the
Coulomb branch coincides with the 1/s expansion.55 It is therefore natural to conjecture
that the results (4.23) and (4.26) hold for supersymmetric lines with large gauge charge in
arbitrary non-Lagrangian rank-1 SCFTs.

We have not discussed non-protected observables and we have not discussed Wilson
lines in non-supersymmetric theories. A crucial point to understand is the effect of the large
Coulomb electric field, which is expected to create an instability related to the Schwinger
effect [162, 163].56 We plan to come back to this issue in the future.
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A Details of the diagrammatic calculations in free theory

A.1 One-loop contribution to the one-point function

The one-loop contribution (2.9) to the one-point function 〈φ2
a(x, 0)〉 in the presence of the

defect is proportional to the following integral:

I1 =
∫

τ1>τ2>τ2>τ4

d[τ ]G (x− x(τ1))G (x(τ2)− x(τ4))G (x− x(τ3))

= 1
[(2− ε)Ω3−ε]3

∫
τ1>τ2>τ2>τ4

d[τ ] 1(
x2 + τ2

1
) 2−ε

2
(
x2 + τ2

3
) 2−ε

2 |τ2 − τ4|2−ε
.

(A.1)

It is convenient to evaluate first the integrals over τ2 and τ4. This leads to

I1 = 1/2
ε(1− ε) [(2− ε)Ω3−ε]3

∫∫
dτ1dτ3

|τ1 − τ3|ε(
x2 + τ2

1
) 2−ε

2
(
x2 + τ2

3
) 2−ε

2
, (A.2)

where we used the symmetry of the integrand under exchanges of τ1 and τ3 to extend the
integration over the full real axis for both variables. Notice that, while the prefactor of
eq. (A.2) diverges for ε→ 0, the remaining integral is convergent. We may therefore evaluate

55This is quite similar to recent results for correlation functions of large R-charge operators in SCFTs [149,
151–155], which are obtained using EFT techniques analogous to the one described in this section. Relatedly,
monopole operators in 3d gauge theories, which are roughly analogous to ’t Hooft lines in 4d gauge theories
(see e.g. [156–159]), were also argued to admit a universal EFT description at large charge [160, 161].

56We thank O. Aharony, S. Bolognesi and E. Rabinovici for discussions on this. The Schwinger effect was
studied in holographic CFTs too [164, 165].
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I1 expanding the integrand to first order in ε. To this aim we rescale (τ1, τ2)→ |x|(τ1, τ2)
and use the following results:∫

dτ
1

1 + τ2 = π ,

∫
dτ

log
(
1 + τ2)

1 + τ2 = 2π log 2 , (A.3)∫∫
dτ1dτ2

log |τ1 − τ2|(
1 + τ2

1
) (

1 + τ2
2
) = π2 log 2 . (A.4)

Eventually, we arrive at

I1 = − 1
128 (π4x2) ε −

log
(
64π3x6)+ 3γE + 2

256π4x2 +O (ε) , (A.5)

where γE is the Euler constant.

A.2 Two-loop contribution to gγ for the bulk free theory

The two-loop contribution to the g-function studied in section 2.2.2 is proportional to the
following integral, see eq. (2.22):

I
(4−ε)
2 =

∫ 2π

0
dφ1

∫ φ1

0
dφ2

∫ φ2

0
dφ3

∫ φ3

0
dφ4

1(
16 sin2 φ13

2 sin2 φ24
2

) 2−ε
2
. (A.6)

We can evaluate it following the strategy outlined in the appendix B.2 of [109]. This consists
in expanding the denominator using the following Fourier representation

1[
4 sin2

(
φ
2

)] 2−ε
2

= 1
2πc0(ε) + 1

π

∞∑
n=1

cn(ε) cos(nφ) , (A.7)

where we defined for n ∈ N:

cn(ε) =
∫ 2π

0
dφ

cos(nφ)[
4 sin2 φ

2

] 2−ε
2

= 2 cos(πn)Γ(ε− 1)
Γ
(
ε
2 − n

)
Γ
(
n+ ε

2
) = −|n|π +O (ε) . (A.8)

One then evaluates the integrals over the Fourier components using the following identity:

∫ 2π

0
dφ1

∫ φ1

0
dφ2

∫ φ2

0
dφ3

∫ φ3

0
dφ4 cos(nφ13)cos(mφ24) =



0 if m 6=n> 0 ,

π2

m
if m=n> 0 ,

−2π2

m2 if n= 0 ,m> 0 ,

2π4

3 if n=m= 0 .

