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One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of

manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný et al.,

Phys. Rev. Lett. 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet was

demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque,

which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization

exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order

parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and

globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the

torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For

comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals

we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight

conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

DOI: 10.1103/PhysRevB.95.014403

I. INTRODUCTION

Antiferromagnets (AFMs) have so far found little ap-

plications as active components of devices primarily due

to their lack of net magnetization. With the development

of spintronics, however, the net magnetization that couples

strongly to the magnetic field becomes less important. In

the latest generation of magnetic random access memories

(MRAMs), for example, magnetic fields are used neither

for writing nor for reading. Since AFMs possess a long-

range magnetic order just like ferromagnets (FMs), they have

been recently explored as new materials for spintronics (see

Refs. [1–3] for recent reviews of antiferromagnetic spintron-

ics). In particular, they could in principle be used for solid

state memories in which bits of information are represented

by the direction of the magnetic order parameter, similarly

to FMs. Such memory functionalities were experimentally

demonstrated in AFM tunneling [4] and ohmic devices

[5–7].

Compared to FMs, AFMs have several potential advan-

tages. They are insensitive to large magnetic fields and do not

produce any stray fields. This makes them more challenging

from an experimental and technological point of view, but it

can also be an advantage. Stray fields can cause problems

in densely packed devices, and the sensitivity to external

magnetic fields means that a FM memory can be accidentally

rewritten by external magnetic fields. AFM memory, on the

other hand, is much less sensitive to external magnetic fields.

For example, a memory based on FeRh could not be erased by

fields as high as 9 T [5]. Another advantage is that dynamics

of magnetic moments in AFMs is much faster than in FMs.

Switching of the AFM order parameter on a ps timescale was

demonstrated, e.g., in a laser-induced-heating experiment [8].

A remarkable feature of AFMs is also the wide range of

available AFM materials. This holds especially for semicon-

ductors. FM semiconductors have attracted a lot of interest

in the past since they enable the combination of spintronic

and microelectronic functionalities. Yet, despite intensive

research, FM semiconductors remain rare and tend to have

Curie temperatures too low for practical applications. AFM

semiconductors on the other hand are more common and tend

to have magnetic order persisting above room temperature

[3,9–11]. Materials that combine antiferromagnetism with

ferroelectricity [12] or the parent compounds of the high-Tc

superconductors [13] further highlight the broad and diverse

range of AFMs.

For microelectronic memory and logic applications of

AFMs, two basic functionalities have to be available: a method

for detecting and manipulating electrically the magnetic order

parameter. For readout, the anisotropic magnetoresistance

(AMR) effect [9,10,14] and its tunneling counterpart TAMR

have been demonstrated [4]. While AMR is usually rather

small, with typical magnetoresistance ratios around a few

percent, a ∼100% TAMR has been already achieved, albeit

at low temperatures.
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Manipulating the magnetic order parameter in AFMs by

practical means has been a major challenge. AFMs can be

controlled by external magnetic fields, but this is impractical

since it typically requires very large fields. The lowest uniform

static field that can reorient an AFM is the so-called spin-

flop field, which is proportional to
√

HJ Han , where HJ is the

inter-sublattice exchange field and Han is the anisotropy field.

Since the exchange interaction is typically much larger than

the anisotropy, the spin-flop fields are large compared to FMs.

Instead, an auxiliary exchanged-coupled FM layer is often

used [4,9,15], which makes manipulation possible by smaller

fields. This only works for thin AFM layers though, and it is

highly dependent on interface properties.

While FMs can be manipulated by external magnetic fields,

in microelectronic devices a direct electrical manipulation

offers a more scalable approach. This is usually achieved

using the so-called spin-transfer torque [16,17]. This torque

occurs due to the absorption of angular momentum from a

spin-polarized current generated by a fixed FM polarizer. On

the other hand, due to spin-orbit coupling, a torque can be

generated without the injection of a spin current from the FM

polarizer [18–28]. Such torque is usually called a spin-orbit

torque. In FMs it requires a broken inversion symmetry and can

therefore occur either in crystals with no inversion symmetry in

the unit cell or in heterostructures, where inversion symmetry

is broken structurally.

Because of the insensitivity of AFMs to external fields, the

electrical manipulation of AFMs is even more desirable. To

manipulate a collinear AFM effectively, a staggered magnetic

field (i.e., a field that is opposite on the two sublattices) is

needed. In Ref. [29] it was shown that the analog of the FM

spin-transfer torque in AFMs can generate effective fields that

are staggered. However this requires very thin layers [30].

Reference [31] proposed that in bulk AFMs with specific

symmetries, electrical current can create a torque by a similar

mechanism to the spin-orbit torque in FMs. The work also

showed that the effective field generating the torque can be

staggered and the corresponding nonstaggered torque can thus

be effective for manipulating AFMs. Switching of an AFM

based on predictions in Ref. [31] was recently experimentally

observed in AFM CuMnAs [7]. This opens up a way to

applications of AFMs. The current densities needed for

switching in Ref. [7] were comparable to current densities

in FM spin-torque MRAMs.

In this paper we theoretically study the nature and charac-

teristics of spin-orbit torques in AFMs in a systematic way. We

give a general symmetry analysis for crystals that lack inver-

sion symmetry (globally noncentrosymmetric crystals) as well

as crystals in which the symmetry group of at least one site in

the unit cell is noncentrosymmetric (in other words, there exists

a site which is not an inversion center). We then say that such

crystals are locally noncentrosymmetric. We consider both the

AFM and FM order. We determine when the torque can exist,

when it is effective for manipulating the magnetic order in

AFMs, and also what form the torque has. In Ref. [31] the spin-

orbit torque was calculated for two representative tight-binding

models, one describing a three-dimensional (3D) lattice of

Mn2Au and the other one representing a two-dimensional (2D)

crystal with Rashba spin-orbit coupling. Mn2Au served as a

model AFM system with globally centrosymmetric and locally

noncentrosymmetric crystal structure and inversion-partner

lattice sites occupied by the two spin sublattices. In this model

system, the so-called fieldlike torque, driven by a staggered,

magnetization-independent current-induced field, is effective.

(Note that the relevant crystal symmetries of Mn2Au are the

same as those of the recently experimentally studied CuMnAs

and that the calculated magnitudes of the spin-orbit torques

in Mn2Au and CuMnAs are also comparable [7].) On the

other hand, the so-called (anti)damping-like torque, driven by a

staggered, magnetization-dependent effective field, was found

to be the effective torque component in the 2D AFM crystal

with a global inversion asymmetry modeled by the Rashba

Hamiltonian.

Here we calculate all spin-orbit torque components in both

models which allows us to generalize the result of Ref. [31]: All

torque components driven by fields that are an even function

of the sublattice magnetization are effective in the AFM 3D

Mn2Au model while torques driven by fields that are odd in

magnetization are effective in the AFM 2D Rashba model.

The calculations also reveal that the angular dependencies

of the current-induced fields with respect to the applied

current direction and the direction of magnetic moments are

similar in the two model systems, due to similarities in the

relevant symmetries of the two model crystals. Numerical

and analytical calculations of the spin-orbit torque in the

two tight-binding models are complemented by ab initio

density-functional-theory (DFT) calculations and results for

the AFM order are compared to calculations assuming the FM

order in the same model crystals.

Our paper is organized as follows: In Sec. II we describe the

two tight-binding models and the linear response formalism

used for calculating the spin-orbit torque. In Sec. III we discuss

the symmetry of the spin-orbit torque and apply the general

symmetry arguments to our two models. A detailed derivation

of symmetry properties of the spin-orbit torque is given in

Appendix A. In Sec. IV we show the results of analytical

and numerical calculations of the spin-orbit torque in the two

models. In Sec. V we discuss the results, and in particular

summarize the symmetry considerations.

II. MODELS

In some materials electrical current can induce nonequi-

librium spin-polarization due to spin-orbit coupling [32–36].

This effect is called the inverse spin-galvanic effect or the

Edelstein effect. For the presence of nonvanishing net spin

polarization (i.e., integrated over the whole unit cell) a broken

inversion symmetry is needed. In FMs, due to exchange

interaction between carrier spins and magnetic moments, the

current-induced spin polarization (CISP) will exert a torque

on the magnetization. This effect is the spin-orbit torque.

In AFMs the effect is similar. Since the carrier–magnetic

moment exchange interaction is short-range, spin polarization

generated by the electrical current on a sublattice will interact

primarily with the magnetic moments on that sublattice. To

evaluate the spin-orbit torque in AFMs we thus have to

calculate the CISP locally on each magnetic sublattice.

Note that in the spintronics community two different

effects are termed as the spin-orbit torque. Apart from the

effect discussed here, there exists also a torque generated in
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heavy-metal/FM heterostructures due to spin Hall effect.

Lateral electrical current generates spin current in the perpen-

dicular direction due to the spin Hall effect, which flows in the

FM and exerts a torque via the spin-transfer torque mechanism.

Since the heterostructures have broken inversion symmetry,

the torque due to inverse spin galvanic effect coexists with the

spin Hall torque, rendering the entire physics quite complex

to analyze (see for instance Ref. [37], where both mechanisms

are included). We only consider bulk systems in which the spin

Hall effect does not generate any torque.

To calculate the CISP δSa (a denotes the sublattice) we use

the Kubo linear response formalism. We can define a response

tensor χa such that δSa = χaE, where E is the electrical field.

We assume that the only effect of disorder is a constant band

broadening Ŵ and we consider a weak disorder (i.e., small Ŵ).

