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Half-metals are defined by an electronic structure, which shows conduction by charge carriers of one
spin direction exclusively. Consequently, the spin polarization of the conduction electrons should be
100%. In reality this complete spin polarization is not always observed. Since the experimental
search for half-metals is tedious and the verification of the expected spin polarization is involved,
electronic structure calculations have played an important role in this area. So, an important question
is, how the approximations in such calculations influence the resulting spin polarization of the
conduction. Another aspect is the well-known fact that bulk properties can be very different from
surface and interface properties. Indeed, measurements of the spin polarization in the bulk for, e.g.,
NiMnSb, show results different from surface sensitive measurements. In this respect it is important
to realize that the origin of half-metallic behavior is not unique. Consequently, the deviations from
the bulk behavior at the surface/interface can be important. Three different categories of half-metals
can be distinguished and their expected surface properties will be discussed. Finally, ways will be
described to control the properties at interfaces2@?2 American Institute of Physics.
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|. CLASSIFICATION OF HALF-METALLIC SYSTEMS that in the group IlI-V semiconductors, with which it is
pseudoiso-electronic. The presence of occupmleshinority
Half-metals are defined as magnetic materials showing gtates is essential: half-metals in this category are weak
band gap at the Fermi energy for one spin direction. Consemagnets. The metallic spin direction shows conduction in
quently only charge carriers of one spin direction contributeyery wide bands with an effective mass approximately equal
to the conduction. Since the band gap is the essential ingrep the free electron mass. Many half-metals in this category
dient in half-metals, it is important to consider its origin. could be imagined, e.g., zinchlende MnAsiowever, the
Dozens of half-metals are known by now. Three categoriegincblende structure is not the stable one for this compdund.
can be distinguished on the basis of the nature of the band
gap: half-metals with(1) covalent band gapg2) charge-
transfer band gaps, ar{@) d—d band gaps. This distinction
is important because the origin of the half-metallicity is dif-
ferent in each category. Hence the influence of external per- This category is found in strongly magnetic compounds,
turbations(e.g., pressupeis different as well as the sensitiv- where thed bands of the transition metal are empty for the
ity to disorder, behavior at surfaces and interfaces, etc. ~ minority spin direction and the itinerastp electrons of the
transition metal have been localized on the anions. Examples
of half-metals in this category are Cs{J the colossal mag-
The origin of the band gap in this category is strongly netoresistancé CMR) materialS and double perovskités.
related with well-known semiconductors of group IlI-V The occurrence of the band géfpr one spin directiohis not
type, like, e.g., GaAs. A well-known example is NiMnSl.  very dependent on the crystal structure. Naturally, com-
crystallizes in the Heusle€C1, structure, which is closely pounds in this category are strong magnets.
related with the zincblende structure: One of the empty po-
sitions is occupied by the third consistuéNi) here. Like in
the group llI-V semiconductors, the crystal structure is es- . .
sential, but also the proper site occupation is important: Botﬁ:' Materials with a - d—d band gap
Mn and Sb have to occupy sites with tetrahedral coordina- Half-metals in this category show rather narrow bands,
tion. The band structure, interactions, and bonding for theso that gaps occur between crystal-field split bands. The ex-
semiconducting spin direction are very much equivalent tachange splitting can be such that the Fermi level is posi-

B. Charge-transfer band gaps

A. Covalent band gaps
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FIG. 1. Band structure of NiMnSka) Majority spin channel andb) mi-

nority spin channel. The Fermi level is at 0. FIG. 3. Band structure of NiMnSb at the density o, MnSb. (a) Majority

spin channel andb) minority spin channel.