(A.9)

(The rest of the cases follow from the symmetry n↔ m.) As a result we find

I
(4−ε)
2 = π2

6 [c0(ε)]2 − 2c0(ε)
∞∑
n=1

cn(ε)
n2 +

∞∑
n=1

[cn (ε)]2 . (A.10)
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Notice that c0(ε) = O (ε) due to eq. (A.8). Therefore the first term in eq. (A.10) is of
order O(ε2) and we will neglect it in what follows. One might similarly conclude that the
second term is of order O(ε), but this would be incorrect. This is because c0(ε) = O(ε) is
multiplied by a sum which is logarithmically divergent for ε = 0, as it can be noticed using
cn(0)/n2 = −π/n. The sum therefore results in a 1/ε pole in dimensional regularization,
which compensates the simple zero of c0(ε) and leads to a finite result.

In conclusion, we need to evaluate the two infinite sums in eq. (A.10). This is easily
achieved using the substitution [109]

cn(ε)→ −πn1−ε , (A.11)

which is exact up to O(ε) corrections. One may further check from the asymptotic expansion
of cn(ε) for n→∞ that the terms neglected in eq. (A.11) do not lead to logarithmically
divergent sums in eq. (A.10), and therefore remain O(ε) suppressed with respect to the
leading order also after the summation. Using eq. (A.11) both infinite sums are convergent
when ε is analytically continued to a sufficiently large value and can be evaluated using

∞∑
n=1

nα = ζ(−α) . (A.12)

Expanding the final result in ε we finally arrive at eq. (2.22).

B Details of the semiclassical calculations in free theory

B.1 The 1/s corrections to the one-point function of φ2
a close to four

dimensions

In this appendix we evaluate the correction in eq. (2.54) to the leading order result (2.47)
for the one-point function 〈φ2

a(x, 0)〉 in d = 4− ε with ε� 1. This amounts at evaluating
the following integral in dimensional regularization:

I3 = lim
η→0+

∫
dω

2πGχ(ω)
[
|hx(ω)|2 − eiωη |hx(0)|2

]
, (B.1)

where Gχ(ω) is defined in eq. (2.52) and hx(ω) is in eq. (2.55).
It is convenient to further rewrite the integral as:

I3 = lim
η→0+

∫ ∞
0

dω

2π
{

[Gχ(ω) +Gχ(−ω)] |hx(ω)|2 −
[
Gχ(ω)eiωη +Gχ(−ω)e−iωη

]
|hx(0)|2

}
.

(B.2)
To evaluate the integral in eq. (B.1) we will expand the propagator as a series in α0 and
commute the sum with the integral. For this procedure to work, we must perform the
expansion in both terms inside the first parenthesis of eq. (B.2). Indeed, only in this way
do we obtain a series whose individual terms can be integrated without encountering an IR
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singularity. Using the identity

Gχ(ω)eiωη +Gχ(−ω)e−iωη = −2sin(ηω)
ω

∞∑
n=0

(−1)nα2n
0

(
c(4−ε)(ω)

ω

)2n

+ 2cos(ηω)
ω

∞∑
n=0

(−1)n+1α2n+1
0

(
c(4−ε)(ω)

ω

)2n+1

,

(B.3)

we recast the integral as:

I3 = lim
η→0+

∫ ∞
0

dω

2π

[|hx(ω)|2 − cos(ηω) |hx(0)|2
] 2
ω

∞∑
n=0

(−1)n+1α2n+1
0

(
c(4−ε)(ω)

ω

)2n+1

+2 |hx(0)|2 sin(ηω)
ω

∞∑
n=0

(−1)nα2n
0

(
c(4−ε)(ω)

ω

)2n
 . (B.4)

One might naively conclude that the term proportional to sin(ηω) in the second line can be
set to zero, by commuting the limit with the integral. We shall momentarily see that this is
not the case.

We can now commute the sum and the integral in eq. (B.4). Notice that c(4−ε)(ω) =
ω1−εc(4−ε)(1) from eq. (2.53). Therefore, we can evaluate the integrals in the first line in
eq. (B.4) using the following identity in dimensional regularization:57

lim
η→0+

∫ ∞
0

dω

2π ω
−(2n+1)ε−1

[
|hx(ω)|2 − cos(ηω) |hx(0)|2

]
= −π

2(2n+ 1)x2

[1
ε

+ (2n+ 3) log (2|x|) + (2n+ 1)γE +O (ε)
]
. (B.5)

The integrals in the second line are instead evaluated using:

lim
η→0+

∫ ∞
0

dω

2π
sin(ηω)
ω1+2nε =


1
4 for n = 0 ,

0 for n ≥ 1 .
(B.6)

As anticipated, the limit and the integral do not commute for n = 0. Physically, this is
because the propagator at α0 = 0 is discontinuous, 〈χ(τ)χ̄(0)〉α0=0 = 1

2sgn(τ) + const (the
constant term drops from all physical observables).

