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It was recently shown that a scalar field suitably coupled to the Gauss-Bonnet invariant G can
undergo a spin-induced linear tachyonic instability near a Kerr black hole. This instability appears
only once the dimensionless spin j is sufficiently large, that is, j & 0.5. A tachyonic instability is
the hallmark of spontaneous scalarization. Focusing, for illustrative purposes, on a class of theories
that do exhibit this instability, we show that stationary, rotating black hole solutions do indeed
have scalar hair once the spin-induced instability threshold is exceeded, while black holes that lie
below the threshold are described by the Kerr solution. Our results provide strong support for
spin-induced black hole scalarization.

Introduction.− Black holes (BHs) are central players
in astrophysics. The recent detections of gravitational
waves [1, 2] and the first BH imaging [3] have consoli-
dated the evidence for their physical reality. Under the
leading paradigm, astrophysical BHs are described by the
Kerr metric [4]. Astonishingly, this hypothesis entails
this macroscopic class of objects, ranging 10 orders of
magnitude in mass, having only 2 (macroscopic) degrees
of freedom: mass M and spin J .

A tantalizing possibility beyond the Kerr hypothesis
is that astrophysical BHs are not described by the Kerr
metric only in certain regimes. For instance, if ultralight
bosonic fields exist, e.g., as dark matter, they may un-
dergo a superradiant instability near Kerr BHs [5], form-
ing a bosonic cloud [6], which, in some cases, leads to
new stationary BHs [7–9]. The instability, however, is
only efficient for a range of BH masses determined by
the ultralight field’s mass [10–12].

The prospect of such elusive non-Kerr BHs takes a dif-
ferent guise in gravity theories that allow BH scalariza-
tion [13, 14]. Theories that fashion a coupling between
a scalar and the Gauss-Bonnet invariant can exhibit a
tachyonic instability near BHs when the BH spin ex-
ceeds a certain threshold [15]. Interestingly, crossing that
threshold also allows these models to circumvent a known
no-hair theorem [13, 15]. Hence, one expects that station-
ary BHs in these models will exhibit spin-induced scalar
hair only when they are rapidly spinning. As we show
below, this is indeed the case.

Spontaneous scalarization.− This effect was first dis-
cussed by Damour and Esposito-Farèse (DEF) [16, 17]
for compact stars in scalar-tensor theories of gravity. The
DEF model demonstrated that, if suitably coupled to
gravity, a new field could go undetected in weak field
tests of general relativity (GR) and still have an influ-
ence in the strong field of neutron stars, providing strong
motivation for GR tests with binary pulsars. Indeed, the
latter have severely constrained the DEF model [18–20],
although the constraints can be evaded if the field is mas-
sive [21].

In the DEF model (massless or massive), scalarization
happens only for stars and does not affect BHs [22], since,
in fact, the model is covered by no-hair theorems [23–25].
However, it was recently shown that scalar-tensor theo-
ries that exhibit BH scalarization do exist [13, 14]. Con-
sider a scalar-Gauss-Bonnet (sGB) theory with action

S =
1

16π

∫
d4x
√
−g
[
R− 2∂µφ∂

µφ+ λ2f(φ)G
]
, (1)

where G ≡ RµνρσRµνρσ − 4 RµνRµν + R2 is the Gauss-
Bonnet invariant, λ (with units of length) determines the
coupling strength between scalar field and G and f is a
dimensionless function of the scalar field φ. (We work
with units where G = 1 = c). If f ′(φ0) = 0 [26],
for some constant φ0, GR vacuum solutions, together
with φ = φ0 = constant, are admissible solutions of the
field equations derived from Eq. (1). This condition ex-
cludes the dilatonic (f ∝ exp(φ)) and shift-symmetric
(f ∝ φ) subclasses of sGB in which BHs always have
scalar hair [25, 27–29]. The constant φ0 solutions are, in
fact, unique thanks to a no-hair theorem [13], provided
that

f ′′(φ0)G < 0 . (2)

Interestingly, −λ2f ′′(φ0)G/4 is the effective mass
squared for scalar field perturbations around the GR so-
lution, and, in this sense, the condition in Eq. (2) ensures
the absence of tachyonic instabilities.

