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Spin-Orbit Interaction in Carbon Nanotubes
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An effective-mass Hamiltonian is derived for carbon nanotubes in the presence of a weak
spin-orbit interaction. The spin-orbit interaction gives rise to terms corresponding to a kind of a
spin-Zeeman energy due to magnetic fields in the circumference and axis direction. As a result
spin scattering is induced even by spin-independent scatterers.
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§1. Introduction
A carbon nanotube (CN) is composed of concentric

tubes of rolled two-dimensional (2D) graphite sheets, on
which hexagons are arranged in a helical fashion about
the axis.1) The diameter of a multi-wall nanotube ranges
from 20 to 300 Å and that of a single-wall nanotube
lies between 7 and 16 Å.2,3) The maximum length of
nanotubes exceeds 1µm. Since the first discovery quite a
number of studies have been reported on their electronic
properties because of their unique topological structures.
The purpose of this paper is to study effects of a spin-
orbit interaction in a k·p scheme.

Various calculations have been performed to predic-
t energy bands.4−12) Their characteristic properties are
all reproduced quite well in a k·p method.13,14) The k·p
scheme is quite powerful in the study of effects of external
fields such as magnetic and electric fields and of transport
properties. In fact, it has been successful in the study
of magnetic properties including the Aharonov-Bohm ef-
fect on the band gap,15) optical absorption spectra,16,17)

and lattice instabilities in the presence and absence of
a magnetic field.18−20) It has played an important role
also in predicting unique transport properties for scatter-
ers with long21,22) and short-range scatterers23) and for
phonon scattering,24) and those of CN junctions.25−27)

In this paper an effective k·p Hamiltonian is de-
rived by explicitly including a weak spin-orbit interac-
tion present in carbon 2p orbitals. It is shown that the
spin-orbit interaction gives rise to terms corresponding
to effective magnetic fields in the circumference and axis
directions.

§2. Spin-Orbit Interaction
Figure 1 gives a schematic illustration of atomic

2p orbitals in a carbon nanotube. The orbital in the
direction normal to the cylinder surface is denoted as
|zj), that in the direction parallel to the axis as |yj), and
that in the circumference direction as |xj). We choose
the coordinate system (X,Y, Z) as shown in Fig. 1. The
angle θj denotes the direction of the |zj) orbital measured
from the Z direction.

In a two-dimensional graphite, the carbon |xj) and
|yj) orbitals lying in the graphite plane having energy εσ

2p

are lower in energy than the |zj) orbital directed in the

direction perpendicular to the plane having energy επ
2p

because of crystal field effect, i.e., due to the attractive
potential of neighboring carbon atoms. Define επσ =
επ
2p−εσ

2p>0.
The spin-orbit interaction is given by

Hso =
h̄

4m2c2
(�∇V ×p)·�σ, (2.1)

where V (r) is the atomic potential, m is the free-electron
mass, c is the light velocity, p is the momentum operator,
and �σ is Pauli’s spin matrix. Because the spin-orbit
interaction in carbon atoms is known to be small, we
shall consider its effect to the lowest order.
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Fig. 1 A schematic illustration of 2p orbitals in
carbon nanotubes and the coordinate system chosen
in the text. The 2p orbitals localized at rj are
denoted as xj , yj , and zj. The x axis is chosen
in the circumference direction, the y axis in the
axis direction, and z in the direction normal to the
cylinder surface. The three-dimensional coordinates
are given by (X,Y, Z).
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Fig. 2 A schematic illustration of two orbitals
localized at rj and ri. The unit vectors are given
by nj and ni.

Let |θj) and |θ̄j) be the eigen function of n(θj) ·�σ
with eigenvalue +1 and −1, respectively, where n(θj) is
the unit vector in the zj direction defined by

n(θj) = (sin θj , 0, cos θj). (2.2)

Then, in the lowest order perturbation theory, the wave-
function |zj θj〉 in the presence of a spin-orbit interaction
is given by

|zj θj〉 ≈ |zj θj) + |xj θ̄j)
(xj θ̄j |Hso|zjθj)

επσ

+ |yj θ̄j)
(yj θ̄j |Hso|zjθj)

επσ
,

(2.3)

where |zjθj), etc. denote states in the absence of a spin-
orbit interaction. We have

