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A ‘toy model’—aimed at capturing the essential physics—is presented that jointly describes spin-
polarized hot electron transport and spin pumping driven by local heating. These two processes
both contribute to spin-current generation in laser-excited magnetic heterostructures. The model is
used to compare the two contributions directly. The spin-polarized hot electron current is modeled
as one generation of hot electrons with a spin-dependent excitation and relaxation scheme. Upon
decay, the excess energy of the hot electrons is transferred to a thermalized electron bath. The
elevated electron temperature leads to an increased rate of electron-magnon scattering processes
and yields a local accumulation of spin. This process is dubbed as spin pumping by local heating.
The built-up spin accumulation is effectively driven out of the ferromagnetic system by (interfacial)
electron transport. Within our model, the injected spin current is dominated by the contribution
resulting from spin pumping, while the hot electron spin current remains relatively small. We derive
that this observation is related to the ratio between the Fermi temperature and Curie temperature,
and we show what other fundamental parameters play a role.

I. INTRODUCTION

The generation of spin transport by femtosecond laser-
pulse excitation paves the way towards ultrafast spin-
tronic applications. Similar to subpicosecond quenching
of the magnetization [1–20], the physical origin of laser-
induced spin transport is an unsolved quest and remains
heavily debated after more than a decade of experimen-
tal and theoretical research [9, 21–37] Nevertheless, it is
clear that the manipulation of magnetic materials with
femtosecond laser pulses is unique by being ultrafast and
very efficient. Therefore, understanding the underlying
physical mechanisms is interesting from both a funda-
mental and technological viewpoint.

There are two dominant theories on the physical origin
of ultrafast spin currents. First, the laser pulse generates
a population of highly energetic electrons that through
spin-dependent excitation rates and mobilities yield a
spin-polarized hot electron current. Including the gen-
erated cascades of secondary hot electrons, it is an effi-
cient scheme of spin-current generation, as is described by
the model for superdiffusive spin transport [9, 23]. The
second theory is based on the notion that laser heating
results in an increased rate of spin-flip scattering pro-
cesses, including electron-magnon scattering. The latter
generates a local spin accumulation [16, 24, 38], a pro-
cess referred to as bulk spin pumping [38, 39], that effec-
tively can be transported towards a neighboring nonmag-
netic layer through spin diffusion. With the two major
viewpoints in mind, the essential unanswered question is
whether the generated spin current is a direct result of
the excitation of hot electrons or is indirectly driven by
heating and subsequent spin pumping.

∗ Corresponding author: m.beens@tue.nl

In this work, we present a simplified phenomenologi-
cal model—also referred to as ‘toy model’—that jointly
describes the generated hot electron spin currents and
the spin currents driven by spin pumping. Hot elec-
tron transport is described by one generation of optically-
excited electrons with spin-dependent excitation and de-
cay rates. Within our approach, the hot electrons decay
into an instantaneously thermalized electron bath, where
the absorbed excess energy results in an increase of the
electron temperature. The latter, and the coupling to a
thermal magnon bath, is calculated explicitly. It gives
an expression for the total built-up spin accumulation
and the resulting spin current transported by the ther-
mal electrons. The two contributions to the spin current
are calculated equivalently at the interface of a ferro-
magnetic metal/nonmagnetic metal heterostructure. We
show that the spin current driven by spin pumping domi-
nates and we derive that this observation is related to the
ratio between the Fermi temperature and Curie temper-
ature. Finally, we discuss the presence of spin-polarized
screening currents and investigate their role.

