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General formulae of the second order perturbation energies due to the tensor force are 

given in the case of the closed shell+one nuclei, and useful formulae for calculating the 

two-body matrix elements are also derived. Using these formulae, the D-state doublet 

splitting in 0 17 is estimated and it is found that about a half of the observed value is ex­

plained in terms of the second order effect of the tensor force as in the case of Re5 and N15. 

§ 1. Introduction 

In the preceding paper [IJ/) one of the authors (T.T.) has estimated the 

second order effect of the tensor force on the spin-orbit splitting of ReO and N/5 

using the meson theoretic potential and a phenomenological Serber one with a 

strong tensor part. 

In this paper general formulae for the second order perturbation energy due 

to the tensor force are given in the case of the closed shell + one nuclei, and also 

useful formulae for calculating the two-body matrix elements are derived. These 

formulae are adopted for estimating the D-state doublet splitting of 0 17 due to the 

tensor force. It is found that the strong two-body tensor force can qualitatively 

explain the origin of the one-body spin-orbit force in the nuclear shell model, but 

quantitatively this force gives about a half of the observed value of the doublet 

splitting. It is mainly because the deformation of the closed shell core induced 

by the mutual tensor interaction among the core-nucleons is affected by the presence 

of the outmost nucleon so as to satisfy the Pauli principle. This situation is the 

same as in [I]. 

In § 2, the general formulae giving the second order effect of the tensor force 

are derived in the nuclei of the zeroth order configuration, closed shell (in LS­

coupling sense) +one nucleon. In § 3, assuming the average field to be a harmonic 

oscillator well as in [IJ, the two-body wave functions are transformed into the 

wave functions in the system of the relative and the centre of mass coordinate. 

* Now at Argonne National Laboratory, Lemont, Illinois, U. S. A. 

** Now at Department of Nuclear Physics, Japan Atomic Energy Research Institute, Tokai-mura, 

Ibaraki -ken. 
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116 A. A_rima and T. Terasawa 

And formulae for the transformation coefficients are obtained when the state of 

the centre of mass coordinate is (Is), (lp) , (ld) and (2s). Also, the recursion 

formula for the transformation coefficients is derived. The second order effect of 

the tensor force on the doublet splitting in 0 17 is calculated numerically in § 4, 

and the discussions are given in §5. 

§ 2. The second order effect of the tensor force 

Throughout the present paper, the nuclei of the zeroth order configuration, 

closed shell + one nucleon, are treated. In these nuclei the first order perturbation 

energies due to the tensor force vanish. Therefore, we have computed the second 

order perturbation effect of the tensor force. 

The zeroth order shell model wave functions for these nuclei are given in the 

LS-coupling scheme as follows, 

¢o= I (nlll)BI1+4(000) (n2 12 ) B12+4 (000) ... (nk lk) B1lc+4 (OOO)nl, T=HT.)S=iL=I; JM) 

(2·1) 

where (000) means all of the resultant isotopic spin T, ordinary spin S and angular 

momentum L are zero, and nl1h "', nlc1k are principal and azimuthal quantum numbers 

of the closed shells respectively and nl those of the outmost nucleon. The excited 

configurations ¢.,., which can mix with the shell model wave function (2 ,I) in 

the first order perturbation, must not have more than two single particle orbitals 

different from the configuration (2,1). Furthermore, only the excited states which 

have the total spin S=3/2 or 5/2 can have the non-vanishing matrix elements 

of the tensor interaction with the shell model wave function (2 ·1). 

Now, the second order perturbation energy due to the tensor force is expressed 

as follows, 

LlE= ::E' I(¢nl Vpl¢oW , 
" Eo-En 

(2·2) 

where Eo and En are the energies of the zeroth order state and of the excited state 

n, respectively. The tensor potential, Vp=::E vp(ri,i)' is written as 
i>j 

(2·3) 

where a and b are constants, To(, the isotopic spin operator, V(r';j) the radial part 

of the potential and Sij=3(CFo(,·ro(,j) (CF;·r,;,;)/ri;- (U"CFJ ), with the Pauli spin operator 

CF.". In the following computation, it may be convenient to rewrite Sij V(r"',i) as 

(2 -4) 

where S;:) is _ LUi X U jJ;!) and L<;') is proportional to the product of V (r) and the 

spherical harmonics Y2", ((j, ~), in which (r, (j, ~) are the relative coordinates 

between the particles i and j. • Through the usual method, the matrix element of 

the tensor potential becomes 
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Spin-Orbit Splitting and Tensor Force. II 117 

<TS'L'; JI VpITSL; J)= (- )SI-L+JW(S' L'SL ; J2)<S' L'IIS(2)·V2)IISL) (/iT(T) , 

(2·5) 

where T, S and L are total isotopic spin, total ordinary spin and total angular 

momentum of the initial state, T, S' and L' those of the final state, J total spin 

and (/iT(T) is the expectation value of a+b(T1'T2) in the state of the isotopic 

spin T. W(S'L'SL; J2) and <S'L'I!S(')V2)I!SL) are the Racah coefficient and 

the reduced matrix element, respectively. 

In the following part of this section, the excited configurations of various types 

will be presented and the contributions to the second order perturbation energy 

will be calculated. 

(I) The first kind of the configurations are 

tfIa ... = I [(ndl)81 1+4 (000)" .. (nd,) 81,+2 (TI1L1) "', (n",l",) 81",+4 (000) (n/ lin/'ll') (Tl1~)] 

(022)nl, T=HT~)SL; JM) (2·6) 

and 

tfIb."= I[ (n111)81 1+4 (000)"" {(n,l,) 81,+3 (l~ l.j) (njlj) 81 j+3 (il IJ)} (T11L1),'" (n,.l,.) 8/",+4 

(000) (n/ l/n/ 1/) (T11L2) ] (022)nl, T=i (T.)SL; JM) (2·7) 

which are graphically shown in 

Figs. 1 and 2. In these configu­

rations two nucleons are excited 

from the core into other unoccupied 

orbits than nl-orbit, i. e., n~l~n~' l~' 

and n;l; cannot coincide with nl. 