(xj θ̄j |Hso|zj θj) = −1
3
∆,

(yj θ̄j |Hso|zj θj) = − i
3
∆,

(2.4)

with

∆ = i
3h̄

4m2c2

(
xj

∣∣∣∂V
∂x

py− ∂V

∂y
px

∣∣∣yj

)
. (2.5)

Therefore, we have

|zj θj〉 ≈ |zj θj)− δ|xj+iyj θ̄j), (2.6)

with

δ =
1
3
∆
επσ

. (2.7)

Similarly, we have

|zj θ̄j〉 ≈ |zj θ̄j) + δ|xj−iyj θj). (2.8)

Let |↑) and |↓) be the spin function for up and down
states in the Z direction, respectively. Then, we have

|θj) = + cos
θj

2
|↑) + sin θj

2
|↓),

|θ̄j) = − sin θj

2
|↑) + cos θj

2
|↓),

(2.9)

or

|zj ↑〉 = cos θj

2
|zj θj〉 − sin θj

2
|zj θ̄j〉,

|zj ↓〉 = sin θj

2
|zj θj〉+ cos θj

2
|zj θ̄j〉.

(2.10)

Therefore, we have

|zj ↑〉 = |zj ↑) + iδ sin θj |y ↑)− δ
(|xj ↓)+i cos θj |yj ↓)),

|zj ↓〉 = |zj ↓)− iδ sin θj |y ↓) + δ
(|xj ↑)−i cos θj |yj ↑)).

(2.11)
The same result can be obtained with the use of σxj =
σX cos θj−σZ sin θj , σyj=σy=σY , and σzj=σX sin θj+
σZ cos θj , where (σxj , σyj , σzj) is the spin matrix in the
coordinate system (xj , yj , zj) and (σX , σY , σZ) is that in
(X,Y, Z).

Consider the transfer integral for orbits φi localized
at Ri and φj localized at Rj , where φ=x, y, or z. Let
n(φj) be a unit vector in the direction of the orbital φj .
Then, we have

(φi|V |φj) =
(
n(φi)‖,n(φj)‖

)
V σ

pp+
(
n(φi)⊥,n(φj)⊥

)
V π

pp,

(2.12)
where V σ

pp and V π
pp are the transfer integral for σ and π

orbitals, respectively, in a flat 2D graphite, n(φj)‖ is the
projection of n(φj) onto the vector Rji =Rj −Ri, and
n(φj)⊥ is the projection onto a plane perpendicular to
Rji, as shown in Fig. 2. We have

n(φj)‖ =

(
Rji,n(φj)

)
(Rji,Rji)

Rji, (2.13)

and

n(φj)⊥ = n(φj)−
(
Rji,n(φj)

)
(Rji,Rji)

Rji. (2.14)

Consequently, we have

(φi|V |φj) =
(
n(φi),n(φj)

)
V π

pp

+

(
n(φi),Rji

)(
n(φj),Rji

)
(Rji,Rji)

(V σ
pp−V π

pp).

(2.15)
The transfer integral for a spin-flip process is given

by

〈zi ↑ |V |zj ↓〉 ≈ δ
[
(zi|V |xj)− (xi|V |zj)

− i( cos θj(zi|V |yj)−cos θi(yi|V |zj)
)]

.
(2.16)

First, we consider

(zi|V |xj) =
(
n(zi),n(xj)

)
V π

pp

+

(
n(zi),Rji

)(
n(xj),Rji

)
(
Rji,Rji

) (V σ
pp−V π

pp).

(2.17)
Explicitly, we have(

n(zi),n(xj)
)
= sin(θi−θj),(

n(zi),Rji

)
= R

[
cos(θi−θj)−1

]
,(

n(xj),Rji

)
= −R sin(θi−θj),

(2.18)

where R is the diameter of CN and (Rji,Rji)=(1/3)a2

for nearest neighbor pairs with a being the lattice con-
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stant. Therefore, we have

(zi|V |xj) = V π
pp sin(θi−θj)

+ (V σ
pp−V π

pp)
3R2

a2
sin(θi−θj)[1−cos(θi−θj)].

(2.19)
Similarly, (xi|V |zj)=−(zi|V |xj).