As discussed in Ref. [28], the tensor χa can then be expressed

as a sum of three terms:

χa = χ I
a + χ II(a)

a + χ II(b)
a , (1)

χ I
a,ij = −

e�

2Ŵ

∑

k,n

〈ψnk|Ŝa,i |ψnk〉〈ψnk|v̂j |ψnk〉

×δ(εkn − EF ), (2)

χ
II(a)
a,ij = e�

∑

k,n�=m

Im[〈ψnk|Ŝa,i |ψmk〉〈ψmk|v̂j |ψnk〉]

×
Ŵ2 − (εkn − εkm)2

[(εkn − εkm)2 + Ŵ2]2
(fkn − fkm), (3)

χ
II(b)
a,ij = 2e�

∑

k,n�=m

Re[〈ψnk|Ŝa,i |ψmk〉〈ψmk|v̂j |ψnk〉]

×
Ŵ(εkn − εkm)

[(εkn − εkm)2 + Ŵ2]2
(fkn − fkm), (4)

where n,m are band indices, ψnk and εnk denote Bloch

eigenfunctions and eigenvectors, respectively, EF is the Fermi

energy, fk,n is the Fermi-Dirac distribution function, v̂ is the

velocity operator, e is the (positive) elementary charge, and

Ŝa is the spin-operator projected on sublattice a. Throughout

this text we use a dimensionless spin operator; i.e., for one

electron Ŝ = σ , where σ is a vector of Pauli matrices. The k

sums run over the first Brillouin zone. These equations are the

same as in Ref. [28], except we replace the spin operator by the

spin operator projected on a sublattice. We calculate the CISP

for the AFM spin sublattices. However, the same formalism

applies also for any sublattice in a FM or a nonmagnetic

material. χ I
a is called the intraband term and χ II(a)

a , χ II(b)
a are

the interband terms. The term χ I
a could also be obtained from

the Boltzmann formula with constant relaxation time (with the

relaxation time τ = �/2Ŵ). It is diverging in the limit Ŵ −→ 0,

analogously to how, for example, the conductivity diverges

in a perfectly periodic crystal. Thus to evaluate this term we

always have to consider some disorder, i.e., a finite Ŵ. The

term χ II(a)
a is constant in the zero-Ŵ limit, while the term χ II(b)

a

is zero in this limit. The zero-Ŵ limit of the term χ II(a)
a is

called the intrinsic contribution since it is determined only

by the electronic structure of the crystal and not by disorder.

The intrinsic contribution has been studied extensively in the

FIG. 1. Crystal structure of two model AFMs. (a) Crystal struc-

ture of the AFM 2D Rashba model. (b) Crystal structure of AFM

Mn2Au. Note that the unit cell shown is the conventional unit cell,

which is as large as the primitive unit cell. All of the atoms with the

same color are connected by a translation and are thus equivalent.

context of the anomalous Hall effect [38] and the spin Hall

effect [39].

We calculated the CISP for the two tight-binding models

from Ref. [31]. For completeness we give here a description

of the models. The first one is a 2D tight-binding model with

Rashba spin-orbit coupling, which simulates the structural in-

version asymmetry at a surface or an interface. The model was

chosen as a simplest AFM model in which the spin-orbit torque

is expected. We consider a square AFM lattice [see Fig. 1(a)],

where the d-orbital local magnetic moments are treated

classically and only the conduction s electrons are treated

quantum mechanically. The Hamiltonian can be written as

H =
∑

〈ij〉

JddM̂i · M̂j + H tb +
∑

i

JsdŜi · M̂i + HR. (5)

Here the indices i,j correspond to lattice sites; M̂i,M̂j are

directions of magnetic moments, Jdd and Jsd are the exchange

constants for exchange interaction between the magnetic

moments, and between the magnetic moments and conduction

electron spins, respectively. H tb contains the nearest-neighbor

hoppings. HR is the Rashba spin-orbit coupling, given by

HR =
α

2al

∑

j

[(c
†
j↑cj+δx↓ − c

†
j↓cj+δx↑)

− i(c
†
j↑cj+δy↓ + c

†
j↓cj+δy↑) + H.c.], (6)

where α is the Rashba parameter, al the lattice constant, c
†
j , cj

are the creation and annihilation operators for electron on

site j , and j + δx, j + δy are nearest neighbors along the

x and y directions, respectively. Reference [31] shows the

band structure of this Hamiltonian. In all calculations we set

t = 3 eV, Jsd = 1 eV, and α
2al

= 0.1 eV, where t is the hopping

parameter. Unless stated otherwise, the Fermi level is set to

EF = −2 eV.

The torque is given by

Ta = Ma × Ba, (7)

where Ma is the magnetic moment on sublattice a and Ba is the

effective current-induced field, which for this model is given

by [23]

Ba = −Jsd

δSa

Ma

, (8)
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where Ma is the magnitude of magnetic moment on sub-

lattice a.

The second model describes a 3D AFM Mn2Au. The crystal

structure of Mn2Au is shown in Fig. 1(b). It is a collinear

high Néel temperature AFM that has recently been identified

as a promising material for AFM spintronics [40–42]. We

describe Mn2Au by an empirical tight-binding Slater-Koster

model with s, p, and d electrons for each atom. We use

the tight-binding parameters for single-element metals from

Ref. [43] as a starting point and improve them so that the

model agrees with the DFT calculation [31]. (See Ref. [44]

for details of the method and the procedure for obtaining

the tight-binding parameters.) The DFT calculation was done

using the full-potential all-electron code Wien2k [45]. To

improve the description of the Mn d states, we used the

LDA+U method with U = 4.63 eV and J = 0.54 eV [46].

For the tight-binding calculations of the CISP we add a

k-independent on-site spin-orbit coupling for both Mn and

Au atoms with parameters obtained from atomistic Hartree-

Fock calculations. The tight-binding model is not expected to

be quantitatively as accurate as DFT calculation; however, it

can be used to illustrate the origin and the symmetries of the

spin-orbit torque in the AFM Mn2Au crystal. A quantitative

comparison to DFT spin-orbit torque calculations is presented

in Sec. V.

In the DFT calculation it is possible to evaluate the effective

field or directly the torque using the space-dependent exchange

field [21,37]. In the case of the tight-binding calculation, we

obtain only the CISP. To get an estimate of the effective field

we can still use Eq. (8), which corresponds to taking a spatial

average of the exchange field. In Ref. [31] the carrier–magnetic

moment exchange constant was set to Jsd = 1 eV, which is a

typical value estimated for transition metals [47].

In Ref. [31], only the terms χ II (a)
a for the 2D Rashba model

and χ I
a for the Mn2Au model were considered, respectively.

Here we take into account all three terms for both models.

Since we are primarily interested in the small-Ŵ limit, we

mostly focus on terms χ I
a , χ II (a)

a , but the term χ II (b)
a is also

discussed.

III. SYMMETRY CONSIDERATIONS

Symmetry is crucial for understanding when the spin-orbit

torque can exist and what form it has. In Appendix A we give

a derivation of the symmetry properties of the tensor χa . Here

we summarize the main results and apply them to our two

models. The following analysis applies both to the effective

field and the CISP because they have the same symmetry

properties. Since spin-orbit torque is a nonequilibrium process

that includes dissipation, the tensor χa does not have a simple

behavior under time reversal. To deal with this problem we

separate the tensor into a part even in magnetic moments and

a part odd in magnetic moments:

χ even
a ([M]) = [χa([M]) + χa([−M])]/2, (9)

χodd
a ([M]) = [χa([M]) − χa([−M])]/2, (10)

where [M] = [MA,MB , . . . ] denotes the directions of all

magnetic moments in the magnetic unit cell. As shown in

the Appendix A it holds that

χ even
a = χ I

a + χ II (b)
a , (11)

χodd
a = χ II (a)

a . (12)

In Appendix A, the following rules are derived for the

transformation of χa under symmetry operation R:

χ even
a′ = det(D)Dχ even

a D−1, (13)

χodd
a′ = ± det(D)Dχodd

a D−1, (14)

where a′ is the sublattice to which the sublattice a transforms

under symmetry operation R and D is a matrix representing

the symmetry operation in real space as defined by Eq. (A13).

The plus sign in Eq. (14) corresponds to a symmetry operation

that does not contain time reversal and the minus to a symmetry

operation that contains time reversal. These rules apply for any

form of magnetic order as well as for nonmagnetic crystals.

The same rules also apply for the tensor χ , which describes

the net CISP.

Basic symmetry rules can be inferred from Eqs. (13) and

(14). If the system has an inversion symmetry,

χa′ = −χa. (15)

If also inversion transforms the sublattice a into itself, then

there can be no CISP on the sublattice a. We therefore reach

an important conclusion: for the existence of the CISP (and

thus also the spin-orbit torque) on sublattice a, the inversion

symmetry has to be locally broken; i.e., the atomic site which

forms the sublattice a must not be an inversion center. This

means that current can generate spin polarization even in

a material that has global inversion symmetry if inversion

symmetry is broken locally. However, it is also important

to note that if the inversion symmetry is locally broken, the

CISP can still vanish due to other symmetries. For example, a

diamond lattice has a global inversion symmetry, but the two

different lattice sites in the diamond unit cell have inversion

symmetry locally broken. Without any strain, the CISP will

nevertheless vanish. However, when a uniaxial strain is present

in the diamond lattice a CISP with opposite sign on the two

different sites will appear [48].

In the 2D Rashba model, the inversion symmetry is broken

globally due to the structural asymmetry of the assumed

layered system. In the AFM Mn2Au crystal, the inversion

symmetry is broken by the magnetic order since the inversion

partner lattice sites are occupied by Mn atoms with opposite

moments. Even without magnetic moments, however, the

inversion symmetry is locally broken for each sublattice. This

can be seen in Fig. 1(b) and is discussed in more detail in

Sec. V (see also Fig. 9).

Of particular interest in the case of AFMs is to determine

how the CISPs on the AFM spin sublattices are related.

This is because for the spin-orbit torque to be efficient, the

current-induced effective magnetic field and thus also the

CISP have to be staggered. Since the exchange interaction

is much larger than any field typically acting on AFMs, we

assume that during any dynamics the two magnetic moments

stay approximately collinear (although any dynamics of the

AFM order parameter induces a small magnetization). Then
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in the AFM 2D Rashba model, a simultaneous translation and

time inversion will always be a symmetry of the model that

transforms one AFM spin-sublattice into the other. For such

a symmetry operation, D = I , where I is the identity matrix,

and therefore

χ even
A = χ even

B , (16)

χodd
A = −χodd

B . (17)

This implies that the efficient torque driven by a staggered field

is generated by the odd component of the response tensor.