Both the total ordinary spin and 

total angular momentum of the ex­

1-----tlt-+-I1I;1; 

cited core must be 2, because the Fig. 1 Configuration 
la. 

tensor force is a. scalar product of 

.------__ h n;l~ 

I-----t--t.-H nl 

Fig. 2 Configuration 

lb. 

two second rank tensors S(2) and V 2) as can be seen from Eq. (2·4). These 

configurations interact with the shell model wave function (2 ·1) and give the 

same correction as that of· the self energy of the closed shell nuclei in the second 

order perturbation. And these corrections cannot give the energy difference between 

two states J=I+1/2 and J=I-1/2. By the method of the tensor calculus, the 

contributions £IE due to these configuration mixings may be easily estimated and 

result into 

(2·8) 

and 
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1 
LlE1l=--

I 5 

A. Arima and T. Terasawa 

X I(n' l'n' l 'IL IIS(2) L(2)lln.l-n lIL )12 f/) 2(T) 
1i:1.1 21 1~'1:j,J 1 T 1 (2·9) 

where LlEan is the zeroth order energy difference between the states (2 ·1) and 

(2·6) or (2·7), and all two-body wave functions InalanplpTSL) should be anti­

symmetrized. 

Mixing percentage of these configurations is rather large as discussed in § 5, 

but it should be noted that these configuration mixings do not influence the 

expectation value of any single particle operator except for a scalar one. The 

deformation of the closed shell core due to these configuration mixings is caused 

by the mutual interaction between core-nucleons and then it will hereafter be briefly 

called "the self-deformation of the closed shell core". 

(II) The second kind of the configurations are 

cjJJ1,n= 1 (nlll) 8l1+4 (000)"" (n;!;) 8l,+3 (~~ l;),'" (nklk) 81k+4 (000), (n;' l/ n' l') (T' IL'), 

in which one core nucleon is excited by the interaction 

with the outmost nucleon (see Fig. 3). The resultant 

spin of (n~ l~ n' l') is restricted to one, because the tensor 

force has non-vanishing two-body matrix element only in 

the spin triplet state. The second order perturbation 

energies due to the configuration mixings of this type 

result III 

LlEJlJ=-~_~_I_[ 1 ~ (2T'+I) 
, LlE<m _ 20(2l+I) PI LI,Lff 

X I(n/ lin' l'1L'IIS(2) V2)I!nilinl1L") 12 f/)T 2 (T') 

(2 ·10) 

Fg. 3 Configuration II. 

_( __ )li2+I-.TW(~~ll; 1J).~ ~ _ (_)Lff+Lff 

4V5 PI,LI,Lff,Lff 

X (2T' + 1) /(2i7' +1)-(2D~-+-i)'W(l,L" II ; lL") W(L'L"21 ; 2L") 

X (n/ l/n' l'IL'I!S(2) V2)llnilinlIL") 

X (n/ It' n' l' 1L'IIS(2) V2)I!n;linllD'), f/)T2 (T')]. (2,11) 

In the brace of Eq. (2 ·11), the first term gives the common energy shift for 

both states of the J=l+I/2 and J=l-I/2. The second term gives the energy 

difference between these states. It is very interesting to note that this term has a 

factor ( - ) 1/2+I-.T W (~ ~ II ; 1 J), which appears in the expectation value of 

(~l; JMls·IHl; JM). n~l~ and n'l' can be any orbit as far as the Pauli principle 

is not violated. 
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Spin-Orbit Splitting and Tensor Force. II 119 

Only the second order effect of this type has been considered by Kisslinger2) 

and Jancovici,S)* whose calculations have shown this contribution to be small or 

of wrong sign. Brueckner et al.4) have estimated more accurately the one-body 

spin-orbit force induced by the tensor force between the outside nucleon and the 

closed shell core, and have got the negative result. The present calculation and 

the preceding one1) have also led to the same conclusion. Therefore, it may be 

said that the configuration mixings of this type cannot explain the observed doublet 

splitting. The mixed configurations considered here will be called "the induced 

deformation of the closed shell core", because the mixings of this type are induced 

by the mutual interaction between the outside nucleon and the closed shell core. 

(III) In the type I, it is not taken into consideration that the core-nucleons 

excited from the closed shells by the mutual interaction 

jump into the outmost orbit nl. 

H the Pauli principle does not work, also in these cases 

the contributions are same for both spin states J = l ± ~ . 

However, it has been shown in [IJ that this exclusion effect 

is important for the doublet splitting. Therefore, these 

cases will be considered in this paragraph. There are several 

configurations in which the nucleons jump from the closed 

shells into the most outside orbit nl. The first of them is 

1--.:-----1 11 ;1; 

!--_-+---1 ____ ..., nl 

Fig. 4 Configuration 

IlIa. 

¢llla,n= I (n1l1)811+4(000), .. · (n;!,) 81i+2 (T1S 1L 1) ... (n",lk) 81k+4 (000) 

{n/l/· (nl)2(T2S2L2)} (TsSsLs) , T=HT.)SL; JM), (2,12) 

which corresponds to Fig. 4. The energy shift caused by these configuration 

interactions becomes 

ilE - _ "C1 1 [{ 1 _ 1 } "C1 (2T + 1) 
J,llla- L...J ilEan 5 20(2l+1) Tli;'U 1 . 

x I(n/ l/nl1L4I1S(2) £(2)1! (n;l,) 21L1)i2 f/J7
2(71) 

+ (- ) 1/2+l-.TW(~~ ll; 1J) --L 2J _ (-) T4+L4 (2T1 + 1) 
4V5 T"L"L4.L4 

x J (2L4+ 1) (2L4 + 1) W(l.' L 411 ; il4) W(L1L421 ; 2L) 

X «n;!,) 21L11!S(2) L~) Iln.'l.' nl1L4) 

X «nJ,)21L1 I!S(2) V 2)I!n/ l/nl1L4) f/J 7
2 (T1 ) J 

The second is 

(2 -13) 

* Recently, Takagi et al,12) and Jancovici1S) have calculated the other effect which is discussed 

in the next paragraph, using the Fermi gas model. 
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120 A. Arima and T. Terasawa 

(nklk)8Ik+4(000) , {n/l/· (nW(T2 S 2 L 2)} (TsSsLs) , T=HT.)SL; JJYI), 

(2 ·14) 

which is shown graphically in Fig. 5. The contribution commg from this type 

is given by the equation 

I---+-__ t-~ nl 1---~'t:I1 ____ H nl 

~ ____ t-' n,l, 

Fig. 5 Configuration IUb. Fig. 6 Configuration IIIe. Fig. 7 Configuration HId. 

dE =- ~-- --- 2T 1 1 [{ II} 
J,lJIb .L..J JEon _ 5 20(2l+1) Tl,i2L4 ( 1+) 

x l(ntljn,ilj1LlIiS(l!) £<2) Iin/ l/nllL4) 12 (/JT2 (Tl) 

+ (_)l/Hl-.fW(Hll; 1J).~ 2j _ (-)L4+Z4(2Tl +1) 
4V5 T"Ll,L4,L .. 