Next, we consider

(zi|V |yj) =
(
n(zi),n(yj)

)
V π

pp

+

(
n(zi),Rji

)(
n(yj),Rji

)
(
Rji,Rji

) (V σ
pp−V π

pp),

(2.20)
for which(

n(zi),n(yj)
)
= 0,(

n(zi),Rji

)
= R

[
cos(θi−θj)−1

]
,(

n(yj),Rji

)
= Yji,

(2.21)

with Yji=Yj−Yi. This gives

(yi|V |zj) = −(V σ
pp−V π

pp)
3RYij

a2
[1−cos(θi−θj)]. (2.22)

Similarly, (zi|V |yj) = −(yi|V |zj). Therefore, the final
result is given by

〈zi ↑ |V |zj ↓〉 = δ
(
+ 2V π

pp sin(θi−θj)

+ 2(V σ
pp−V π

pp)
3R2

a2
sin(θi−θj)[1−cos(θi−θj)]

− i(V σ
pp−V π

pp)(cos θi+cos θj)
3RYij

a2
[1−cos(θi−θj)]

)
.

(2.23)
In a completely similar manner,

〈zi ↓ |V |zj ↑〉 = δ
(
− 2V π

pp sin(θi−θj)

− 2(V σ
pp−V π

pp)
3R2

a2
sin(θi−θj)[1−cos(θi−θj)]

− i(V σ
pp−V π

pp)(cos θi+cos θj)
3RYij

a2
[1−cos(θi−θj)]

)
.

(2.24)
For a non-spin-flip matrix element, we have

〈zi ↑ |V |zj ↑〉 ≈ (zi|V |zj)

− iδ( sin θi(yi|V |zj)−sin θj(zi|V |yj)
)
,

(2.25)
which gives

〈zi ↑ |V |zj ↑〉 = V π
pp cos(θi−θj)

− (V σ
pp−V π

pp)
3R2

a2
[1−cos(θi−θj)]2

+ iδ (V σ
pp−V π

pp)(sin θi+sin θj)
3RYij

a2
[1−cos(θi−θj)].

(2.26)
Similarly,

〈zi ↓ |V |zj ↓〉 = V π
pp cos(θi−θj)

− (V σ
pp−V π

pp)
3R2

a2
[1−cos(θi−θj)]2

− iδ (V σ
pp−V π

pp)(sin θi+sin θj)
3RYij

a2
[1−cos(θi−θj)].

(2.27)
First, we shall completely neglect terms of the order

(a/R)2, which are spin independent and given by

〈ziσ|V |zjσ〉′ = V π
pp[cos(θi−θj)−1]

− (V σ
pp−V π

pp)
3R2

a2
[1−cos(θi−θj)]2.

(2.28)

Effects of these terms will be discussed in §5. Then, we
have

〈zi ↑ |V |zj ↑〉 = V π
pp

+ iδ (V σ
pp−V π

pp)(sin θi+sin θj)
3RYij

a2
[1−cos(θi−θj)].

(2.29)
and

〈zi ↓ |V |zj ↓〉 = V π
pp

− iδ (V σ
pp−V π

pp)(sin θi+sin θj)
3RYij

a2
[1−cos(θi−θj)].

(2.30)

§3. Effective-Mass Equation

The lattice structure of a 2D graphite is shown in
Fig. 3 together with the first Brillouin zone. A unit cell
contains two carbon atoms denoted as A and B. In a
2D graphite, two bands having approximately a linear
dispersion cross the Fermi level (chosen at ε=0) at K and
K’ points of the first Brillouin Zone. The wave vectors of
the K and K’ points are given by K=(2π/a)(1/3, 1/

√
3)

and K ′=(2π/a)(2/3, 0).
For states in the vicinity of the Fermi level ε=0 of

the 2D graphite, we assume that the total wavefunction
is written as

ψAσ(R) = exp(iK ·R)FK
Aσ(R) + e

iη exp(iK ′ ·R)FK′
Aσ (R),

ψBσ(R) =− ωeiη exp(iK ·R)FK
Bσ(R)

+ exp(iK ′ ·R)FK′
Bσ(R),

(3.1)
in terms of the slowly-varying envelope functions FK

Aσ,
FK

Bσ, F
K′
Aσ , and FK′

Bσ, with η being the chiral angle be-
tween the chiral vector L = naa+nbb and the x′ axis
fixed on the graphite plane, where na and nb are inte-
gers, and a and b (|a|= |b|=a) are primitive translation
vectors, as shown in Fig. 3(a).

