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We argue that recent neutron scattering measurements by Lake et al. [Science 291, 1759 (2001)] of the
spin excitation spectrum of La22dSrdCuO4 in a magnetic field can be understood in terms of proximity to
a phase with co-existing superconductivity and spin density wave order. We present a general theory for
such quantum transitions, and argue that their low energy spin fluctuations are controlled by a singular
correction from the superflow kinetic energy, acting in the region outside the vortex cores. We propose
numerous experimental tests of our theory.
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Recent neutron scattering experiments of Lake et al. [1]
have opened a new window on the spin excitation spec-
trum of the high temperature superconductors. They have
observed that a moderate magnetic field induces an anoma-
lously large increase in the spectral density of low en-
ergy spin fluctuations in La22dSrdCuO4 at optimal doping
!d ! 0.163" and low temperatures !T". Experiments on
the underdoped La22dSrdCuO4 also show a large increase
in the intensity of elastic neutron scattering in the applied
magnetic field [2–4]. There have been a number of stud-
ies of enhanced antiferromagnetic correlations in the cores
of vortices in the superconducting order [5–7], and one
interpretation of the measurements is that the extra scatter-
ing arises from quasistatic moments [6,7] in the cores of
the field-induced vortices. The measurements then lead to
the estimate [1] that each Cu site in the vortex core has a
moment of order 0.6mB in the anomalous low energy sec-
tor. Such a large moment is characteristic of the insulating
antiferromagnet !d ! 0", and would require a correspond-
ing charge disproportionation with a large Coulomb energy
cost; this is a difficulty with such an interpretation.

We argue here that the experiments can be understood
by assuming that the superconductor (SC) is in the vicinity
of a bulk quantum phase transition to a state with micro-
scopic coexistence of SC and spin density wave (SDW)
orders; the latter state has been considered in a number of
studies [8–14], and has been observed in excess-oxygen-
doped La2CuO41y [15]. The magnetic field, H, drives the
SC phase closer to the SC 1 SDW phase—see Fig. 1.
Initially, H induces well separated vortices in the SC,
and there could be small additional magnetic scattering
from relatively high energy spin S ! 1 excitons centered
around the vortex cores. However, with increasing H [but
with H#H0

c2 still small (H0
c2 is the upper critical field at

which the mixed vortex state disappears for a particular
set of parameters —see Fig. 1)] the energy of any such
exciton decreases rapidly, and it becomes part of a de-
localized collective spin fluctuation which is a precursor
of the transition to the SC 1 SDW phase; the dominant
magnetic scattering then arises from the region outside the

vortex cores. Our primary results for extreme type-II su-
perconductors [Ginzburg-Landau (GL) parameter k ! `]
are as follows: (i) for small H#H0

c2, the SC to SC 1 SDW
phase boundary (MA in Fig. 1; the caption defines r, rc)
is at H $ !r 2 rc"# ln%1#!r 2 rc"&—so this boundary is
anomalously flat at small H, and this allows the system
to move close to it for not too large H; (ii) the energy,

rc r
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FIG. 1. Phase diagram of S 1 FGL#T at T ! 0 and large N
as a function of the field H and the parameter r (which is similar,
but not identical to the doping d) in the limit k ! `. This theory
offers a complete, experimentally applicable, description only
of the SC to SC 1 SDW transition at small H , away from the
tetracritical point M. The remaining phase diagram is qualita-
tive, and the non-SC phases should have some additional charge
ordering. The path of the experiments of [1] is denoted by the
vertical arrow. The upper critical field of the SC state clearly
depends upon r , and H0

c2 is its value at M . The point A is at
the nonuniversal value r ! rc, but the remaining phase bounda-
ries can be expressed in terms of rc and the couplings in S [21].
The point M is at H#H0

c2 ! 1, r ! rc 1 y, the boundary BM is
at H#H0

c2 ! 1 2 %y2 1 y!rc 2 r"&#4u, CM is at r ! rc 1 y,
and DM is at H#H0

c2 ! 1 1 NyD#!8pc2", where D is the so-
lution of D2 1 Nu#!2pc2"D 1 y 2 r 1 rc ! 0. Near M, the
position of AM is given by H#H0

c2 ! 1 2 q1!rc 1 y 2 r"#y
where q1 ! 1.1596 2 O !y2" [q1 ! 1.1803 2 O !y2"] for a
triangular (square) Abrikosov flux lattice [the O !y2" terms will
be described elsewhere]. The small H behavior of AM is one
of our main results, and is in (10).
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e00!H", of the low energy peak in the neutron scatter-
ing cross section should decrease as e00!H" ! e00!0" 2
C1!H#H0

c2" ln!H0
c2#H" along the vertical arrow in Fig. 1;

(iii) when starting from the SC 1 SDW phase at H ! 0,
one finds an increase of the elastic neutron scattering given
by I!H" ! I!0" 1 C2!H#H0

c2" ln!H0
c2#H", where C1 and

C2 are some constants. All these functional forms are ex-
pected to be exact at small H; naively, one might have
expected an analytic series in powers of "H2, but the in-
finite diamagnetic susceptibility of a superconductor re-
places this with a nonanalytic function of j "Hj. We will
also discuss the case of k large but finite.