In the Mn2Au type of crystal, the AFM spin sublattices are

not connected by translation. Instead they are connected by

inversion around the unit cell center so that a combination of

inversion and time reversal is a symmetry of the model. Since

in this case D = −I , we find

χ even
A = −χ even

B , (18)

χodd
A = χodd

B , (19)

and now it is the even component of the response tensor that

generates the staggered CISP. The two models illustrate a

general phenomenology of CISPs in collinear AFMs, in which

the two AFM spin sublattices are typically connected either

by a translation or by an inversion.

By considering the magnetic space group of a given

material, one can find using the Eqs. (13) and (14) the most

general form of the tensor χa as well as relations between

tensors χa on different sublattices. Note that for the CISP

projected on a sublattice it is not enough to consider the

point group of the crystal because then the information on

the relationship between the sublattices would be lost. We

provide a free program which outputs the symmetry of the

CISP for any type of crystal and magnetic structure [49]. See

the Appendix B for a brief description of the code. Symmetry

of the tensors, which describe the global spin-orbit torque, can

be found in Ref. [50] for every magnetic point group. These

also apply for the local spin-orbit torque, if one uses the site

symmetry group (of the site which forms the sublattice), i.e.,

the group of symmetry operations of the whole crystal that

leave the sublattice invariant.

In a magnetic material, the CISP in general depends on

the direction of the magnetic moments. This is because

the CISP is determined by the electronic structure and in

the presence of spin-orbit coupling the electronic structure

depends on the direction of magnetic moments. Understanding

this dependence is important because it determines what kind

of magnetic dynamics the spin-orbit torque will induce. Note

that a CISP strongly dependent on the direction of magnetic

moments has been observed experimentally [24]. To describe

the dependence of the CISP on the direction of magnetic

moments, it is useful to expand the linear response tensor

in powers of magnetic moments. In general χa depends

on the directions of all magnetic moments in the system.

We consider only FMs and collinear two-sublattice AFMs.

We again assume that the magnetic moments will always

stay approximately collinear. Since the intra-spin-sublattice

exchange is typically very large, we also assume that the

magnitude of the spin-sublattice magnetic moments will not

change during dynamics. Then χa will be a function of

only the spin-axis direction n̂. In the case of two-sublattice

collinear AFMs, n̂ = L̂ = L̂/|L|, where L is the Néel vector:

L = MA − MB . In FMs n̂ = M/|M|. We can then write the

tensor χa in the following way [51]:

χa,ij (n̂) = χ
(0)
a,ij + χ

(1)
a,ij,kn̂k + χ

(2)
a,ij,kl n̂kn̂l + · · · . (20)

Here the Einstein summation notation is used. Note that since

n̂ is a unit vector, the expansion could be done using two

variables only. We find it more practical, however, to use

all three components of n̂. The odd terms in the expansion

correspond to the odd part of the CISP, while the even terms

correspond to the even part.

To find the symmetry properties of the expansion (20) we

have to consider the nonmagnetic site symmetry group. This is

a group of symmetry operations of the nonmagnetic crystal that

leave the sublattice a invariant. [See Appendix A for details

on how to find the symmetry properties of the expansion

(20).] Since there are only 21 nonmagnetic point groups

with broken inversion symmetry, it is feasible to calculate

all allowed leading terms of the expansion (20). This was

done for the zeroth-order terms in Ref. [48] that focused on

the CISP in FMs. The zeroth-order terms generate the fieldlike

torque. In Table I we give all allowed first-order terms and

for completeness we also show the zeroth-order terms. The

zeroth-order term vanishes for several point groups. For those

we also give the second-order terms in Table II. Together the

tables give the lowest-order terms for the even and odd part of

the CISP in all 21 noncentrosymmetric point groups.

The tensors in Tables I and II are given in Cartesian

coordinate systems. The Cartesian systems are defined in terms

of the conventional basis vectors a,b,c (see the International

Tables for Crystallography [52]). The choice of the Cartesian

system is straightforward for the orthorhombic, tetragonal,

and cubic groups. The tensors for the triclinic group 1 have

a completely general form and the choice of the coordinate

system is thus irrelevant for this group. For hexagonal and

trigonal groups, we choose the right-handed coordinate system

that satisfies x = a/|a|, z = c/|c|. For the monoclinic groups

we use the unique axis b setting [52] and choose the right-

handed coordinate system that satisfies x = a/|a|, y = b/|b|.
The tensors in Tables I and II apply for two-sublattice

collinear AFMs and FMs. In the case of AFMs the expansion

only applies for the CISP on a sublattice and correspondingly

the site symmetry group has to be used. In FMs, the tensors

apply for the local as well as for the net CISP. In the

latter case the point group of the whole crystal has to be

used. Since the zeroth-order term is independent of magnetic

moments it can be equally considered for any material,

including noncollinear AFMs. In nonmagnetic materials, there

is naturally no dependence on magnetic moments so the

zeroth-order term describes the CISP completely in this case.

The zeroth-order terms that generate the fieldlike torque

are particularly important since they are often dominant.

As discussed in Ref. [48], the tensors corresponding to the

fieldlike torque are in general composed of three distinct

terms: generalized Rashba and Dresselhaus terms and a term
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TABLE I. Zeroth- and first-order terms in the expansion (20) for the point groups with broken inversion symmetry. The tensors χ (1) have

the spin-axis direction included: χ
(1)
ij = χ

(1)
ij,kn̂k . The x parameters can be chosen arbitrarily for each tensor. Note that the groups −42m and

−4m2, 312 and 321, 3m1 and 31m, and −6m2 and −62m are equivalent and differ only by a coordinate transformation. For completeness we

also give the tensors for the equivalent groups.

Crystal system Point group χ (0) χ (1)

triclinic 1

⎛

⎜

⎝

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx111 + n̂yx112 + n̂zx113 n̂xx121 + n̂yx122 + n̂zx123 n̂xx131 + n̂yx132 + n̂zx133

n̂xx211 + n̂yx212 + n̂zx213 n̂xx221 + n̂yx222 + n̂zx223 n̂xx231 + n̂yx232 + n̂zx233

n̂xx311 + n̂yx312 + n̂zx313 n̂xx321 + n̂yx322 + n̂zx323 n̂xx331 + n̂yx332 + n̂zx333

⎞

⎟

⎠

monoclinic 2

⎛

⎜

⎝

x11 0 x13

0 x22 0

x31 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂yx1 n̂xx13 + n̂zx12 n̂yx3

n̂xx5 + n̂zx6 n̂yx11 n̂xx4 + n̂zx7

n̂yx10 n̂xx8 + n̂zx9 n̂yx2

⎞

⎟

⎠

m

⎛

⎜

⎝

0 x12 0

x21 0 x23

0 x32 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx12 + n̂zx9 n̂yx14 n̂xx13 + n̂zx8

n̂yx3 n̂xx11 + n̂zx10 n̂yx4

n̂xx7 + n̂zx6 n̂yx5 n̂xx1 + n̂zx2

⎞

⎟

⎠

orthorhombic 222

⎛

⎜

⎝

x11 0 0

0 x22 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

0 n̂zx5 n̂yx4

n̂zx1 0 n̂xx6

n̂yx3 n̂xx2 0

⎞

⎟

⎠

mm2

⎛

⎜

⎝

0 x12 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx4 0 n̂xx6

0 n̂zx5 n̂yx7

n̂xx3 n̂yx2 n̂zx1

⎞

⎟

⎠

tetragonal 4

⎛

⎜

⎝

x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx6 −n̂zx2 n̂xx5 − n̂yx7

n̂zx2 n̂zx6 n̂xx7 + n̂yx5

n̂xx4 − n̂yx3 n̂xx3 + n̂yx4 n̂zx1

⎞

⎟

⎠

−4

⎛

⎜

⎝

x11 x21 0

x21 −x11 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx5 n̂zx1 n̂xx4 + n̂yx6

n̂zx1 −n̂zx5 n̂xx6 − n̂yx4

n̂xx3 + n̂yx2 n̂xx2 − n̂yx3 0

⎞

⎟

⎠

422

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

0 −n̂zx3 −n̂yx2

n̂zx3 0 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟

⎠

4mm

⎛

⎜

⎝

0 −x21 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx4 0 n̂xx1

0 n̂zx4 n̂yx1

n̂xx3 n̂yx3 n̂zx2

⎞

⎟

⎠

−42m

⎛

⎜

⎝

x11 0 0

0 −x11 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 n̂zx3 n̂yx2

n̂zx3 0 n̂xx2

n̂yx1 n̂xx1 0

⎞

⎟

⎠

−4m2

⎛

⎜

⎝

0 x21 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx3 0 n̂xx1

0 −n̂zx3 −n̂yx1

n̂xx2 −n̂yx2 0

⎞

⎟

⎠

trigonal 3

⎛

⎜

⎝

x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx7 + n̂yx2 + n̂zx8 n̂xx2 − n̂yx7 − n̂zx3 n̂xx6 − n̂yx9

n̂xx2 − n̂yx7 + n̂zx3 −n̂xx7 − n̂yx2 + n̂zx8 n̂xx9 + n̂yx6

n̂xx5 − n̂yx4 n̂xx4 + n̂yx5 n̂zx1

⎞

⎟

⎠

312

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂yx3 n̂xx3 − n̂zx4 −n̂yx2

n̂xx3 + n̂zx4 −n̂yx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟

⎠

321

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx3 −n̂yx3 − n̂zx4 −n̂yx2

−n̂yx3 + n̂zx4 −n̂xx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟

⎠
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TABLE I. (Continued.)