In the nearest-neighbor tight-binding approxima-
tion, the equation of motion for an up-spin electron at a
carbon A site is given by

εψA↑(RA) =
∑
RB

[
V (RA ↑;RB ↑)ψB↑(RB)

+V (RA ↑;RB ↓)ψB↓(RB)
]
,

(3.2)

with

V (RA ↑;RB ↑) = Vπ

+ 2iδ (V σ
pp−V π

pp) sin θ(R)
3R
2a2

(RAB ·t)
(RAB ·l

R

)2

,

V (RA ↑;RB ↓) = 2δ
[
V π

pp

RAB ·l
R

+ (V σ
pp−V π

pp)
3R2

2a2

(RAB ·l
R

)3

− i(V σ
pp−V π

pp) cos θ(R)
3R
2a2

(RAB ·t)
(RAB ·l

R

)2]
,

(3.3)
where terms of the order (a/R)0 and (a/R)1 have been
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Fig. 3 (a) Lattice structure of two-dimensional graphite sheet, L is the chiral vector and η is the chiral angle.
The coordinates (x′, y′) are fixed onto the graphite sheet and (x, y) are chosen in such a way that x is along the
circumference of a nanotube and y is along the axis. (b) The first Brillouin zone and K and K’ points. (c) The
coordinates for a nanotube in the presence of a magnetic flux φ.

retained,

θ(R) =
1
2
[θ(RA) + θ(RB)] ≈ θ[(RA+RB)/2], (3.4)

RAB = RA − RB = �τl (l = 1, 2, 3) denotes a vector
connecting neighboring A and B atoms as shown in Fig.
3(a), and l = (cos η, sin η) and t = (− sin η, cos η) are
a unit vector in the circumference and axis direction,
respectively.

The effective-mass equation in the presence of a
spin-orbit interaction can be derived from the above
tight-binding equation in a manner completely similar
to that in previous papers.14,20,21) First, we substitute
eq. (3.1) into eq. (3.2) and use

∑
l

e−iK·�τl ( τx
l τy

l ) =
√
3
2

ω−1a (+i +1 ) ,

∑
l

e−iK′·�τl ( τx
l τy

l ) =
√
3
2

a (−i +1 ) ,

(3.5)

and
∑

l

e−iK·�τl ( (τx
l )

3 (τx
l )

2τy
l τx

l (τ
y
l )

2 (τy
l )

3 )

=
ω−1

8
a3

(
+i

√
3 +

1√
3
+
i√
3
+
√
3
)

,

∑
l

e−iK′·�τl ( (τx
l )

3 (τx
l )

2τy
l τx

l (τ
y
l )

2 (τy
l )

3 )

=
1
8
a3

(
−i√3 +

1√
3

− i√
3
+
√
3
)

.

(3.6)

Then, the slowly-varying nature of the envelope func-
tions leads to

εFK
A↑(r) = γ(k̂x−ik̂y)FK

B↑(r)

− iδγ′

4R
sin θ(r)FK

B↑(r) +
( iδγ′

4R
cos θ(r)+

2iδγp
R

)
FK

B↓(r),

εFK′
A↑ (r) = γ(k̂x+ik̂y)FK′

B↑ (r)

+
iδγ′

4R
sin θ(r)FK

B↑(r)−
( iδγ′

4R
cos θ(r)− 2iδγp

R

)
FK

B↓(r),

(3.7)
with k̂x=∂/i∂x, k̂y=∂/i∂y, and

γ = −
√
3
2

V π
ppa,

γ′ =
√
3
2
(V σ

pp−V π
pp)a,

p = 1− 3
8
γ′

γ
,

(3.8)

where R describing discrete lattice points has been re-
placed by continuous coordinate r = (x, y). A similar
equation can be obtained for a down spin and we have

εFK
A (r) = γ(k̂x−ik̂y)FK

B (r)

+
( iδγ′

4R
[
σX cos θ(r)−σZ sin θ(r)