tioned in a gap for one spin direction only. These materials
are weak magnets by definition. Examp|es ar%CHe7 NiMnSb. It is clear that no half-metallic properties are
FeCo,_,S,,% and Mn, VAL ® present. Figure 3 shows the band structure of NiMnSb com-
Category 1 is the only category where strong constraint§ressed to the density of MInSb. The band gap has in-
on the crystal structure exist. This will be exemplified in this creased under compression, a révet not unique phenom-
and the following paragraph. As an example NiMnSb is con-£non that also occurs in several group IlI-V semiconductors
sidered. Its band structure is shown in Fig. 1. It crystallizesbecause of the increased kinetic energy, the Fermi energy is
in the HeuslelC1, structure. Also another Heusler structure Positioned in the conduction bandt is important to notice
exists, the so-calleti2; structure. In this structure the fourth that whereas half-metallic magnetism of the first category is
position is also filled and compounds like MnSb result, impossible in the Heusler2, structure, half-metallic mag-
which is a normal ferromagnet. One could naively attributen€tism of the other categories can still oc¢erg., the Heu-
the half-metallic properties of NiMnSb to its lower density Sler Mn, VAl belongs to the third categoyy
with respect to NiMnSb. In order to separate the influence  Finally, in order to show the importance of the minority
of density and tetrahedral coordination, in Fig. 2 we showd electrons, in Fig. 4 we show the band structure for NiMnSb

the band structure of BMnSb with a density equal to that of with an artificially increased exchange splitting of the Han-
kel energies of the Mml states. No half-metal is obtained,

just like GaAs would not be semiconducting without Ga
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FIG. 2. Band structure of NMnSb at the density of NiMnSka) Majority FIG. 4. Band structure of NiMnSb with an artificially increased exchange
spin channel angb) minority spin channel. splitting. (&) Majority spin channel an¢b) minority spin channel.
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states. Half-metallic magnetism and strong magnetism are It is not obvious that the question whether the Fermi
mutually exclusive for compounds in categddy. level intersects the minoritty, band or not is relevant, since
the majorityey electrons are so much more mobile than pos-
sible t,q minority electrons. In this respect, the notion of a
transport half-metal has been introduc¢édhis is an inter-
esting concept, since it could be applied more generally: If
The degree of spin polarization in half-metals should pehe crystal field splitting and thg yvidths of the bands derived
100% atT =0, neglecting spin-orbit interactions. In the com- from j[he _crystal _f|eld Ieve!s originate from the same metal
ing paragraphs we will consider the actual situation in sev-d_ar"o_n Interactions—as Is often the case—one expects the
eral half-metals and try to rationalize the existing data. InP@ndwidths to increase with energy systemat|c’z§|§a|ver_1 a
this discussion it is important to be aware of the fact that@r9e enough exchange splitting, the mobility of the minority
several experimental methods actually measure the spiffl€Ctrons can be much less than that of the majority elec-
polarization at the surface of the half-metal, or at an interfacd’®ns- So this situation could occur in other, different situa-
with some other medium. One has to keep in mind that dions aslwell_. Howeyer, a degree of spin polarlzanon as high
bulk electronic structure, a surface electronic structure, an@S Possible is required for some .appllcatléﬁs.
the electronic structure at an interface can be very different, 1he Situation in NiMnSb is even more complex.
The most straightforward case is GrOvhere the half- Whereas_measur_ements of fthe spin polarization in the bulk
metallic properties are generally accepted. It crystallizes iff"® conasteng 1‘3"th a genuine half-mefalt least at low
the rutile structure. This structure allows for a stoichiometric,temper"]‘tulrlesl ““Andreev reflection shows a polarization of
hence electrically neutral001) surface, which is unlikely to 2870 Only; 2\/(\)/h|le spin-polarized tunneling gives an even
reconstruct or to show surface segregation. Calculation@Wer (28%97" degree of spin polarization. Spin resolved
show two oxygen-derived surface states in the band gap fdiotoemission shows polarizations that are very much de-
the minority spin direction, but these states are located wefP€ndent on preparation conditions, sometimes reaching
below the Fermi energy and do not corrupt the half-metallict00% in ,thf case of normal incidence inverse
properties at the surfad8.Experimentally Cr@ shows the photoem!ss!oﬁ,z but not more than 40% in normal
highest degree of spin polarization of all materials considphOtO?m'ss'Oﬁ' _ _ _ _
ered in Andreev reflectioH: It is well-known that disorder, especially Ni—Mn inter-

The situation in the CMR and double perovskite materi-change, is detrimental for the half-metallic properties of

