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It has recently been shown that in spin-pair systems a new type of spin ordering 
occurs under magnetic fields. In the present paper, the spin ordering in general cases 
of the inter-pair exchange interaction and the thermodynamical properties of these 
systems are investigated on the basis of molecular field theory. Various types of spin 
ordering appear depending on the strength of the inter-pair exchange interaction and 
the external magnetic field. The specific heat originating from the short range order 
of spins in a one-dimensional lattice is also calculated for a purpose of comparison with 
experiments in Cu(N03)2 2. 5 HzO. 

§ 1. Introduction 
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In Cu(N0a)z2.5Hz0, the Cu2+ ions are coupled in pairs by isotropic anti
ferromagnetic exchange and the pairs are also coupled by weak antiferro
magnetic exchange. The ground state of the pair is a singlet, separated by 
about 5.2°K from an excited triplet. In an external magnetic field the triplet 
splits and the lowest component of the triplet approaches the singlet as the 
field increases. Both the two levels cross at about H= 36 k0e. 1

)-s) 

Recently Haseda et al.4
) have mftde an experiment of cooling by adiabatic 

magnetization using this crystal and have observed that when cooling begins 
below 0.7°K the temperature versus magnetic field curves become flat or 
slightly convex between 30 kOe and 48 kOe, as shown in Fig. 1. We have 
considered that this anomaly in the field dependence of temperature corresponds 
to occurrence of a new type of spin ordering, and have suggested the following 
mechanism for this ordering.5

) The inter-pair exchange interaction has non
vanishing matrix elements between the singlet and triplet states, and the 
interaction causes a mixing between them. Although· the inter-pair exchange 
interaction is weaker than the intra-pair exchange interaction, the mixing due 
to the inter-pair exchange interaction cannot be neglected near the point of 
level crossing. If the isotropic inter-pair exchange interaction is projected onto 
the subspace spanned by the singlet and the lowest component of the triplet, 
the interaction becomes anisotropic with respect to the direction of the applied 
magnetic field; the component of the exchange interaction perpendicular to the 
field becomes larger than the component parallel to the field. Furthermore, 
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H 
Fig. 1. The field dependence of temperature of Cu(NOa)z 2. 5 H20 (powder sample) 

in adiabatic magnetization process, observed by Haseda et al. 4 ) 

the effective field in this subspace becomes very small near the point of level 

crossing. As a result, we expect an ordering o£ the spin component perpen

dicular to the field in the vicinity of the level crossing at sufficiently low 

temperatures. On the basis of this model, we calculated the entropy of the 

system and obtained temperature in adiabatic magnetization process. The 

field dependence of temperature explains qualitatively the anomaly mentioned 
above.5),G) 

After that, Bonner et al.7
) have proposed two kinds of one-dimensional 

model for the spin-array in Cu(NOa)22.5 HzO. Since the arrays of spin-pairs 

in these models are one-dimensional, no long range order of spins occurs in 
these systems. However, it has been shown that a short range order which 

has a similar nature to that of the long range order mentioned above appears 

in the vicinity of the point of level cros~ng at sufficiently low temperatures.8
) 

It has further been shown that the observed anomaly in the field dependence of 
temperature is also explained as occurrence of the short range order.7

),s) One 

of the aim of the present paper is to calculate the specific heat of spins in the 

one- and three-dimensional lattices and to show that measurements of the 

specific heat of Cu(NOa)z2.5H20 under magnetic fields may give a possibility 

to determine whether the anomaly originates from the short range order or 

from the long range or?er of spins in this crystal. 
So far, we discussed on the case of Cu(NOa)22.6H20. In general cases 

of the inter-pair exchange interaction, various types of spin ordering under 

magnetic fields are expected depending on the strength of the interactions. 
The physical model in this case is described in detail in §2 and the possible 

types of spin ordering at finite temperatures are discussed in §3. The thermo
dynamical properties associated with the spin ordering are obtained in §4. For 

the sake of comparison with experiments, the specific heat ongmating from 

the short range order in one-dimensional lattice is calculated in §5. 
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§2. Physical model 

The Hamiltonian for isolated pairs in an external magnetic field 1s 
written as 

(1) 

where Stt and Stz are the spins of 1/2 in the i-th pair. In the Hamiltonian 
(1), the g-factor and the exchange integral are assumed to be isotropic. For 
the inter-pair exchange interaction, we consider the following general form 