/ --- . _.- ---=_._._--_._. ~ 

X 'Ii (2L4+1) (2L4+1) W(l/ L411; lL4) 

X W(LlL421; iL4 ) • (n;l,n1lJ1LlIIS(2)£<2)lln/l/nl1L4) 

X (n"l.njlJ ILl II S(2) £<2)11 n/ l/ nllL4) (/JT2 (Tr) 1 (2 ·15) 

In the brace of Eqs. (2,13) and (2 ·15), the first term gives no splitting between 

J=l+~ and J=l-~ states, and the correction 1/20(2l+1) in this term and the 

second term are due to the Pauli principle. It should be noted that the sign of 

the second term is opposite to that in Eq. (2 ,11). Now, the two particles ex­

cited from the closed shells may also jump into the same orbit nl. There are 

two possibilities whether both of the two particles come from a certain orbit or from 

two different orbits. Then, the third configuration is 

(2 ·16) 

Fig. 6. shows this configuration schematically. In this case the calculation of the 

second order perturbation is rather complicated but the result is 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

3
/1

/1
1
5
/1

9
2
9
9
7
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Spin-Orbit Splitting and Tensor Force. II 121 

L1E - - '" 1 [1 1 _ 1 l 2J (2T + 1) 
J,llIc- L.J L1Eon \5 10(2l+1) r T"Ll,L2 I 

x I ( (nl) 21L21!S(lI) L<2)11 (n; l,) 21LI)12 (/JT2 (T1) 

+ (_)I/2+t-.fW(-Ull; 1J)· 2~52J (2TI+1) (2L2+1) 

X W(lL2l1 ; lL2) 1t1l(LIL221 ; 2L2) 

X I ( (nl) 21L2I1S(2) V 2)11 (n;l;) 21LI) /2 (/JT2 (T1) J. (2 ·17) 

Some details of this calculation are given in Appendix 1. The last configuration 

(Fig. 7) which can be mixed with (2 ·1) and which can give the second order 

contribution to the doublet splitting is 

cP llId,n= I (nlll) B11+4 (000),,,, {(n.!,) Bli+S (~F;) (njl,) Bl j+S (~~ l,)} 

(TIS1L1),'" (nkllt) B1k+4 (000) , (nW(T2S 2 L 2) , T=HT.)SL; JM). 

(2 ·18) 

By the same procedure as in Eq. (2 ·17), the second order correction due to these 

configurations may be calculated and becomes as follows, 

L1EJ ,fIld=-- 2J_1_[{_1__ 1 } 2J (2TI +l) 
L1Ean _, 5 10(2l+1) T"Ll,L. 

X I( (nl)21Lsl!S(2) V 2)I!nJ, nil" lL1 )12 (/JT2(T1) 

+ (_)1/2+I-JW(-Hll; 1J).~ 2J (2T1+1) (2Ls +1) 
. 2V5 .T"L, L. 

X W(lLsl1 ; lLs) W(LILs21 ; 2Ls) 

X I( (nl) 21Ls l!S(2) V 2)I!ni li n,i lJ 1L1)1 2 (/JT2(T1) 1 (2,19) 

It is very interesting that, in Eqs. (2,17) and (2 ·19), the fractional parentage 

coefficients such as (ZSTSL {If (T'S'D) l) do not appear although they are inevitably 

used in the course of calculation. 

In this section no special assumption about the average field has not been 

made, so that these formulae for the second ,order perturbation energy can be 

applied to any unperturbed system of independent particles. It is only neces­

sary to estimate two-body matrix elements, for example, (n.zin/j1LIIS(2)L(lI)lln~l~n~l;lD). 

However, these matrix elements are not easily calculated except by using the 

harmonic oscillator wave· functions. If the harmonic oscillator wave functions are 

used and the wave functions of the two particle system are transformed into those 

of the relative and centre of mass coordinate system, the summations over the 

degenerate intermediate states of a same excitation energy can be carried out as 
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122 A. Arima and T. Terasawa 

in [I]. However, the matrix elements for the states which are excluded by the 

Pauli principle should be subtracted. This can be done by using the transforma­

toin coefficients between the wave functions in the two coordinate systems mentioned 

above. Then, the general formulae for the transformation coefficients will be 

investigated in the next section. 

§ 3. The transformation coefficients hetween the wave functions 

in the two-particle coordinate system and the relative and centre 

of mass coordinate system 

Two-body matrix elements can be easily evaluated, if the shell model wave 

function of the two-particle system can be expressed in terms of the wave functions 

of the relative and centre of mass coordinate system. If the single particle wave 

function is a plane wave, the wave function can be transformed very easily into 

the new coordinate system. And also, when the average field is taken to be a 

harmonic oscillator well, this transformation coefficient may be calculated by an 

elementary method, although it is not so easy.5)* In this section, the recurrence 

formula for the transformation coefficients between the wave functions in the two 

different coordinate systems is derived, and this formula is used to obtain the 

coefficients in the simple cases. At first, the spatial wave function of the two 

particles, (nIlI) and (n2l2) , is expanded into the wave functions of the relative 

coordinate (r=r2-rI) and the centre of mass coordinate (R=·Hr'I +r2», and vice 

versa, that is, 

(3·Ia) 

and 

IFti'iii; LM)= 2:j InIlIn2l2; LM)(nIlIn2l2; LINLiil; L), (3 ·Ib) 
n] ll,-n~l2 

where (NLii1; !:-lnIlIn2l2 ; L) and (nIlIn2l2; LINLii1; L) are the transformation 

coefficients, (ii, l) are the quantum numbers of the relative wave function and 

(N, L) are those of the centre of mass wave function. And it has to be borne 

in mind that the total energy in these two different systems must be equal, 

2nI + II + 2n2 +l2= 2ii +1+ 2N + L. 

In this equation (3 ·1), the radial wave functions for the r I and r2 coordinates 

are given by 

(3·2) 

where 

* Lawson· and Mayer have recently made a similar calculation to that in this section (private 

communication) . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

3
/1

/1
1
5
/1

9
2
9
9
7
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Spin-Orbit Splitting and Tensor Force. II 123 

and 

() '~()k 2k·(ni-1)!·(21i +1)!! . (lJr})", 
V''i Ii ri = L. - • ---~--'---~-'---'---'--- • 

,,=0 k!· (ni-k-1)!· (21i +2k+1)!! 

The radial wave functions R;F(r) and Rin;(R) for the relative and centre of mass 

motions are also written in the form of Eq. (3·2), but the lJ in this equation 

must be replaced by lJ/2 and 2lJ, respectively. 