II. TOY MODEL FOR LASER-INDUCED HOT
ELECTRON DYNAMICS

We start with defining two categories of electrons for
each spin polarization separately. First, the electrons
far above the Fermi level are defined as ‘hot’ electrons.
Secondly, the electrons close to and far below the Fermi
level are assumed to remain thermalized and are dubbed
as ‘thermal’ electrons. We treat the thermal electron
system as a single population of mobile electrons, repre-
senting hybridized 3d and 4s electrons in the transition
metal ferromagnets, composed of the subsystems for ma-
jority spins (here defined as ↓) and minority spins (↑).
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Figure 1. Schematic overview of the toy model. The sys-
tem of electrons is composed of hot electrons and a bath of
electrons that remains thermalized. (a) Excitation by a laser
pulse yields a population of hot electrons and a reduction
of the number of electrons in the thermal system. (b) The
spin-dependent excitation and decay rates yield a net spin
accumulation within the thermal system. (c) The decay pro-
cesses are associated with an energy absorption of the thermal
system, leading to an increased temperature Te. Subsequent
interactions among electrons, magnons, and the lattice, com-
pose the full spin angular momentum flow. (d) Schematic
overview of the modeled heterostructure, excited at position
z = 0 by absorption profile A↑↓(t). The total interfacial spin
current jtot

s is the sum of the hot electron spin current jh,s
and the spin current generated within the thermal electron
system jt,s.

A schematic overview is given in Figs. 1(a)-(b). Upon
excitation, a (spin-polarized) population of thermal elec-
trons is transferred to the higher energetic ‘hot’ state at
energy ∆E above the Fermi level. In combination with
the spin-dependent decay rates τ−1

↑↓ , this leads to a shift
of the spin-dependent chemical potential µs = µ↑ − µ↓.
In other words, a spin accumulation is created. During
the decay of the hot electrons, the excess energy ∆E is
absorbed by the thermal system and leads effectively to
an elevated electronic temperature Te. The latter gives
rise to the creation of thermal magnons and an additional
change of the spin accumulation µs, as will be discussed
in Sec. III.

We first focus on the hot electron transport gener-
ated after excitation. We consider a (magnetic) metal-
lic system described by spin-dependent electron distribu-
tion functions that remain homogeneous in the transverse
plane but may vary along the longitudinal (out-of-plane)
z direction. Furthermore, as schematically depicted in
Fig. 2(a), we assume that when hot electrons are excited
they move in a random direction with a (spin-dependent)
fixed speed v↑↓ until they decay after time τ↑↓. The dis-
tribution function describing this hot electron system sat-

isfies the Boltzmann equation

∂n↑↓(z, v, t)

∂t
+ v

∂n↑↓(z, v, t)

∂z
= A↑↓(z, t)−

n↑↓(z, v, t)

τ↑↓
,

(1)
where n↑↓(z, v, t) corresponds to the distribution func-
tion for hot electrons with up (↑) and down (↓) spin at
position z with velocity component v along the z axis.
The function A↑↓(z, t) describes the spatiotemporal pro-
file of the laser-pulse absorption and is spin-dependent
due to the different absorption coefficients for up and
down spins. For simplicity, we assume that this source
term is a Dirac delta function located at z = 0, having
A↑↓(z, t) = A0,↑↓(t)δ(z) (see Fig. 1(d)), where A0,↑↓(t)
is determined by the temporal profile of the laser pulse.
Only focusing on this simplified example is relevant, since
the response to a general spatial-dependent function can
be calculated straightforwardly by performing a convolu-
tion [23]. Furthermore, we define the polarization coeffi-
cient PA = (A0,↑(0) − A0,↓(0))/(A0,↑(0) + A0,↓(0)) such
that A0,↑↓(t) = A0(t)(1 ± PA), where A0(t) corresponds
to the spin-averaged excitation profile.

Using Fourier transformation, we switch from the time
domain to the frequency domain, which simplifies the fol-
lowing calculations because convolutions now correspond
to a multiplication. We are interested in the dynamics in
the region z ≥ 0, where the solution to Eq. (1) is given
by

n↑↓(z, v, ω) =
A0(ω)(1± PA)

v
exp

(
− z

vτ↑↓
(1 + iωτ↑↓)

)
θ(v).