Because the SC order is present on both sides of the
transition, we can describe it in a static GL theory: the
free energy FGL is given by

Z

d2x
∑

2jcj2 1
jcj4

2
1 j! "=x 2 i "A"cj2

1 k2j "=x 3 "Aj2
∏

.

Here c!x" is the complex SC order parameter, and we have
performed standard rescalings to cast this theory in a di-
mensionless, universal form: all lengths !x" are measured
in units of the (bare) superconducting coherence length j,
the vector potential is scaled as "=x 3 "A ! !H#H0

c2"ẑ, and
energies are measured in units of H2

cj2#!4p" (Hc is the
field at which the free energy of the uniform superconduc-
tor equals that of the normal state). When k ! `, as is
the situation in the experiments on the cuprates [1], the
screening of H by the supercurrents is negligible, and we
can develop our theory for the SC to SC 1 SDW transi-
tion taking H to be uniform. We will not use any particular
model for the dynamics of c, apart from assuming that its
slow evolution occurs on time scales longer than those of
the spin fluctuations of interest, and is presumably associ-
ated with the thermal and quantum motion of vortices [16].

The SDW order parameter is a N ! 3 component vec-
tor, fa!x, t", where a ! 1, . . . , N and t is imaginary
time. The quantum fluctuations of the fa as a function
of t are known to play an important role even in the insu-
lating antiferromagnet, and must surely be included in the
vicinity of a quantum transition in a low dimensional mag-
net. For simplicity, we will assume that fa is real, but our
theory admits a simple generalization to incommensurate
ordering transitions requiring a complex order parameter
[11]. The dynamics of fa is described by the action [17]
(in the same units as FGL):

S !
Z

d2x
Z 1#T

0
dt

Ω

1
2

'!≠tfa"2 1 c2!=xfa"2

1 %r 1 yjc!x"j2&f2
a(

1
u
2

!f2
a"2

æ

, (1)

where the x, t dependence of fa is implicit, c!x" is t in-
dependent as discussed above, and c, r, y, u are coupling

constants, with y2 , 4u. We have neglected fermionic ex-
citations because momentum conservation constraints sup-
press their coupling to fa [11]. The action is the same
as that near SDW ordering transitions in insulators, with
the simplest symmetry-allowed terms in powers of fa and
spatial and temporal gradients. The tuning parameter r
(which, presumably, increases monotonically with increas-
ing doping, d) drives the theory from the SC 1 SDW
phase (with )fa* fi 0, )c* fi 0) to the SC phase (with
)fa* ! 0, )c* fi 0) with increasing r; at H ! 0, T ! 0,
this transition is at r ! rc (Fig. 1). The latter phase has
a S ! 1 exciton (or a collective “spin resonance”) associ-
ated with oscillations of fa about fa ! 0, with an energy
which vanishes as r & rc [18]. Our main results for the
H dependence of the physics in the vicinity of the SC to
SC 1 SDW phase boundary depend crucially on the cou-
pling y . 0 between the amplitudes of the SC and SDW
orders; such a repulsive coupling was emphasized in [6,9].

A powerful tool to account for the quantum fluctuations
of fa is the large N expansion [18]. At large N and small
T , the saddle-point equations describing the properties of
S 1 FGL#T in phases with )fa* ! 0 are

V !x" ! r 1 yjc!x"j2 1 2NuT
X

vn

G!x, x, vn " , (2)

%21 1 jc!x"j2 2 ! "=x 2 i "A"2&c!x" 1

!NyT#2"
X

vn

G!x, x, vn"c!x" ! 0 , (3)

where vn is a Matsubara frequency and
G!x, x0, vn"dab !

R1#T
0 dt eivnt)fa !x, t"fb!x0, 0"* is

the fa Green’s function which obeys

%v2
n 2 c2 "=2

x 1 V !x"&G!x, x0, vn" ! d2!x 2 x0" . (4)

The solution of (2), (3), and (4) (and their straightforward
generalization to phases with )fa* fi 0 [18]) leads to the
phase diagram in Fig. 1. We emphasize that the present
model is accurate only at small H in the vicinity of the
SC to SC 1 SDW transition. The other phases in Fig. 1
involve loss of SC order, and for these a more complete
treatment of the charge fluctuations is surely needed: vari-
ous site- and bond-centered charge ordered states (“stripes”
and “spin-Peierls”) and Wigner crystal states are likely to
play a significant role (see, e.g., [11,14]).