Now, the p :component of the operator p= (lJT-V)/V2lJ brings the wave 

. function R..t(r) Ytm((}, fP) into 

X R",l+l (r) Y I +1,m+fL (0, fP) 

+j (;;:n1) ·(llmp!l-lm+p)R,,+l,l_l(r)YI _ l,m+fL(O,fP). (3·3) 

Therefore, by Eqs.(3 'lb) and (3·3), the following equation is obtained, 

=j (L+1) (2L+2N+1) (2L1+1)· W(ILLI; L+ILt) ·!NL+I, iiI; LM) 

+jL·2N. (2Ll+I)· W(ILLI; L-ILl) ·!N+IL-I, iiI; LM) 

'=j2Lt+I 2::: {Vll' (211+ 2nl-I)· W(I1I-IL12; llLl) 
2 nIl!, tl2l2 

x <nlll-I, n212; LI!NL, iiI; Ll ) 

+V (ll + 1) (2nl-2) . W(Ill + IL12; llLI) . <nl-Ill + 1, n212; LdiJi~ iiI; Lt) 

+ (- )l+L,-L. y 12' (212+ 2n2-I) . W(l112- ILI ; Lt 12) 

x <nlll' n212-I; LdNL, iiI; Lt) 

+ (- )l+L,-L·V (12+1) (2n2- 2)· W(M2+ILI; Lt12) 

x <nlll, n2-I12+I; LI!NL, iiI; L I)} !nI1In212; LM). (3·4) 

In this derivation, the relation 

(3·5) 

was used. By using the ortho-normality of the Racah coefficients, the following 

recurrence formulae are derived, 
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124 A. Arima and T. Terasawa 

<nlll' n212; LINL+ 1, iif; L) 

(2L+3) ~ - -
_/ Li (2~+I)W(ILLl; L+ILl) 
V 2(L+l) (2L+2N +1) L1 

X {VII (211+ 2nl-l) W(1l1-ILI2 ; ll~)<nlil-l, n212; ~INL, iif;~) 

+V (ll +1) (2nl- 2) Wen +ILI2; llLl) <nl-lll + 1, n212; LlINL, iif; L l ) 

+ (- )1+L,-LvI2(212+ 2n2-1) W(112-lLll ; 12 L l) 

X (nlll> n212-1; LlINL; iii; L1) 

+ (- )l+L'-L V (l2+1) (2n2- 2) W(112+1Lll ; 12Ll) 

X<nlll' n2-112+1; L1INL, iif; L 1)}. (3·6) 

Next the transformation coefficients for NL = IS and 2S are necessary to be 

computed for starting the calculation with the recurrence formula. This can be 

easily done as follows. The directions of rl and r 2 are assumed to be same, and 

this implies that 

and 

in the case of r2)rl' Then, on account of the identity, 

Li (M2 m l m2ILM) Y11m1 (8, ¢) Y I2m2 ({}, ¢) 
tn1,7112 

=j (211 + 1) (2[2+ 1) (I l OOILO) Y ((}.I.) 
4?l'(2L+l) 1 2 LM ,'P, 

Eq. (3 ·la) becomes 

(3·7) 

(3·8) 

(3·9) 

Nnlll (v) N"2 12 (v) . r/' .vn1 l1 (r1) . r/2'V"212(r2) 'V (211 +1) (212+1) . (111200ILO) 

= Li Ni1L(2v) N nl(v/2) . RL'Vin;(R) . r l . vn"i(r) . J (2L+ 1) (2f+1) 
NL,nl 

X (LfOOILO) . <NL, iii; Lln1l1n212; L), 

where the common factors are omitted. From Eqs. (3·7) and (3·8), 

rl=R-r/2 

and 

(3 ·10) 

(3,11) 

(3·12) 

Then, in the left-hand side of Eq. (3 ·10), rl and r2 can be replaced by Rand r. 

After expanding the left-hand side of Eq. (3 ·10) in terms of R and r, and com-
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Spin-Orbit Splitting and Tensor Force. II 125 

paring the terms of RO. r';;+l-' in both sides, the transformation coefficient 

(Is, iif; fln!lh n,l, ; f> are obtained as follows, 

(Is, iif; fln!l!, n,l,; f)= (- )n,+n2+z.-n+1·2(1/4)(/,+l2-S1l-n+l 

(3 ·13) 

where 

In the right-hand side of Eg. (3 ·10), there are two terms that have factor 

R'· r2n"+I-\ and one of them comes from lIS, ii f ; f> and the other from 12S, ii -1 f ; f>. 

By inserting Eg. (3 ·13) into Eg. (3 ·10) and comparing the terms of R'· r2n"+1-4 

in both sides, the transformation coefficients 

< 2S, ii f; ~ nIl!, n2l2 ; 1> = ( - ) (112)(1+1, -/2) . 2(1/4)(1, +12-31)-;;: 

xJ (ii-I)!· (2f+2ii-1)!!· (2l1+1) (2l,+1) 

3· (nl-1)!(n,-1)!(2l1+2nl-1)!!· (2l2+2n2-1)!!· (2f+1) 

x [2(nl-n2)2+2(nl-n2) (ll-l2) + (n2+n2-2) -·Hll+l2+f+1) (ll+l,-f)J 

x (lll200110) (3·14) 

are derived. These procedures may be applied to obtain the transformation coef­

fi.cients <NS, ilf; flnll1' n,l, ; f). 
For (NL) = (IP), Eg. (3 -13) and the recurrence formula (3·6) give 

and 

<IF, iif; f+ 1lnll!> n2l2 ; l + 1) 

1 - -
_ 1_ ·[2(l+1) (nl-n2) + (ll+ l2+l+ 2) (ll- l2)J 

(2l+3)XJl+1 

x (lll,OOI1+10) ·C(nlll' n2l2; iii), 

<lP, iiI; llnll!> n2 l2; l) 

I (l1+l2+1+2) (l1+ l2-1+1) (l1-l,+1+1) (l2- ld-l) 

=,v t (1+1) . (2f+1) 

X (ll + ll200110) . C (nlll' n2l2 ; ill), 

(IP, iiI; i-1Inlll' n,l2; Z--1) 

1 - -_ _ . [2l· (nl-n,)-(lI+l2-l+1) (l1- l2) I 
(2l-1)Jl 

X (lll20011-10) ·C(nlll> n2 l2; iiI), 
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126 A. Arima and T. Terasawa 

where 

x I (n-I)!· (21 +2n-I)!!· (2l1 + 1) (2l2 + 1) 

~ (n1-I)!· (n2-I)!· (2l1+2n1-I)!!· (2l2+ 2n2- I )!! 