(2)
The Heaviside theta function θ(v) makes sure that the
solution does not diverge in the limit z → ∞, meaning
that only right-moving electrons are present. We assume
that all hot electrons move in a random (positive) direc-
tion with a fixed speed v↑↓. The number density of the
electrons can then be written as

n↑↓(z, ω) =
A0(ω)(1± PA)

v↑↓
fn

[z(1 + iωτ↑↓)

λ↑↓

]
, (3)

where the function fn(x) results from a surface integral
over a positive hemisphere with radius v↑↓ and we used
λ↑↓ = v↑↓τ↑↓. The proper normalization factors are de-
fined within A0(ω). Similarly, the current densities can
be expressed as

j↑↓(z, ω) = A0(ω)(1± PA) fj

[ z

λ↑↓
(1 + iωτ↑↓)

]
. (4)

Since the solutions follow from the Boltzmann equa-
tion, the functions fn(x) and fj(x) satisfy f ′j(x) =
−fn(x). The function fj(x) is plotted in Fig. 2(b), show-
ing its similarity with exponential decay. Keeping the
latter in mind, the inverse Fourier transform of Eq. (4)
approximately corresponds to an exponential decay with
length scale λ↑↓/2 and a phase shift 2z/v↑↓ compared to
the temporal profile of the laser pulse.
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Although we focus on a magnetic heterostructure in
the following paragraphs, we assume for hot electron
transport that the system is homogeneous, since we aim
for a simple toy model. The hot electron current at the
interface of the heterostructure is simply assumed to be
equal to Eq. (4) being evaluated at z = d, where d is the
thickness of the (imaginary) ferromagnetic layer. The
interfacial hot electron spin current jh,s = j↑ − j↓ is in-
cluded in Fig. 3. The figure presents a schematic overview
of all contributions to the interfacial spin current. The re-
maining terms, which mainly represent spin-current con-
tributions in the thermal electron system (indicated by
the blue shaded region), will be step-by-step introduced
in the following sections.

As Fig. 3 indicates, for determining the spin transport
in the thermal electron system it is required to calcu-
late the functions that characterize the (spin-dependent)
decay of hot electrons. In order to do so, we need the spa-
tial average of n↑↓(z, ω) over the domain (0, d], notated
simply as n↑↓(ω), which is given by

n↑↓(ω) =
A0(ω)(1± PA)

v↑↓

1

1 + iωτ↑↓

λ↑↓
d

(5)

×
(

1− fj
[ z

λ↑↓
(1 + iωτ↑↓)

])
,

using the relation between fn(x) and fj(x). For con-
venience, we define one more function that will become
relevant in the second part of this article

F±(ω) = ±(1 + PA)

1− fj
[ d
λ↑

(1 + iωτ↑)
]

1 + iωτ↑

+(1− PA)

1− fj
[ d
λ↓

(1 + iωτ↓)
]

1 + iωτ↓
, (6)

where depending on the sign (±), the factor F±(ω) repre-
sents phenomena related to the charge (+) or spin degree
of freedom (−). For instance, F+(ω) determines the total
amount of hot electrons that decay within distance d and
appears in the description for the local heating process
(Sec. III). Furthermore, F−(ω) will determine the con-
tribution to the hot electron spin current resulting from
the spin-dependent decay rates (Sec. IV). We now have
all ingredients to calculate the distinct contributions to
the spin current, and to investigate the response of the
thermal system to the hot electron dynamics.

III. SPIN PUMPING MEDIATED BY LOCAL
HEATING

In this section, we calculate the spin current that arises
in the thermal electron bath and we express it in terms
of the characteristic functions for the hot electron dy-
namics. The method can be separated into three steps.
(i) The interfacial spin current within the thermal elec-
tron system is expressed in terms of the electron-magnon

(a) (b)
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Figure 2. (a) An excited hot electron with spin up (↑) or
spin down (↓) moves in a random direction with speed v↑↓ and
longitudinal velocity component v. (b) The function fj(d/λ),
which describes the spatial decay of the hot electron spin cur-
rent, plotted as a function of the normalized thickness d/λ
(black solid line). The function is compared to the exponent
of −2d/λ, represented by the dashed black line.

scattering rate. (ii) The scattering rate is parametrized
by an electron temperature and a magnon temperature.
(iii) The magnon temperature is eliminated and the elec-
tron temperature is expressed in terms of the hot elec-
tron functions defined in the previous section (such as
F+(ω) from Eq. (6)). Combining these three steps yields
a simple expression for the thermal spin current that can
directly be compared to the hot electron contribution.