We now present an analytical description of the crucial
physical properties of the solution of (2), (3), and (4) in
the SC phase at small H and close to rc; a full numeri-
cal solution will be presented in future work. The SC
order, c, supports an Abrikosov flux lattice of vortices at
Ny ! ` positions 'Ry( %c!Ry" ! 0&, with a core size of

order unity, and a lattice spacing Ly $
q

H0
c2#H. The

resulting jc!x"j2 acts like a periodic potential for fa, and
it is useful express G in terms of the Bloch states, gnk!x" !
un!x"eikx of this periodic potential
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G!x, x0, vn" !
1

Ny

X

nk

g!
nk!x"gnk!x0"
v2

n 1 e2
nk

, (5)

where %2c2 "=2
x 1 V !x"&gnk!x" ! e2

nkgnk!x", n is a
“band” index, k extends over the first Brillouin zone of the
reciprocal lattice of 'Ry(, and the eigenvalues e2

nk . 0;
SDW order appears when one of enk first vanishes. An
immediate experimental consequence of this structure
is the presence of “Bragg reflections” at wave vectors
separated by the reciprocal lattice vectors in the dynamic
spin structure factor, as shown in Fig. 2.

Our interest will primarily be in the nature of the low-
est energy band, e0k, which also controls the transition
to the SC 1 SDW state. As the cores of the vortices act
as attractive potentials for gnk!x", a possibility for such a
state is a superposition of Wannier orbitals localized at the
cores of the vortices [6]: g0k!x" !

P

'Ry( eikRy f!x 2 Ry"
where f!x" is exponentially localized on a scale ! ø Ly .
However, the self-interactions of the fa, accounted for by
the self-consistent potential proportional to u in (2), have
a large impact on these localized states, and we will es-
tablish that such a structure for g0k must break down as
the transition to the onset of SDW order is approached.
The key argument was made by Bray and Moore [19] in
a different physical context, and we review their reason-
ing. As we are assuming ! ø Ly , the localized states
at the vortex cores can be treated independently of each
other: e0k is independent of k and jf!0"j $ 1#!. Let
V !x" ! V. %V !x" ! V,& for x outside [inside] the vor-
tex cores where c!x" + 1 %c!x" + 0&. Then subtracting
(2) evaluated at these x’s from each other, and noting that
the difference in the term proportional to u arises primar-
ily from the localized state in the vortex core, we obtain
(at T ! 0) y 2 Nujf!0"j2#e00 + V. 2 V, . 0. This
implies that the localization length must be at least as large

ε 1k

okε

-Gv Gv

q

0

ω

FIG. 2. Dynamic spin susceptibility in the vortex state
x 00!q, v" ! Im%

R

x,x 0 eiq!x2x0"G!x, x0, v"& !
P

n,Gm

R

k jun!Gm"j2
e21

nk d!k 1 Gm 2 q"d!v 2 enk ", k integration is over the
Brillouin zone of the reciprocal lattice of 'Ry(, n is a band
index, Gm are reciprocal lattice vectors, and un!Gm" are Fourier
transforms of the periodic wave functions un!x". Note that
dispersing S ! 1 exciton modes d!v 2 enk" are shifted by all
Gm with the weight jun!Gm"j2.

as ! $ 1#pe00. As e00 & 0 upon approaching the onset
of SDW order, we must eventually have ! $ Ly , and the
assumed structure for g0k breaks down.

We are, therefore, compelled to turn our attention to ex-
tended, plane-wave-like wave functions for the gnk (we do
not exclude nontrivial structure in these wave functions on
the scale Ly). The self-interaction terms are now expected
to be less important: we initially neglect the terms pro-
portional to G in (2) and (3), but will account for them
later. We now demonstrate that, for small H, the eigenen-
ergies, e0k, are controlled by universal structure in c!x" in
the region 1 ø jxj ø Ly well outside the vortex core at
Ry ! 0 (and in the corresponding regions of the other vor-
tices). Analysis of (3), following the standard description
of a superconducting vortex, shows that in such regions

jc!x"j ! 1 2 1#!2x2" ; (6)

the second term above is the correction in the amplitude of
the SC order induced by the superflow kinetic energy. We
now use perturbation theory to evaluate the change in e00
induced by (6); this requires the quantity