!J£1 = ~ (Ju St1 · Sjt + JzzStz · Sjz+ J12St1 · Sjz+ Jz1 S;z· Sjt). (2) 
<i,j> 

In this expression, Jn etc. stand for Jnd} etc., where Eij 1 for the i-j pair 
interacting with the exchange constant Jmn, and Eij 0 for the other pairs. 
Introducing operators Si and tt defined by 

St = Stt + Stz and tt = sil- Stz , (3) 

we write the Hamiltonians (1) and (2) as 

!fio= (J/2)~ s:+ qpBH· ~ St (4) 
i i 

and 

+(Jn+Jzz J12 Jz1)trtj+(Ju Jzz-Jlz+Jzt)Srtj 

+ (Jn -Jzz+ J12-Jz1)ti· Sj]. (5) 

In Eq. ( 4), a constant term 
was neglected. 

The energy levels of the 
pair are shown in Fig. 2, where 
the energy levels are indicated 
by the eigenvalues of S and 
S, . The operator S defined 
by Eq. (3) has nonvanishing 
matrix elements only within 
the same spin multiplets and 
t has those only between differ
ent multiplets. In the follow
ing, we neglect the highest two 
levels of the triplet, and con
fine ourselves to the subspace 
spanned by I 0, 0) and !1, 
-1). In this case it is con-

E 

r 

I 1.-t > 

0 IO. 0 > 

Fig. 2. Energy levels of the spin-pair under a 
magnetic field. 
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venient to rewrite the Hamiltonian using the Pauli spin matrices. Let the 

states I 0, 0) and 11, -1) correspond to the states of az= 1 and -1, respec

tively. Then, St and ti relate to the Pauli spins in the following way: 

szi= (1/2) (t1zi-1), 

t,t= (1/v2)a,i, 

With use of the relation (6), the total Hamiltonian is written as 

where 

!Jl = !Jlo + !Jl1 

= (N/2) {J +(a/ 4)- gp,BH} 

+ (1/2) {gttaH-J- (a/2)} ~11zi 
i 

+ (1/4) ~ [(1/2) (Jll +Jzz-J1z-Jz1) (11xi11xj+t1yit1yj) 
<t,j> 

(1/4) (Ju +Jzz+J1z+Jz1)tJztl1zjJ, 

(6) 

(7) 

(8) 

In Eq. (8), Zmn represents the number of neighbors interacting with the ex

change constant Jmn. The Hamiltonian (8) represents a spin system coupled 
by an anisotropic exchange interaction in an effective magnetic field Heff = H 

- (1/ UP-B) {J + (a/2)}. 

§3. Spin ordering 

In obtaining the solutions for the Hamiltonian (7), we use a two sublattice 
model and a molecular field approximation. The Hamiltonians for a and a' 
in these sublattices are derived from Eq. (7) as 

!Jl=- (1/2) {/+ (a/4)} + (1/2)/tJz 

+ (1/ 4) {/3( (t1:)a,.+ (a~)tJ,) +a(tJ~)tJz}, 

(1/2) {/+(a/ 4)} (1/2)/a; 

+ (1/ 4) {/3( (a,.)tJ~+ (a,)tJ~) + a(t1z)a;}, 

where 

UttaH-J- (a/2), 

(9) 

(10) 

(11) 

(12) 

In Eqs. (9) and (10), (A) indicates the thermal average of A. The eigen
values of the Hamiltonians (9) and (10) are calculated as 
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E±=-(1/2) {/+ (a/4)} 

(1/2) V {f+ (a/2)(a:)} 2 + {({3/2)(7:"')} 2
, 

(1/2) {/+(a/ 4)} 

+ (1/2) V {f + (a/2)(az)} 2 + { ({3/2)(7:")} 2
, 

where < -r) and < 7:"1) are defined by 

(a)=(az)(H/1 HI) +(7:")i, 

(a') <a~) (H/ I HI)+ <1;')i', 

(13) 

(14) 

(15) 

(16) 

i and i' being unit vectors perpendicular to the external field. The Helmholtz 

free energy is written as 

where 

N[ (k T/2) (lnZ + lnZ') 

- (a/S)(a;)(a~)- ({3/8)(-r)(7:"1)cos<p], 

Z=exp( E+jkT) +exp( -E-/kT), 

Z' exp( E'+jkT)+exp( E'-/kT), 

• •I 
COS<p= Z·J. 

(17) 

(18) 

(19) 

(20) 

The last two terms in Eq. ( 17) were subtracted from ( Nk T /2) (In ln Z'), 

since twice the inter-pair exchange energy is included in (Nk T/2) (lnZ + lnZ'). 

