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General formulae of the second order perturbation energies due to the tensor force are
given in the case of the closed shell+one nuclei, and useful formulae for calculating the
two-body matrix elements are also derived. Using these formulae, the D-state doublet
splitting in O is estimated and it is found that about a half of the observed value is ex-
plained in terms of the second order effect of the tensor force as in the case of Heb and N5,

§ 1. Introduction

In the preceding paper [I],” one of the authors (T.T.) has estimated the
second order effect of the tensor force on the spin-orbit splitting of He® and N,*
using the meson theoretic potential and a phenomenological Serber one with a
strong tensor part. .

In this paper general formulae for the second order perturbation energy due
to the tensor force are given in the case of the closed shell +one nuclei, and also
useful formulae for calculating the two-body matrix elements are derived. These
formulae are adopted for estimating the D-state doublet splitting of O due to the
tensor force. It is found that the strong two-body tensor force can qualitatively
explain the origin of the one-body spin-orbit force in the nuclear shell model, but
quantitatively this force gives about a half of the observed value of the doublet
splitting. It is mainly because the deformation of the closed shell core induced
by the mutual tensor interaction among the core-nucleons is affected by the presence
of the outmost nucleon so as to satisfy the Pauli principle. This situation is the
same as in [I].

In §2, the general formulae giving the second order effect of the tensor force
are derived in the nuclei of the zeroth order configuration, closed shell (in LS-
coupling sense) +one nucleon. In § 3, assuming the average field to be a harmonic
oscillator well as in [I], the two-body wave functions are transformed into the
wave functions in the system of the relative and the centre of mass coordinate.

* Now at Argonne National Laboratory, Lemont, Illinois, U. S. A.
** Now at Department of Nuclear Physics, Japan Atomic Energy Research Institute, Tokai-mura,
Ibaraki-ken.
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116 A. Arima and T. Terasawa

And formulae for the transformation coefficients are obtained when the state of
the centre of mass coordinate is (1s), (1p), (1d) and (2s). Also, the recursion
formula for the transformation coefficients is derived. The second order effect of
the tensor force on the doublet splitting in O is calculated numerically in § 4,
and the discussions are given in §5.

§ 2. The second order effect of the tensor force

Throughout the present paper, the nuclei of the zeroth order configuration,

closed shell +-one nucleon, are treated. In these nuclei the first order perturbation.

energies due to the tensor force vanish. Therefore, we have computed the second
order perturbation effect of the tensor force.

The zeroth order shell model wave functions for these nuclei are given in the
LS-coupling scheme as follows,

$o=1(m [)***(000) (12,1,) ***** (000) - (m 1) **¥*(000) nl, T=3(T.)S=3L=1; JM)
-1

where (000) means all of the resultant isotopic spin 7, ordinary spin S and angular
momentum L are zero, and mnl,, -+, n,l, are principal and azimuthal quantum numbers
of the closed shells' respectively and n/ those of the outmost nucleon. The excited
configurations ¢,, which can mix with the shell model wave function (2-1) in
the first order perturbation, must not have more than two single particle orbitals
different from the configuration (2-1). Furthermore, only the excited states which
have the total spin S=3/2 or 5/2 can have the non-vanishing matrix elements
of the tensor interaction with the shell model wave function (2-1).

Now, the second order perturbation energy due to the tensor force is expressed
as follows,

AdE = E'M"'_VTM, (2-2)
" E—E,

where E, and E, are the energies of the zeroth order state and of the excited state
n, respectively. The tensor potential, V,== g vr(re;), is written as

Uy (rfj) = [a +b(Ts- 'T;) ] Sij V(Tﬁ) @- 3)

where @ and b are constants, 7, the isotopic spin operator, V(r;) the radial part
of the potential and S;=3(e;-ry) (o, 1) /7i— (¢:-a,), with the Pauli spin operator
o:;. In the following computation, it may be convenient to rewrite SyV(r;) as
S V(r)=8*-L®, (2-4)
where S is [0 X0,]% and LY is proportional to the product of V(r) and the
spherical harmonics Y3,(0, ¢), in which (r, 0, ¢) are the relative coordinates

between the particles 7 and j. * Through the usual method, the matrix element of
the tensor potential becomes
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Spin-Orbit Splitting and Tensor Force. I 117

(TS'L'; J|Vp|TSL; J)=(—)¥"""W(S'L'SL ; J2){(S'L'|\S®-L®|\SL) @.(T),
(2-5)

where T, S and L are total isotopic spin, total ordinary spin and total angular
momentum of the initial state, T, S’ and L’ those of the final state, J total spin
and @,(T) is the expectation value of a+b(7 -T,) in the state of the isotopic
spin 7. W(S'L’'SL; J2) and {(S'L’||S®L®||SL) are the Racah coefficient and
the reduced matrix element, respectively.

In the following part of this. section, the excited configurations of various types
will be presented and the contributions to the second order perturbation energy

will be calculated.
(I) The first kind of the configurations are

¢Ia,n= H:(nl ll)ulﬂ (000}, (g lvt)gl1I+2 (TllLl) Y (7’llcl)¢:)sl"+4 (000) (nz', Lin/" L") (Tlle)]

022)nl, T=3(T,)SL; JM) (2-6)

and
Prom= [ (7 )7 (000) ,--- { (L)% (33 L) (L) B3 L)} (T11Ly), - (e lp) ¥ %™
(000) (ny' 1/ n,/ ) (T51L,) 1(022) ml, T=3(T,)SL ; JM ) 2-7)

which are graphically shown in

Figs. 1 and 2. In these configu- 'l il
rations two nucleons are excited A )
from the core into other unoccupied f' A
orbits than nl-orbit, i.e., 7;lni 1 (@ 1— n
and 7/, cannot coincide with nl. HE—@—{ P Hnl _ : L nals
Both the total ordinary spin and H_._‘j oo ,g{r’
total angular momentum of the ex- e
cited core must be 2, because the
tensor force is a scalar product of
two second rank tensors S® and L® as can be seen from Eq. (2-4). These
configurations interact with the shell model wave function (2-1) and give the
same correction as that of the self energy of the closed shell nuclei in the second
order perturbation. And these corrections cannot give the energy difference between
two states J=[+1/2 and J=[—1/2. By the method of the tensor calculus, the
contributions 4E due to these configuration mixings may be easily estimated and
result into

A

Fig. 1 Configuration Fig. 2 Configuration
Ia. Ib.