]− 2δγp
R

σy

)
FK

B (r),

εFK′
A (r) = γ(k̂x+ik̂y)FK′

B (r)

−
( iδγ′

4R
[
σX cos θ(r)−σZ sin θ(r)

]
+
2δγp
R

σy

)
FK′

B (r),

(3.9)
where

FK
A (r) =

(
FK

A↑(r)
FK

A↓(r)

)
, FK

B (r) =
(

FK
B↑(r)

FK
B↓(r)

)
, (3.10)

and

FK′
A (r) =

(
FK′

A↑ (r)
FK′

A↓ (r)

)
, FK′

B (r) =
(

FK′
B↑ (r)

FK′
B↓ (r)

)
.

(3.11)
With the use of

σx(r) = σX cos θ(r)− σZ sin θ(r), (3.12)
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these can be rewritten as

εFK
A (r) = γ(k̂x−ik̂y)FK

B (r)

+
( iδγ′

4R
σx(r)− 2δγp

R
σy

)
FK

B (r),

εFK′
A (r) = γ(k̂x+ik̂y)FK′

B (r)

−
( iδγ′

4R
σx(r)+

2δγp
R

σy

)
FK′

B (r).

(3.13)

Similar equations can be obtained for envelopes FK
B and

FK′
B and the resulting effective-mass equation is written
as

HF K(r) = εF K(r), H′F K′
(r) = εF K′

(r), (3.14)

where the matrix-Hamiltonian is written as

H =


 0 γ(k̂x−ik̂y)+

iδγ′

4R
σx(r)− 2δγp

R
σy

γ(k̂x+ik̂y)− iδγ
′

4R
σx(r)− 2δγp

R
σy 0


 ,

(3.15)
for the K point and

H′ =


 0 γ(k̂x+ik̂y)− iδγ

′

4R
σx(r)− 2δγp

R
σy

γ(k̂x−ik̂y)+
iδγ′

4R
σx(r)− 2δγp

R
σy 0


 ,

(3.16)
for the K’ point.

This effective-mass equation has been derived based
on a simple tight-binding model with a single pz orbital
at each carbon atom. In the tight-binding model, the
realistic values of the parameters are Vπ ∼ −3 eV and
Vσ ∼ 5 eV, i.e., γ0 = −Vπ ∼ 3 eV and γ1 = Vσ −Vπ ∼ 8
eV, which gives γ′/γ ∼ 8/3 and |p|<∼ 0.1. However, the
effective-mass equation itself is likely to be much more
general if δ and p as well as γ and γ′ are regarded as
parameters to be determined experimentally rather than
given by eqs. (2.7) and (3.8).

§4. Energy Levels and Spin Scattering
In the absence of the spin-orbit interaction, i.e.,

δ = 0, the energy levels with wave vector k in the axis
direction in the vicinity of the K point is given as

εs
νϕ(n, k) = sγ

√
κνϕ(n)2+k, (4.1)

with

κνϕ(n) =
2π
L

(
n+ϕ− ν

3

)
, (4.2)

where L= |L|, n is an integer, ν=0 and ±1 for a metal-
lic and semiconducting CN, respectively, ϕ= φ/φ0 is a
magnetic flux passing through the CN cross section mea-
sured in units of the flux quantum φ0=ch/e, and s=+1
and −1 for conduction and valence bands, respectively.
The corresponding wave functions are written as

F K
snk(r) = F K

snk

1√
AL

exp[iκνϕ(n)x+iky], (4.3)

with

F K
snk =

1√
2

(
bνϕ(n, k)

s

)
, (4.4)

and

bνϕ(n, k) =
κνϕ(n)−ik√
κνϕ(n)2+k2

, (4.5)

where A is the length of the nanotube.
The spin-orbit term proportional to σx(r) varies s-

patially like exp(+2πix/L) or exp(−2πix/L) as a func-
tion of x in the circumference direction and its expecta-
tion value for states with same n vanishes. Therefore, its
effect can be neglected to the lowest order. When this
term is ignored completely, the motion for an electron
with σ=+1 and that for σ=−1 are completely decou-
pled, where σ=+1 is the state with spin in the positive
y direction parallel to the axis and σ = −1 that in the
negative y direction. The spin-orbit term corresponds to
a change of k̂x into k̂x−(2δγp/R)σ, which is equivalen-
t to the presence of an Aharonov-Bohm magnetic flux
φso = −2δσpφ0 passing through the CN cross section.
The energy levels can be obtained by replacing κνϕ(n)
by κνϕσ(n) with

