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Spin-liquid insulators can be Landau’s Fermi liquids
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The long search for insulating materials that possess low-energy quasiparticles carrying electron’s
quantum numbers except charge – inspired by the neutral spin-1/2 excitations, the so-called spinons,
exhibited by Anderson’s resonating-valence-bond state – seems to have reached a turning point after
the discovery of several Mott insulators displaying same thermal and magnetic properties as metals,
including quantum oscillations in a magnetic field. Here, we show that such anomalous behaviour
is not inconsistent with Landau’s Fermi liquid theory of quasiparticles at a Luttinger surface. That
is the manifold of zeros within the Brillouin zone of the single-particle Green’s function at zero
frequency, and which thus defines the spinon Fermi surface conjectured by Anderson.

Common sense would suggest that Mott insulators and
Landau’s Fermi liquids are antinomic phases of matter
that can turn one into the other only through a Mott
transition.
However, there is growing, intriguing evidence of quasi-
particle-like excitations in some Mott insulating materi-
als. For instance, the Kondo insulators SmB6 and YbB12

show quantum oscillations in a magnetic field, finite spe-
cific heat, Cv/T , and thermal conductivity, κ/T , coeffi-
cients for T → 0 [1–6], though κ ∼ T is still debated in
SmB6 [7, 8].
Evidence of finite Cv/T and κ/T for T → 0 is
also found in candidate spin-liquid insulators: 1T -
TaS2 [9–11], and, with some caveats, in the or-
ganic salts EtMe3Sb[Pd(dmit)2]2 [12–17] and κ-(BEDT-
TTF)2Cu2(CN)3 [18, 19]. Quantum oscillations in the
magnetothermal conductivity of the field induced spin-
liquid state of α-RuCl3 have also been reported [20], even
though their origin is controversial [21].

All the above properties, at odds with the conventional
view of insulators, are commonly interpreted by the ex-
istence of neutral quasiparticles [22–28], not necessar-
ily gapless [26], although alternative explanations have
been proposed [29–31]. Those quasiparticles are dubbed
spinons [32, 33] when they only carry the spin quantum
number, which is the case of systems whose low energy
behaviour is determined by just a single band, as we shall
assume hereafter.

Despite the observed Fermi-liquid-like thermal and
magnetic properties of spinons, their emergence from
spin-charge deconfinement [34] is at first sight incom-
patible with Landau’s Fermi liquid theory [35–37].
This is obviously the case of conventional Landau’s
quasiparticles at a Fermi surface, the location of poles
of the single-particle Green’s function at zero frequency
and temperature, since these poles entail metallicity.
However, it has been recently shown [38] that Landau’s
quasiparticles also exist at a Luttinger surface, the
manifold of zeros of the single-particle Green’s function
at zero frequency and temperature. These quasiparticles
are invisible in the single-particle spectrum, and are also
incompressible [39], thus perfectly allowed in insulators.

Nonetheless, the insulating character poses constraints
to Landau’s Fermi liquid theory, most notably the
vanishing of Drude weight and of charge compressibility.
Here, we show that these constraints can be fulfilled.
We conclude that a Landau Fermi liquid can well be in-
sulating, and analyse its physical properties with special
emphasis on the quantum oscillations in a magnetic field.

Uncovering Landau quasiparticles – In what follows, we
consider a periodic model with a single band of inter-
acting electrons, and assume that neither translational
symmetry nor spin rotational one are broken.
The single-particle Green’s function is therefore diagonal
in momentum k and spin σ =↑, ↓, and independent of
the latter. In Matsubara frequencies, ǫ = (2n + 1)πT ,
the Green’s function satisfies Dyson’s equation

G(iǫ,k) =
1

iǫ− ǫ(k)− Σ(iǫ,k)
, (1)

where ǫ(k) is the non-interacting energy dispersion in
momentum space measured with respect to the chemical
potential, and Σ(iǫ,k) the self-energy that, like G(iǫ,k),
has a real part even in ǫ, while

ImΣ(iǫ,k) = −ImΣ(−iǫ,k)

{

< 0 ǫ > 0 ,

> 0 ǫ < 0 .
(2)

We define the real function

Z(ǫ,k) = Z(−ǫ,k) =

(

1−
ImΣ(iǫ,k)

ǫ

)−1

, (3)

which, because of (2), varies in the interval [0, 1].
Through Z(ǫ,k) we can rewrite Eq. (1) as

G(iǫ,k) =
Z(ǫ,k)

iǫ− ǫ∗(ǫ,k)
, (4)

with real

ǫ∗(ǫ,k) = ǫ∗(−ǫ,k) = Z(ǫ,k)
(

ǫ(k) + ReΣ(iǫ,k)
)