1 1
dE;, = —— 27T+1
E]a 5 ng’ li’,%:” 1,77 AEM T,’%, Zn ( 1 + )
ngly

X [{nd I/ n’ 11 L3]|8® L (1, 1) 1L, | @, (T) 2-8)

and
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118 A. Arima and T. Terasawa

1 1
AdE;= —— M 2T, +1
m 5 nil.z_:jlj dE,, Tl;llﬂ( 1-+1)
ng/ li/, 'nj’ lj/

X [ 1)1, 1) 1L[|S® L®|ngLym,, 1L Y[ @2 (Th) (2-9)

where 4E,, is the zeroth order energy difference between the states (2-1) and
(2-6) or (2-7), and all two-body wave functions |7n,l,n5/sTSL) should be anti-
symmetrized.

Mixing percentage of these configurations is rather large as discussed in § 5,
but it should be noted that these configuration mixings do not influence the
expectation value of any single particle operator except for a scalar one. The
deformation of the closed shell core due to these configuration mixings is caused
by the mutual interaction between core-nucleons and then it will hereafter be briefly
called “the self-deformation of the closed shell core ”.

(I) The second kind of the configurations are

Pr1a= | (. L)¥*(000),-+ (L) ¥4 (33 L) -+ (md) 27 (000), (/L)' V) (T'1L),

=3(T.)S=3L; JM) (2-10)
in which one core nucleon is excited by the interaction Al
with the outmost nucleon (see Fig. 3). The resultant "

. . n
spin of (n;lin’'l') is restricted to one, because the tensor
force has non-vanishing two-body matrix element only in B ’J”:'s)' n

the spin triplet state. The second order perturbation -O—0—_ —@-

energies due to the configuration mixings of this type o009

result in

Fg. 3 Configuration II.

1 1
AE; ;= — [ 2T +1
T, 11 2 AEM | 20(21+1) T LZ',LH( + )

X [/l V1L ||S®P L®|\n [ ;nll1 L") @2(T)

. 3 -~
(=) VEHI-TY (LY 17:-1J) - _ LI
( ) (?'2— > ) 41/5 TI,LI%I,Z’H ( )

X 2T'+1) v L' +1) (2L +1) WL L' 11 ; 1D W(L' L 21 ; 217
X{nd 1w V1L |SPL® |\ nyl;nd 1LY
X /W V1L||S® L\, L, 117y - @2 (T7)]. (2-11)

In the brace of Eq. (2-11), the first term gives the common energy shift for
both states of the J=/+1/2 and J=[—1/2. The second term gives the energy
difference between these states. It is very interesting to note that this term has a
factor (—)* "W (337l; 1J), which appears in the expectation value of
(31; IM|s-1|3l; JM ). nil; and »n'l' can be any orbit as far as the Pauli principle
is not violated.
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Spin-Orbit Splitting and Tensor Force. IT 119

Only the second order effect of this type has been considered by Kisslinger®
and Jancovici,”* whose calculations have shown this contribution to be small or
of wrong sign. Brueckner et al.” have estimated more accurately the one-body
spin-orbit force induced by the tensor force between the outside nucleon and the
closed shell core, and have got the negative result. The present calculation and
the preceding one" have also led to the same conclusion. Therefore, it may be
said that the configuration mixings of this type cannot explain the observed doublet
splitting. The mixed configurations considered here will be called “the induced
deformation of the closed shell core ”, because the mixings of this type are induced
by the mutual interaction between the outside nucleon and the closed shell core.

(III) In the type I, it is not taken into consideration that the core-nucleons
excited from the closed shells by the mutual interaction
jump into the outmost orbit 7l .

If the Pauli principle does not work, also in these cases il
the contributions are same for both spin states J=/+1%. nl
However, it has been shown in [I].tbat this exclusion effect @ —rn il
is important for the doublet splitting. Therefore, these NN
cases will be considered in this paragraph. There are several lo-0-0—©
configurations in which the nucleons jump from the closed Fig. 4 Configuration
shells into the most outside orbit nl. The first of them is la.

s/)m,a,n=‘l (m1)513*(000) -+ (L) ** (T, Sy L) -+ (e [) 4+ (000)
{n/ 1/ (n) (T3S, La)} (T5Ss La), T=3%(T.)SL; JM ), (2-12)

which corresponds to Fig. 4. The energy shift caused by these configuration

interactions becomes

1 1 1
AE, = — _[_—— 2T, +1)
s = 4E,, {5 20(2[-’1—1)}1’1;1]4( i+
X |(n 1 nl 1LJ|S® LD (n,1)* 1LY [* @2(T )
(=)W @GR 1) - S ) (=) BT )

4 ]/g P1,F1,La, ‘I:;

X o (2Ly+1) QL 41) WL/ L1 ; IL) W(L, L,21 ; 2Ly)
X (1) 1L, ||S®P L® |, 'l nl1L,)

-y

X { (1) 1L,|SPL® |/ I/ i 1L,) &, (TI)J (2-13)

The second is

* Recently, Takagi et al.'® and Jancovici’® have calculated the other effect which is discussed
in the next paragraph, using the Fermi gas model.
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120 A. Arima and T. Terasawa

()/)IIIb,nz I (my ZI)SZ‘H (000),--- { (n:ls) Bigts (‘% '% ;) ("j lj) 8578 (%‘% l) } (TS, Ll) 3t
(me 1) 3% (000), {n/l- (nl)*(T3S:Ly)} (TsSsLs), T=3%(T,)SL; JM ),
(2-14)

which is shown graphically in Fig. 5. The contribution coming from this type
is given by the equation

nil; .
Erénz 090 990!
i e ® é 1
)—‘_ ’ lle ""_“ ,M\ )_." nids )—" nd,
nils 90 0@ -@— ,i;—QJ ni,

Fig. 5 Configuration IIIb. Fig. 6 Configuration Illc. Fig. 7 Configuration IIId.
1 1 1
AE =—v%H_—_—_} 2T, +1
ST S e, LUE 200204 1) ez, G