This suggests that scalarization can occur if Eq. (2)
is violated. Indeed, as a simple example consider the
choice f(φ) = φ2/2. For φ = 0, the Schwarzschild BH
is an admissible solution and G = 48M2/r6, where M is
the Arnowitt-Deser-Misner (ADM) mass. Evaluated on
the horizon, the effective mass squared of scalar pertur-
bations is then −3λ2/(16M4), indicating the possibility
that a tachyonic instability can take place. In general, the
effective mass can be somewhat negative and still have
a stable configuration [30], but the scalar field perturba-
tion will become unstable if the dimensionless ratio M/λ
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is made sufficiently small. In practice, if M/λ . 0.587,
the scalar field will develop a tachyonic instability, whose
end point might be a scalarized BH [13].

The fact that the onset of scalarization is captured
in linear theory allows one to identify all possible cou-
plings to curvature that can lead to scalarization [31]
and simplifies the investigation of the relevant thresh-
olds [32]. It also makes it straightforward to general-
ize the mechanism to nongravitational couplings (see,
e.g., [33, 34]). However, the end point of the instabil-
ity depends on nonlinear interactions, as these are the
ones that eventually quench the linear instability. For ex-
ample, although static, spherically symmetric scalarized

BHs exist for both f(φ) ∝ φ2 [13] and f(φ) ∝ eφ
2

[14],
they have different radial stability properties [35]. This
can be attributed to the additional nonlinear interactions
between φ and G in the second model [36]. Alternatively,
supplementing the simplest choice, f(φ) = φ2/2, which
already determines fully the onset of scalarization, with
a nonlinear potential for the scalar also yields radially
stable (and entropically preferred) scalarized BHs [37].

BH rotation.− The effect of rotation on BH scalariza-
tion was considered in Ref. [38] for the choice

f(φ) =
ε

12

(
1− e−6φ

2
)
, (3)

and ε = +1 [39]. It was shown that rotation tends to
suppress scalarization. This can be partially understood
in an intuitive manner as follows. For a Kerr BH in
Boyer-Lindquist coordinates (t, r, θ, ϕ) one has

GKerr =
48M2

(r2 + χ2)6
(
r6 − 15r4χ2 + 15r2χ4 − χ6

)
, (4)

where χ ≡ a cos θ, a = J/M is the Kerr spin (per
unit mass) parameter, where J is the angular momen-
tum. When a = 0, one recovers the Schwarzschild
metric, where G is positive definite and monotonic in
r. For the Kerr metric, as long as the dimensionless
spin j ≡ a/M 6 0.5, G remains positive definite and
the spacetime is said to be “gravitoelectric dominated”.
However, this is no longer true when j > 0.5 and regions
of “gravitomagnetic dominance” in which G is negative
arise for some neighborhoods of r, θ [40]. Thus, rotation
can make the effective mass of the scalar field less neg-
ative or even positive near the horizon for ε = +1 and
therefore suppress the effect of scalarization.

The focus on ε = +1 is motivated by the fact that, in
the absence of rotation, it is a necessary condition for BH
scalarization. However, the last observation about GKerr

suggests that BH spin might be able to induce scalar-
ization when ε = −1. Indeed, it was shown recently
in Ref. [15] (see also [41, 42] for follow-up studies) that
Kerr BHs are tachyonically unstable for f(φ) = εφ2/2
and ε = −1, once j exceeds a certain threshold (which
is above j = 0.5). Since this tachyonic instability is the
hallmark of spontaneous scalarization, one expects theo-
ries in this class to exhibit a remarkable property: BHs
develop scalar hair only when they spin fast enough.