By using Eqs. (13) and (14), the free energy (17) is calculated as 

with 

F=N[ kTln2- (1/2) {/+ (a/4)} 

(k T/2) {ln coshx+ ln coshx'} 

- (a/S)(az)(a;) ({3/8)(-r)(-r')cos<p], 

x= (2kT)- 1V {/+ (a/2)(az)} 2 + {({3/2)(7:")} 2
, 

x' (2kT)- 1v {j+ (a/2)(a;)} 2 + {(t3/2)(-r')} 2
• 

(21) 

(22) 

(23) 

The values of (az), (-r), (a;), (l) and <p are determined by minimizing the 

free energy (21) with respect to them. From the conditions 8F/8(az)=O, 

8F/8(7:") 0 etc., we have the following equations 

(tanhx/x) {f+ (a/2)(az)} /(2kT) =-(a;), 

(tanhx'/x') {/+ (a/2)(a;)} /(2kT) = -(az), 

(tanhx/x) {({3/2)(-r)} /(2kT) = (7:"1)cos<p, 

(tanhx' / x') { ({3/2)(7:"')} / (2k T) =- (-r)cos<p, 

{3 sin <p( 7:" )( 7:"1 ) 0. 

(24) 

(25) 

(26) 

(27) 

(28) ' 
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Equation (28) shows that 

.p=O or n when {3(-r: )(r:') 0. (29) 

Equations (26) and (27) have two types of the solution 

(r) (r:') 0 (30) 
and 

(r:)~O, (r:')~O. (31) 

Inspecting Eqs. (29), (26) and (27), we see that the solution of the type 
(31) is possible only when 

cos.p= -1 

COS.p + 1 

for positive {3, 

for negative a. 
For solutions of the type (31), we assume 

(r:)=(r:'). 

(32) 

(33) 

We first consider the solution of the type (30). Inserting Eq. (30) into 
Eqs. (22) and (23), we have 

x= (2k T)- 1
1 f + (a/2)(a:) I, 

x' = (2k T) - 1 1 f + (a/2) (a;) 1. 

In this case, we can rewrite Eqs. (24), (25), (34) and (35) as 

tanhy -(a;), 

tanhy' =- (az), 

y (2kT)- 1 {j+ (a/2)(az)}, 

(2k T) -l {/ + (a/2) (a;)}. 

Combining these equations, we have a simultaneous equation 

tanhy=- (4k T/a)y' + (2//a), 

tanhy' = (4k T/a)y+ (2//a). 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40·1) 

(40·2) 

When a is positive, Eq. ( 40) has the following two types of solution 

( . \ 
l ) 

( ii) 

tanhy = tanhy', 

tanhy ~ tanhy'. 

(41) 

(42) 

When a is negative, Eq. (40) has only the solution of type (41). The values 
of (az) and (a;), obtained from Eqs. (36), (37) and ( 40), are shown in Fig. 3 
as functions of temperature and magnetic field. 
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(O'"z > = 0.4 0.3 0.2 0.1 

-t 

(a) 

-1 

(b) 

(c) 

0 

0 -0. t -0.2 -0.3 -Q.4 -0.5 

0 

21 
-Tar 

2f 

-- 2f. 

Fig. 3. The values of (rrz) and (rr~) obtained from Eqs. (36), (37) and (40). 
(a) The solution of type (i) ((rrz)=(rr~)) in the case of a>O. 
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(b) The solution of type (ii) in the case of a>O. Solid and dashed lines correspond 
to (rrz) and (rr~), respectively. 

(c) The solution in the case of a<O. The solution is a triple-valued function of T 
and f in the region surrounded by the envelope of thin lines. Thick lines cor
respond to the solution of the lowest free energy. 
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Next we consider the solution of the type 

<-r>=<-r')~O. 

Inserting Eqs. (32) and ( 43) into Eqs. (26) and (27), we have 

tanhx/x=tanhx' /x' = 4kT/l Sl. 

(43) 

(44) 

The values of{<az) and <a;) are determined from Eqs. (24), (25) and ( 44) as 

2//(a+ IS!). (45) 

These values are independent of temperature. The value of <-r) is determined 
from Eqs. (22), ( 44) and ( 45) as 

(46) 

where tanhx is the solution of Eq. (44). The value of tanhx( v<a,)2+(r)2
) 

is independent of magnetic field. In Fig. 4, the values of <a,) and <or) are 
plotted{as functions of temperature and magnetic field. 