. (5)

Landau’s Fermi liquid theory can be formally derived un-
der the assumption that ǫ∗(ǫ,k) and Z(ǫ,k) are analytic,
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at least to leading order, in ǫ around ǫ = 0, as well as
in k close to the surface defined by ǫ∗(0,k) = 0 [38].
This assumption is equivalent to assuming that Σ(iǫ,k)
is analytic at any non-zero ǫ, which includes conventional
Fermi liquids as the special case of Σ(iǫ,k) analytic also
at ǫ = 0, but also allows for poles of Σ(iǫ,k) for ǫ → 0.
The actual quasiparticles have energy dispersion

ǫ∗(k) ≡ ǫ∗(0,k) and residue Z(k) ≡ Z(0,k). The roots of
ǫ∗(k) in momentum space define the quasiparticle Fermi

surface that, because of the definition (5), correspond

• either to the roots of ǫ(k)+ReΣ(0,k), the conven-
tional Fermi surface,

• or those of Z(0,k), the so-called Luttinger sur-
face [40].

Therefore, well-defined quasiparticles exist at Fermi
as well at Luttinger surfaces, and that despite the
vanishing quasiparticle residue Z(k) at the Luttinger
surface implies the absence of quasiparticle peaks in the
physical electron density of states.

Fermi liquid properties – We recall that Landau’s Fermi
liquid theory allows calculating linear response functions
at low temperature, low frequency and long wavelength
in terms of two unknown functions: the quasiparticle
dispersion ǫ∗(k) and the Landau parameters fkσ,k′σ′ ,
where σ and σ′ are the spins of the quasiparticles
with momentum k and k′, respectively. In reality,
this huge simplification just applies to densities of
conserved quantities and their currents defined through
the continuity equation. Indeed, only in those cases one
can exploit the Ward-Takahashi identities and relate
vertex to self-energy corrections [36].
In a single-band periodic model, the conserved quantities
are the electron number N = N↑+N↓, the energy E, and
the magnetisation along a given axis, e.g., M = N↑−N↓.
We denote by χρQ

(ω,q) and χJQ
(ω,q), the proper

response functions, respectively, of the density, ρQ, and
current, JQ, operators associated to the conserved quan-
tity Q = N,E,M , i.e., the response functions irreducible
with respect to cutting a Coulomb interaction line. The
thermodynamic susceptibilities are simply obtainable
through χQ = −χq

ρQ
, where χq

ρQ
≡ χρQ

(ω = 0,q → 0) is
the so-called q-limit of the density response function. We
recall that the specific heat is actually defined through
Cv = χE/T .
In absence of impurities, the low-temperature con-
ductivities have the standard Drude-like expres-
sion σQ(ω) = iDQ/(ω + i0+), where the Drude
weights DQ coincide with the so-called ω-limit
of the corresponding current response functions:
DQ = χω

JQ
≡ χJQ

(ω → 0,q = 0). Similarly to the
specific heat, the thermal conductivity is defined by
σE(ω)/T .

According to Landau’s Fermi-liquid theory [36, 37]

χN/M = −2

∫

dk

(2π)d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)

(

1−AS/A(k)
)

,

DN/M = −
2

d

∫

dk

(2π)d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)
v∗(k) · vS/A(k) ,

(6)
where d > 1 is the dimension (in d = 1 Landau’s Fermi
liquid theory is not applicable [41]), f(x) the Fermi dis-
tribution function, v∗(k) = ∂ǫ∗(k)/∂k the quasiparticle
group velocity, and

AS/A(k) = −

∫

dk′

(2π)d
∂f

(

ǫ∗(k
′)
)

∂ǫ∗(k
′)

A
S/A
k,k′ ,

vS/A(k) = v∗(k) +

∫

dk′

(2π)d
∂f

(

ǫ∗(k
′)
)

∂ǫ∗(k
′)

v∗(k
′) f

S/A
k,k′ .

(7)

The parameters A
S/A
k,k′ correspond to the q-limit of the

quasiparticle scattering amplitudes in the spin-singlet (S)
and spin-triplet (A) particle-hole channels, and are re-
lated to the f -parameters, the ω-limit counterparts,

fSk,k′ = fk↑,k′↑ + fk↑,k′↓ ,

fAk,k′ = fk↑,k′↑ − fk↑,k′↓ ,
(8)

through the Bethe-Salpeter equation

A
S/A
k,k′ = f

S/A
k,k′ +

∫

dp

(2π)d
∂f

(

ǫ∗(p)
)

∂ǫ∗(p)
f
S/A
k,p A

S/A
p,k′ .