The approach of Ref. [15], however, does not provide
concrete evidence that these hairy BHs exist. As it fo-
cuses on the linearized equations, it captures only the
onset of the tachyonic instability, and it cannot make
conclusive statements about its end point. In this Let-
ter we instead solve the full field equations numerically
to generate stationary, rotating, asymptotically flat BH
solutions. We show that slowly rotating BHs can only
be described by the Kerr solution, as in GR, whereas,
rapidly rotating ones, can indeed have scalar hair. This
is fully consistent with the expectations of Ref. [15] and a
clear demonstration that rotation can induce scalar hair
if a scalar field exhibits suitable coupling to curvature.
Nonlinear spin-induced scalarized BHs.− We work

with the coupling of Eq. (3) and ε = −1. At the linear
level, this theory coincides with the model studied in [15],
but the end state of the instability, which is our focus, is
sensitive to the nonlinear completion of the theory. We
use the exponential model mostly to facilitate a compar-
ison between our results and those of Ref. [38], which
studied the case ε = +1. We stress that other couplings
f(φ) could have been chosen, including the quadratic
model f(φ) = εφ2/2 or the effective-field-theory-inspired
model of [37]. We expect all these models to also ex-
hibit the spin-induced spontaneous BHs scalarization ef-
fect, although the nonlinear solutions will have different
properties [35–37].

To find these solutions, we work with the ansatz [38]

ds2 = −e2F0Ndt2 + e2F1
(
N−1dr2 + r2dθ2

)
+ e2F2r2 sin2 θ(dϕ−Wdt)2 , (5)

where N ≡ 1− rH/r and r = rH > 0 is the horizon loca-
tion [43]. The metric functions Fi, W (i = 0, 1, 2) and the
scalar field φ depend on r, θ only. Asymptotic flatness
requires limr→∞ Fi = limr→∞W = limr→∞ φ = 0. Axial
symmetry and regularity impose the boundary conditions
∂θFi = ∂θW = ∂θφ = 0 on the symmetry axis (θ = 0, π).
Additionally, the absence of conical singularities implies
that F1 = F2 on the symmetry axis. The horizon
boundary conditions are ∂xFi

∣∣
r=rH

= ∂xφ
∣∣
r=rH

= 0 and

W
∣∣
r=rH

= ΩH , where, for convenience, we have intro-

duced a new radial coordinate x ≡ (r2 − r2H)1/2. Here
ΩH > 0 is the constant horizon angular velocity. Some
details on the numerical scheme used to find the solutions
with these boundary conditions are given in the Supple-
mental Material, Sec. II [44]

Most of the quantities of interest are encapsulated in
the metric functions evaluated either at the horizon or
at infinity. Consider first horizon quantities. The Hawk-
ing temperature is TH = κ/(2π), where κ is the sur-
face gravity defined as κ2 ≡ −(1/2)(∇αξβ)(∇αξβ)|rH and
ξ ≡ ∂t+ΩH ∂ϕ is the horizon null generator. The area of
the spatial sections of the event horizon is AH . Explicitly,

TH = (4πrH)−1 · eF0(rH ,θ)−F1(rH ,θ) , (6)

AH = 2πr2H

∫ π

0

dθ sin θ eF1(rH ,θ)+F2(rH ,θ) . (7)



3

Now consider the asymptotic quantities. The ADM
mass M and the angular momentum J are read off
from the asymptotic behavior of the metric functions:
gtt ' −1 + 2M/r and gϕt ' −2J sin2 θ/r. All solutions
reported in this Letter possess also a scalar “charge” Qs,
which is found from the scalar field’s far-field asymptotic
φ ' −Qs/r. This “charge” does not have an associated
conservation law, and it is secondary in the nomencla-
ture of Refs. [27, 45, 46]. For all solutions here, both the
metric functions and the scalar field are even parity, i.e.,
invariant with respect to the transformation θ → π − θ.
More general solutions, in particular with odd parity,
exist. Typically these are excited states and unstable,
which justifies our focus on the even parity sector, corre-
sponding to the fundamental solutions [47].