X |(nLmy ;1L |S® L@\ 17 nl 1L | @2 (Th)

F ()P @RI 1) O S (=) R @Ty D)
4]/5 Ly, I, La, Ls

Xy (2Li+1) @LA+1) WL/ L1 IL,)
X W (L, L,21; 2L -(nil,n,l,1L,]1S® L®|n/ [/ nl 1L,

X (n.0,m,0, 1L |SPL® |y 1 nl 1L, (0,2(T1)J. (2-15)
In the brace of Eqs. (2-13) and (2-15), the first term gives no splitting between
J=[+3 and J=[—3% states, and the correction 1/20(2/+1) in this term and the
second term are due to the Pauli principle. It should be noted that the sign of
the second term is opposite to that in Eq. (2-11). Now, the two particles ex-
cited from the closed shells may also jump into the same orbit n/. There are
two possibilities whether both of the two particles come from a certain orbit or from
two different orbits. Then, the third configuration is

Drrtemn=1|(m L)*1*(000),-+- ()% (T1 S, L) , -+~ (mp 1) *#*4(000), (n2) *(T,S; L),
T=3(T.,)SL; JM). (2-16)

Fig. 6. shows this configuration schematically. In this case the calculation of the
second order perturbation is rather complicated but the result is
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Spin-Orbit Splitting and Tensor Force. I 121

AEJ, 1re= Z:

1 1
B — 2T1 1
AE,m U 5  10(2(+1) }Tl,zzx,z,z( +D

X [((nl)"1L,||8® L®| (n L, )21L1>|2 0. (T)

+ ()T W(FRIL 1) - 2= S (2T +1) (2L, + 1)

‘/f S
X WL, 1 5 ILy) W (L, L,21 ; 2Ly)
X |¢ () 1La||S® L®|| (,2,)* 1L, * <1>,2(T1)]. 2-17)

Some details of this calculation are given in Appendix I. The last configuration
(Fig. 7) which can be mixed with (2-1) and which can give the second order
contribution to the doublet splitting is

Priran=] (. 5)*' 1 (000) - { (n L) (3 3 1) (m;1))*' 7% (34 1)}
(T8, L), (mp L) *1%7(000), (n)* (T3S, La), T=3(T.)SL; JM).
(2-18)

By the same procedure as in Eq. (2-17), the second order correction due to these
configurations may be calculated and becomes as follows,

1 (1 1
PSR N U S R P
v, 1112 4E, L5 10(27+1) }'1’1,;1,1;3( 1+1)

X |{ (n1)*1Lq||8® L®| m, 1, m, , 1L1>|2 @2 (Ty)

— 2T, +1) 2L, +1
1/ 31 @TiAD) @L+D)

X WL, 5 IL;)) W(L, L,21 ; 2L3)

+(_)1/2+Z—JW(% ll IJ)

X | (20) 1Lyl S® L\, 1m0, 1L, | (0,’(T1)]. (2-19)

It is very interesting that, in Egs. (2:-17) and (2-19), the fractional parentage
coefficients such as (PTSL{|(T"S’L")[) do not appear although they are inevitably
used in the course of calculation.

In this section no special assumption about the average field has not been
made, so that these formulae for the second order perturbation energy can be
applied to any unperturbed system of independent particles. It is only neces-
sary to estimate two-body matrix elements, for example, (nn,1L|S®L®|\nlin}l, 1L’ ).
However, these matrix elements are not easily calculated except by using the
harmonic oscillator wave. functions. If the harmonic oscillator wave functions are
used and the wave functions of the two particle system are transformed into those
of the relative and centre of mass coordinate system, the summations over the
degenerate intermediate states. of a same excitation energy can be carried out as
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122 A. Arima and T. Terasawa

in [I]. However, the matrix elements for the states which are excluded by the
Pauli principle should be subtracted. This can be done by using the transforma-
toin coefficients between the wave functions in the two coordinate systems mentioned
above. Then, the general formulae for the transformation coefficients will be
investigated in the next section.

§ 3. The transformation coeflicients between the wave functions
in the two-particle coordinate system and the relative and centre
of mass coordinate system

Two-body matrix elements can be easily evaluated, if the shell model wave
function of the two-particle system can be expressed in terms of the wave functions
of the relative and centre of mass coordinate system. If the single particle wave
funetion is a plane wave, the wave function can be transformed very easily into
the new coordinate system. And also, when the average field is taken to be a
harmonic oscillator well, this transformation coefficient may be calculated by an
elementary method, although it is not so easy.”* In this section, the recurrence
formula for the transformation coefficients between the wave functions in the two
different coordinate systems is derived, and this formula is used to obtain the
coefficients in the simple cases. At first, the spatial wave function of the two
particles, (m/,) and (7,0,), is expanded into the wave functions of the relative
coordinate (r=r,—r;) and the centre of mass coordinate (R=2%(r,+r,)), and vice
versa, that is,

lmbnsdys LMY= 3\ |NL#l; LMY(NL#l; LimLml; L) (3-1a)
NI, nl
and
INL#l; LMY= 3 mbmb; LM)(mlmb; LINL#l; L),  (3-1b)
n1by,n209 '
where (Kff Al s Limbmoly 5 L) and {mlimly ; L]N'E "l ; Ly are the transformation
coefficients, (7, /) are the quantum numbers of the relative wave function and
(N, Z) are those of the centre of mass wave function. And it has to be borne
in mind that the total energy in these two different systems must be equal,
2m 4L+ 2m+L=27+I+2N+L.