Performing the series over n we finally arrive at:

I3 = −1
ε

2π arctan(πα0)
x2 − 2π arctan(πα0) log

(
4x2)

x2 − π2α0
[
log
(
4x2)+ 2

]
(1 + π2α2

0)x2 + π2

2x2 +O (ε) ,

(B.7)
where the last term in eq. (B.7) arises because of the point-splitting procedure from eq. (B.6).
Restoring the prefactor in eq. (2.54), we arrive at the result (2.57).

57Notice that the limit η → 0+ is taken within dimensional regularization, hence before the limit ε→ 0.
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B.2 Calculation of the f̃0 function

In this appendix, we provide some technical details associated with the calculation of
the f̃0 function (2.76) close to four and three dimensions. This follows from the one-loop
fluctuation determinant around the saddle-point.

In terms of the fluctuations (2.44) the quadratic action (2.45) on the defect reads:

S(2) '
∫
dφχ̄χ̇− α̃0

2R

∫
dφ

∫
dφ′

(χ̄χ′ + χ̄′χ− χ̄χ− χ̄′χ′)(
4 sin2 φ−φ′

2

) d−2
2

, (B.8)

where we defined the dimensionless combination α̃0 = α0R
4−d. It is useful to decompose

the fields into Fourier modes on the circle

χ(φ) =
∑
n

e−inφ√
2π

χn , χ̄(φ) =
∑
n

einφ√
2π
χ̄n . (B.9)

The action then reads:

S
(2)
eff =

∑
n

χ̄n
[
−in− α̃0

(
cn(ε)− einηc0(ε)

)]
χn , (B.10)

where cn(ε) is defined in eq. (A.8) and η is a positive infinitesimal parameter which follows
from the point-splitting regularization in eq. (2.4). Notice the action (B.10) is independent of
the zero modes, as expected since these are associated with the action of the symmetry group.

We now perform the Gaussian integration over the fields χ̄n and χn in eq. (B.10).
Normalizing the result by the partition function g0 of a decoupled defect, we find:

f̃0(γ2
0s,R, d) = − lim

η→0+

∑
n 6=0

log
[
−in− α̃0

(
cn(ε)− einηc0(ε)

)]
+
∑
n 6=0

log (−in)

= −
∞∑
n=1

log
[
1 + α̃2

0

(
cn(ε)− c0(ε)

n

)2]
+ lim
η→0+

∞∑
n=1

2α̃0c0(ε)n sin(nη)
n2 + α̃2

0 (cn(ε)− c0(ε))2 ,

(B.11)

where we already neglected terms that mainfestly vanish in the limit η → 0. The result (B.11)
holds for any value of d = 4 − ε. Our task is thus to evaluate the sums in eq. (B.11) in
dimensional regularization.

Let us first consider the limit ε→ 0. We start with the second term in the second line
of eq. (B.11): it is a convergent sum times c0(ε) = O (ε), hence it vanishes in the ε → 0
limit. One might naively conclude that c0(ε) may also be neglected also in the first term
of eq. (B.11). However, similarly to the discussion in appendix A.2, this is not the case.
Indeed it multiplies a 1/ε term arising from a logarithmically divergent sum. In light of
this comment, we expand eq. (B.11) in c0(ε) and get

f̃0(γ2
0s,R,4) =− lim

ε→0

∞∑
n=1

{
log
[
1+ α̃2

0

(
cn(ε)
n

)2]
−c0(ε) 2cn(ε)α̃2

0
[cn(ε)]2 α̃2

0 +n2
+O

(
(c0(ε))2

n2

)}
,

(B.12)
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where we retained the term linear in c0(ε), while all the higher order terms in c0(ε) are
multiplied by sums which are finite in dimensional regularization and thus can be safely
neglected in four dimensions. We finally evaluate the sums by expanding in α0 and replacing
(just as in (A.11))

cn(ε)→ −πn1−ε , (B.13)

which is exact up to O(ε) terms. Performing the summation over n in dimensional regular-
ization and then expanding for ε→ 0, we arrive at:

f̃0(γ2
0S,R, 4) = −

∞∑
k=1

(−1)kπ2kα2k
0

2k +
∞∑
k=0

(−1)kπ2k+2α2k+2
0

2k + 1

= 1
2 log

(
1 + π2α2

0

)
+ πα0 arctan(πα0) .