Further the transformation coefficients for (NL) = (1£5) are derived as 

and 

- _- -.., 1 
(ID, nl; l+2In1l1' n2l2; l+2)= _ _ _ _ 

2(2l+5) J (2l+2) (2l+3) (2l+4) 

X[ {2(1+I) (n1-n2) + (l1+l2+1+I) (l1-l2)} 

X {2(1+2) (n1-n2) + (l1+l2+1+3) (ll-l2)} 

- (Z +2) (l1 +l2+1 + 1) (l1 +l2+1 +3) -4(1+1) (1+2) (n1 +n2-2) 

-2 (l1-l2) (n1-n2) (l1+l2-1-I)J.x (lll200I1+20) ·K(n1l1, n2l2; iil), 

(1£5, iil; 1+Iln1l1' n2l2; 1+1) 

=J (l1 +l2+1--J:2) C!1-l2+~ + 1) (l2::l1 +1 ~ 1) (l1 +l2-1) 

2l· (2l+I) (2l+2) (2l+3) (2l+4) 

X {2f. (n1-n2) + (l1'-l2) (ld·l2+1 + I)} . (lll200110)K(n1l1> n212 ; iil), 

- _- - - 1 
(lD,nl;lln1l1>112l2;l) l '::I - - - -

2·3· (2l-I)2l· (2l+1) (2l+2),(2l+3) 

X [2 (n1- 112) (l1-l2) {3 (L1 +l2 + 1) +21(1+ I)} + (11 +l2-1) (l1 +l2+1 + 1) 

X {-3(ll-l2)2+21([+I)} +4(111-112)2l(1 + 1) -4(n1 +112-2)i(i+ 1) ] 

X (M200110) ·K(111l1, 112l2; iil), 

(1£5, iil; l-II111l1> 11212 ; i-I) 

, 

=J (l1 +l2+1:I) (lC=l2+l) Y2 __ l1 +1) (~+l2-1+I) 
(2l-2) (2l-I)2l· (2l+I) (2l+2) 

X {2 (Z + 1) (111-112) - (ll-l2) (ll +l2-1)} . (M200IZ0) . K (111l1' 11212 ; iiZ), 

- _- - - 1 
(ID,11l;l-21111l1,112l2;l-2)=- - J - - -

2· (2l-3) (2l-2) (2l-I) ·2l 

X [{-2l(111-112) + (l1 +l2-l) (ll-l2)} 

X {-2(1-I) (nl-112) + (l1+l2-1+2) (l1-l2)} 

+ ([-1) (l1 +l2-1) (ll +l2-1 +2) -4f. (1-1) (111 +n2-2) 

-2 (l1-l2) (n1-n2) (l1+l2+1)]CM200IZ-20) ·K(n1lI> 112l2; nl), 
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Spin-Orbit Splitting and Tensor Force. II 127 

where 

j (ii-I)!· (21+2ii-l)!!. (2l1+1) (2l2+1) 

X, (n1-1)t: (n2- 1)!· (2l1+2n1-1)!!· (2l2+ 2n2- 1)!! . 

By these methods, other transformation coefficients may be calculated. However, 

in the present paper, the above coefficients are enough for estimating the second 

order effect of the tensor force. 

The transformation coefficients used in the following section are tabulated in 

Appendix II. 

Finally, some remarks are given on the relations between the transformation 

coefficients. By the transformation of the coordinates r1 and r2 into the coordinates 

x1=V2R= (r1+r2)/V2 and x2=r/v2= (r2-r1)/V2 we obtain the relation, 

(NL(R)iil(r) ; Lln1l1(r1)n2l2(r2) ; L) 

= (_)l-12(n1 l1(X)n2 l2(x) ; LINL(x1)iil(x2) ; L) 

where 

The transformation coefficient (NLiil; TSLln1l1n2l2 ; TSL) of the antisymmetrized 

wave function In1l1n2l2; TSL) can be obtained by the following relation: 

(iJiiil; TSLln1l1n2l2; TSL) 

§ 4. Numerical calculation 

In this section the general formulae are applied to the case of the D-state 

doublet splitting in 0 17• The numerical results have been obtained using the two 

kinds of the potentials as in [1]. One of them is the phenomenological tensor 

potential of the Serber type,6) 

(4·1) 

where Vo= -25.8 Mev, rt=2.41 X 10-13 cm and S12 is the tensor force operator. 

The others are the meson theoretic tensor potentiaF) for the triplet odd state; 

and that for the triplet even state: 

(ICr> 1.0) 

(ICr < 1.0) 
(4· 2a) 
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128 A. Arima and T. Terasawa 

{ 
V~?") (/Cr) 

VT= 3 V,P") (0.7) 

(/Cr> 0.7) 

(/Cr < 0.7) 
(4·2b) 

In the above equation, the one pion exchange potential is given by 

where T is the isotopic spin operator, /C-l=ft/cp. the Compton wave length of a 

pion, and 0.08 is used for the coupling constant g!/4n. 
The calculated splitting energies, 

LlLlE, are graphically shown in Fig. 8. as 

the function of the parameter fl (l0-13cm) 

=(1.1/2)-1/2 which measures the extension 

of the harmonic oscillator wave function. 

Now, fl can be estimated from the Coulomb 

energy difference8) between 0 17 and p7, 

and also from the high energy electron 

scattering experiment ,9) if the wave func­

tion of 0 17 is assumed to be a shell model 

one. From these experiments the follow­

ing numerical value is obtained, p=2.37. 

In the case of the Gaussian potential 

(4 ·1), the doublet splitting energy corre-

5 

OL-~~~--~--~--~--~--

1.8 2.0 2.2 2.4 
p 

Fig. 8 Dependence. of the doublet splitting 

energy 44 E in 0 17 on the parameter p. 

sponding to this value of p is about a half of the observ.ed value (5.08 Mev), while 

the splitting energy is too small in the case of the meson theoretic one. However, 

the results are rather sensitive to p, as can be seen from Fig. 8, and the splitting 

of the correct magnitude can be obtained, if p is some 20% smaller than the above 

value. There appears to be some reasons for using a smaller p value than the 

above value, p=2.37. At first, the numerical calculation shows the large mixing 

probability of higher configurations into the zeroth order shell model configuration, 

and the wave functions of these higher configurations spread out more than that 

of the zeroth order configuration. Therefore, if the effect of the mixed higher 

configurations is taken into account, p should become smaller than the above value. 