As in the ε = +1 [38] case, the solutions satisfy a
Smarr-type law, and their entropy S has a correction to
the Bekenstein-Hawking entropy computed from Wald’s
formalism [48]. It reads S = SE + SsGB, where

SE =
AH
4

, SsGB =
λ2

2

∫
H

d2x
√
hf(φ)R(2) , (8)

with R(2) denoting the Ricci scalar of the metric hij
which is induced on the spatial sections of the horizon,
denoted as H. In the following, we shall use the di-
mensionless (or reduced) area aH ≡ AH/(16πM2), spin
j = J/M2, temperature tH ≡ 8πTHM , and entropy
s ≡ S/(4πM2).

Properties of the solutions.− We have performed a
thorough numerical exploration of the parameter space to
examine the domain of existence and the physical prop-
erties of the spinning scalarized BHs. This domain of
existence is represented in all panels of Figs. 1 and 2 by
the darker shaded area, being obtained by extrapolating
to the continuum the results from a set of around 1000
numerical solutions.

Figure 1 (top panel) exhibits an overview of the domain
of existence in an M/λ vs. j plot. Consider first the limits
of the domain of existence, which in fact appear in all
panels of the subsequent figures. For ε = −1, the domain
is bounded by two sets of solutions: (i) the “existence
line,” which corresponds to the bifurcation edge from the
Kerr family (see the solid blue line in Figs. 1 and 2),
and (ii) the set of “critical solutions” (dotted red lines in
Figs. 1 and 2) [49]. A third boundary exists when ε = +1,
the “static configurations” [38, 50] (dashed-dotted black
lines in the insets of Figs. 1 and 2).

The existence line is universal for any coupling func-
tion allowing for scalarization. In principle, this particu-
lar set of solutions can be found by solving the scalar field
equation (as a test field) on the Kerr background. In our
approach, however, the existence line is found as the lim-
iting configuration wherein φ→ 0, when varying rH ,ΩH
for fixed λ. Some quantitative details on the existence
line are given in the Supplemental Material, Sec. IV.

The set of critical solutions is model dependent. The
numerical process fails to converge as this set of con-
figurations is approached. Typically, neither a singular

FIG. 1. ADM mass M (top panel) and scalar charge Qs

(bottom panel), both in units of λ, as functions of the dimen-
sionless spin j of spinning scalarized BHs. Here and in Fig. 2,
the main panels (insets) correspond to ε = −1 (ε = +1).

behavior nor a deterioration of the numerical accuracy
in the vicinity of this set was observed. The existence of
such critical solutions in fairly commonplace in sGB mod-
els, both for spherical [25, 27, 28] and rotating [51, 52]
hairy BHs. An explanation can be traced back to the
fact that the radicand of a square root in the horizon
expansion of the scalar field vanishes as the critical set
is approached (see e.g., Appendix A in [52] or Sec. 5.1
in [29]). As such, a consistent near horizon expansion
of the solution ceases to exist, indicating that a solution
that is regular there does not exist.

From Fig. 1 (top panel), we see that ε = −1 solu-
tions exist for a range of values of the dimensionless spin
0.5 < j . 1. Concerning the lower limit, the minimum
j value retrieved along the existence line with our proce-
dure is j ' 0.55. This is compatible with the fact that
the spin-induced scalarization instability of Kerr can only
exist for j > 0.5 and also with the results in [15, 41, 42].
Concerning the upper limit, within the dataset collected,
the maximal value of j for the scalarized BHs slightly
exceeds unity: jmax ∼ 1.01. This means that scalarized
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FIG. 2. Horizon mass over ADM mass MH/M ratio (top
panel), reduced horizon area aH (middle panel), and reduced
entropy s (bottom panel) as functions of the dimensionless
spin j.

BHs in this model exhibit small violations of the Kerr
bound. This j range contrasts with the ε = +1 case (in-
set), which extends down to j = 0. As a similar trend
for both ε = ±1, for a given λ, the maximal allowed
scalarized BH mass increases with j (for ε = +1 this
holds for sufficiently high angular momentum). This as-

sertion relies on the shape of the existence line and it is
thus universal for any coupling function f(φ) allowing for
scalarization.