Crystal system Point group χ (0) χ (1)

3m1

⎛

⎜

⎝

0 −x21 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂yx4 + n̂zx5 n̂xx4 n̂xx2

n̂xx4 −n̂yx4 + n̂zx5 n̂yx2

n̂xx3 n̂yx3 n̂zx1

⎞

⎟

⎠

31m

⎛

⎜

⎝

0 −x21 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx3 + n̂zx5 −n̂yx3 n̂xx1

−n̂yx3 −n̂xx3 + n̂zx5 n̂yx1

n̂xx4 n̂yx4 n̂zx2

⎞

⎟

⎠

hexagonal 6

⎛

⎜

⎝

x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx6 −n̂zx2 n̂xx5 − n̂yx7

n̂zx2 n̂zx6 n̂xx7 + n̂yx5

n̂xx4 − n̂yx3 n̂xx3 + n̂yx4 n̂zx1

⎞

⎟

⎠

−6

⎛

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx1 + n̂yx2 n̂xx2 − n̂yx1 0

n̂xx2 − n̂yx1 −n̂xx1 − n̂yx2 0

0 0 0

⎞

⎟

⎠

622

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x33

⎞

⎟

⎠

⎛

⎜

⎝

0 −n̂zx3 −n̂yx2

n̂zx3 0 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟

⎠

6mm

⎛

⎜

⎝

0 −x21 0

x21 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂zx4 0 n̂xx1

0 n̂zx4 n̂yx1

n̂xx3 n̂yx3 n̂zx2

⎞

⎟

⎠

−6m2

⎛

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂yx1 n̂xx1 0

n̂xx1 −n̂yx1 0

0 0 0

⎞

⎟

⎠

−62m

⎛

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

n̂xx1 −n̂yx1 0

−n̂yx1 −n̂xx1 0

0 0 0

⎞

⎟

⎠

cubic 23

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x11

⎞

⎟

⎠

⎛

⎜

⎝

0 n̂zx2 n̂yx1

n̂zx1 0 n̂xx2

n̂yx2 n̂xx1 0

⎞

⎟

⎠

432

⎛

⎜

⎝

x11 0 0

0 x11 0

0 0 x11

⎞

⎟

⎠

⎛

⎜

⎝

0 −n̂zx1 n̂yx1

n̂zx1 0 −n̂xx1

−n̂yx1 n̂xx1 0

⎞

⎟

⎠

−43m

⎛

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 n̂zx1 n̂yx1

n̂zx1 0 n̂xx1

n̂yx1 n̂xx1 0

⎞

⎟

⎠

describing a response proportional to the electric field. They

are described by the following tensors respectively:

χgR
a =

⎛

⎝

x11 −x21 0

x21 x11 0

0 0 0

⎞

⎠, (21)

χgD
a =

⎛

⎝

x11 x21 0

x21 −x11 0

0 0 0

⎞

⎠, (22)

χE
a =

⎛

⎝

x11 0 0

0 x11 0

0 0 x11

⎞

⎠. (23)

The generalized Rashba and Dresselhaus CISPs lie in a

plane and are only present for the current applied in the same

plane. In Eqs. (21) and (22), it is the xy plane, but in general,

it can be any plane. The generalized Rashba and Dresselhaus

terms differ in how the CISP depends on the current direction,

as illustrated in Figs. 2(a) and 2(b). In the case of the Rashba

CISP, when the current direction is rotated the CISP rotates

in the same way, while in the case of the Dresselhaus CISP

the field rotates in the opposite direction. They differ from the

conventional Rashba and Dresselhaus terms,

χR
a =

⎛

⎝

0 −x21 0

x21 0 0

0 0 0

⎞

⎠, (24)
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TABLE II. Second-order terms in the expansion (20) for the point groups which have no zeroth-

order term allowed by symmetry. The x parameters can be chosen arbitrarily for each tensor.

Point group χ (2)

−6

⎛

⎜

⎝

n̂z(n̂xx5 + n̂yx4) n̂z(n̂xx4 − n̂yx5) n̂2
xx2 + 2n̂x n̂yx0 − n̂2

yx2

n̂z(n̂xx4 − n̂yx5) −n̂z(n̂xx5 + n̂yx4) n̂2
xx0 − 2n̂x n̂yx2 − n̂2

yx0

n̂2
xx1 + 2n̂x n̂yx3 − n̂2

yx1 n̂2
xx3 − 2n̂x n̂yx1 − n̂2

yx3 0

⎞

⎟

⎠

−6m2

⎛

⎜

⎝

n̂x n̂zx1 −n̂y n̂zx1 x2

(

n̂2
x − n̂2

y

)

−n̂y n̂zx1 −n̂x n̂zx1 −2n̂x n̂yx2

x3

(

n̂2
x − n̂2

y

)

−2n̂x n̂yx3 0

⎞

⎟

⎠

−62m

⎛

⎜

⎝

n̂y n̂zx1 n̂x n̂zx1 2n̂x n̂yx2

n̂x n̂zx1 −n̂y n̂zx1 x2

(

n̂2
x − n̂2

y

)

2n̂x n̂yx3 x3

(

n̂2
x − n̂2

y

)

0

⎞

⎟

⎠

−43m

⎛

⎜

⎝

x2

(

−n̂2
y + n̂2

z

)

n̂x n̂yx1 −n̂x n̂zx1

−n̂x n̂yx1 x2

(

n̂2
x − n̂2

z

)

n̂y n̂zx1

n̂x n̂zx1 −n̂y n̂zx1 x2

(

−n̂2
x + n̂2

y

)

⎞

⎟

⎠

χD
a =

⎛

⎝

x11 0 0

0 −x11 0

0 0 0

⎞

⎠, (25)

by a constant offset angle between the applied current and the

CISP [see Figs. 2(c) and 2(d)].

The Rashba term or generalized Rashba term with

nonzero x21 components occurs in polar point groups (groups

1, 2,m,mm2, 4, 4mm, 3, 3m1, 6, and 6mm), i.e., in groups

which allow the existence of a permanent electric dipole

moment. In a polar group, there is a Rashba term in the

FIG. 2. Illustration of the Rashba and Dresselhaus CISPs. The

figures show the dependence of CISP on the electric field direction.

Adapted from [48]. (a) Generalized Rashba CISP. (b) Generalized

Dresselhaus CISP. (c) Rashba CISP. (d) Dresselhaus CISP.

plane perpendicular to the electric dipole moment. The Rashba

term can be written as δS ∼ D̂ × E, where D̂ is the direction

of the electric dipole moment. In all polar groups except

for m and 1, D̂ is oriented along the polar direction (a

direction invariant under all symmetry operations), which in

the coordinate systems used in Table I is always oriented

along the z axis. In group 1, D̂ can have any direction, and

in the group m, it is oriented in the mirror plane. Polar

point groups 1, 2, 4, 3, and 6 contain the generalized Rashba

term (rather than just the Rashba term), which in addition

also occurs in nonpolar point groups 222, 422, 312, and 622

with x21 = 0. The CISP described by χE
a in Eq. (23) occurs

in enantiomorphic (also called chiral) crystals (point groups

1, 2, 222, 4, 422, 3, 312, 6, 622, 23, and 432), i.e., crystals in

which no symmetry operation contains inversion. The CISP

is an axial vector (even under inversion), while the electric

field is a polar vector (odd under inversion). These two vectors

can only be proportional in the enantiomorphic crystals since

in these crystals there is no difference between an axial and

polar vector. The generalized Dresselhaus term [Eq. (22)]

occurs in point groups 1, 2,m, 222,mm2,−4, and −42m, of

which the groups 222 and −42m have just the Dresselhaus

term.

The nonmagnetic symmetry group of the magnetic sites

in both the 3D Mn2Au and the 2D Rashba model is 4mm,

which has a Rashba zeroth-order CISP of the form z × E.

Another example of an AFM with a Rashba zeroth-order

CISP is CuMnAs [7]. Dresselhaus zeroth-order CISPs have

been previously observed in FMs GaMnAs [24,25] and

NiMnSb [48] (global point group −42m). AFM CuMnSb,

in which the Mn atomic sites have symmetry group −42m

[53], is another example for which we expect the Dres-

selhaus zeroth-order CISP, according to our symmetry

analysis.

The first-order term for the 4mm point group can be written

in the following way:

χ (1)
a = X1 + X2 + X3, (26)
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where

X1 = C1

⎛

⎝

−L̂z 0 0

0 −L̂z 0

L̂x L̂y 0

⎞

⎠, (27)

X2 = C2

⎛

⎝

0 0 0
0 0 0

L̂x L̂y 0

⎞

⎠, (28)

X3 =

⎛

⎝

0 0 C3L̂x

0 0 C3L̂y

0 0 C4L̂z

⎞

⎠. (29)

Note that in the 2D Rashba model the current cannot flow in

the z direction, so the third column has no physical meaning in

this case. The contribution to the CISP generated by the tensor

X1 can be constructed from the polar direction of the group

4mm: L̂ × (z × E). The contribution to the CISP coming from

the tensor X2 can be written as (L̂ · E‖)z, where E‖ is the

in-plane (the plane here refers to the xy plane) component of

the electric field.

Finally we note the connection of our general symmetry

analysis of the CISP to the discussion in Ref. [54], where

Rashba and Dresselhaus-like spin-orbit coupling effects in

locally noncentrosymmetric crystals were studied on the

level of equilibrium electronic structure. The local inversion

symmetry breaking induces local band splittings, i.e., splittings

that become apparent when the band structure is projected

on sublattices. The local spin-orbit torque discussed here can

be thought of as a consequence of the local band splittings,

similarly to how global Rashba or Dresselhaus spin-orbit

torques are caused by Rashba or Dresselhaus spin splittings in

the full (unprojected) band structure.