(B.14)

Let us now consider the case of d < 4. As for the correlation function 〈φ2
a(x, 0)〉 in

section 2.3.3, we focus on the IR limit α̃0 → ∞. The second term in eq. (B.11) can be
evaluated by expanding the summand in α̃0. Only the first term of the expansion contributes
in the limit η → 0+ and thus we find

lim
η→0+

∞∑
n=1

2α̃0c0(ε)n sin(nη)
n2 + α̃2

0 (cn(ε)− c0(ε))2 = 2α̃0c0(ε) lim
η→0+

∞∑
n=1

sin(nη)
n

= πα̃0I
(d)
1 , (B.15)

where we used c0(ε) = I
(d)
1 in the last line, where I(d)

1 is given in eq. (2.21). Eq. (B.15) is the
only contribution linear in α̃0 to log g. Adding eq. (B.15) to the leading order result (2.72),
one finds log gγ/g0 = πα0(s+ 1)R4−dI

(d)
1 to linear order in α0R

4−d, in agreement with the
diagrammatic result (2.20).

We now turn to the evaluation of the first term in eq. (B.11). The sum converges for
d < 7/2, and can be evaluated in dimensional regularization for general values of d. Each
individual term in the sum scales as log

(
α̃2

0
)
and is therefore subleading with respect to

eq. (B.15) in the IR. Large IR contributions can thus only arise from the large n tail of the
sum. We therefore expand the argument of the summand using

cn(ε)− c0(ε) n→∞'


−
π sec

(
πd
2

)
Γ(d− 2) n

d−3 − c0(ε) +O
(
nd−5

)
for d > 3 ,

−2(log n+ γE + log 4) +O
(
n−2

)
for d = 3 .

(B.16)

We conclude that most relevant contribution of the sum arises from the region where
n4−d ∼ α̃0 for 3 < d < 4 and from the one in which n ∼ α̃0 log α̃0 for d = 3.

To obtain a honest asymptotic expansion of the result we should proceed as in ap-
pendix D of [101], separating the first sum in eq. (B.11) into two pieces with a cutoff
Λ = aα̃

1
4−d
0 with a � 1. The sum over small n’s must then be evaluated analytically by

expanding the summand for large α̃0, while the sum of large n can be approximated to
arbitrary precision via the Euler-Maclaurin formula. In practice, if we are not interested
in the O(α̃0

0) terms (not counting logarithms) we can simply replace the sum with an
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integral:58

−
∞∑
n=1

log
[
1 + α̃2

0

(
cn(ε)− c0(ε)

n

)2]
= −

∫ ∞
0

dn log
[
1 + α̃2

0

(
cn(ε)− c0(ε)

n

)2]
+O

(
α̃0

0

)
,

(B.17)
where we can replace cn(ε)− c0(ε) with the expansion (B.16). The evaluation of eq. (B.17)
is conveniently performed separately for d > 3 and d = 3.

To compute the integral (B.17) in d > 3, we rescale n → α̃
1

4−d
0 n and expand the

integrand for large α̃0. We obtain

−
∫ ∞

0
dn log

[
1+α̃2

0

(
cn(ε)−c0(ε)

n

)2]
=−πα̃

1
4−d
0 csc

(
π

8−2d

)π
∣∣∣sec

(
dπ
2

)∣∣∣
Γ(d−2)


1

4−d

+πα̃0
2πΓ(3−d)

(4−d)Γ
(
2− d

2

)2 +O
(
α̃

1− d−3
4−d

0

)
.

(B.18)

The first term on the right hand side of eq. (B.18) is proportional to α̃
1

4−d
0 = Rα

1
4−d
0 . Thus

this is a pure cosmological constant term and it can be renormalized away. The second
term is the leading physical contribution and it is linear in α̃0 as the leading order (2.72).
Adding eq. (B.18) to eq. (B.15) we obtain the result (2.83) in the main text.