Next, the effects of the strong correlation in the closed shell core are very impor­

tant. The main effect of the correlation on the doublet splitting seems to come 

from the change of fl, for the effect of the short range correlation function 

taking care of the singular repulsive core potentials is much reduced. It is because 

of r2 or higher power of r in the integrand of the tensor. matrix element which 

comes from the radial wave function, as the matrix element vanishes between S­

states. Dabrowski10) calculated the binding energy of 0 16 using the variational 

trial function in the form . 
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Spin-Orbit Splitting and Tensor Force. II 129 

A 

tP(l, ... , A) =N· IIf(rij) tPo(l, ... , A) (4·3) 
i>j 

where N is a normalization constant and 

(4· 4) 

are the short range correlation function and 

tPo (1, ... , A) = (A !) -1/2. det {¢k (i)} , (4·5) 

with single particle orbitals ¢k(i)'s. By this method he determined p=1.57 for 

a= 0.2 X 10-13 cm which is rather small. Sawicki and Folkll) used this result in 

their calculation of the effect of the two-body spin-orbit force on the doublet split­

ting in 0 17• If we also take this value, the calculated doublet splitting becomes 

larger than 5 Mev for both potentials, as can be expected from Fig. 8. Furthermore, 

for example, if p=2.37 and 2.00 are used in cases of the induced deformation 

(II in § 2) and the self-deformation (III in § 2), respectively, we can obtain 

LlLlE-4 Mev for both potentials because the positive contribution from the self­

deformation becomes larger. From these considerations, it may be said that at 

least a considerable amount of the observed doublet splitting can be explained in 

terms of the tensor force. 

§ 5. Discussions 

Through the present calculation it has been found that qualitatively same situa­

tions as those in He5 and Nlii also hold in the case of 0 17, i.e., the important 

effects on getting the splitting are that (1) the tensor force is strong and (2) the 

deformation of the closed shell core induced by the tensor interaction between the 

core-nucleons are restricted so as to satisfy the Pauli principle with the outside 

nucleon (see Table I). Therefore it may generally be concluded that at least a 

considerable part of the experimental spin-orbit splitting is explained in terms of the 

second order effect of the tensor force on account of the above mentioned effects. 

Table 1. The doublet splitting energies due to the configurations (II) and (III), 

in case of p=2.00. (in Mev) 

Configuration (II) 

Serber -1.6 

Meson -5.5 

I 

I-

(III) 

5.2 

7.5 

Some problems should be solved for obtaining more definite conclusion. 

Numerical calculations show that the mixing percentage of the configurations of 

the higher excitation energies into the zeroth order configuration is very large 
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130 A. Arima and T. Terasawa 

.and becomes, for example, about 50%. However, the major part of the mixed 

configurations comes from the self-deformation of the closed shell core and does 

not contribute to the moments, i.e., magnetic moment, quadrupole moment, etc., 

because the total spin of the closed shell part in these mixed configurations 

is zero. On the other hand, the induced deformation of the closed shell core 

and the effect of the Pauli principle on the self-deformation induce only small 

mixing of the higher configurations as can be seen from Fig. 9, where the mixing 

percentage (P) of the configurations of the excitation energy 2Nt;,OJ is plotted as 

a function of N. From these results, if the 

wave function of the closed shell core could 

be obtained in good accuracy, it might be 

expected that the effects of the outside nucleon 

added to the closed shell core could reasonably 

be treated by the perturbation method. And 

such calculation would be useful also for 

settling other problems, i. e., (1) there are 

some ambiguities in the determination of the 

parameter p, as discussed in § 4, and (2) 

the effect of the higher order perturbation 

seems to be not so small. 

In the present paper and [IJ, only the 

doublet splitting in the bound states has been 

calculated. Then finally, we shall briefly 

discuss the spin-orbit coupling in the high 

energy nucleon-nucleus scattering. In this 

case, the effect of the Pauli principle men­

15 

10 

5 

,~ 

~- -----. N 
Or.--~---L __ ~_~--~~~-----~~--

----
I 2 3 4 

Fig. 9 Mixing percentages of various 

configura tions. 

--- Configuration I and III 

without the Pauli principle. 

-0-0-0- Configuration II 

- - - - - - - Effect of the Pauli prin-

ciple in configuration III 

tioned above is much reduced. The reason for this is two-fold ; first because the 

.overlap of the self-deformed closed shell core with the incident nucleon becomes 

much smaller, and second because the corresponding energy denominator in the 

second order perturbation becomes larger. On the other hand, as has been shown 

by several authors,3)14) the effect of the induced deformation can reasonably explain 

the spin-orbit coupling in the high-energy nucleon-nucleus scattering, although its 

contribution is very small or negative in the case of the bound states. Therefore, 

the spin-orbit couplings in these two cases seem to be caused by the different effects. 

The authors wish to express their cordial thanks to Professor T. Yamanouchi 

and Professor T. Muto for their kind interest and encouragement throughout the 

work and also to Professor S. Yoshida and Drs. M. Kawai, M. Sano and H. Ui 

for their valuable discussions. One of the authors (T.T.) is very grateful to the 

members of the Research Institute for Fundamental Physics for their kind hospitality. 

Appendix I. 

A~cording to the usual method, the matrix element can be expressed as follows, 
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Spin-Orbit Splitting and Tensor Force. II 131 

«nl ll)8Z l+4 (000) ,··(nili)8Z(+' (TlSlLl)," (n,tl.,)8Z",+4(000), (nl)S(T2 S,Lt ), 

T=HT~) SL; JMI Vpl (nlll)8Z l+4(000),··· (nil,,) 8Z(+4 (000) ," (n.,l .. ) 8Z",+4 (000) nl, 

T=HT.)S=i L=l; JM) 

x V (2T2+1) (2S,+1) (2~+1) (2S+1) (2L+1)(ZST2S,~{1 ZS(Tl1Ls)l) 

X W(SLil; J2) WS(l1S~; 2S,) W(LtLsLl; 2~) 

(A·1) 

The corresponding second order energy is 

dEJ= __ l- 2i~' (2T,+1) (2S,+1) (2L,+1) (2S+1) (2L+1) 
dEoo 2 

X W'(SLil; J2) W'(l1Si; 2Ss) W(LlLsLl; 2~) W(LJ:aLl; 2L2) 

X (ZS T,S,~ {It' (Tl 1Ls) l) (ZS T,Ss~ {It' (Tl 1Ls)l) 

X «nl)SlLsI!S(2) ~(2)11 (nil.) SILl) «nl)21LsIIS(') V 2)1I (n"l,,) SILl) tPT'(Tl). 