Similarly, the specific heat Cv and the Drude weight K
of the thermal conductivity read

Cv = −
2

T

∫

dk

(2π)d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)
ǫ∗(k)

2

−
2

T

∫

dk dk′

(2π)2d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)

∂f
(

ǫ∗(k
′)
)

∂ǫ∗(k
′)

ǫ∗(k) ǫ∗(k
′) AS

k,k′ ,

K = −
2

dT

∫

dk

(2π)d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)
ǫ∗(k)

2
∣

∣v∗(k)
∣

∣

2

+
2

dT

∫

dk dk′

(2π)2d
∂f

(

ǫ∗(k)
)

∂ǫ∗(k)

∂f
(

ǫ∗(k
′)
)

∂ǫ∗(k
′)

ǫ∗(k) ǫ∗(k
′)v∗(k) · v∗(k

′) fS
k,k′ .

The first term on the right hand side of both equations
is linear in temperature T . Conversely, the second terms
give a finite contribution at low T only upon expanding
AS

k,k′ and fS
k,k′ in ǫ∗(k) and ǫ∗(k

′), as well as including
higher order corrections in the heat vertex as obtained
through the Ward-Takahashi identity. All those correc-
tions yield at first sight terms of order T 3. In reality, the
expansion is not regular. For instance, the corrections
to the linear term of the specific heat are actually of or-
der T d [42, 43], with logarithmic corrections in d = 3,
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T 3 ln 1/T . Nonetheless, at leading order in T only the
first terms contribute, and thus

Cv ≃
2π2

3
T ρ∗ , K ≃ Cv

v2∗
d

, (9)

where

ρ∗ ≡

∫

dk

(2π)d
δ
(

ǫ∗(k)
)

, (10)

is the quasiparticle density of states at the chemical po-
tential, and

v2∗ ≡
1

ρ∗

∫

dk

(2π)d
δ
(

ǫ∗(k)
) ∣

∣v∗(k)
∣

∣

2
. (11)

Mott insulators with a Luttinger surface – Let us now
consider a hypothetical model that has only a Luttinger
surface in the Brillouin zone, with finite quasiparticle
density of states at the chemical potential, ρ∗ 6= 0 in
Eq. (10). Since quasiparticles at the Luttinger surface
are invisible in the single-particle density of states and in-
compressible [39], the system describes a non-symmetry
breaking Mott insulator that may only occur at half-
filling in a single-band model.
In a Mott insulator with localised electrons, we expect
that fk↑,k′↑ ≃ 0, which implies fS

k,k′ ≃ −fA
k,k′ and

AS
k,k′ ≃ −AA

k,k′ . However, for the system to be a charge
insulator, we need to impose that the compressibility χN

and charge Drude weight DN in Eq. (6) vanish, which
implies, through Eq. (7), that AS(k) = 1 plus a correc-
tion that averages to zero on the Luttinger surface, as
well as that the flux of vS(k) out of the Luttinger sur-
face is zero. In turn, since AA(k) ≃ −AS(k) = −1 and
vA(k) ≃ 2v∗(k)−vS(k), then, through Eqs. (6) and (11),
the spin susceptibility χM and Drude weight DM become
simply

χM ≃ 4ρ∗ , DM ≃
4

d
ρ∗ v

2
∗ . (12)

Comparing (12) with (9), we find that the Wilson ratio,
which measures the effective correlation strength, is

RW =
π2T

3Cv
χM ≃ 2 . (13)

Therefore, a Landau Fermi liquid characterised by a
Luttinger surface without Fermi pockets may indeed
have charge properties of an insulator, while spin and
thermal ones of a metal, in that not dissimilar from a
spin-liquid insulator with gapless spinons.
We mention that conventional Fermi liquids often do
not survive down to T = 0, since they may encounter
an instability at Tc > 0 towards a different phase that,
most of the times, breaks symmetries and opens gaps

in the quasiparticle spectrum. Well known examples
are the superconducting and superfluidity instabilities
in normal metals and 3He, respectively. A Fermi liquid
description of such an instability is justified when
quasiparticles have already reached quantum degeneracy
at Tc, which implies that Tc must be much smaller than
the quasiparticle Fermi energy ǫF .
Similarly, we cannot exclude that also quasiparticles at
a Luttinger surface, the gapless spinons, may become
unstable at Tc ≪ ǫF towards, e.g., a magnetically
ordered phase, and eventually acquire a gap. In this
case, which presumably corresponds to highly frustrated
magnets, the above Fermi liquid properties would still
be observable for Tc ≪ T ≪ ǫF . On the contrary, if
Tc ∼ ǫF , likely the case of unfrustrated magnets, the
quantum degenerate behaviour of quasiparticles at the
Luttinger surface cannot set in before the instability.