κνϕσ(n) =
2π
L

(
n+ϕ− ν

3
−2δpσ

)
. (4.6)

For a metallic nanotube (ν = 0) in the absence of
a magnetic flux (ϕ = 0), a small energy gap given by
εso

G =8πδγ|p|/L opens up but no spin-splitting is present
for the band n = 0. This gap gives rise to a weak
backward scattering even by a slowly-varying potential
in contrast to the case in the absence of a spin-orbit
interaction.21,22) In other cases, the spin-orbit term gives
rise to a small spin splitting because |κνφσ(n)| depends
on the spin σ. The fact that the Hamiltonian is separable
into that with σ = +1 and −1 shows that there is no
spin scattering for scatterers having spin-independent
potential. In fact, an electron with spin σ=+1 cannot
be scattered into a state with spin σ = −1 and vice
versa. On the other hand, a spin having its component
perpendicular to the axis undergoes a precession due to
the “effective magnetic field” in the axis direction.

Spin scattering can be induced if the term propor-
tional to σx(r) is included. In the representation where
σy is diagonalized,

σx(r) =
(

0 exp(−2πix/L)
exp(+2πix/L) 0

)
. (4.7)

Therefore, the lowest order perturbation theory gives

F K
snk↑(r) = F K

snk(r)χ↑ +
∑
s′

F K
s′n+1k(r)χ↓

× −iδγ′

8R
s′bνϕ(n, k)−sbνϕ(n+1, k)∗

εs
νϕ(n, k)−εs′

νϕ(n+1, k)
,

(4.8)

and

F K
snk↓(r) = F K

snk(r)χ↓ +
∑
s′

F K
s′n−1k(r)χ↑

× −iδγ′

8R
s′bνϕ(n, k)−sbνϕ(n−1, k)∗
εs

νϕ(n, k)−εs′
νϕ(n−1, k)

,

(4.9)

where χ↑ and χ↓ are the spinor functions for σ=1 and
−1, respectively, and a small corrections in the energy
denominator due to the spin-orbit term proportional to
σy have been completely neglected. This mixing between
different bands again leads to a weak backward scattering
even by a slowly-varying potential. In fact, the matrix
element for scattering from k+ = +k with σ = +1 to
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Fig. 4 A schematic illustration of effective magnet-
ic fields for the electron spin induced by a spin-orbit
interaction. A circular current induced at each car-
bon atom leads to nonvanishing angular momenta
〈lx〉 ∝ Bx and 〈ly〉 ∝ By in the circumference and
axis directions.

k− =−k with σ=−1 in the band n= 0 in the metallic
case in the absence of a magnetic flux is calculated as
V (2π/L, 2k)(−iδγ′/2γ) for k�2π/L, with

V (2π/L, 2k) =
∫
dxdy
AL

V (r) exp
(2πix

L
+2iky

)
, (4.10)

where V (r) is the impurity potential. This backward s-
cattering gives rise to a small spin relaxation. A similar
spin relaxation process is possible for short-range scat-
terers, which induces backward scattering even in the
absence of a spin-orbit interaction.

Quite recently, a spin-dependent conductance was
measured in nanotubes and a lower bound of the spin
diffusion length was estimated to be ∼ 2500 Å.28) The
present theory shows that this small diffusion length may
be explained by the spin-orbit interaction. The actual
estimation is difficult in the absence of the information
on the nature of scatterers in experimental samples.