(A·2) 

Using the relations 

W2(SLil; J2) = 2i (-) l/2+l-J-z. (2x+1) W(ilil; Jx) W(L2lx; l2) 
.. ll'" 

XW(S2ix;i2), 

2i (2S+1) W 2 (l1Si; 28,) W(S2ix; i2) = W(112x; 21) W(Sslix; i1) 
s 

and 

2i (2L+1) W(L2lx; l2) W(L1LaLl; 2L,) W(LJ;sLl; 2L,) = WCL,Lslx; lLs) 
L 

and summing over 8 and L, we obtain 

LlEJ= __ l_. (-)1/,+z-J. ~ ~. (2T,+1) (28,+1) (2~+1)' (- )"" (2x+1) 
dEoo 2 

X W(ilil; Jx) W(112x; 21) W(S,lix; i 1) W(L,Lslx; iL~) 

X W(LtLs2x; 2Ls)(ZST,8,Ls {IP(Tl1Ls)l)(ZST,8,~{It'(Tl (Ls)l) 

X «nl)'lLsIIS(2) V'II (nil1)'lLt) «nl)21LsIIS(') V')I! (~li)'lLt) <PT'(Tl) 

= __ 1_[ 1 2i (2T,+1) (2S,+1) (2L,+1) 

dE... 20(2l+1) (2Ls+1) 

X (ZST,8,Ls {1t'(Tl 1Ls)l)2'I( (nl)'lLsIIS(') L(J)II (nil.)'lLt)I' tPT2(Tl) 
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- (- )1/2+1-JW(~l~l; J1)· _9/_. ~ (2T2 +1) (282 +1) (2L2+1) 
4v 5 

X (l3 T 28 2 L2 {IP(TI1L3)l)2 W(821~ 1 ; ~ 1) W(L2L3l1 ; lL3) W(L1L321 ; 2L3) 

X I( (nl) 21L31!S(2) £(2) I! (nil,) 21L1) 12 IPT2 (TI)]. (A· 3) 

Combining the relations, 

(8l + 2) (2T1 + 1) (2L3 + 1) 

(2T2+1) (282 +1) (2L2+1) 

(l8l+2T11Lsll ~ si·Zilll81+2T11Ls)=3· (8l+2) ~ (2L3+1) W(821~ 1 ; ~1) 
i 

X W(L2Lsl1; lLs)(iI!sl!~)(ll!ZlIl>(l81+2T11LS{ll81+I(T282L2)l)2, 

Eq. (A·3) is rewritten as 

LIE = - __ 1_[ (8l+2) . "5: (2T +1) .I( (nl)21L IIS(2) L(2)11 (n l )21 r)121P 2(T) 
J flEon . 20(2l+1) k..J 1 s,' i i "'-'1 T I 

( [81+2T 1L II "S l-lll81+2T 1L ) 
~ I S,..<:..Ji., 1 S 

- (_)1/2+/.-JW(1l1l· J1). -~ _." (2T +1)· _____ i"--_--c-__ ~ 

~ ~ , 4v5..<:..J I (~I!sl!V.(ll!Zi!l)· 

X W(LIL321 ; 2Ls) I( (nl)21Lsl!S(2) £(2)11 (nJi)21LI)121P~2(T1)1 (A·4) 

Since 

(l81+2 TI 1Lsl! ~ s. ·Z,I! l8!+2 TIlLs) = - (t2T11Lsl! ~ s, ·'il! PT11Ls) 
i i 

=-2(2L3+1) W(lLsl1; lL3)(~I!sIIV(lll'l!l), 

Eq. (A· 4) reduces to Eq. (2 ·17) in § 2. 

Appendix II. 

Table of 22N (HLiit; Lln1lln2l2; L)2 

The transformation coefficient multiplied by 2N, 2N(HLiiT; LinIlIn212 ; L), is 

minus or plus the square root of the entry in the table according to whether this 

entry is, or is not, preceded by an asterisk. Here, it should be noted that, for 

example, the square root of (aN+f9)2 means not laN+f91 but (aN+f9). 

HL iii ; nil n2l2 ;L 22N(NLiit; LlnIlIn2l2; L)2 

18 Nl ; Is Nl ; l 22- 1 

1P Ns ; Is Np ; 1 2(2N+1)/3 

1P Np ; Is (N+1) s;O 2N 
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Spin-Orbit Splitting and Tens01- Force. II 133 

IP Np ; Is Nd ; 2 

IP Nd; Is (N+l) p; 1 

IP Nd ; Is Nf ; 3 

IP Nf ; Is (N+l) d; 2 

IP Nf ; Is Ng ; 4 

IP Ng ; Is (N + 1) f ; 3 

IP N,q ; Is Nh ; 5 

ID Np; Is (N+l) p; 1 

ID Np; Is Nf ; 3 

ID Nd; Is (N+2) s ; 0 

ID Nd; Is (N+l) d; 2 

ID Nd; Is Ng ; 4 

ID Nf; Is (N+2) p; 1 

ID Nf; Is (N+l) f; 3 

ID Nf ; Is Nh ; 5 

2S Np ; Is (N + 1) P ; 1 

2S Nf ; Is (N + 1) f ; 3 

IF Nd; Is (N+2) p; 1 

IF Nd; Is (N+l) f; 3 

IF Nd; Is Nh ; 5 

IS Nd; Ip Np ; 2 

IS Nd; Ip (N -1) f ; 2 

IS Ng; Ip (N-l) h ; 4 

IS Nh; Ip (N-l) i ; 5 

IP Np; Ip Np ; 1 

IP Np ; Ip Np ; 2 

IP Np; Ip (N-l) f; 2 

IPNd; Ip (N+l) s;1 

IP Nd; Ip Nd ;.1 

2 (2N+3)/5 

2N/3 

3(2N+5)/7·2 

3N/5·2 

(2N+7)/9 

N/7 

5(2N+9)/1l·8 

2(2N+3)N/5·3 

3 (2N+5) (2N+3)/7 ·5·2 

(N+l)N/3 

(2N+ 5) N/7 ·3 

(2N+7) (2N+5)/7·3·2 

(N+l)N/5·2 

(2N+7)N/9·5 

5(2N+9) (2N+7)/1l·9·4 

(2N+3)N/3·2 

(2N+7)N/4·3·2 

(2N+5) (N+l)N/7 ·5·2 

(2N+7) (2N+5)N/9·7·5 

5(2N+9) (2N+7) (2N+5)/1l·9·7·4 

*2 (2N+3)/5 

*6(N-l)/5 

*5(N-l)/9·2 

*3(N-l)/1l·2 

4 

*16 (N-l)2/52 

*12(2N+3) (N-l)/52 

*2 (2N+3)N/9 

*2 (2N-3) 2/9 

IP Nd; Ip Nd ; 2 2 
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134 A. Arima and T. Terasawa 