In d = 3 the expansion is more subtle due to the logarithm in eq. (B.16). In this case
it is convenient to rescale n→ 2α̃0 log α̃0 n, so that the integral reads:

− 2α̃0 log α̃0

∫ ∞
0

dn log
[
1 + 1

n2

(
1 + log (log α̃0) + log n+ γE + log 8

log α̃0

)2]
. (B.19)

We may now expand the integrand for large log α̃0 (notice log α̃0 � log (log α̃0) for α̃0 � 1)
and evaluate the resulting integrals. We obtain:

−
∫ ∞

0
dn log

[
1 + α̃2

0

(
cn(ε)− c0(ε)

n

)2]
d=3= − 2πα̃0 log α̃0 − 2πα̃0 [log (log α̃0) + log 8 + γE ]

+O

(
α̃0

log2 (log α̃0)
log α̃0

)
. (B.20)

Adding eq. (B.20) with the limit d → 3 of eq. (B.15) and neglecting the terms linear in
α̃0 = α0R, which represent a cosmological constant contribution, we obtain the result (2.85)
in the main text. Notice that the term proportional to α̃0 logR cancels between eqs. (B.15)
and (B.20).

C Running from the classical profile for the defect coupling in the
O(3) model

In this appendix we obtain the four-dimensional beta function for the defect coupling
γ in eq. (3.11) to leading order in the triple-scaling limit (3.12). As we explain below,
remarkably, the beta function in this limit can be extracted from the solution of the classical
saddle-point equations.

58More precisely, this is true because the resulting integral is convergent for n→ 0.
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C.1 Beta function in the physical renormalization scheme

In this and the next section (and only in these two sections) it will prove useful to work in a
physical regularization scheme, rather than within dimensional regularization. In particular,
we will analyze the theory (3.11) directly in four spacetime dimensions with a cutoff scale
M (whose precise definition will be given below). Thus, the couplings in the action (3.11)
are to be interpreted directly as the physical couplings at the scale M .

The saddle-point equations demand z̄ σa2 z = na with na a unit vector independent of
the defect position, while varying (3.11) we get the bulk equation of motion:

− ∂2φa + 1
3! φa(φb)

2 = −4πy
(
z̄
σa

2 z

)
δd−1(x⊥) . (C.1)

The source imposes the following boundary condition:

φa
r→0−→ −cd

y
(
z̄ σ

a

2 z
)

rd−3 , (C.2)

where r denotes the distance from the defect and cd = Γ ((d− 3)/2) /π(d−3)/2, which was
chosen such that c4 = 1. This implies that φa ∝ z̄σaz. As in the free theory, there is really
a family of saddle-points, related by the global action of the zero-mode in the path integral.

To leading order in the semiclassical limit (3.12) the saddle-point is given by the solution
of the equation (C.1) in four spacetime dimensions. However, it turns out that in d = 4 the
eq. (C.1) does not have a solution that is compatible with the boundary condition (C.2),
since the cubic term unavoidably leads to logarithmic corrections to a power law profile,
making the profile more singular than required at r → 0. The resolution of this conundrum
is to introduce a running coupling. This is how the beta function β(4d)

0 (y) will emerge from
classical physics.

Technically, the absence of solutions to the problem (C.1) in four dimensions is associated
with the necessity of regularizing the source term on the right-hand side. In principle,
this can be done by finding the solution in d spacetime dimensions. This would lead to
a singular result in the limit d → 4. By reabsorbing the singularities in the definition
of the defect coupling as in eq. (2.58), we could then extract its beta function.59 This
strategy however suffers of some drawbacks. First, it requires finding an analytical solution
to the nonlinear problem (C.1) for arbitrary values of d. Second, dimensional regularization
hides the physical origin of the classical running. For these reasons, in the following we
will introduce a more physically transparent approach, which allows studying the problem
directly in four spacetime dimensions and that lends itself to a straightforward numerical
implementation, bypassing the complication of finding an analytical solution to a nonlinear
boundary value problem. Nonetheless, as a proof of concept, in appendix C.3 we will show
how to find the beta function from the equation (C.1) in dimensional regularization as a
series expansion for small values of y.

59Notice that in four dimensions and to leading order in the triple-scaling limit (3.12) we can neglect the
beta function of the bulk coupling λ (3.4).
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To obtain a mathematically consistent formulation we require that the boundary
conditions (C.2) are satisfied at a certain distance r = M−1 > 0 from the defect rather
than for r → 0:

φa = −
y
(
z̄ σ

a

2 z
)

r

∣∣∣∣∣∣
r=M−1

. (C.3)

Physically, the length scale M−1 can be interpreted as the thickness of the line defect. The
boundary condition (C.3) introduces a mass scale and thus breaks the scale invariance of
the action (3.11); by requiring that observables be independent of the scale M we can thus
obtain the beta function of the defect coupling.

To do so, let us define the function χ by

φa ≡ −

(
z̄ σ

a

2 z
)

r
χ(log(rM)) , (C.4)

where henceforth we will use a new coordinate u ≡ log(rM). At r = 1/M we have u = 0,
and from comparing (C.2) and (C.4), we find that χ(0) has the interpretation of the running
coupling y at the scale M .