)jc!x"j2*x ! 1 2 %H#!2H0
c2"& ln!q2H0

c2#H" , (7)

where the average is over spatial positions x, the logarithm
arises from the integral of 1#x2 over the two-dimensional
unit cell of the vortex lattice (it is cut off at short scales
by the superconducting coherence length $1, and at long
scales by Ly), and the constant q2 + 3 (for triangular and
square vortex lattices) was obtained by numerical solution
of (3) using the method of [20]. From (2), we obtain the
leading perturbative correction

e2
00!H" ! e2

00!0" 2 %yH#!2H0
c2"& ln!q2H0

c2#H" ; (8)

this result is also a variational upper bound on e00!H",
associated with the wave function g00 ! 1. For small
r 2 rc we have e2

00!0" ! !r 2 rc" (this corresponds to
the exponent n ! 1#2 in mean field theory), and so we
can rewrite (8) as e00!H" ! %r!H" 2 rc&1#2 where

r!H" , r 2 %yH#!2H0
c2"& ln!q2H0

c2#H" . (9)

The vanishing of e00!H" determines the position of the
phase boundary AM between the SC and SC 1 SDW
phases at small H:

H#H0
c2 ! 2!r 2 rc"#'y ln%1#!r 2 rc"&( ; (10)

the variational argument shows that this is an upper bound
for H, and so the phase boundary can become flatter
only at higher orders. A fully self-consistent calculation
which includes the terms proportional to G in (2) and
(3) is more involved, but tractable: we find a modified
functional dependence of e00!H" on r!H", e00!H" !
2pc2%r!H" 2 rc&#%Nu!1 2 y2#4u"& (corresponding to
the exponent n ! 1 in the large N limit [18]), but the
expressions (9) and (10) continue to hold.

We comment further on experimental implications of
our results. For very small H, if g0k is localized on
a scale ! ø Ly , the lowest energy magnetic mode is a
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FIG. 3. Phase diagram of S 1 FGL#T for finite k and small
fields. The SC and SC 1 SDW phases in Fig. 1 are identi-
cal to the corresponding “vortex” phases here. The position of
Hc1 is given by Hc1#H0

c2 !
p

p#2 !lnk#k2"c2
H!0, where for the

BM1 line c2
H!0 ! 1 2 y!rc 2 r"#%4u!1 2 y2#4u"&, and for

the M1M2 line c2
H!0 ! 1 1 Nye00!0"#8p with e00 discussed

after Eqs. (8) and (10).

relatively high energy S ! 1 excitonic mode near the vor-
tex cores, as noted earlier. The spectral weight of this mode
will be much smaller than the slightly higher energy bulk
contribution from outside the vortex cores, and will consist
of a feature of width dk ! !21 (resolution of the Bragg
reflections may not be feasible). For slightly larger H, the
distinction between the localized and delocalized contribu-
tions will disappear, and we expect that a full dynamic spin
structure with Bragg reflections may be resolved in neutron
scattering experiments, with the lowest energy mode obey-
ing (8). It is also interesting to note that, even for small
H, repulsion between the SC and SDW order parameters
described by the y term in (1) will lead to an interest-
ing structure in the spatial form of jc!x"j on the scale !
which may be significantly larger than the bare SC coher-
ence length (unity in our units). This surprising effect,
where the superconducting vortex core structure depends
on the magnetic field for H ø H0

c2, is another significant
prediction of our theory, and is testable, e.g., in tunneling
experiments.

An interesting recently observed effect [2,3] may
readily be accounted for by S 1 FGL#T : the intensity of
the elastic neutron scattering increases when H is applied
to the SC 1 SDW state (line BA on Fig. 1). In the large
N limit we find that the expectation value of the staggered
moment increases with H as )jfaj*2 ! %rc 2 r!H"&#
%2u!1 2 y2#4u"&, with r!H" given in (9). Quantita-
tive agreement with this relation has been recently ob-
served [4].

We now discuss the consequences of supercurrent
screening of the magnetic field at finite k. For finite k and
small H we will have a Meissner phase where no vortices
penetrate the sample. As shown in Fig. 3, we may have
Meissner phases that are purely superconducting or have
coexisting magnetism. It is interesting to note that a finite
density of vortices penetrates a sample at Hc1, so there

is a finite jump in the SDW order across the lines BM1
and M1M2.

We conclude by noting some broader implications of
our results. (i) In the discussion above we assumed that
y . 0, which is consistent with the experimental situation
in La22dSrdCuO4. The case y , 0, where the transition
into the SC state leads to an enhancement in the SDW fluc-
tuations, may also be described following the formalism
above. (ii) Closely related phase diagrams should apply to
other ordering transitions of superconductors in a field, in-
cluding charge density wave and “staggered flux” orders.
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