4kT 
1BT 

-I 0 

Fig. 4. The values of (uz) and ('t") obtained from Eqs. (44), (45) and (46). 
The figure corresponds to the case of a+ I /31 >O. 

The above results are summarized as follows: We have the following 
three phases. 

Phase (i). 

tanhy, 

tanhy=- (4kT/a)y+ (2f/a), 

<-r) <-r')=O, 

pci)=N[ -kTln2- (1/2) {/+ (a/4)} 

-kTlncoshy- (a/8) tanh2y]. 

(47) 

(48) 
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The real spins (s1), (sz), (s~) and (s~) are all parallel and have the same 

magnitude 

(s1) = (sz) = (s~) = (s~) = (1/ 4) ( (dz) -1) (H/ I HI). ( 49) 

Phase (ii). This phase is possible only when a>O. 

(d::) tanhy', 

(d:)= -tanhy. 

The values of tanhy and tanhy' are obtained from Eq. ( 40). 

(r) = (r') = 0. 

F(jj)=N[ -kTln2- (1/2) {/+ (a/4)} 

- (k T/2) (ln cosby+ ln cosby') 

(a/8) tanhy tanhy']. 

The real spins are given by 

Phase (iii). 

(sl) = (sz) = (1/ 4) ( (dz) 1) (H/ I HI), 

<s~>=<s~>= (1/4) ( (d~)-1) (H/IHI ). 

2f/(a+ l/31), 

The value of tanhx is obtained from Eq. (44). 

pcw)=N[ -kTln2- (1/2) {/+ (a/4)} 

(50) 

(51) 

(52) 

(53) 

k Tln coshx+ (I 131 /8) tanh2x-/ 2
/ {2(a+ I 131)}]. (54) 

The real spins are given by 

where 

(s1)= (1/4) C (d")-1) (H/ I HI)+ (1/2V2)(!')i, 

<sz> (1/ 4) C (dz) -1) (H/ I HI)- (1/2V2)(!')i, 

<s~>= (1/ 4) C (dz) 1) (H/ I HI)+ (1/2 -.!2 )(!')i', 

<s~> = (1/ 4) C (d,) -1) (H/ I HI)- (1/2 -.12) (!' )i', 

i i' according as 13:f;O. 

(55) 

Comparing the free energies in these phases, we obtain phase diagrams in 

the H- T plane. The phase diagrams are characterized by the ratio of the 

exchange constants a and /3. 
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300 M. Tachiki and T. Yamada 

Case a. When a> I~ I, all the three phases appear as shown in Fig. 5 (a) 
(The figure corresponds to the case of a= 21 ~I). The transition between 
Phases (ii) and (iii) is of the first order and those between Phases (i) and (ii) 
and Phases (i) and (iii) are of the second order. Spin configurations at 
typical points in the H- T plane are also shown in the figure. In Phase (i), 
all the spin polarizations are along the field and their magnitudes are the 
same. In Phase (ii), the spin polarizations are also along the field but their 

. magnitudes in the two sublattices are different. In Phase (iii), the spin com
ponents perpendicular to the field appear. 

Case b. When lal 1~1, Phases (i) and (iii) appear as shown in Fig. 5(b). 
The transition between them is of the second order. The spin configurations 
in the case of ~>O are also shown in the figure. In the case of ~<0, the 
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kT ~ ~®~~) (A) 
I 8 
tat 
4 I 

I 
I 

~ C)(F1 (A) J ) tat 
t=-1 8 ~ 

I 1 8 

0 --~.---------------r--------------~ 
f- _tat 

2 
g11aH- J-tat 

(c) 

0 
J-!Q! 

2 

.!Q1 
2 
J 

Fig. 5. Phase diagrams and spin configurations at typical points in the H-T plane. 
Phase boundaries indicated by dotted and solid lines correspond to the first and 
second order transitions, respectively. The spin configuration at the point indicated 
by spot is shown in the circle near the spot. The connected arrows represent the 
spins in a pair. 

(a) Case a: a>l.el. The figure corresponds to the case of a=2l/31. 
(b) Case b: I a I< I /31. The spin configuration corresponds to the case of positive /3. 
(c) Case c: a<O, ial>lf31. 
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perpendicular components of spins in one sublattice become parallel to the 
corresponding ones in the other sublattice in Phase (iii). 