: 23,24 - : :
als is still the subject of active research. Band structure calNIMnSb=“" Nevertheless, the explanation that disorder is

culations show results which depend on the approximation&SPonsible for the experimental observations is doubtful,
involved. For example, for LaCa, MnO; the local density ~ SINC€ it contradicts the existing bulk measurements. More-
approximation leads to a band structure where the Fermi erfVe", we calculated that a 3% Ni—Mn interchange costs 2.88
ergy just intersects the bottom of the minority band®12 €V per I\!I—Mn pair, an energy cpmparable with the. heat .of
while a genuine half-metal is obtained in the generalizeVaporation of the metallic constituents. Because Ni-Mn in-
gradient approximatioiGGA).12 (Similar behavior is seen terchange is so eﬁectlvg in destroying the band gap, it is a
for Mn, VAL 9 Experimentally, for Lg,SpsMnO; 78%  Very unstable configuration.

spin polarization was measured with Andreev reflection It is clear that deviations from the half-metallic behavior
while spin-resolved photo emission  shows 1006/0in NiMnSb are confined to the surface. Electronic structure

polarization%g’ as expected for a half-metal. Unlike Cr(the calculations of several surfaces show that even without sur-

cubic perovskite structure does not possess stoichiometrf@C€ Segregation no half-metallic surfaces are present. This
surfaces, so surface reconstructions and/or deviations frorfituation is not unexpected. It results from the lack of the full
the ideal stoichiometry at the surface must occur. In this lighTYStal symmetry at the surface and is quite comparable with
it is possible that both surface-sensitive measurements shotij€ Situation in several group lll—V semiconductéFs. ,

a different behavior, especially since one involves a surface | "€ Similarity between NiMnSb and zincblende semi-
and the other an interface. Moreover, no details of the interONductors suggests that, while the surface of NiMnSb is not

face structure or composition are available for the Andreeyalf-metallic, the interface with a zincblende semiconductor
reflection experiment. might be. A computational study was undertaken in order to

It is interesting to compare the situation with investigate under which conditions half-metallic properties

LaSELMn,O,. This is the second member in the general per_could be restore® The study Ii_mited itself t.o Cqs and InP,
ovskite series A,;B,Os:1, the cubic one corresponding because they show a good lattice match with NiMnSb. In the

with n=c¢. This structure does allow for an electrically neu- (111 direction a perfectly half-metallic interface resulted
tral (001) surface(assuming a plausible preference of the (@nd in this direction only The interface shows the exis-
alkaline earth atoms for the surface layeFhe calculated (€Nce of Sb—S pairs, just as in the insulating minerals gud-
bulk and surface electronic structures are very similafmandite, costibite, and paracostibite.

indeed* Unfortunately, this compound is not a genuine half-

m_etal,. even not in the GGA: The Fermi level touches the; A NEW HALE-METAL

minority t,4 d band. Nevertheless, experiments on this com-

pound should be stimulated, as will be clear from the next One of the possible applications of half-metals is the
paragraph. injection of spin-polarized charge carriers into semiconduc-

II. SPIN POLARIZATION OF THE CONDUCTION
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some device. The reversal of the direction of the spins of the
charge-carriers is accomplished by the reversal of the direc-
tion of the magnetization by an applied field. But the reversal
of the magnetization is a slow and noisy process. Nitrides are
prime candidates for showing metamagnetic transitions, in
other words the transition from a low to a high spin state by
an applied magnetic field. Such an electronic transition is
much faster than the reversal of the direction of the magne-
tization. If one of the two configurations is half-metallic, a
Energy (eV) useful switch would already emerge. Maybe metamagnetic
) ] ) ) materials exist where both the low and the high spin configu-
FIG. 5. Calculated GGA density of states ogEeN,. The Fermi level is at

the zero of the energy scale. Majority and minority spin channels are plotteaatlon are half-metallic, but with energy gaps for different

along the positive and negative ordinate, respectively. The calculation waSPIN directions. This would allow the reversal of the polar-
carried out in a primitive cell, using tetrahedron integrati&ef. 31 and ization of the conduction electrons without a reversal of the

7XT7XT k-points mesH(Ref. 32. direction of the magnetization.

DOS (States/eV)
o
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