IV. LINEAR RESPONSE THEORY

A. Analytical calculations

The CISP in the AFM 2D Rashba model can be calculated

analytically when magnetic moments are oriented close to the

out-of-plane (z) direction and when the Fermi level is close

to the bottom or the top of the bands so that only k points

close to the Ŵ point matter for the torque calculation. Here we

describe the main aspects of the derivation; for more details

see Appendix C. To the second order in k the Hamiltonian (5)

can be expressed as

Ĥ = γk τ̂x − αkσ̂ · µτ̂x + JsdL̂ · σ̂ τ̂z, (30)

where γk = ta2
l [k2 − (2/al)

2]; µ is a unit vector perpendicular

to the k vector, expressed as µ = (sin ϕk,− cos ϕk,0), where

ϕk is defined by k = k(cos ϕk, sin ϕk,0). σ̂ and τ̂ are Pauli

matrices with σ̂/2 representing the carrier spin degree of

freedom and τ̂ the AFM spin-sublattice degree of freedom

of carriers.

The unperturbed retarded Green’s function, defined as

ĜR
0 = (ǫ − Ĥ + i0+)−1, reads

ĜR
0 =

1

4Sk

∑

s,η=±1

1

ǫ − ǫs,η + i0+

×
(

Sk + s[γk(σ̂ · µ) − Jsdτ̂y(σ̂ · L̂ × µ)]

+
1

ǫs,η

{(

sγ 2
k + sJ 2

sd + αkSk

)

(σ̂ · µ)τ̂x

+ [γk τ̂x + Jsd(σ̂ · L̂)τ̂z](Sk + sαk)

− sJsd(L̂ · µ)[Jsd(σ̂ · L̂)τ̂x − γk τ̂z + αk(σ̂ · µ)τ̂z]
}

)

,

(31)

where ǫs,η denotes the band structure given by

ǫs,η = η

√

γ 2
k + J 2

sd + α2k2 + 2sαkSk, (32)

Sk =
√

γ 2
k + J 2

sd[1 − sin2 θ sin2(ϕk − ϕ)]. (33)

Indices s,η refer to the spin chirality (s = ±1) and to the

electron/hole bands (η = ±1). In the limit of vanishing α,

both spin chiralities become degenerate. The angles θ, ϕ are

spherical coordinates of the vector L̂. In order to get an

analytically tractable expression for the CISP, we express in

the following the Green’s function in term of the projection

operator As,η = |s,η〉〈s,η| such that ĜR
0 =

∑

s,η As,η/(ǫ −
ǫs,η + i0+).

We evaluate the intraband term using the expression (2),

which applies for small Ŵ. For the interband term we take the

Ŵ → 0 limit in which the term χ II(b)
a is zero and the term χ II(a)

a

is constant. The CISP can then be written as

SIntra =
e�

2ŴV

∑

ν,k

Re{Tr[(v̂ · E)Aνσ ςAν]}δ(ǫk,ν − ǫF), (34)

SInter =
e�

V

∑

ν �=ν ′,k

Im{Tr[(v̂ · E)Aνσ ςAν ′ ]}
(fk,ν − fk,ν ′ )

(ǫk,ν − ǫk,ν ′ )2
,

(35)

where ν = s,η for conciseness. We also set σ ς = σ (1 +
ςτ̂z)/2, which defines the spin density operator on the spin

sublattices A (ς = +1) and B (ς = −1). Since Eqs. (34) and

(35) involve angular averaging over ϕk , it is convenient to

evaluate the spin density in the limit θ ≪ 1 (i.e., L̂ ≈ z).

In this case, the energy dispersion becomes isotropic ǫs,η =
η(

√
γ 2

k + J 2
sd + sαk).

As shown in Appendix C, by taking the small-α limit and

replacing the discrete summation in Eqs. (34) and (35) with

continuous integration (
∑

k → V
∫

d2k/4π2), one obtains in

the linear order in α

SIntra =
mα

8π�2Ŵ

⎛

⎝1 + 2
J 2

sd

ǫ2
F

⎡

⎣2 −
ǫ0

√

ǫ2
F − J 2

sd

⎤

⎦

⎞

⎠(z × eE),

(36)

SInter = −ς
mαJsd

4π�2ǫ2
F

⎛

⎝1 −
ǫ0

√

ǫ2
F − J 2

sd

⎞

⎠[L̂ × (z × E)], (37)

where we defined ǫ0 = ta2
l k

2
0 . These formulas hold for

ǫF,Jsd ≫ αkF ≫ Ŵ (kF is the Fermi wave vector). Note that to

derive these formulas we have neglected the vertex corrections

in order to obtain a tractable analytical result. Such corrections
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FIG. 3. Ŵ dependence of terms χ II (a), χ II (b) in the two models for

magnetic moments oriented along the [110] direction. Components

that are not shown are zero or related to those shown by symmetry.

The results are scaled to make the comparison between the two tight-

binding models easier. (a) Mn2Au. (b) The 2D model.

will be considered in a future work. As predicted from

symmetry considerations in the previous section, the intraband

contribution produces an effective field along the vector z × E,

i.e., independently of the magnetic moments direction, while

the (intrinsic) interband contribution results in a staggered

effective field along the vector ς L̂ × (z × E) that depends on

the direction of magnetic moments and has opposite sign on the

two spin sublattices. These results are the AFM counterparts

to the formulas obtained in the case of a FM 2D Rashba

model [28] and demonstrate that the torque enabling efficient

electrical manipulation of the AFM order arises in this model

from the odd interband contribution to the CISP which has a

finite value in the Ŵ → 0 limit; i.e., it is intrinsic in nature.

B. Numerical calculations

In this section we show results of numerical calculations of

the CISP in the two models described in Sec. II. The intraband

term χ I
a for Mn2Au and the interband term χ II (a)

a for the 2D

model were already presented in Ref. [31]. Here we calculate

also the interband term for Mn2Au and the intraband term

for the 2D model. We are primarily interested in the small-Ŵ

limit. For zero Ŵ the interband term χ II (b)
a vanishes. This is

illustrated in Fig. 3. Figure 3(a) shows the terms χ II (a)
a and

χ II (b)
a as a function of Ŵ for Mn2Au for magnetic moments

oriented along the [110] direction. Figure 3(b) shows the same

calculation for the 2D model. In both cases as Ŵ goes to zero,

the term χ II (b)
a goes to zero, while the term χ II (a)

a becomes

constant. In the following we choose Ŵ so that the term χ II (b)
a

is small and the term χ II (a)
a is close to its zero-Ŵ limit. We use

Ŵ ≈ 0.0013 eV in Mn2Au and Ŵ = 0.01 eV in the 2D model.

As discussed in the symmetry analysis in Sec. III, the part

of CISP that is even under time reversal is in the 2D model

the same on the two AFM spin sublattices, while the odd part

of the CISP is opposite. Conversely in Mn2Au, the even CISP

is opposite and the odd CISP is the same. This is a key result

since it shows that in both models the effective current-induced

field has a staggered component and can therefore switch the

AFM moments efficiently. In the following, we focus on the

dependence of the CISP on the direction of magnetic moments.

Since in our model systems the CISP is always either exactly

FIG. 4. Calculations of the intraband term χ I
a . Only results for

one sublattice are shown. Plots show the intraband CISP normalized

by the equilibrium spin polarization per 107 A cm−2 current den-

sity. (a) Mn2Au and in-plane rotation of magnetic moments [31].

(b) 2D model, in-plane rotation. (c) Mn2Au, out-of-plane rotation

[31]. (d) 2D model, out-of-plane rotation.

the same or opposite on the two sublattices, we show results

for one sublattice only.

We normalize all CISPs by current density calculated using

the linear response theory formula analogous to (2). Since

both the intraband term and the conductivity scale as 1/Ŵ, the

normalized intraband term is independent of Ŵ. For small Ŵ,

the normalized term χ II (a)
a scales as Ŵ. We also normalize the

CISP by the ground-state spin polarization (on each sublattice).

When this quantity is multiplied by Jsd/μB we get directly the

effective field.

The results for the intraband term for one sublattice are

shown in Fig. 4. For comparison we present the results for

Mn2Au and the 2D model side by side. Figures 4(a) and

4(c) show results for Mn2Au, while Figs. 4(b) and 4(d) show

the 2D model. In Figs. 4(a) and 4(b) the magnetic moments

were rotated from the [100] direction to the [−100] direction

through the [010] direction (the moments lie in-plane). In

Figs. 4(c) and 4(d) the magnetic moments were rotated from

the [00–1] direction to the [001] direction through the [100]

direction (the moments lie out-of-plane). Only results for

current along the x and y directions are shown. For Mn2Au,

there can also be current along the z direction, but we found that

the CISPs for such a current are at least 2 orders of magnitude

smaller than for the in-plane current. Note that the CISP for

current in the z direction is in general allowed by symmetry and

only vanishes at certain high-symmetry directions of magnetic

moments. On one sublattice, the two models give qualitatively

similar results. In both cases the CISP is not strongly dependent

on the direction of magnetic moments and the dominant

component is always in-plane and perpendicular to the current.
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FIG. 5. Magnitude of perpendicular and longitudinal parts of

the intraband CISP in Mn2Au. Gray lines show perpendicular and

longitudinal parts of the expression z × E. (a) In-plane rotation of

magnetic moments. (b) Nonsymmetrical rotation: magnetic moments

rotate along a path given by L̂ = ( cos(ϕ),
√

0.3 sin(ϕ),
√

0.7 sin(ϕ)).

The CISP and thus also the effective current-induced field are

approximately aligned along the vector z × E.

Since the torque is a cross product of the effective field and

the magnetic moment, only the component of the effective field

which is perpendicular to the magnetic moment is relevant.

In our models the effective field is proportional to the CISP

so the same holds for the CISP. When the perpendicular

component of the intraband CISP for Mn2Au is plotted, a

peculiar feature is discovered. While the total CISP differs

from the expression z × E significantly, the perpendicular part

is very close to the perpendicular part of z × E. This is already

manifested in Fig. 4(c), where the longitudinal component of

the CISP is zero due to symmetry for current along the x

direction. To illustrate this feature we plot the magnitude of

the perpendicular part of the intraband CISP for the in-plane

rotation of the moments in Fig. 5(a). In gray, the perpendicular

component of the expression z × E is plotted. All directions

of magnetic moments discussed so far lay in high-symmetry

planes. To confirm that this feature is not due to some particular

symmetry but rather a general feature of the model, we also

rotated the moments along a nonsymmetrical path. As shown

in Fig. 5(b) this rotation shows the same behavior.