χ(u) solves the translationally invariant equation:

0 = χ′′(u)− χ′(u)− 1
6χ

3(u) , (C.5)

where by ′ we refer to derivatives with respect to u, such that χ′(u) ≡ ∂uχ(u). To solve
this equation we need to choose boundary conditions. One is given by the interpretation of
χ(u) as the running coupling; we also impose that χ(∞) = 0, which is consistent with the
defect being infrared free in four dimensions. In summary, we have

χy(0) = y , χy(∞) = 0 , (C.6)

where the subscript labels the boundary conditions.
Next, we use the fact that the modulus squared of the bulk scalar field coincides with

the leading order value of the φ2
a one-point function and it is thus a measurable physical

quantity given by
φ2
a

λ
= χ2(u)

λ r2 , (C.7)

where we divided by λ to compensate for the field redefinition that we implemented in (3.11).
Since χy(u) is proportional to a physical quantity, it satisfies the Callan-Symanzik equation:[

∂

∂ logM + β(4d)
y (y) ∂

∂y

]
χy (log(rM)) = 0 . (C.8)

From eq. (C.8) we find the following result for the beta function of the coupling y:

β(4d)
y (y) = −

χ′y(u)
∂yχy(u) . (C.9)

As promised, eq. (C.9) relates the beta function of the defect coupling with the classical
solution to the saddle-point equations. Notice that eq. (C.9) does not depend on u, and

– 58 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
2

we can exploit this u-independence to write a simpler formula. We use the translation
invariance of (C.5) to write

χy(u) = χ1(u+ u0(y)) =⇒ y = χ1(u0(y)) , (C.10)

which defines the function u0(y) as the inverse function of χ1, in terms of which

β(4d)
y (y) = −

χ′y(u)
∂yχy(u)

= − χ′1(u+ u0(y))
∂yχ1(u+ u0(y)) = − 1

u′0(y) ,
(C.11)

or alternatively equal to −χ′1(u0(y)). In practice, we can obtain βy(y) from the parametric
plot {χ1(u0),−χ′1(u0)}, which is easy to make once we are in possession of χ1(u); see
figure 12. This function does not have a nontrivial zero, it grows monotonically and diverges
as y →∞.

Let us comment on one detail of the numerics. The way we set up the problem in
eq. (C.11) is not ideal for numerics, since we have to shoot to find the ideal value of χ′1(0)
that gives a decaying function for u→∞. It is easier to choose a very small fixed initial
value δ for u = 0, use the asymptotic solution (C.13) that we obtain below in the vicinity
of u = 0, and numerically integrate forwards and backwards to obtain χδ(u). (Or for y < δ

simply use the perturbative beta function that can be read off from the asymptotic solution,
see (C.19).) From the derivation of eq. (C.11) it should be clear that for any δ we have
the formula

β(4d)
y (y) = −χ′δ(χ−1

δ (y)) . (C.12)

Then the parametric plot {χδ(u0),−χ′δ(u0)} will still give us the graph of βy(y), see figure 12.
One may wonder if the salient features of the beta function can be understood analyti-

cally, without needing a numerical solution. Next, we show that this is indeed possible.

C.2 Analytic results on the semiclassical beta function

An elementary argument implies the absence of zero of the beta function. This is because such
a zero would be unavoidably associated with a scale invariant solution to the equation (C.1)
in four dimensions, which however does not exist for λ 6= 0 as we discussed at length.
Technically this is reflected in the fact that the beta function (C.9) is proportional to χ′y(u),
while eq. (C.1) does not admit a constant nonzero solutions.

Notice that this observation alone does not rule out the possibility that the function
β

(4d)
y (y) tends to zero for y → ∞, which would imply a strongly coupled fixed point for

any ε > 0. However, even this scenario is ruled out both by numerics and by the analytic
argument presented below.

We continue with the analysis of χ(u) for large u. We are interested in a decaying
positive solution to the equation of motion (C.5). Performing the asymptotic analysis with
this input yields:

χ(u) =
√

3√
u− u∗

(
1 + log(u− u∗)

u− u∗
+ . . .

)
, (C.13)
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where u∗ is a free parameter that can be used to match the solution at finite u.60 Asymp-
totically, we have a positive, monotonically decreasing function.61 Going towards smaller u,
we wonder if the function can have a maximum. At this maximum at u = um, we would
have χ′′(um) < 0, χ′(um) = 0, χ(um) > 0, which contradicts the equation of motion (C.5).
We conclude that the function cannot have a maximum.