Now let us examine some of the physical properties
of the solution. First, how much scalar “hair” do the
scalarized solutions posses? Several quantities can be
used to address this question. In Fig. 1 (bottom panel),
the scalar charge (in units of λ) is represented against j.
In the ε = +1 case, this charge is maximized for static
j = 0 solutions. For the ε = −1 case, it is maximized
(within numerical accuracy) for j ∼ jmax, corresponding
to Qs/λ ∼ 0.038. Comparing it to Fig. 1 (top panel), we
conclude that the maximal Qs occurs for M/λ ' 0.9.

A comparison between Fig. 1 (bottom panel) and Fig. 2
(top panel) also reveals that Qs is no faithful measure of
the fraction of the mass stored in the BH (and hence the
fraction stored in the scalar field), as these two quanti-
ties are not extremized for the same M/λ [53]. In this
respect, Fig. 2 (top panel) shows that a significant part of
the total mass is stored outside the horizon. For ε = +1,
this fraction obeys MH/M & 0.735, whereas for ε = −1,
MH/M & 0.79. This suggests significant differences in
some phenomenological properties, e.g., geodesic motion
and BH shadows, may exist with respect to comparable
Kerr BHs. These difference, moreover, should be en-
hanced for larger j up to near the maximal j.

An important distinction between the ε = ±1 mod-
els concerns the horizon area. Figure 2 (middle panel)
shows that, for the same j, aH is maximized (minimized)
by the Kerr solution for ε = +1 (ε = −1). In this
sense, spin-induced scalarized BHs are larger than Kerr,
whereas they are smaller in the gravitoelectric (j 6 0.5)
led scalarization. Yet, in both cases, they are entropi-
cally favored over Kerr [see Fig. 2 (bottom panel)]. This
is partly explained by the fact that the correction to the
GR BH entropy depends on the sign of f(φ), cf. Eq. (8).
We remark, however, that the entropic preference for the
same M,J in axial symmetry may be less significant for
the dynamical preference than in spherical symmetry, as
gravitational radiation can be emitted during the process
of scalarization for the former but not the latter.

Conclusions.− We have solved the full field equations
to generate solutions that describe stationary, rotating
BHs in an illustrative model [cf. Eq. (3)] that exhibits
the spin-induced tachyonic instability found in Ref. [15].
Our results clearly demonstrate that slowly spinning sta-
tionary BHs in this model are described by the Kerr so-
lution, whereas rapidly spinning ones exhibit scalar hair.
The transition between the two classes of solutions takes
place right on the threshold of the tachyonic instability
found in Ref. [15]. Hence, the hairy solutions are ex-
pected to be end states of spin-induced BH scalarization.

Spin-induced scalarization raises the exciting possibil-
ity that astrophysical BHs will defy the Kerr hypothe-
sis only for large spins, which merits further investiga-
tion. We have already established that the scalarized
BH solutions are entropically preferred in the regime of
the tachyonic instability, but it would be interesting to
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study their stability properties. It would also be impor-
tant to follow dynamically the development of the tachy-
onic instability found in Ref. [15], track the formation of
scalar hair, and verify explicitly that the solutions found
here are the end points of this instability. This has been
achieved in simpler BH scalarization scenarios [33], but
it is particularly challenging when one has a coupling
with the Gauss-Bonnet invariant, although significant
progress has recently been made in modeling nonlinear
time-domain evolutions in these theories [54–63]. Finally,
the astrophysical phenomenology and implications of the
scalarized BHs reported herein is missing and our results
hold the promise of non-negligible deviations from the
Kerr phenomenology.
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– Supplemental Material –

I. FIELD EQUATIONS.

The field equations obtained from the action Eq. (1)
are:

Rµν −
1

2
gµνR =

1

2
Tµν , �φ = −λ

2

4
f ′(φ)G , (9)

where Tµν is an effective energy-momentum tensor

Tµν = 4T (φ)
µν − λ2T (G)

µν , (10)

composed of the scalar field energy-momentum tensor

T (φ)
µν = ∇µφ∇νφ−

1

2
gµν∇αφ∇αφ , (11)

and another due to the coupling between scalar field φ
and Gauss-Bonnet invariant G due to the coupling λ2f(φ)

T (G)
µν = 2gα(µgν)βε

γβδκ∇λ
[∗Rαλδκf ′(φ)∇γφ

]
, (12)

where ∗Rµνρσ = εµναβ Rαβρσ is the dual Riemann
tensor, εµνρσ is the totally anti-symmetric Levi-Civita
pseudo-tensor and, as defined in the main text, f ′(φ) =
df(φ)/dφ.