In this equation (3-1), the radial wave functions for the r; and r, coordinates

are given by

Ro;1,(7s) = Noga, (v) - exp(— yriz/Z) i Ung, (73, (3-2)

where

Nosa, (v) [2“"”‘*3- @L+2n,—1)1- uwﬂ]ln
ng yv) =
2] ) n.ll2, (nf_l)!. {(211+1)!!}2

* Lawson and Mayer have recently made a similar calculation to that in this section (private
communication).
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Spin-Orbit Splitting and Tensor Force. II 123

and

s x 28 (m,— 1)1 2L+ 2k
Onase(r) = 20 (=) kz.(ni_(k—1))z.((211+2k+1)n G
The radial wave functions R;7(7) and Rzz(R) for the relative and centre of mass
motions are also written in the form of Eq.(3-2), but the v in this equation
must be replaced by »/2 and 2v, respectively.
Now, the ¢ fcomponent of the operator p= (wr—v)/y/ 2y brings the wave
- function Ry;(7) Y,.(0, ¢) into

Bo Ru(7) Yin0, ) = ) CED CLEBED - 1 mps 1)

X Rn,l+1 (7‘) Yl+1,m+p- (0, Sp)

ﬂ' - 1,0-1 -1 {/ . 3-3
by QU4 ) R s () Ve 0 9)- (39

Therefore, by Eqs. (3:-1b) and (3-3), the following equation is obtained,
2vR,—V,
2vy

=y (L+1) CL+2N+1) 2L +1) - WALLI; L+1L) - INL+1, #l; LM)

S} (ALypM|LM) - INL#l; LiMy)

+yL-2N- @L,+1) - WAL LI; L-1L)-|N+1L—1, #l; LM)

=/%_2+L = {1/11-(211+2n1—1)-W(1z1—1Lzz;zlLl)

nlll’ nolo

X{mli—1, nydy; LllﬁI: ﬁl~; L)

+V G+ 1) @Cm—2) - W h+1LL; LE) -(m—14L+1, mb; LINL, #l; L)
+ ('—)1+L1—L"/lg' (212“‘ 2712— 1) - W(leg_‘lLl ; Lllg)
X {ml, mbh—1; LINL, 7#l; L)

+ (“)1+L1_L'l/(lz+1) (27— 2)- WL L+1L1; Iqlz)
X <7l1ll, n—105+1; LlIﬁI: ﬁi; L1>} !nlllnzlz > LM>- (3-4)
In this derivation, the relation

2uR,—F 1
Py, =2 5 ‘/:R'“ = 1/2_<p1,u+z>2,pb) (3-5)

was used. By using the ortho-normality of the Racah coefficients, the following
recurrence formulae are derived,
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124 A. Arima and T. Terasawa
<n111, nglg; L]ﬁi‘["l, ﬁi; L>

= (2L+3) Y@L +1)WQALLL; L+1Ly)
=V2C+1) GLioN+D) % ’ '

X VG @L+ 2D W(Uh—1Lb; L L) (mb—1, mly; LINL, 715 L)

+V G+1) Cr—2) WL +1LG; LL) (m—14+1, nly; L|NL, 7l ; L)
+ (=) L CLF 2na— 1) WL —1LE ; L L)

X{mly, nyla—1; LIIN'I:, 7l L)

+ (=) B2y (G4 1) @rg— 2) W(lh+1L1 5 L L)

X {mly, m—14+1; L|NL, #; L1>}. _ (3-6)

Next the transformation coefficients for NL=1S and 28 are necessary to be
computed for starting the calculation with the recurrence formula. This can be
easily done as follows. The directions of r, and r, are assumed to be same, and
this implies that

0,=0,=6=0 3-7
and

b=d= =4 (3-8)
in the case of 7,)7. Then, on account of the identity,

Y (b lymy g LM) Yiymy (0, 8) Yiy my (0, 6)

my, Mo
s 2

= [(CL+1) @hL+1) | _
ZCLED (L,1,00{20) Y4 (6, 6), (3-9)

Eq. (3-1a) becomes
anll (V) Mlzlz (D) - 7‘111'7)71111(7‘.1) N 7‘212'7)”212(7‘2) "/(2ll+1) (2[2""‘1) ‘ (ZIZQOO[LO)
= 1 Niz(2) Nar(/2) -RE-vgz(R) -7 wii(r) - (2L +1) (21+1)

FI,ni
X (L100|L0) -(NL, #l; LimLnml; L), (3-10)
where the common factors are omitted. From Egs. (3-7) and (3-8),
rn=R—r/2 (3-11)
and
ry=R-+7/2. (3-12)

Then, in the left-hand side of Eq. (3-10), » and 7, can be replaced by R and .
After expanding the left-hand side of Eq. (3-10) in terms of R and r, and com-
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Spin-Orbit Splitting and Tensor Force. 11 125

paring the terms of R’-7 2+-2 in both sides, the transformation coefficient
{ lS 7l ; l]nlll, mily ; 1) are obtained as follows,

<IS, nl; l!nl b, mlby; l>= (_)m+m+11—n+1_ 2(1/4)(z1+l2—37)—£+1

/ Gi—1)!- @I+ 27— 1)1 (2L+1) (2,+1) (L1,00170)
N 162 b
(3-13)
where 2 4+1=2m+ b+ 2ns+ 1, — 2.
In the right-hand side of Eq. (3-10), there are two terms that ‘bave factor
R*- r™+~* and one of them comes from |18, 77; 7 and the other from |28, 7i—11; l)

By insertlng Eq. (3-13) into Eq. (3-10) and comparing the terms of R?-r¥+i—*
in both sides, the transformation coefficients

(@8, l; Tmby, mala; Iy= (—) @m @t g0 tamsh

FG—1)1- @I+ 27~ (2L+1) (2L,+1)
3- (m— D) (m— 1)1 (2l +2m— D! (24 2m— DN - (20 +1)

X[2 (m—n5) 2 (m—mn) (h—0) + (m+n—2) ~3 (h+L+1+1) (h+5—D)]
X (1,1,00)10) (3-14)

are derived. These procedures may be applied to obtain the transformation coef-
ficients (NS Al Iy, 7ol 5 l)
For (NL)—(lP) Eq. (8-13) and the recurrence formula (3-6) give
<1P, ﬁl, l+1|7’l111, 7’[212 M l+1>
1

=— [20+1) (u—m) + (b +6+14+2) (h—1)]
(2043) ><W+1

X (5,5,00|14+10) -C(my Iy, mply; %L),

(AP, 7151 |mb, mby; I

[l T52) (bt hi4e D) b+ T4 D) Gl 4Dy
W 7D - (2l 1)

X (L+125,00170) -C(ns by, mly; 7l),
and

<1I’;; ﬁi; i_llﬂlll, nzzg 5 f”‘l>

=—~—1—_~— : [ZZ (m—ns) — (l1+12—‘7+ 1) (Lh—1) '
©@I—1) /i

X (L,L,00)I—10) -C(m b, mals; #l),
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where

C(mby, myly; fil) = (— ) WDUE+h—htD oW +ia+1-8)—n

w | G=D!I-@+2a—DI- C4+1) (2h+D)
N Ga—DT (m—1)1- (2L +2m—1) - (2l +2n— 1) 1!