Case c. When a<O and I a I> I !31 , only Phase (i) appears. The solution 
of Eq. ( 4 7) in this case is a triple-valued function of H and T (Fig. 3 (c)). 
A first order transition with respect to the field occurs at f = 0 at temperatures 
below Ia! /4k as shown by a dotted line in Fig. 5(c). Typical spin configu
rations are also shown in Fig. 5 (c). 

§4. Thermodynamical properties 

Magnetization M, entropy S and specific heat at constant field C8 are 
obtained, by using usual thermodynamical relations and the conditions fJF/a<a~~) 
=0 etc., as follows: 

For Phase (i), 

MCi)= (Ng,uB/2) (1 +tanhy), 

S(i)=Nk(ln2+ ln coshy-y tanhy), 

CiP = Nky2 {cosh2y + (a/ 4k T)} -1
• 

(56) 

(57) 

(58) 
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J 

0.2 0.3 

J+ ~ 

(a) 

J+f J+a 

(b) 
__ .. gftaH 

0.4 0.5 0.6 0.7 0.8 
I 

J-lll 
2 

(c) 

f.O 

J 

Fig. 6. The contour lines of constant magnetization in the H- T plane. 
(a) Case a, (b) Case b, (c) Case c. 

1.0 

J+a+~ 
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Fori.Phase (ii), 

MCii)= (Ngp,B/2) {1+ (1/2) (tanhy+tanhy')}, 

suo Nk{ln2+ (l/2)(lncoshy+lncoshy') 

- (1/2) (y tanhy+y'tanhy')}, 

Cjji) Nk(2kT/a) 

For Phase (iii), 

X {2yy' (4/~T/a) (y2 cosh2y' +y'2 cosh2y)} 

X {1 (4kT/~) 2 cosh2ycosh2y'}-1 • 

MCiii)= (Ngp,B/2) {1-+2//(a+ lSI)}, 

sew)= Nk(ln2 + ln coshx X tanhx)' 

Cjjii) Nkx2 {cosh2x-l e I I 4k T} -l. 

303 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

The quantities y, y', and x have been determined as functions of Hand T. 

In Fig. 6, the contour lines of constant magnetization in the H- T plane are 

shown for Cases a, b and c. We see in the figure that the isothermal magneti

zation at low temperatures depends strongly on the ratio of the exchange 

constants a and e. 
In Fig. 7, the contour lines of constant entropy in the H- T plane are 

shown for Cases a, b and c. In adiabatic process, the spin temperature 

changes as a function of H along the line of constant entropy. When the line 

of constant entropy is cut by a phase boundary of the first order transition 

(the lines of S/Nk=0.1, 0.2 and 0.3 in Fig. 7(a)), the temperature versus 

field curves exhibit a hysteresis, as shown in Fig. 7 (a) . 

kT 
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Cl 
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J+f { 1-./t- (jl
2
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.....§_ • In 2 
Nk 
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kT 

1 

0 
J-1.81 

2 

M. Tachiki and T. Yamada 

....§__ = 
Nk 

In 2 

J J+f J+a 

kT 

l 
Ia I 
4 

0 

J-lal J 

(c) 

,Fig. 7. The contour lines of constant entropy in the H- T plane. 

(a) Case a. The lines with arrows indicate the temperature in adiabatic magneti· 
zation and demagnetization processes. 

(b) Case b, (c) Case c. 

The experimental curves of Cu(N03)22.SH20 presented in Fig. 1 may 
correspond to the curves in Fig. 7 (b), if this substance has a long range order 
of spin pairs. 

The specific heat Cn in the case of a= I {j I /2 is obtained as a function 
of H and T. The result is illustrated stereographically in Fig. 8. The values 
of Cn in the case of a=O is presented in Fig. 11 for a purpose of companson 
with the specific heat of one-dimensional lattice of spin-pairs. 
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..ftt. 
Nk 

1 

0 

Fig. 8. Stereographic view of the specific heat in the case of a= I 131 /2. 

§5. Specific heat of spins in one dimensional lattice 
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Bonner et al. 7) have proposed two models for the spin array in Cu (N03) 2 

· 2.5 H20. In one of the models, the pair links form horizontal rungs on a 
vertical ladder, as shown in Fig. 9(a). Hereafter this is referred to as Model 
A. In the other the pairs are linked in chains with alternate weak links, as 
shown in Fig. 9 (b). This is referred to as Model B. In these systems no 
long range order of spins occurs, because the arrays of the spin-pairs are one 
dimensional. In this section we calculate the specific heat originating from the 
short range order of spins m the one-dimensional lattices. 