§5. Discussion
In an isotropic atom, the spin-orbit interaction is

usually written as Hso=λ(l·s), where l is the orbital an-
gular momentum and s=�σ/2 is the spin angular momen-
tum. Because of a nonzero curvature and thickness of
the nanotube, a circular current is induced around each
carbon atom in the circumference (〈lx〉 ∝ Bx) and axis
(〈ly〉 ∝By) direction as schematically illustrated in Fig.
4, where Bx and By are effective magnetic fields. Such
circular currents should vanish for states at the Γ point
of a 2D graphite due to symmetry, but can be nonzero
for states at K and K’ points away from the Γ point.
This is likely to be the origin of the term proportional to
σx and σy in the effective Hamiltonian, although situa-
tions are actually more complicated because such terms
appear in off-diagonal elements. The spin-orbit term in
the k·p Hamiltonian vanishes in the limit of a/R → 0,
i.e., in the limit of 2D graphite, and therefore is different

from those discussed previously for bulk graphite.29)

The parameter δ=∆/3επσ describing the strength
of the spin-orbit interaction should be determined by ex-
periments because its exact estimation is quite difficult.
This is because the spin-orbit parameter ∆ is not known
in graphite and because the simple tight-binding mod-
el used in the present paper is not so accurate and can
describe the band structure only qualitatively. In fact,
in simple tight-binding models επσ is usually neglected
completely.

Nevertheless, we may be able to provide a very
rough estimation of δ as follows: We first assume that
∆ is not much different between graphite and diamond
and use ∆≈6 meV obtained in diamond.30) Next επσ is
assumed to be of the order of a few electron volts smaller
than the difference between the π bands and σ bands in
2D graphite, of the order of ∼ 10 eV.31) Then, we have
10−3 <∼ δ <∼ 10−2. Note, however, that this estimation is
too sensitive to that of επσ and is likely to be quite
inappropriate.

So far, we have neglected terms of the order of
(a/R)2 completely. Largest effects arise from the cor-
rection given by eq. (2.28). Its effect can be calculated
in a similar manner and leads to a term corresponding
to the replacement

k̂x−ik̂y → k̂x−ik̂y ± γa

4
√
3R2

[(
1− γ′

2γ

)
e+3iη+

γ′

8γ
e−3iη

]
,

k̂x+ik̂y → k̂x+ik̂y ± γa

4
√
3R2

[(
1− γ′

2γ

)
e−3iη+

γ′

8γ
e+3iη

]
,

(5.1)
in the effective Hamiltonian given by eqs. (3.15) and
(3.16), where the upper sign corresponds to the K point
and the lower sign to the K’ point. The extra term
causes a shift in the origin of k̂x and k̂y by ∆kx and
∆ky, respectively, where

∆kx = ∓ a

4
√
3R2

(
1− 3

8
γ′

γ

)
cos 3η,

∆ky = ∓ a

4
√
3R2

(5
8
γ′

γ
−1

)
sin 3η.

(5.2)

The shift ∆kx leads to an opening of a small band
gap for nanotubes with a small diameter except in the
armchair case (η = π/6). This gap is expected to be very
small because γ′/γ ∼ 8/3 as mentioned in a previous
section. In armchair nanotubes, ∆ky gives rise to a
shift of the wave vector corresponding to ε = 0, for
example, from k = 2π/3a to k = (2π/3a) +∆k with
∆k = −a/4

√
3R2[(5/8)(γ′/γ)−1]. The wave vector is

shifted to the direction of the Γ point for γ′/γ∼8/3.
Several first-principles calculations were reported on

the band structure of nanotubes, which seems to show
that the shift is quite sensitive to details of methods.
In fact, Hamada et al4) gave ∆k<0 for (na, nb)=(12, 6)
(so-called (6,6) armchair nanotube) and Mintmire et al5)

gave ∆k > 0 for (na, nb) = (10, 5) (so-called (5,5) tube).
Actually, mixing between π and σ orbitals should also be
considered when we discuss curvature effects of the order
(a/R)2. Results of ∆kx and ∆ky which can be obtained
by putting γ′=0 in eq. (5.2) were derived,32) but effects
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of more important V σ
pp were completely neglected in this

calculation.

§6. Summary and Conclusion

An effective-mass Hamiltonian has been derived for
carbon nanotubes in the presence of a weak spin-orbit
interaction. The spin-orbit interaction introduces terms
corresponding to effective magnetic fields in the circum-
ference and axis directions giving rise to a kind of a spin-
Zeeman energy. Because of such terms scatterers with a
long-range potential induce a weak backward scattering
in metallic nanotubes in which they do not cause any
backscattering in the absence of a spin-orbit interaction.
As each energy becomes no longer a spin eigen-state,
such impurity scattering causes spin relaxation.
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