Further the transformatiqn coefficients for (JVZ) = (15) are derived as
QAD, 7l ; I+2\mb, mbly; [+2)=——— 1 _
221 +5) 4 (20+2) (21+3) (27+4)
X[{2T+1) (m—m) + (h+h+I+1) (h—1)}
X {20 +2) (n—m) + (h+b+1+3) (h—1b)}
~ (+2) h+b+I+1) (WA L+1+3) —4(@+1) (+2) (m+m—2)
—2(L—b) (m—ms) (h+L—I—1)]X (L 1,00|I+20) - K (m Ly, mly ; il),
(15, ﬁz; Z+1|nlll, 75055 l~+1>

_ J bt it?) b=+ D) (b I+ 1) (bt la—D)
20 (21+1) (21 +2) (21+3) (20 +4)

% {20 (m—mn) + (hi—1) (h+-L+I+1)} - (LL00[I0) K (m by, myly; ALY,
(15,%2; Z~|nlll, nﬂlz;z>= - }' -
v 2-3-I—-1)2] (27+1) (2I+2) (27 +3)
X[2(m—ns) (h—b) BU+L+1) +20d+1)} + (h+b—1) b+ L+1+1)
X {—3(L—1L)*+20 I +1)} +4(m—m) [ +1) —4(m+n—2)I(I+1)]
X (LH00[10) K (miy, mby; 7D,
<15, 7il; Z——llnlll, als ; Z—l)

=~/ (h+b+I+1) (h—bt+D) (b—h+D h+h—I+1)

(21—2) (21—1)21- (21 +1) (21 +2)

X 20 +1) (m—mng) — (L—1L) L+ L—D)} - (1L,1,00]00) - K (m 1y, noly s #l),
and
1

2-(21—3) 4/ (21—2) (21—1) -2
X [{—2l(m—m) + (L+b—1) (h—5)}
X {=2(—1) (m—m) + (b+b—1+2) (b—1)}
+ =1 (bt+b—D) (h+b—1+2) — 46 (~1) (m+n—2)
—2(l—1L) (m—ng) (h+L+1) 1(4500[I—20) - K (m b, myly; 7il),

(15, il 'lv-—2|nlll, nyly Z—2>=—
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where

K(ﬂl ll, o lz ; ﬁl) —_ (____) Y22 +h—13) , 2(1/4)(11+12—5l)—7l+1

/ (F—D)!- @I+27—1)!- (2L +1) (2h+1)
N =D (D1 @h+ 2m— D)1 (2 +2m— DI

By these methods, other transformation coefficients may be calculated. However,
in the present paper, the above coefficients are enough for estimating the second
order effect of the tensor force.

The transformation coefficients used in the following section are tabulated in
Appendix 1II.

Finally, some remarks are given on the relations between the transformation
coefficients. By the transformation of the coordinates r, and r, into the coordinates

x,=1/2R=(r,+r,)/}/2 and xy=r/}/ 2= (r,—r;) /|/-2 we obtain the relation,
(NL(R)#I(r) ; Limb(r) maly(rs) 5 L)
= ()" (m L (X)mb(x) ; LINL(2)7l(x) ; L)
where X=(x,+%,)/2 and x=x,—=x,.

The transformation éoefﬁcient (NZ 7l ; TSL|\mbhnds ; TSL) of the antisymmetrized
wave function |mliml, ; T'SL) can be obtained by the following relation :

(NL#l; TSLimLimyly; TSL)

1— (_)T+S+T

ﬁ(ﬁfﬁz, LimbLndy; L) for nly 2 nl,

= 1_(_)T+s+7 ~

5 (ﬁLﬁZ; Lininl;L) for myli=nyly=nl.

§ 4. Numerical calculation

In this section the general formulae are applied to the case of the D-state
doublet splitting in OY. The numerical results have been obtained using the two
kinds of the potentials as in [I]. One of them is the phenomenological tensor
potential of the Serber type,”

‘01':%(1’“7'1‘7'2)‘512'Vo‘eXP('“rz/rtz), (4'1)

where V,=—25.8 Mev, »=2.41X10"2cm and S;, is the tensor force operator.
The others are the meson theoretic tensor potential” for the triplet odd state;
VA7 (i) (kr=1.0)
Vp=— (42a)
0 (k7 < 1.0)

and that for the triplet even state:
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128 A. Arima and T. Terasawa

Vam =07
{ (x7) (k7 ) (4-2b)

3VA™(0.7) (er < 0.7)
In the above equation, the one pion exchange potential is given by

3

lCz r2

2 i
V™ (er) = Je - pc?- (71 75) - Sia- <1 +i+
4 Kr

3 )-exp(—lcr)/lcr,

where 7 is the isotopic spin operator, x'=7#/c¢ the Compton wave length of a
pion, and 0.08 is used for the coupling constant g3/4x.

The calculated splitting energies,
44E, are graphically shown in Fig. 8. as
the function of the parameter p(107%cm)
=(v/2)"" which measures the extension
of the harmonic oscillator wave function.
Now, p can be estimated from the Coulomb
energy difference® between OY and FY,
and also from the high energy electron
scattering experiment,” if the wave func-
tion of OY is assumed to be a shell model
one. From these experiments the follow- (i P 2'0
ing numerical value is obtained, 0=2.37. ' )
In the case of the Gaussian potential
(4-1), the doublet splitting energy corre-

sponding to this value of pis about a half of the observed value (5.08 Mev), while
the splitting energy is too small in the case of the meson theoretic one. However,
the results are rather sensitive to p, as can be seen from Fig. 8, and the splitting
of the correct magnitude can be obtained, if p is some 202, smaller than the above
value. There appears to be some reasons for using a smaller p value than the
above value, p=2.37. At first, the numerical calculation shows the large mixing
probability of higher configurations into the zeroth order shell model configuration,
and the wave functions of these higher configurations spread out more than that
of the zeroth order configuration. Therefore, if the effect of the mixed higher
configurations is taken into account, ¢ should become smaller than the above value.
Next, the effects of the strong correlation in the closed shell core are very impor-
tant. The main effect of the correlation on the doublet splitting seems to come
from the change of p, for the effect of the short range correlation function
taking care of the singular repulsive core potentials is much reduced. It is because
of r* or higher power of » in the integrand of the tensor matrix element which
comes from the radial wave function, as the matrix element vanishes between S-
states. Dabrowski'” calculated the binding energy of O using the variational