χ(u) thus continues to grow as we decrease u; it can either asymptote to a constant at
u→ −∞ or diverge (either at a finite u = us or u→ −∞). A simple asymptotic analysis
rules out the possibility of a finite limit as u→ −∞. Inspired by Chap. 7 of the book [166],
we make an attempt at understanding the large χ behavior of the equation of motion (C.5).
We introduce the notation p(χ) ≡ χ′(χ) and rewrite eq. (C.5) as:

0 = p
dp

dχ
− p− χ3

6 . (C.14)

It is simple to guess that the large φ behavior of p is

p(χ) = − χ2

2
√

3
+ . . . . (C.15)

This result is rigorously established by Hardy’s theorem, see Chap. 5 of [166]. We can then
use the relation p(χ(u)) = dχ/du to write

u(χ) = u(χ0) +
∫ χ

χ0

dχ̃

p(χ̃) (C.16)

and using the asymptotics (C.15) derive that the position of the divergence of χ, us is finite:

us = u(χ0) +
∫ ∞
χ0

dχ̃

p(χ̃) <∞ . (C.17)

For completeness, we have determined the near singularity behavior of χ(u):

χ(u) = 2
√

3
u− us

[
1 + u− us

6 − (u− us)2

36 + (u− us)3

54

+
( 2

135 log(u− us) + a

)
(u− us)4 + . . .

]
,

(C.18)

where the two undetermined parameters are us and a: these can be used to match to the
solution of interest.

Thus we have established that χ1(u) (or any χδ(u)) is a monotonically decreasing
function on (us,∞) and it goes from ∞ to 0. Then the function u0(y) defined in eq. (C.10)
is a function on (0,∞) that interpolates monotonically between ∞ and us. In eq. (C.11) we
derived that β(4d)

y (y) = −1/u′0(y) and it follows that it is a function on [0,∞) monotonically
increasing from 0 to ∞.

The asymptotic formulas in eqs. (C.13) and (C.18) can be used to obtain the asymptotic
behaviors of the beta function. We simply plug them in into eq. (C.12), and evaluate in

60We could have further expanded (C.13) at large u, but that would have obscured the meaning of u∗.
61This result is actually a theorem, see [166] Chap. 7.5 Theorem 4.
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Figure 13. Plot of χ1(u) together with its asymptotic behaviors. On the left we are showing a
zoomed in version of the plot on the right. The solid line is the numerical solution for χ1(u) and the
green and orange dashed lines are the near singularity and large u asymptotics respectively. Note
that except for a small window of u these asymptotics describe the full curve very accurately. The
fitted values of the matching parameters for the asymptotics are u∗ = −5.2 (from eq. (C.13)) and
us = −5.63 (from eq. (C.18); also note we did not obtain a reliable value for a).

the case of the large u asymptotics from eq. (C.13) for large u, and in the case for the near
singularity behavior from eq. (C.18) small (u− us) to obtain:

β(4d)
y (y) =


y3

6 −
y5

12 + y7

9 + . . . y � 1 ,

y2

2
√

3
− y

3 + 2
3
√

3
+ . . . y � 1 .

(C.19)

Note that in both cases the dependence on the shift of u, denoted by u∗ and us, is guaranteed
to drop out, since the formula (C.12) works for any χ(u).62

Finally in figure 13 we plot the numerical solution for χ1(u) together with the asymp-
totics from eqs. (C.13) and (C.18).63 Recall that we used this numerical solution to obtain
the beta function in figure 12.

Finally, we also present a series solution (in the amplitude y) of the equation of
motion (C.5). The linearized equation has an exponentially blowing up solution χ ∼ eu.
We tune its amplitude to zero to satisfy the boundary condition (C.6), and get the small y
solution

χy(u) = y − u

6 y
3 + u(u+ 2)

24 y5 − u(5u2 + 24u+ 48)
432 y7 +O(y9) , (C.20)

which if plugged into eq. (C.9) reproduces the beta function we got in eq. (C.19):

β(4d)
y (y) = y3

6 −
y5

12 + y7

9 +O(y9) . (C.21)

62On the other hand, the constant a from (C.18) shows up in the large y expansion of the beta function at
O(1/y2). Its value can only be determined numerically. (At the same order we also have a log(y) correction
to the power series in 1/y.)

63We obtained this function by shifting χδ(u) appropriately in u, as discussed around eq. (C.10).
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This had to be the case, as the series solution can be matched to the asymptotic solution
from eq. (C.13).64 To compare (C.21) with the diagrammatic result β(4d)

0 = 1
3y

2 + . . .,
remember that γ2β

(4d)
0 described the flow of γ2, which can then be translated to the flow of

y since we are strictly in four dimensions and the flow of λ can be ignored.