Interestingly, the same holds for the longitudinal part of the

CISP; i.e., the longitudinal part of the CISP is very close to the

longitudinal part of z × E, which is also shown in Figs. 5(a)

and 5(b). The proportionality constants are, however, different

in the two cases, which is why the total intraband CISP vector

deviates from z × E. Since only the perpendicular part is

relevant for the torque, the torque will be closely approximated

by M̂a × (z × E). This behavior only occurs in Mn2Au. In

the 2D model, the perpendicular component of CISP is not

significantly closer to z × E than the total CISP.

In Fig. 6, we show results for the interband term χ II (a)
a for

one sublattice, organized similarly to the intraband results in

Fig. 4. The Mn2Au results are in Figs. 6(a) and 6(c) and the 2D

model results in Figs. 6(b) and 6(d). In Figs. 6(a) and 6(b) the

CISP is plotted as a function of magnetic moments rotating in-

plane, while in Figs. 6(c) and 6(d), the magnetic moments are

rotated out-of-plane. Again, the two models are qualitatively

similar. In this case, however, the CISP depends strongly

on the direction of magnetic moments. We only plot the

non-negligible components of the CISP. In particular, the CISP
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FIG. 6. Calculations of the interband term χ II
a (a). Only results for

one sublattice are shown. Plots show the interband CISP normalized

by equilibrium spin polarization per 107 A cm−2 current density. Gray

lines show a fit to the expression L̂ × (z × E). (a) Mn2Au and in-

plane rotation of magnetic moments. (b) 2D model, in-plane rotation

[31]. (c) Mn2Au, out-of-plane rotation. (d) 2D model, out-of-plane

rotation [31].

for the current along the z direction in Mn2Au is again very

small. In both models the CISP can be closely approximated

by the lowest order term given by Eq. (26). As shown by gray

lines, the main contribution is of the form L̂ × (z × E), which

corresponds to the tensor X1. A deviation from this form is

mainly due to the presence of the tensor X2. In Mn2Au also

higher order terms are present, but are less important than the

lowest order terms. In Mn2Au, the contribution from the tensor

X3 is also present, but we do not plot it since it is oriented

approximately along the direction of magnetic moments and

thus does not contribute to the torque.

In Fig. 7 we show how the CISP in the 2D model depends

on the Fermi level. The dependence of the magnitude of the

interband term on the Fermi level was already studied in

Ref. [31]. Here we focus instead on how the dependence of

the CISP on the direction of magnetic moments changes when

the Fermi level is varied. When the Fermi level approaches the

bottom of the bands, the intraband term becomes independent

of the direction of magnetic moments and can be described by

the vector z × E very accurately. This is illustrated in Fig. 7(a).

This behavior is expected because when the Fermi level is close

to the bottom of the bands, only small k points matter for the

calculations and as seen from Eq. (32) the energy dispersion

becomes isotropic when k is small. Results for the interband

term χ II (a)
a are shown in Fig. 7(b). For all Fermi level values,

it can be described by Eq. (26), but the ratio C1/C2 depends

strongly on the Fermi level. For the Fermi level close to the

band gap (see Ref. [31] for the band structure), C1 is much

larger than C2. When the Fermi level approaches the bottom
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FIG. 7. The dependence of the CISP in the AFM 2D Rashba

model on the direction of magnetic moments for different Fermi

levels. We scale results to highlight the change in shape. Only results

for current along the x direction are shown. Ŵ = 0.0001 eV was

used in this calculation. (a) Intraband term, in-plane rotation, solid

lines show the y component, dashed lines show the x component.

(b) Interband term, out-of-plane rotation, solid lines show the z

component, dashed lines show the x component.

of bands, C2 becomes much larger than C1. The dependence

of the CISP on the direction of magnetic moments is then no

longer of the form L̂ × (z × E). Instead, for C1 ≪ C2, it can be

described by (L̂ · E⊥)z. This is in agreement with the analytical

calculations. Equation (37) describes the contribution from the

tensor X1. When the Fermi level is at the bottom of bands the

term given by Eq. (37) is zero. Equation (37) does not capture

the contribution from tensor X2 since tensor X2 is zero for

L̂ = z.

Finally, we compare results for our two models with

AFM and FM order. Spin-orbit torques have been previously

calculated in a FM 2D Rashba model analogous to our

AFM 2D Rashba model [20,28,55]. Those calculations used

models with a parabolic band dispersion, which in our model

corresponds to the Fermi level close to the bottom (top) of

bands. As shown in Fig. 7(a), for our model the intraband

CISP then becomes proportional to z × E. This is a form that

the FM has when Jsd ≫ α [28]. We find that the AFM has

this form regardless of Jsd/α (when the Fermi level is close

to bottom of the bands). In all calculations discussed so far

α ≪ Jsd. For such a case, the FM has the intraband term of

the form M × [(z × E) × M]. This results in the same torque

as the z × E term since M × [(z × E) × M] is precisely the

component of z × E perpendicular to M. The FM interband

term χ II (a)
a differs from the AFM case as well. For α ≪ Jsd in

the FM it has the form M × (z × E), while for the AFM the

dependence is (L̂ · E⊥)z, as shown in Fig. 7(b). This is a form

the FM has when Jsd ≫ α.

The AFM model thus has many similarities with the FM

model; however, the dependence on the parameters of the

model is different. In particular, in the FM the results depend

significantly on the ratio Jsd/α, while in the AFM this ratio

does not play a large role. This is because, in the FM, the

spin-up and spin-down bands are split by both the Rashba

spin-orbit coupling and by the exchange interaction. In the

AFM on the other hand, only the Rashba spin-orbit coupling

splits the spin-up and spin-down bands.

For comparison we also calculated the CISP in hypothetical

FM Mn2Au. The model differs from AFM Mn2Au only in
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FIG. 8. Calculations of the CISP in FM Mn2Au for one inversion-

partner sublattice. (a) Intraband term, in-plane rotation of moments.

(b) Interband term χ II (a)
a , in-plane rotation of moments. (c) Intraband

term, out-of-plane rotation of moments. (d) Interband term χ II (a)
a ,

out-of-plane rotation of moments.

the direction of the moments; all other parameters are the

same. Both intraband and interband CISPs in FM Mn2Au

have opposite sign on the two inversion-partner lattice sites

occupied by Mn, as expected from symmetry considerations

and confirmed in our microscopic calculations. The intraband

CISP in the FM is very close to the AFM case both in terms of

the magnitude and the dependence on the direction of magnetic

moments, as shown in Figs. 8(a) and 8(c). The interband term

is shown in Figs. 8(b) and 8(d). It has a similar dependence on

the direction of magnetic moments; however, it is an order of

magnitude larger than in the AFM Mn2Au.

V. DISCUSSION

The AFM 2D Rashba and 3D Mn2Au models differ in one

key aspect. In the 2D model, the odd CISP is staggered and

the even CISP is uniform, while in Mn2Au the even CISP is

staggered and the odd CISP is uniform. This is so because

in the 2D model the AFM spin sublattices are connected by

translation, while in Mn2Au they are connected by inversion.

However, as shown in Figs. 4 and 6, when we look at one

sublattice only, the CISP in the two models has a similar

dependence on the direction of magnetic moments and the

direction of the current. This may seem surprising since the

electronic structures of the two models are very different,

including the way spin-orbit coupling enters the band-structure

calculations.

The reason for the similarity is the same symmetry of the

magnetic sites in the two models. As discussed in Sec. III, it is

the site symmetry that determines the symmetry of the CISP

on a sublattice. The symmetry group of the magnetic sites is

the same in both models and in both models the results can be
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FIG. 9. Local inversion symmetry breaking in Mn2Au. The

middle picture shows the crystal structure of Mn2Au with highlighted

atomic layers. Left and right pictures show inversion around Mn A

and Mn B atoms [as defined in Fig. 1(b)], respectively.

quite accurately described by lowest orders in expansion (20).

Since the site symmetry is the same, the expansions are also

the same in the two models.

The local inversion symmetry breaking in Mn2Au is

illustrated in Fig. 9. Mn2Au is a layered crystal; under inversion

around one of the Mn atoms, the layers remain the same, but

the order of the layers changes. Because of this, each sublattice

has the inversion symmetry locally broken and the inversion

symmetry breaking is along the z axis. The inversion symmetry

breaking thus resembles that of the 2D Rashba system.

Despite the above similarity in the local CISP symmetries

of the two models, the dynamics of magnetic moments will

be different. This is because only the staggered component

of the CISP can generate an efficient torque on an AFM. In

Mn2Au, the staggered component of the CISP corresponds

to the intraband term, which results in a fieldlike torque. The

effect of such a torque is comparable to the effect of an external

magnetic field in a FM. In particular, the magnitude of the

staggered effective field necessary to switch the AFM moments

will be determined by the magnetic anisotropy energy barrier

just like in the case of a FM and a uniform external magnetic

field. In the 2D model, since the sublattices are connected

by translation, the staggered component of the CISP is odd

in magnetic moments. Therefore it always depends strongly

on the magnetic moments’ direction and cannot be fieldlike.

When the Fermi level is such that the CISP has the L̂ × (z × E)

form, the corresponding torque acting on the AFM can be

called, in analogy with FMs, (anti)damping-like. The critical

value of the switching effective field will then depend both on

the anisotropy barrier and on the damping factor [29].

These results demonstrate the importance of symmetry for

understanding the spin-orbit torque. Symmetry determines

which component of the effective field is staggered and thus

also which component is efficient for manipulating the AFM

order. Symmetry also governs the dependence of the effective

field on the direction of the current and the magnetic moments.

This is especially so because we find in our two models that the

effective field can be very well described by the lowest order

terms in the expansion (20). Although this conclusion does

not have to be generally valid, it is consistent with previous

studies on different systems [7,24,25,48].