4dE(Mev)

I i

_

2.2 24

Fig. 8 Dependence. of the doublet splitting
energy 44 E in O on the parameter p.

trial function in the form .
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O, -, A)=N- (1) Os(1, -+, 4) (43)

where N is a normalization constant and

) = 0 for ri;<a w
ha 1—exp[—B{(riy/a)’—1}] for ry=>a @

are the short range correlation function and
$0(1’ Ty A)=(A !)—1lz'det{¢k(i)}; (4'5)

with single particle orbitals ¢,(z)’s. By this method he determined p=1.57 for
a=0.2X10"%cm which is rather small. Sawicki and Folk™ used this result in
their calculation of the effect of the two-body spin-orbit force on the doublet split-
ting in OY. If we also take this value, the calculated doublet splitting becomes
larger than 5 Mev for both potentials, as can be expected from Fig. 8. Furthermore,
for example, if 0=2.37 and 2.00 are used in cases of the induced deformation
(Il in §2) and the. self-deformation (III in §2), respectively, we can obtain
44E~4Mev for both potentials because the positive contribution from the self-
deformation becomes larger. From these considerations, it may be said that at
least a considerable amount of the observed doublet splitting can be explained in
terms of the tensor force.

§ 5. Discussions

Through the present calculation it has been found that qualitatively same situa-
tions as those in He® and N also hold in the case of OY ie., the important
effects on getting the splitting are that (1) the tensor force is strong and (2) the
deformation of the closed shell core induced by the tensor interaction between -the
core-nucleons are restricted so as to satisfy the Pauli principle with the outside
nucleon (see Table I). Therefore it may generally be concluded that at least a
considerable part of the experimental spin-orbit splitting is explained in terms of the
second order effect of the tensor force on account of the above mentioned effects.

Table 1. The doublet splitting energies due to the configurations (II) and (II),
in case of p=2.00. (in Mev)

Configuration . an (IIL)
Serber —-1.6 . 5.2
Meson —5.5 7.5

Some problems should be solved for obtaining more definite conclusion.
Numerical calculations show that the mixing percentage of the configurations of
the higher excitation energies into the zeroth order configuration is very large
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and becomes, for example, about 509,. However, the major part of the mixed
configurations comes from the self-deformation of the closed shell core and does
not contribute to the moments, i.e., magnetic moment, quadrupole moment, etc.,
because the total spin of the closed shell part in these mixed configurations
is zero. On the other hand, the induced deformation of the closed shell core
and the effect of the Pauli principle on the self-deformation induce only small
mixing of the higher configurations as can be seen from Fig. 9, where the mixing
percentage (P) of the configurations of the excitation energy 2N#iw is plotted as
a function of N. From these results, if the
wave function of the closed shell core could 15l
be obtained in good accuracy, it might be
expected that the effects of the outside nucleon
added to the closed shell core could reasonably
be treated by the perturbation method. And
such calculation would be useful also for 5
settling other problems, i.e., (1) there are
some ambiguities in the determination of the
parameter o, as discussed in §4, and (2) 0F
the effect of the higher order perturbation
seems to be not so small.

In the present paper and [I], only the

10F

P(%)

Fig. 9 Mixing percentages of various

T configurations.
doublet splitting in the bound states has been Configuration I and III
calculated. Then finally, we shall briefly without the Pauli principle.

_______ Configuration II
_______ Effect of the Pauli prin-
ciple in configuration III

discuss the spin-orbit coupling in the high
energy nucleon-nucleus scattering. In this
case, the effect of the Pauli principle men-
tioned above is much reduced. The reason for this is two-fold; first because the
overlap of the self-deformed closed shell core with the incident nucleon becomes
much smaller, and second because the corresponding energy denominator in the
second order perturbation becomes larger. On the other hand, as has been shown
by several authors,®® the effect of the induced deformation can reasonably explain
the spin-orbit coupling in the high-energy nucleon-nucleus scattering, although its
contribution is very small or negative in the case of the bound states. Therefore,
the spin-orbit couplings in these two cases seem to be caused by the different effects.

The authors wish to express their cordial thanks to Professor T. Yamanouchi
and Professor T. Muto for their kind interest and encouragement throughout the
work and also to Professor S. Yoshida and Drs. M. Kawai, M. Sano and H. Ui
for their valuable discussions. One of the authors (T.T.) is very grateful to the
members of the Research Institute for Fundamental Physics for their kind hospitality.

Appendix I

According to the usual method, the matrix element can be expressed as follows,
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()P (000) - (n:2) % (TS, Ly) - (12 1) %7 (000), (n)*(T3S; Ls),
T=3(T,)SL ; JM| V| (n 1,)*1**(000),-- (1,4 %+ (000),--- (n,,£,) *#™ (000) n,
T=%(T,)S=4%L=Ll; JM)

—_— E (_)Tz—T1+L+L1—L3—J_/\/E
Ls N 2

XV (2Ty+1) (28:+1) (2L,+1) 2S+1) CL+1){PTy S Lo{| P(T11L:) 1)
X W(SL31; J2) W2(1183% ; 2S) W(L, L, Ll; 2L,)
X { (1) *1Lo||S® LP|| (n,) 1L, @.(T). (A-1)

The corresponding second order energy is

AEJ=——A;:— by % C@Ty+1) (2S:+1) 2Ly +1) (2S+1) @L+1)