Quantum oscillations – The next relevant question to be
addressed is whether quasiparticles at a Luttinger surface
contribute to quantum oscillations in a magnetic field B.
On one hand, the semiclassical approach to the de Haas-
van Alphen (dAvH) effect by Lifshitz and Kosevich [44],
which just relies on the existence of quasiparticles, would
suggest a positive answer. However, the vanishing Drude
weight implies, through (6) and (7), that

0 = −

∫

dk
∂f

(

ǫ∗(k)
)

∂k
· vS(k)

=

∫

dk f
(

ǫ∗(k)
)

∇k · vS(k)

=

∫

dk f
(

ǫ∗(k)
)

Tr
(

m̂c(k)
−1

)

,

where m̂c(k) is the cyclotron mass tensor as it emerges
from the Landau-Boltzmann transport equation. Con-
sidering, for simplicity, an isotropic m̂c(k) = mc(k) Î ,
it follows that vanishing Drude weight is equivalent to
vanishing 1/mc(k), or, equivalently, vanishing cyclotron
frequency, once integrated over the volume enclosed by
the Luttinger surface. That hints at the absence of quan-
tum oscillations, in contrast to the previous observation.

To resolve this issue, we resort to Luttinger’s theory of
the de Haas-van Alphen effect in interacting electron sys-
tems [45]. Luttinger showed that the leading oscillatory
part of the free energy derives from

∆Fosc = −T
∑

ǫ

eiǫ0
+

Tr ln
(

iǫ− Ĥ0 − Σ̂(iǫ)
)

, (14)

where Ĥ0 is the non-interacting Hamiltonian, which in-
cludes the static and uniform magnetic field B, repre-
sented in a generic basis of single particle wavefunctions.
The self-energy matrix Σ̂(iǫ) in (14) must include any
polynomial in B but not oscillatory terms in 1/B [45].



4

In matrix notations, we now define

Ẑ(ǫ)−1 ≡ 1−
Im Σ̂(ǫ)

ǫ
,

which is a positive-definite matrix with eigenvalues ≥ 1,
and the hermitian matrix

Ĥ∗(ǫ) =

√

Ẑ(ǫ)
(

Ĥ0 +Re Σ̂(iǫ)
)

√

Ẑ(ǫ) .

With these definitions that generalise (3) and (5), the
free energy component (14) becomes

∆Fosc = −T
∑

ǫ

eiǫ0
+

Tr ln
(

iǫ− Ĥ∗(ǫ)
)

+ T
∑

ǫ

eiǫ0
+

Tr ln Ẑ(ǫ)

≡ ∆F (1)
osc +∆F (2)

osc .

(15)

In conventional Fermi liquids, where Ẑ(0) has no null

eigenvalue, the first term, ∆F
(1)
osc , is the only that con-

tributes and yields the Lifshitz and Kosevich theory of
the dHvA effect, as shown by Luttinger [45]. Indeed, in
the semiclassical limit, Ĥ∗(ǫ) becomes the representation
in the chosen basis of the operator ǫ∗

(

ǫ,K(r)
)

, Eq. (5)
with k replaced by

K(r) = −i~
∂

∂r
+

e

2c
B ∧ r , (16)

and thus

∆F (1)
osc ≃ −T

∑

ǫ

eiǫ0
+

Tr ln
(

iǫ− ǫ∗
(

K(r)
)

)

. (17)

After that, one can simply follow Lifshitz and Kose-
vich [44] and derive the expression of the dHvA oscil-
lations.
However, in the present case of a Luttinger surface, also

∆F
(2)
osc in (15) may contribute since Ẑ(ǫ) has zero eigen-

values at ǫ = 0. To assess their role, we note that Ẑ(ǫ) in
the semiclassical limit is the representation of the opera-
tor Z

(

ǫ,K(r)
)

, i.e., of Z(ǫ,k) in Eq. (3) with k → K(r).