We used the tight-binding models of the 3D Mn2Au and

2D Rashba AFMs to illustrate the symmetries of CISPs and

the corresponding AFM spin-orbit torques. In the remaining

paragraphs we discuss the strength of the spin-orbit torque in

the Mn2Au crystal. In Ref. [31], the magnitude of the effective

field driving the spin-orbit torque in Mn2Au was estimated

from the tight-binding value of the CISP by estimating the

exchange coupling strength between carrier and local moment

spins to Jsd = 1 eV. The intraband field was found to be

0.22 mT per 107 A cm−2 for magnetic moments lying along

the [100] direction. For comparison, we performed ab initio

calculations based on the electronic structure obtained from

the DFT. The method is described in detail in Ref. [37]. Here

the spin-orbit torque is calculated directly using the exchange

potential from the DFT. From the torque the effective magnetic

field is then obtained using Eq. (7): Ba = (Ta × M̂a)/Ma .

This way we only obtain the component of the effective

field perpendicular to the magnetic moments. For magnetic

moments along the [100] direction the longitudinal component

of the effective field is zero. We found that the effective current-

induced field in the ab initio spin-orbit torque calculation has

a magnitude 1.98 mT per 107 A cm−2 [7].

The DFT value is by a factor of 8 larger than the tight-

binding value. To find out where the discrepancy originates

from, we also calculated the CISP directly using the DFT

method. Then using Eq. (8) and the above DFT torque

calculation we obtain a value of the effective exchange

constant Jsd = 1.2 eV. This is similar to the estimated value

of Jsd used in the tight-binding calculation of the effective

current-induced field. The difference between tight-binding

and DFT calculations is therefore primarily in the CISPs,

which differ by a factor of ∼6. The remaining discrepancy

between the tight-binding and DFT effective fields is due to

different magnetic moments in the two approaches. These

differ because the tight-binding Hamiltonian was fitted to a

LDA+U DFT calculation, while for the torque calculation a

DFT calculation without U was used. Including the Hubbard

U increases the moments by about 20%.

The DFT magnitude of the effective staggered field in

Mn2Au is comparable to that of the CuMnAs AFM where

current-induced switching has been recently observed in

experiment [7]. Highly conductive Mn2Au is therefore a

potentially favorable material for exploring and exploiting

current-induced spin-orbit torques in AFMs.

VI. CONCLUSION

We have presented a symmetry analysis of spin-orbit

torques in AFMs and FMs and discussed in detail results

obtained in two complementary model systems with locally

and globally broken inversion symmetry, respectively. We

have pointed out that the existence and form of the spin-orbit

torque on the given spin sublattice is determined by the

sublattice symmetry. We have also shown that in AFMs,

symmetry operations that connect the two spin sublattices

determine the relation between the spin-orbit torques on the

two sublattices. Our two models illustrate two main cases

with the sublattices connected either by a translation or by

an inversion. Consequently, in the AFM 2D Rashba model

representing the former case, the efficient component of the

torque has an antidamping character, while in AFM Mn2Au
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representing the latter case, the efficient spin-orbit torque has

a fieldlike character.
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APPENDIX A: SYMMETRY OF SPIN-ORBIT TORQUE

We give here an overview of the symmetry of spin-

orbit torque. Symmetry of transport coefficients in magnetic

systems has been studied before, primarily in the context

of electrical and heat conductivity [56–59], but also for the

spin-orbit torque [50]. Here we expand the analysis to account

for sublattice projections. We use the microscopic Eqs. (2), (3),

(4) as a starting point. Our approach is similar to that of [57]

where a more general version of the Kubo formula was used.

The results do not depend on the exact form of the formulas:

it is only important that the formulas describe linear response.

Additionally, the results apply only assuming a single-electron

(i.e., noninteracting) Hamiltonian.

As discussed in [59], there has been a considerable

controversy surrounding the symmetry of tensors describing

transport phenomena. The difficulty lies in understanding the

effect of the time-reversal symmetry operation [59,60]. This

is because transport phenomena are nonequilibrium processes

that include dissipation. We define a time-reversal operator

as T = iσyK , where K is the complex conjugation. This

is how the time-reversal operator is conventionally defined

in quantum mechanics. Note that such defined time-reversal

operator reverses direction of magnetic moments, but does

not in general reverse direction of electrical currents (see the

discussion in [60]).

Let R be a symmetry of the Hamiltonian, i.e.,

H = RHR−1. (A1)

Symmetry operations that do not contain time reversal are

represented by a unitary R. Symmetry operations that contain

time reversal are represented by antiunitary R since K is

an antiunitary operator. If ψnk is an eigenfunction of the

Hamiltonian, then Rψnk is also an eigenfunction with the same

eigenvalue. Since the result cannot depend on the choice of

eigenfunctions, we can use the transformed eigenfunctions to

evaluate the CISP. The transformed eigenfunction correspond

to a different k point, but the sums will always run over all

k points. The only part of the microscopic equations that

depends on the eigenfunctions are the matrix elements; the

rest depend only on the eigenvalues. Transformation of the

matrix elements depends on whether R is a unitary operator

or an antiunitary operator. For unitary R and an observ-

able Â

〈R(ψnk)|Â|R(ψmk)〉 = 〈ψnk|R−1ÂR|ψmk〉, (A2)

while for antiunitary R

〈R(ψnk)|Â|R(ψmk)〉 = 〈ψnk|R−1ÂR|ψmk〉∗. (A3)

We represent the transformation of operators Ŝ and v̂ by 3 × 3

matrices Ds,Dv:

R−1Ŝa′,iR = Ds
ikŜa,k, (A4)

R−1v̂jR = Dv
jl v̂l, (A5)

where a′ is the sublattice in which a transforms under R. Note

that the matrix Ds does not depend on a. For unitary R we

find for the transformation of χa

χa′,ij = Ds
ikD

v
jlχa,kl . (A6)

For antiunitary R, the various terms of (1) will transform

differently depending on whether they contain a real or

imaginary part of the matrix elements. To group together the

terms that transform in the same way, we separate the spin

polarization into parts even and odd under time reversal. Since

time reversal switches the direction of all moments, this is

equivalent to

χ even
a ([M]) = [χa([M]) + χa([−M])]/2, (A7)

χodd
a ([M]) = [χa([M]) − χa([−M])]/2, (A8)

where [M] = [MA,MB , . . . ] denotes the directions of all

magnetic moments in the unit cell. Since both Ŝ and v̂

anticommute with time reversal and since χ I
a , χ II (b)

a contain

the real part of the matrix elements, while χ II (a)
a contains the

imaginary part of the matrix elements,

χ even
a = χ I

a + χ II (b)
a , (A9)

χodd
a = χ II (a)

a . (A10)

We find for the transformation of each part under anti-

unitary R

χ even
a′,ij = Ds

ikD
v
jlχ

even
a,kl , (A11)

χodd
a′,ij = −Ds

ikD
v
jlχ

odd
a,kl . (A12)

We now show how to express the matrices Ds,Dv . Let D

be a 3 × 3 matrix that represents how a point transforms

under R:

xR = Dx + s. (A13)

The shift s is due to translations. It is irrelevant for matrices

Ds,Dv , but the translations cannot be ignored altogether

because they influence which sublattice a transforms to. Note
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that the time-reversal symmetry operation does not influence

the matrix D either since it only affects the magnetic moments.

Thus D represents the nonmagnetic point group.

For unitary R

Ds = det(D)D, Dv = D, (A14)

and for antiunitary R

Ds = − det(D)D, Dv = −D. (A15)

This is because v̂ is a polar vector, while Ŝ is an axial vector

and both change sign under time reversal. Then Eq. (A6) can

be rewritten as

χa′ = det(D)DχaD
T (A16)

and analogously for antiunitary R,

χ even
a′ = det(D)Dχ even

a DT , (A17)

χodd
a′ = − det(D)Dχodd

a DT . (A18)

Equations (A16), (A17), (A18) together determine the

transformation properties of the tensor χa . They hold, however,

only in a Cartesian coordinate system. This is because the

formulas (2), (3), (4) hold only in a Cartesian system. In any

coordinate system, for example, the CISP corresponding to the

term χ I
a can be written as

δSa = −
e�

2Ŵ

∑

k,n

〈ψnk|Ŝa|ψnk〉〈ψnk|v̂ · E|ψnk〉δ(εkn − EF ).

(A19)

The terms corresponding to χ II (a)
a ,χ II (b)

a can be expressed

analogously. In a non-Cartesian coordinate system, tensor

χa would not satisfy δSa = χaE since in a non-Cartesian

coordinate system v̂ · E �= v̂iEi . While it is natural to express

the tensors χ in Cartesian coordinate systems, the symmetry

operations are usually expressed in the conventional coordinate

systems, which for the case of monoclinic, hexagonal, and

trigonal groups are not Cartesian. For completeness we provide

here a generalization to non-Cartesian systems. This can be

derived by using a microscopic expression for χa valid in

non-Cartesian systems, but a simpler way is to transform

the linear response tensor from a non-Cartesian system to

Cartesian.

Let T be a coordinate transformation matrix, i.e., a matrix

such that x ′ = T x, where x are coordinates in a Cartesian

system and x ′ are coordinates in a different, in general non-

Cartesian, coordinate system. Then χa = T −1χ ′
aT . We first

consider a unitary symmetry operation R. Using Eq. (A16),

which holds in the Cartesian system,

T −1χ ′
a′T = det(D)DT −1χ ′

aT DT , (A20)

χ ′
a′ = det(D)T DT −1χ ′

aT DT T −1. (A21)

In a Cartesian system, D has to be orthogonal, so DT = D−1.

Since D′ = T DT −1 and det(D′) = det(D), we find

χ ′
a′ = det(D′)D′χ ′

aD
′−1. (A22)

Analogously, we find for antiunitary R

χ ′even
a′ = det(D′)D′χ ′even

a D′−1, (A23)

χ ′odd
a′ = − det(D′)D′χ ′odd

a D′−1. (A24)

These formulas determine how χ transforms in any coordinate

system. This result is quite general and holds for any linear

response formula. One just has to replace the matrices Ds,Dv

by matrices that describe transformation of the corresponding

operators.