IP Nd; Ip Nd ; 3 

IP Nd; Ip (N-l) y; 3 

IP Nf ; Ip Nf ; 2 

IP Nf; Ip Nf ; 3 

IP Nf ; Ip Nf ; 4 

IP Nf; Ip (N-l) h; 4 

IP Ny ; Ip (N -1) i ; 5 

ID Ns ; Ip Np ; 2 

ID Ns ; Ip (N -1) f ; 2 

ID Np; Ip (N+l) s; 1 

ID Np; Ip (N-l) g; 3 

ID Nd; Ip (N+l) p; 0 

ID Nd; Ip (N+l) p; 1 

ID Nd; Ip (N+l) p; 2 

ID Nd; Ip Nf ; 2 

ID Nd; Ip Nf ; 3 

ID Nd; Ip Nf ; 4 

ID Nf ; Ip (N +2) s ; 1 

ID Nf ; Ip Ny ; 3 

ID Nf ; Ip Ng ; 4 

ID Nf ; Ip Ng ; 5 

ID Nf; Ip (N-l) i ; 5 

ID Ng ; Ip (N +2) P ; 2 

ID Ng ; Ip (N+l) f ; 2 

ID Ng ; Ip (N + 1) f ; 3 

ID Ny ; Ip (N + 1) f ; 4 

2S Np ; Ip Nd ; 1 

2S Nd; Ip (N+l) p ; 2 

2S Nd ; Ip Nf ; 2 

2S Nf ; Ip (N + 1) d ; 3 

*(6N+l)2/72 ·2 

*12 (2N+5) (N-l)/72 

* (3N-5) 2/52 

1 

* (4N+ 5) 2/92 

*10(2N+7) (N-l)/92 

*15 (2N+9) (N-l)j,112 ·2 

*2(2N+l) (2N-7) 2/52 • 3 

*2 (2N+3) (2N+l) (N-l)/52 

*2(2N-7)2N/5·32 

*12 (2N+5) (2N+3) (N-l)/72 ·5 

*2N(N-l)2/3 

2N 

*8N(N-l)~/7 ·5·3 

*2 (2N +5) (N -1) '17 . 5 

2(2N+5)/7 -

*8 (2N+5) (N-l)2/9·7·3 

* (2N +5)(N + I)N/5 -3·2 

* (2N+7) (4N-5)2/9-7 ·5-2 

(2N+7)/3-2 

* (2N+7) (10N+l)'1112 ·4-32 

*5 (2N+9) (2N+7) (N-l)/11 2 ·3 

*3 (2N+7) (N+l)N/7 .52 

* (3N-7)2N/7 _52 

5N/7·2 

*5(4N+7)2 N/II-9-7 ·3·2 

*2 (2N+3) (N-2)'19 

*(2N+l)2N/5-3-2 

* (2N+5) (N-2)2/5-2 

, *(2N+3)2N/7·4·2 
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2S Nf; 1p NO ; 3 

IF Nd; 1p (N+2) s ; 1 

IF Nd; 1p (N+1) d; 1 

IF Nd; 1p (N+1) d; 2 

IF Nd; 1p (N+1) d; 3 

IF Nd; 1p NO ; 3 

IF Nd; 1p NO ; 4 

IF Nd; 1p NO ; 5 

1FNd; 1p (N-1) i ; 5 

2P Nd ; 1p (N+2) s ; 1 

2P Nd ; 1p (N+1) d; 1 

2P Nd; 1p (N+1) d; 2 

2P Nd; 1p (N+1) d; 3 

2P Nd ;'lp NO ; 3 

IS Ns ; 1d (N-2) d; 0 

IS Nd ; 1d Ns ; 2 

IS Nd; 1d (N-1) d; 2 

IS Nd; 1d (N-2) y ; 2 

IS Ny; 1d Nd ; 4 

IS Ny; 1d (N -1) Y ; 4 

IS Ny ; 1d (N - 2) i ; 4 

1P Nd; 1d Np ; 1 

1P Nd; 1d (N-1) f; 1 

1P Nd; 1d Np ; 2 

1P Nd; 1d (N-1) f; 2 

1P Nd; 1d Np ; 3 

1P Nd; 1d (N-1) f; 3 

1P Nd; 1d (N-2) h; 3 

1D Nd; 1d Nd ; 0 

1D Nd; 1d Nd ; 1 

* (2N+7) (N-2) 2/7 ·3 

* (2N-9)2(N+1)N/7 ·5·3·2 

*2 (2N+5)N3/7 ·5·3 

4(2N+5)N/7·5 

* (2N + 5) (2N - 5) 2 N/72 • 5 . 3 

*(2N+7) (2N+5) (4N-3)2/72·5·32·2 

(2N+7) (2N+5)/7·3·2 

* (2N+7) (2N+5)· (lON-21)2/11 2 ·7·4·32 

*5 (2N+9) (2N+7) (2N+5) (N-1)/112·7·3 

*(2N+l)2(N+1)N/9·5·2 

* (2N+5) (2N-5) 2 N/9·5·2 

(2N+5) ·N/5.2 

* (2N+5) (6N-5)2N/J2·5.4·2 

*3 (2N+7) (2N+5) (N-2) 2/72 • 5 

16 (N-1) (N-2)/3 

(2N+3) (2N+1)/5·3 

4(2N+3) (N-1)/7·3 

24(N-1) (N-2)/7·5 

(2N +7)(2N +5)/7·3·2 

10· (2N+7) (N-1)/11·7·3 

5(N-1) (N-2)/11·3 

2 (2N+3) (2N-1)2j9·5 

B(N-1) (N-3)2/5·3 

*2 (2N+3)/5 

*16(N-1)/5 

(2N+3) (6N-13)2/72 ·5·2 

4(N-1) (2N-1)2/7·5·3 

20 (2N+5) (N-1) (N-2)/72 .3 

4{(N-1)2- (N-1) +1}2j9 

*4(N-1)2 
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136 A. Arima and T. Terasawa 

ID Nd; Id Nd ; 2 

ID Nd; Id (N+l) s; 2 

ID Nd; Id (N-l) g ; 2 

ID Nd; Id Nd ; 3 

ID Nd; Id (N-l) g ; 3 

ID Nd; Id Nd ; 4 

ID Nd; Id (N-l) g ; 4 

ID Nd; Id (N-2) i ; 4 

2S Nd; Id (N + 1) s ; 2 

2S Nd; Id Nd ; 2 

2S Nd; Id(N-l) g;2 

16 {(N--l)2- (N-l) +7} 2/72. 32 

(2N+3) (2N-9)2N/9·7·5 

8 (2N+5) (N-l) (N-2)2/72 ·5 

*16 (N-l)2/72 

*20(2N+5) (N-l)/72 

{4(N-l)2-4(N-l) -21} 2/72 .32 

80 (2N+5) (N-l) (N-2)2/1l·72·32 

10 (2N+7) (2N+5) (N-l) (N-2)/1l·9·7 

(2N+3) (2N-3)2N/9·5·4 

{2(N-l)2+ (N-l) -7}2/9·7 

2 (2N+5) (N-l) (N-4)2/7·5 
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