~ ~+t,r~ Si+r;z 
I I 
I 1 

J'l : J' 
1 
I 

1 I 

s,,,~.$1.2 
I I 
I I 

J'i : J' 
I I 

: : 
: J I 

~-l,t~-Si-1.2 
I I 
I I 
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Fig. 9. The two models of the pair-links in Cu(N03)2 2. 5 HzO, proposed by 
Bonner et aJ.7> (a) Model A, (b) Model B. 
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The Hamiltonian for Model A is written as 

..9{ = J 2J s 11 • s 12 + g p.B H. 2J ( s 11 + s 12) 
I I 

+ J'2J Sn · St+1,1 + J' 2J Stz · St+1,2. (65) 
l I 

If we confine ourselves to the lowest two-dimensional subspace of the patr m 
the same way as in §2, the Hamiltonian is expressed by using the relations 
(3) and (6) as 

c!f{= (N 12) {J + (J' I 4)- gp.BH} 

(112) {gp.BH-J- (J' 12)} 2J a.1 
l 

+ (J' 18) 2J {2 (axl(Jx,/+1 + (Jyl(Jy,f+1) + a,.,az,/+1}. (66) 
I 

The Hamiltonian for Model B is written as 

(67) 

In the lowest two-dimensional subspace, the Hamil toni an is exprssed as 

..9{ = (N 12) {J + (J' 18) - UP.8 H} 

+ (112) {gp.8 H-J- (J' I 4)} 2J a., 
I 

- (J' /16) 2J {2(ax,ax,l+1 +ay,ay,/+1) -a.,az,/+1}. (68) 
I 

It is noticed that the x- and y-components of the exchange interaction in Eqs. 
(66) and (68) are twice as large as the z-component. Similarly to the case 
of the long range order discussed in §3, this anisotropic exchange interaction 
causes the short range order of the spin components perpendicular to the field 
at sufficiently low temperatures. In order to investigate the qualitative nature 
of the thermodynamical properties of this system, we can use the XY model 
instead of Model A and Model B, as discussed in a previous paper.8

) The 
Hamiltonian in this case is written, apart from the constant term independent 
of the spin states, as 

(69) 

where f and K stand for the following quantities 

{ 
UP.8

1H-J- (J' 12), 

K = J' I 4 in the case of Model A, 
(70) 

{ CJ' I 4), 

K= -J'I8 in the case of Model B. 
(71) 

According to Katsura,9
) the free energy of this system is given by 
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F=- (Nk Tin)~~ In [2 cosh { ( f-4K cosm) I (2k T)} l dm. (72) 

By using the free energy, the specific heat is obtained as 

CH . (Nkln) ~~ [ {(f-4K cosm) l(2k T)} 2 

X sech2 
{ (/- 4K cosm) I (2k T)}] dm. (73) 

Integrating numerically Eq. (73), we obtain the temperature dependence of 
the specific heat for several values of the effective field. The results are shown 
in Fig. 10(a) and (b). In Fig. 10(a), the broad peaks of the curves for 
fields f I 4K> 1 correspond to Schottky anomalies associated with the Zeeman 
levels in the effective field f. The temperature of the peak increases with 
increasing effective field. On the other hand, the peak at k T I2K = 0.65 when 
f = 0 originates from the short range order of spins and the temperature of 
the peak decreases as the effective field increases. The details of this behavior 
are shown in Fig. 10(b). Shoulders in the specific heat curves in this figure 
originate from .the short range order of spins and the shoulder shifts to the 
low temperature side as the effective field increases. 

For the sake of comparison, we calculated the specific heat coming from 
the long range order of spins in the XY model by using a molecular field 
approximation. The result is shown in Fig. 11. There is a sharp peak of 
the specific heat at the critical temperature which decreases as the effective 
field increases. Since the temperature and field dependences of the specific 

2 
Nk 

t 

kT 
~27( 

(a) 
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Fig. 10. The temperature dependence of the specific heat of spins for several values 
of f in the one-dimensional XY model. 

.5L 
Nk 

1.5 

1.0 

0.5 

00~~~~~~--~=T~~~~~~ 
kT 

-TK 

Fig. 11. The temperature dependence of the specific heat of spins for several 
values of f in the three-dimensional XY model. 
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heat in Fig. 10 are very different from those in Fig. 11, measurements of th~ 
specific heat of Cu (NOa) 2 2.5 H20 may determine whether the anomaly observed 
by Haseda et al. ongmate from the short range order of spins or from the 
long range order of spins. 
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