X W(SL31; J2) W2(118% ; 28) W(L, Ly L ; 2L,) W (L, Ly L1 ; 2L,)
X (P Ty 8; Ly {|P(Ty1Ls) 1) (P Ty S Ly {| B (T11L,) 1)
X{ (n) 1 L[| 8P L (n,2)*1L1) { (n) " 1Ls]| 8P L (m,4,)* 1Ly) @2 (T).
(A-2)
Using the relations
W*(SL%1; J2) = g (—)urei=r==. Qx+1) WG i3l; Jx) W(L2ix; 12)
XW(S524x; $2),
; @S+1)W?(1183;28,) W(S232;32)=W(A12x; 21) W(S: 13 x; 1)

and
SY (2L +1) W(L2lx; 12) WLy Ly L1 ; 2Ly) W(L,LyL1; 2L;) = W(Ly Lyl 5 ILy)
L
X W(L L2z ; 2Ly),
and summing over S and L, we obtain

1
4E,,

XW@IE; J2) W12z 21) W(S;13 2 ; 31) W (Ly Lylx ; ILy)
X W (Ly Lo 22 3 2L3) (BT Sy Ly {| (T3 1L5) DY P Ty 8, Ly {| P (T 1L5) 1)
X ((nd) *1LaJ|S® L) (m,2)* 1L, ) { () *1L5||S® L®|) (n, 1) *1L,) @ 2(T7)

-1 [ 1 51 (2Tot1) (2S,+1) (2La+1)
4dE,, L 20(2/+1) (2L;+1)

X LTSy Lo {|P(To1Lg) 1) [{ (nd)* 1 Lo||S® L (0, 2,)* 1Ly |* @,2(TY)

AE,=— NESLLIAS % @Ty+1) @8i+1) 2La+1) - (—)* (22 +1)
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— (—)VHTW(RIE 1 J1) - (2T, +1) (285,+1) (2L, +1)

‘/_.
X[ (nd)"1L4|S® L?|| (m: 1) *1L1)[* @.2(T) ] (A-3)

Combining. the relations,

8 2. (80+2) 2T, +1) (2L, +1)
(TS La) {I2(Th 1Ls) )= CTitD) @S+ CLit D)

X <Z8l+2 (Tl 1L3) ‘HZSZH (Tz Ssz) Z>2

and
(BT L) ST 8- LI ¥ Ty 1 L) =3 (8]42) 31 (2L +1) W(S,131; 31)
i
X W (L;Lsl1 5 ILg) (3 islid) (NI {2 Ty 1L {| 1% (T4 Ss La) )%,
Eq. (A-3) is rewritten as

= — 1 (8l+2) . . 2 @) @ 2 22
4= — | SO D 1@ 4D - KD LIS L) (el 1LY 0T

(BT, 1L, Z{s,—lfl!lsl“‘ T,1L;)
Gvs SO ——
X W (L Ls21 ; 2Le) [ () "1L[IS® LP|| (240)*1Ls) [? "7*2(T1)‘]' @

— (=) WG J1) -

Since

(BT 1L, 51__,‘ s;- LI BPT 1) = — (P T, 1L, Zi sg- )| Ty 1)
=—2Q2Ls+1) W(LsI1; ILs) (3lisl3) (LU,

Eq. (A-4) reduces to Eq. (2-17) in §2.

Appendix II.
Table of 2% (NL#l; Limlinyly; L)

The transformation coefficient multiplied by 27, 2”(&2:772’; Limind, ; L), i
minus or plus the square root of the entry in the table according to whether this
entry is, or is not, preceded by an asterisk. Here, it should be noted that, for
example, the square root of (aN+f)* means not [@N+pg| but (aN+p8).

ﬁz ﬁz . nlll nglz s L 22N<ﬁfﬁi; L’nlllnglz; L>2
1S NI ;1s NI 3 L 22!
1P Ns ;1s Np ;1 2@2N+1)/38

1P Np;1ls (N+1) s5;0 2N
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1P Np;1ls Nd 3 2
1P Nd;1s (N+1) p;1
1P Nd;1s Nf ;3
1P Nf ;1s (N+1) d; 2
1P Nf;1s Ny 3 4
1P Ng ;1s (N+1) ;38
1P Ny ;1s Nh ;9
1D Np;1s (N+1) p; 1
1D Np;1ls Nf ; 3
1D Nd;1s (N+2) s;0
1D Nd;1s (N+1) d; 2
1D Nd;1s Ny 3 4
1D Nf;1s (N+2) p; 1
1D Nf;ls‘(N--l-l) ;3
1D Nf;1s Nh HE
28 Np ; 1s (N+1) p; 1
28 Nf ; 1s (N+1) £;3
1F Nd;1s (N+2) p;1
1F Nd;1s (N+1) f;3
1F Nd;1s Nh )
1S Nd;1p Np 1 2
1S Nd; 1p (N-1) ;2
1S Ng; 1p (N—1) h ;4
18 Nh;1p (N—1) ;5
1P Np;1p Np ;1
1P Np;1p Np ;2
1P Np;1p (N—1) f; 2
1P Nd;1p (N+1) s;1
1P Nd;1p Nd 5 1
1P Nd;1p Nd 02

2(2N+3)/5
2N/3
3(2N+5)/7-2
3N/5-2
(@N+7)/9
N/7
5(2N+9)/11-8
2(2N+3)N/5-3
3(2N+5) (2N+8)/7-5-2
(N+1)N/3
(2N+5)N/7-3
(@N-+7) (2N+5)/7-3-2
(N+1)N/5-2
(2N-+T7)N/9-5
5(2N+9) (2N+7)/11-9-4
(2N+3)N/3-2
(2N+T)N/4-3-2
(2N+5) (N+1)N/7-5-2
(2N+7) (2N+5)N/9-7-5
5(2N+9) (2N+7) (2N+5)/11-9-7-4
*2(2N+3) /5
*6(N—1)/5
*5(N—1)/9-2
*3(N—1)/11-2
4
*16 (N—1)?/5?
*12(2N+3) (N—1) /5°
*2(2N+3) N/9
*2(2N—3)%/9
2

133

220z 1snbny 9| uo1senb Aq 0266261/51L L/L/SZ/e1onie/did/woo dnoolwepede)/:sdyy woly papeojumoq