Moreover, the contribution of ∆F
(2)
osc to quantum oscil-

lations only derives from the region around the zeros of
Z(ǫ,k) [46], i.e., small ǫ and k close to the Luttinger
surface. In that region, we can write, without loss of
generality and consistently with the analytic assumption,
that [38, 47]

Σ(iǫ,k) ≃
ǫ→0

∆(k)2

iǫ− E(k)
, (18)

where kL : E(kL) = 0 defines the Luttinger surface pro-

vided ∆(kL) 6= 0, so that, for ǫ ≃ 0 and k ≃ kL,

Z(ǫ,k) =
ǫ2 + E(k)2

ǫ2 + E(k)2 +∆(k)2

≃
ǫ2 + E(k)2

∆(k)2
,

ǫ∗(ǫ,k) =
ǫ(k)

(

ǫ2 + E(k)2
)

− E(k)∆(k)2

ǫ2 + E(k)2 +∆(k)2

≃ −E(k) ,

(19)

which, as anticipated, are analytic. Therefore,

Z
(

ǫ,K(r)
)

≃ ǫ2 + ǫ∗
(

K(r)
)2

=
(

iǫ− ǫ∗
(

K(r)
)

)(

− iǫ− ǫ∗
(

K(r)
)

)

,

and, correspondingly,

∆F (2)
osc ≃ T

∑

ǫ

eiǫ0
+

[

ln
(

iǫ− ǫ∗
(

K(r)
)

)

+ ln
(

− iǫ− ǫ∗
(

K(r)
)

)

]

,

(20)

so that, through (17) and (20), Eq. (15) becomes

∆Fosc ≃ T
∑

ǫ

eiǫ0
+

ln
(

− iǫ− ǫ∗
(

K(r)
)

)

≃ −∆F (1)
osc ,

(21)

as can be readily verified following Lifshitz and Kose-
vich [44]. As a result, quasiparticles at the Luttinger
surface of a Mott insulator do yield dHvA oscillations
in the magnetisation −∂∆Fosc/∂B alike conventional
quasiparticles with dispersion ǫ∗(k), apart from a π-shift.

Concluding remarks – Few remarks are now in order.
Conventional theories of spin-liquids [48–54] predict that
a spinon Fermi surface is most likely associated to so-
called U(1) spin liquids, apart from few known excep-
tions [55–58]. In that U(1)-case, the specific heat be-
haves at low temperature as T 2/3 and T ln 1/T in d = 2
and d = 3, respectively [53, 59, 60], and, correspondingly,
κ/T diverges for T → 0 [22]. These thermal properties,
different from the observed ones, challenge the spin-liquid
interpretation. Finite Cv/T and κ/T for T → 0 may be,
for instance, attributed to magnetic impurities, assum-
ing a gapped spin liquid phase lacking a spinon Fermi
surface [26]. However, this explanation implies that also
quantum oscillations are not due to spinons, and thus
that all intriguing thermal and magnetic properties ob-
served in experiments are unrelated to the purported spin
liquid nature of the material, which is a bit disappoint-
ing.
On the contrary, the Fermi liquid properties of a Mott
insulator with a Luttinger surface seem to account for
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all experimental evidences. Nonetheless, the analytic-
ity assumption on the self-energy underlying Landau’s
Fermi liquid theory is evidently incompatible with the
above mentioned non-analytic behaviour of U(1) spin liq-
uids with a spinon Fermi surface. Therefore, either that
analytic behaviour never occurs in physical models, or
Mott insulators with a Luttinger surface realise one of
the above mentioned exceptions [55–58] of spin liquids
with a spinon Fermi surface.
Indeed, an example of a spin liquid with Cv ∼ T is very
well known: the half-filled Hubbard model in one di-
mension. Even though interacting electrons in d = 1
behave as Luttinger liquids [61], their low-frequency,
low-temperature and long-wavelength properties are just
alike conventional Fermi liquids [41, 61, 62], including the
specific heat that, as we mentioned, is obtainable by the
q-limit of the heat-heat response function. In particular,
the half-filled Hubbard model in d = 1 is an insulator
that has a Luttinger surface at k = ±π/2 as well as
gapless spinons that yield a finite spin susceptibility, a
finite Cv/T , apart from corrections vanishing as powers
of 1/ lnT , and a Wilson ratio RW = 2 for T → 0 [63].
That is precisely what our Fermi-liquid analysis predicts.

In conclusion, we have shown that non-symmetry
breaking Mott insulators with a Luttinger surface realise
gapless spin liquids, where the spinons are actually Lan-
dau’s quasiparticles at the Luttinger surface, which thus
provides the rigorous definition of Anderson’s spinon
Fermi surface [32, 33]. These quasiparticles contribute
to thermal and magnetic properties, including quantum
oscillations, just like conventional quasiparticles do,
despite the system is a charge insulator.
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under the European Union’s Horizon 2020 research and
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