C.3 Beta function in the interacting O(3) model in dimensional regularization

The dimensional regularization method we present here will follow the conventional machin-
ery. However, it hides the physical meaning of the running coupling as a saddle-point field
profile, which was abundantly clear in the previous computation presented in appendices C.1
and C.2.

Our starting point is to solve eq. (C.1) in fractional dimension with the boundary
condition (C.2). The equation is not scale invariant for d < 4, therefore we were not able
to find an exact solution. Nonetheless one can find a solution perturbatively in the bare
double scaling parameter y0:

φa(r) = −cd
y0
(
z̄ σ

a

2 z
)

rd−3

[
1 + a1U

2 + a2U
4 + . . .

]
,

U ≡ y0r
4−d ,

(C.23)

where we have determined the first 20 ai coefficients, e.g.

a1 = c2
d

12(d− 4)(3d− 11) , a2 = c4
d

96(d− 4)2(3d− 11)(5d− 19) . (C.24)

We notice the pattern that as d→ 4 these coefficients blow up as ak ∼ 1/εk. As a result,
we have that

akU
2k ∼

[
y2

0

(1
ε

+ log r +O(ε)
)]k

. (C.25)

We renormalize these divergences by requiring that φ2
a/λ0, which is a physical expecta-

tion value, is finite. The only way to consistently do so is to shift the coupling γ0. We do
so in the following way:

γ2
0 = M ε

c2
4−ε

[
γ2
DR + δγ2(yDR)

ε
+ δ2γ

2(yDR)
ε2 + . . .

]
, (C.26)

which is equivalent to

y0 = M ε

c4−ε

[
yDR + δy(yDR)

ε
+ δ2y(yDR)

ε2 + . . .

]
, (C.27)

where the DR subscript stands for dimensional regularization, and we conventionally divided
by the factor c2

4−ε = 1 + O (ε) for convenience; therefore the physical coupling defined
64To match the two expressions, we have to set

u∗ = − 3
y2

(
1 + y2

2 log
(

3
y2

)
+ . . .

)
. (C.22)
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by eqs. (C.26), (C.27) does not coincide with the one in the usual minimal subtraction
scheme. To the order we are working we can neglect the running of the coupling λ, the
counterterms for γDR and yDR are identical and they are functions of the renormalized
triple-scaled coupling yDR.

The beta functions of the defect coupling is conveniently written in terms of y and is
obtained from

βyDR = −εyDR + β(4d)
yDR , β(4d)

yDR = yDR
d δy(yDR)
d yDR

− δy(yDR) . (C.28)

Our result reads:

β(4d)
yDR = y3

DR
6 − y5

DR
12 + 11y7

DR
144 − 59y9

DR
648 + 2609y11

DR
20736 − 14869y13

DR
77760 + 2318219y15

DR
7464960

− 1729831y17
DR

3265920 + 14116674883y19
DR

15049359360 − 241476805y21
DR

141087744 +O
(
y23
DR

)
,

(C.29)

where we reported several orders to illustrate the simplicity of the procedure compared to
standard loop calculations. The first two terms of eq. (C.29) agree with the result for β(4d)

y

given in eq. (C.19), which was obtained in a different renormalization scheme as discussed
in appendix C.1. Indeed, to the order we are working y is the only running coupling in four
dimensions, and it is a well known fact that for such a setup the first two coefficients of the
beta function are scheme-independent [99]. This does not apply to the higher order terms,
and indeed eq. (C.29) differs from the eq. (C.19) in the O(y7

DR) term (and beyond). As a
consistency check, in the following we independently determine the translation between y
and yDR and show that the beta functions computed from the classical profile and from
minimal subtraction match precisely once this is take into account.

The renormalization procedure described above leads to the following bulk scalar profile
in 4 dimensions:

φa√
λ

= −

(
z̄ σ

a

2 z
)

√
λr

yDR

[
1− 2u+ 3

12 y2
DR + 4u2 + 20u+ 31

96 y4
DR + . . .

]
, (C.30)

where to simplify formulas we use the coordinate u = log(rM). Recalling the definition
χ(u = 0) = y in the scheme used in appendix C.1, we get the relation:

y = yDR

[
1− 1

4 y
2
DR + 31

96 y
4
DR + . . .

]
. (C.31)

Inverting this relation, it is simple to verify that the beta functions from eqs. (C.19)
and (C.29) match on the nose.
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