A. Arima and T. Terasawa

1P Nd;1p Nd ;3
1P Nd;1p (N—1) g;3
1P Nf;1p Nf ;2
1P Nf;1p Nf ;3
1P Nf;1p Nf ; 4
1P Nf;1p (N—1) h; 4
1P Ng;1p (N—1) i;5
1D Ns;1p Np ;2
1D Ns ; 1p (N—1) f; 2
1D Np; 1p (N+1) 551
1D Np; 1p (N—1) g ; 3
1D Nd;1p (N+1) p; 0
1D Nd;1p (N+1) p; 1
1D Nd;1p (N+1) p; 2
1D Nd;1p Nf ;2
1D Nd;1p Nf ;3
1D Nd;1p Nf ; 4
1D Nf;1p (N+2) s ;1
1D Nf;1p Ny ;3
1D Nf;1p Ny 3 4
1D Nf;1p Ny ;5
1D Nf;1p (N—1) ;5
1D Ng; 1p (N+2) p; 2
1D Ng;1p (N+1) f; 2
1D Ng;1p (N+1) f ;3
1D Ng;1p (N+1) f; 4
2S Np;1p Nd ;1
28 Nd ;1p (N+1) p; 2
28 Nd ;1p Nf ;2
28 Nf;1p (N+1) d ;3

*(6N+1)%/72-2
*12 (2N +5) (N—1) /7*
*(3N—5)%/52

1
* (AN +5)%/9?
*10(2N+7) (N—1) /9"
*15(2N+9) (N—1) /112-2
*2(2N+1) (2N—7)?/5*3
*2(2N+3) (2N+1) (N—1) /5
*2(2N—7)*N/5- 3

*12(2N+5) @N+3)(N—-1)/7-5

*N(N—1)%/3
IN
*8§N(N—1)%/7-5-3
*2(2N+5) (N—1)¥/7-5
2(2N+5)/7 -
*8(2N+5) (N—1)*/9-7-3
*(2N+5) (N+1)N/5-3-2
*(QN+7) (4N—5)*/9-7-5-2
(2N+7)/3-2
*(2N+7) (10N+1)%/11%-4-3*

*5(2N+9) 2N+7) (N—1)/11*-3

*3(2N+7) (N+1) N/7 -5
*(3N—7)*N/7-5°

5N/7-2
*5(4N+7)*N/11-9-7-3-2
*2(2N+3) (N—2)%/9
*(2N-+1)*N/5-3-2
*(2N+5) (N—2)%/5-2

. ¥*(2N+38)?N/7-4-2
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28 Nf;1p Ng ;38
1F Nd;1p (N+2) s;1
1IF Nd;1p (N+1) d ;1
1F Nd;1p (N+1) d; 2
1F Nd;1p (N+1) d;3
1F Nd;1p Ng ;3
1F Nd;1p Ny 3 4
1F Nd;1p Ny ;5
1F Nd ;1p (N—1) i;5
2P Nd ;1p (N+2) s ;1
2P Nd;1p (N+1) d;1
2P Nd ; 1p (N+1) d; 2
2P Nd;1p (N+1) d; 3
2P Nd ;1p Ng ;3
18 Ns ;1d (N—2) d; 0
1S Nd ;1d Ns %
1S Nd ; 1d (N—1) d; 2
18 Nd ;1d (N—2) g ;2
1S Ng;1d Nd ; 4
18 Ng ;1d (N—1) g ; 4
1S Ng ; 1d (N—2) 7 ;4
1P Nd;1ld Np ;1
1P Nd;1d (N—-1) f;1
1P Nd;1d Np ;2
1P Nd;1ld (N-1) ;2
1P Nd;1d Np ;3
1P Nd;1d (N—1) f; 3
1P Nd; 1d (N—2) h; 3
1DNd;1d Nd ;0
1D Nd;1d Nd ;1

*(2N+7) (N—2)%/7-3

*(2N—9)*(N+1)N/7-5-3-2

*2 (2N +5)N*/7-5-3
4(2N+5)N/7-5

*(2N-+5) (2N—5)* N/7*.5.3

*(2N+7) 2N+5) (4N—3)*/7*-5-3%.2

(2N+7) (2N+5)/7-3-2
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*(2N+7) (2N+5) - (I0N—21)?/11%-7-4-3°
*5(2N+9) (2N+7) (2N+5) (N—1)/11%-7-3

*(2N+1)2(N+1)N/9-5-2

*(2N+5) (2N—5)IN/9-5-2
(2N-+5) -N/5-2

*(2N+5) (6N—5)’N/7*-5-4-2

*3(2N+7) (2N +5) (N—2)¥/7*-5

16(N—1) (N—2)/3
(2N+3) (2N+1)/5-3
4(2N+3) (N—1)/7-3
24(N—1) (N—2)/7-5
(2N+7) (2N +5)/7-3-2
10- 2N+7) (N—1)/11-7-3
5(N—1) (N—2)/11-3
2(2N+3) (2N—1)%/9-5
8(N—1) (N—3)?/5-3

*2(2N+3) /5

*16(N—1) /5
(2N+3) (6N—13)*/7*-5-2
4(N—1) (2N—1)%/7-5-3

20(2N+5) (N—1) (N—2) /7*-3

4{(N—-1)’— (N-1) +1}*/9
*4(N—1)?
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1DNd;1d Nd ;2 16 {(N—1)"— (N—1) + 7} /7% 3
1D Nd; 1d (N+1) s ; 2 (2N+3) (2N—9)*N/9-7-5

1D Nd; 1d (N—1) ¢ ; 2 8(2N-5) (N—1) (N—2)¥/T*-5
1IDNd;1d Nd ;3 *16(N—1)Y/7*

1D Nd; 1d (N—1) g ; 3 *20 (2N +4-5) (N—1) /7*

1DNd;1d Nd ;4 (4(N—1)’—4(N—1) —21} /-3
1D Nd; 1d (N—1) g ; 4 80 (2N +5) (N—1) (N—2)*/11-7*.3
1D Nd; 1d (N—2) i ; 4 10(2N+7) (2N+5) (N—1) (N—2) /11-9-7
2S Nd;1d (N+1) s ;2 (2N+3) (2N—3)’N/9-5-4

28 Nd;1d Nd ;2 2(N—=1)"+ (N—1) —7}%/9.7

28 Nd;1d (N—1) ¢ ; 2 2(2N+5) (N—1) (N—4)*/7-5

8)
9)

10)
11)
12)
13)
14)
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