II. NUMERICAL METHODS.

The field equations reduce to a set of five coupled non-
linear elliptic partial differential equations for the func-
tions Fa = (F0, F1, F2,W ;φ), which are found by plug-
ging the ansatz (5) together with φ = φ(r, θ) into the
field equations derived from Eq. (1) with the coupling of
Eq. (3). These equations have been solved subject to the
boundary conditions introduced in the main text.

The numerical treatment can be summarized as fol-
lows. The domain of integration is restricted to the re-
gion outside the horizon, r > rH . A new (compacti-
fied) radial variable x̄ = x/(1 + x) is introduced, which
maps the semi–infinite region [0,∞) to the finite region

[0, 1], where x ≡
√
r2 − r2H and r is the radial variable

in the line element (5). Next, the equations for Fa are
discretized on a grid in x̄ and θ, which covers the inte-
gration region 0 6 x̄ 6 1 and 0 6 θ 6 π/2. Most of the
results in these notes have been found for an equidistant
grid with 250× 30 points.

All numerical calculations are performed by using
a professional package [68], which employs a Newton-
Raphson method. This code uses the finite difference
method, providing also an error estimate for each un-
known function. The numerical error for the solutions

reported in this work is estimated to be typically < 10−3.
In deriving the equations for Fa and in the analysis of the
numerical output we have used mainly mathematica.

After fixing the model, in particular f(φ), ε, the solu-
tions space is scanned by using the following input pa-
rameters: the event horizon radius rH , the horizon an-
gular velocity ΩH and the coupling constant λ (which
specifies the scale in the action). We fix λ and construct
the domain of existence by varying both rH and ΩH .

III. FIRST LAW OF BH THERMODYNAMICS.

In scalar-Gauss-Bonnet gravity, BHs satisfy the rela-
tion

dM = TH dS + ΩH dJ , (13)

where the contribution from the scalar field is not ex-
plicit. We used this formula to validate our numerical
integration.

IV. THE EXISTENCE LINE.

The existence line is exhibited in Fig. 3, where j is
shown as a function of the Kerr BH mass (in units of λ)
for both ε = ±1. In the case ε = −1, one notices that
the instability occurs for 1/2 < j < 1; to be precise, the
last data points correspond to j ' 0.55 and j ' 0.994,
respectively. Some data points along the existence line
are given in Table I for both ε = ±1.

M/λ J/λ2 j M/λ J/λ2 j

0.587 0.000 0.000 0.061 0.002 0.556

0.586 0.035 0.103 0.109 0.007 0.601

0.584 0.085 0.249 0.164 0.017 0.652

0.581 0.138 0.408 0.192 0.025 0.679

0.579 0.185 0.552 0.257 0.048 0.734

0.580 0.205 0.610 0.318 0.079 0.781

0.586 0.240 0.700 0.414 0.144 0.844

0.594 0.266 0.756 0.628 0.368 0.932

0.606 0.295 0.805 0.801 0.620 0.968

0.619 0.321 0.840 0.979 0.945 0.986

0.635 0.351 0.870 1.164 1.344 0.993

TABLE I. The ADM mass M , angular momentum J (in units
of λ) and dimensionless spin parameter j of some data points
on the existence line, for ε = +1 (left) ε = −1 (right).
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FIG. 3. Reduced angular momentum j, of the set of Kerr BHs along the existence line, vs. M , in units of λ. The lines result
from an interpolation of numerical points. The left and right panels correspond to ε = +1 and ε = −1, respectively.
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