The results for Cartesian coordinate systems are the same

as in Ref. [57], except that we separate the tensor into the

even and odd parts. Such separation is also commonly done

for other tensors describing transport phenomena [56,59]. It is

quite natural since the even and the odd parts have different

properties. For example, they have a different dependence on

disorder and cause very different magnetic dynamics.

To find out symmetry properties of the expansion terms

in (20) we have to consider the symmetry operations of the

nonmagnetic crystal, since these are symmetry operations that

connect different magnetic configurations of a given crystal. If

R is such symmetry operation then H ([M]R) = RH ([M])R−1,

where [M]R denotes directions of all magnetic moments

transformed by R. By using a procedure very similar to that

for deriving Eq. (A22), we can show that

χa′ ([M]R) = det(D)Dχa([M])D−1. (A25)

Since the nonmagnetic symmetry operations do not contain

time reversal we do not have to separate χa into the even and

odd parts. Considering that Eq. (A25) has to hold for each

expansion term in (20) we find

χ
(i)
a,ij,mn... = det(D)i−1DikD

−T
jl D−T

mo D−T
np . . . χ

(i)
a,kl,op...,

(A26)

where D−T denotes the inverse of a transpose of matrix D.

We consider here only the symmetry operations that keep the

sublattice invariant. The symmetry operations that connect the

two sublattices do not give any more information about the

form of χ (i)
a . The form of the expansion (20) is thus given by

the nonmagnetic local point group.

In FMs Eq. (A26) applies also for the expansion of the net

CISP, if the global point group is used instead. In AFMs, the

net tensor χ transforms in general differently. This is because

a symmetry operation that transforms one sublattice into the

other can reverse the sign of the Néel vector and this is not taken

into account in Eq. (A26). For example in Mn2Au, inversion is

a symmetry of the nonmagnetic crystal. As a consequence, the

net CISP in the FM Mn2Au vanishes as correctly predicted by

Eq. (A26) applied for the net CISP. In AFM Mn2Au, there is,

however, a net CISP, yet Eq. (A26) is the same as for the FM.

It is straightforward to derive the analog of Eq. (A26) for the

net CISP in AFMs; however, in AFMs the net CISP is not a

very useful quantity. In AFMs with more than two sublattices,

spin-axis direction is not enough to describe the magnetic state

of the AFM. Then the expansion (20) should be performed in

more parameters than just n̂. However, if we assume that all

the other parameters are fixed during dynamics then expansion

(20) can still be used and Eq. (A26) applies.

014403-15
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APPENDIX B: THE CODE FOR ANALYZING THE

SYMMETRY

We provide a code that can analyze the symmetry of spin-

orbit torque in a given crystal structure automatically [49]. It

can find the symmetry-restricted form of a tensor χa and also of

the expansion (20). Here, we give a brief overview of the code.

The code is written in Python and uses the symbolic library

Sympy [61]. It uses as an input a list of symmetry operations for

the given crystal structure, generated by the program Findsym

[62]. From these symmetry operations we first choose the

ones which form the local point group, i.e., the symmetry

operations that leave the selected sublattice invariant. For each

such symmetry operation we then construct a system of linear

equations (13), (14) [resp. (A26) for the expansions] that have

to hold for components of the tensor. We solve this system of

equations by transforming it to the reduced row echelon form.

The code can also find relations between tensors χa projected

on different sublattices and between tensors χa for different

equivalent magnetic configurations.

APPENDIX C: ANALYTICAL DERIVATION

OF SPIN-ORBIT TORQUES

In this section, we present the details of the derivation of the

computation of Eqs. (36) and (37). As mentioned in Sec. IV A,

we need to calculate the expressions

SIntra =
e�

2ŴV

∑

ν,k

Re{Tr[(v̂ · E)Aνσ ςAν]}δ(ǫk,ν − ǫF),

(C1)

SInter =
e�

V

∑

ν �=ν ′,k

Im{Tr[(v̂ · E)Aνσ ςAν ′ ]}
(fk,ν − fk,ν ′ )

(ǫk,ν − ǫk,ν ′ )2
.

(C2)

Since evaluating the transport properties involves an angular

averaging over ϕk , it is convenient to rewrite the projection

operator in the form As,η = Ae
s,η + Ao

s,η, where the first term

is even in k, while the second term is odd in k. Furthermore,

from now on we will only focus on the limit case of θ ≪ 1

(i.e., L̂ ≈ z) in order to get rid of the angular dependence of the

Fermi surface contained in ζk , Eq. (33). This way, the energy

dispersion reduces to ǫs,η = η(
√

γ 2
k + J 2

sd + sαk) and we find

explicitly

Ae
s,η = (1/4)[1 + η cos θk τ̂x + η sin θk(σ̂ · L̂)τ̂z], (C3)

Ao
s,η = (s/4)σ̂ · [cos θkµ − sin θk τ̂y(L̂ × µ) + ηµτ̂x], (C4)

where we defined cos θk = γk/
√

γ 2
k + J 2

sd and sin θk =
Jsd/

√
γ 2

k + J 2
sd . Using the definitions of Eqs. (C1) and (C2)

we notice that the heart of the physics is contained in the trace

Tr[(v̂ · E)Aν σ̂ ςAν ′] = 〈ν|σ̂ ς |ν ′〉〈ν ′|(v̂ · E)|ν〉. (C5)

The velocity operator v̂ · E = ∂kĤ · E/� reads

�v̂ · E =
[

2ta2
l k · E + α(z × E) · σ̂

]

τ̂x . (C6)

The trace Eq. (C5) has then two contributions that do not

vanish upon ϕk integration,

Tr
ν,ν ′

d =
2ta2

l

�
(k · E)Tr

[

τ̂x

(

Ao
ν σ̂ ςA

e
ν ′ + Ae

ν σ̂ ςA
o
ν ′

)]

, (C7)

Trν,ν ′

a =
α

�
Tr

[

(z × E) · σ̂ τ̂x

(

Ao
ν σ̂ ςA

o
ν ′ + Ae

ν σ̂ ςA
e
ν ′

)]

.

(C8)

After some algebra, we obtain the following expression for

the real and imaginary parts of the trace defined in Eq. (C5),

ReTrs,η =
η

2�

[

2sta2
l cos θk + α/k

]

cos θk(k · E)µ, (C9)

ImTrs,η = −sς
ta2

l

�
sin θk(k · E)(L̂ × µ)δs ′+s,δη′+η,

(C10)

where Eq. (C9) involves only intraband transitions (s,η =
s ′,η′), while Eq. (C10) involves only interband transitions

(−s,−η = s ′,η′). We can now proceed with the ϕk integration.

Since the energy ǫk,s,η is isotropic (independent of ϕk),

Eqs. (C9) and (C10) can be further simplified by performing

the angular integration

∫

dϕkReTrs,η =
ηπ

2�

[

2sta2
l k cos θk + α

]

cos θk(z × E),

(C11)

∫

dϕkImTrs,η = −sπς
ta2

l k

�
sin θk[L̂ × (z × E)]δs ′+s,δη′+η.

(C12)

Using Eqs. (C1) and (C2) and noticing that δ(ǫk,s,η − ǫF) =
|2tNa2

l k cos θk + sα|−1δk−ks
F

(where ks
F is the solution of

ǫk,s,η = ǫF), we obtain

SIntra =
z × eE

16πŴ

∫

dkk cos θk

(

δk−k+
F

− δk−k−
F

)

, (C13)

SInter = −ς
Jsdta

2
l

8π
[L̂ × (z × eE)]

∫ k+
F

k−
F

k2dk
(

γ 2
k + J 2

sd

)3/2
.

(C14)

We consider the Fermi energy close to the top of the upper

bands, so that the lower bands remain fully occupied fk,s,− =
1. Furthermore, we recognize that to the linear order in α

ks
F ≈ k0

F + αkα
F + O(α2) (C15)

=
1

√

ta2
l

√

4t −
√

ǫ2
F − J 2

sd + s
α

2ta2
l

ǫF
√

ǫ2
F − J 2

sd

. (C16)

Then, the integral in Eq. (C14) can be rewritten

∫ k+
F

k−
F

k2dk
(

γ 2
k + J 2

sd

)3/2
≈ 2αkα

F

k02
F

(

γ 2
k0

F

+ J 2
sd

)3/2
. (C17)
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Finally, we find that the current-driven spin densities read

SIntra =
mα

8π�2Ŵ

⎛

⎝1 + 2
J 2

sd

ǫ2
F

⎡

⎣2 −
ǫ0

√

ǫ2
F − J 2

sd

⎤

⎦

⎞

⎠z × eE,

(C18)

SInter = −ς
mαJsd

4π�2ǫ2
F

⎛

⎝1 −
ǫ0

√

ǫ2
F − J 2

sd

⎞

⎠L̂ × (z × E), (C19)

where we defined ǫ0 = ta2
l k

2
0 .
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R. Campion, A. Casiraghi, B. Gallagher, T. Jungwirth, and A.

Ferguson, Nat. Nanotechnol. 6, 413 (2011).

[26] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V.

Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and

P. Gambardella, Nature (London) 476, 189 (2011).

[27] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A.

Buhrman, Science 336, 555 (2012).
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Reichlová, J. Železný, J. Gazquez, M. A. Roldan, M. Varela,

D. Khalyavin, S. Langridge, D. Kriegner, F. Máca, J. Mašek,

R. Bertacco, V. Holý, A. W. Rushforth, K. W. Edmonds, B. L.

Gallagher, C. T. Foxon, J. Wunderlich, and T. Jungwirth, Nat.

Commun. 4, 2322 (2013).

[47] P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D.

Stiles, Phys. Rev. B 88, 214417 (2013).

[48] C. Ciccarelli, L. Anderson, V. Tshitoyan, A. J. Ferguson, F.

Gerhard, C. Gould, L. W. Molenkamp, J. Gayles, J. Železný, L.
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