Hence, the starting point is to express the interfacial
spin current in terms of the bulk electron-magnon scat-
tering rate. To find a simple description, we assume that
the ferromagnetic system is much thinner than the spin-
diffusion length, having d � λsf .[40] Then by approxi-
mation, the spin density in the thermal electron system
is parametrized by a spatial homogeneous spin accumu-
lation µs. From the conservation of spin in the com-
bined system, we write down the equation for the out-
of-equilibrium spin density δnt,s of the thermalized elec-
trons. In the frequency domain it is given by [16, 41]

iωδnt,s(ω) +
jt,s(ω)

d
= −2Isd(ω)− 2PAA0(ω) (7)

+
n↑(ω)

τ↑
− n↓(ω)

τ↓
− δnt,s(ω)

τs
,

where jt,s(ω) is the interfacial spin current generated in
the thermal electron system. On the right-hand side, Isd
is determined by the rate of spin transfer per unit volume
driven by electron-magnon scattering [16, 42]. The term
proportional to PA corresponds to the spin-dependent
excitation of electrons which are transferred to the hot
electron system. Moreover, the terms proportional to
τ−1
↑↓ result from the decay of the hot electrons. In combi-

nation with the previous term (proportional to PA), the
latter will generate an additional spin current that will
partially compensate the hot electron contribution. This
‘backflow’ spin current will be discussed below. Finally,
the last term on the right-hand side of Eq. (7) corre-
sponds to the additional channels of spin-flip scattering
with corresponding timescale τs [16].
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The out-of-equilibrium spin density is proportional to
the spin accumulation δnt,s = ν̃Fµs, where ν̃F is the
spin-averaged density of states evaluated at the Fermi en-
ergy. Analogously, the interfacial spin current carried by
the thermal electrons is written as jt,s(ω) = (g/~)µs(ω),
where g is a conductance for the spin current. Here, it is
assumed that the neighboring nonmagnetic material is a
good spin sink. By solving Eq. (7) for µs, and using the
expressions for n↑(ω) and n↓(ω) as given in Eq. (5), the
interfacial spin current becomes

jt,s(ω) =
(−2d)Isd

1 +
τg
τs

(1 + iωτs)
− 2PAA0(ω) +A0(ω)F−(ω)

1 +
τg
τs

(1 + iωτs)
,

(8)
where the timescale τg is defined as τ−1

g = g/(~ν̃F d) and
determines the efficiency of the spin transfer into the non-
magnetic layer. This timescale is treated as an effective
parameter to compensate for the fact that (diffusive) spin
transport in the bulk is assumed to be instantaneous, as
a result of the condition d� λsf .

The first term in Eq. (8) corresponds to the spin cur-
rent driven by the electron-magnon scattering in the bulk
(spin pumping) [16, 38], and indirectly results from the
local heating process. In Fig. 3 this contribution is de-
noted as jsd

t,s. The second term in Eq. (8) is generated
because the spin-dependent excitation and decay of hot
electrons affect the net spin density in the thermal sys-
tem, and corresponds to the previously mentioned back-
flow spin current. In Fig. 3 it is denoted as jback

t,s . Al-
though the latter is directly related to the hot electron
dynamics, it should still be considered as a spin current
contribution carried by thermal electrons.

To get an analytical expression for the thermal spin
current in terms of the excitation profile A0(ω), we have
to find a simplified description for the electron-magnon
scattering rate. In order to do so, we first calculate the
dynamics of the electron temperature. In the frequency
domain the change of the (spatially-averaged) electron
temperature δTe(ω) satisfies an equation of the form

iωδTe(ω) =
∆E

Ce

(
n↑(ω)

τ↑
+
n↓(ω)

τ↓

)
− δTe(ω)

τe
, (9)

where the factor proportional to τ−1
e is introduced phe-

nomenologically and includes all processes that drive heat
out of the electron system in the ferromagnetic region
(including heat lost at the interface). Furthermore, Ce is
the electronic specific heat and ∆E is the photon energy
of the laser pulse. It follows that the elevated electron
temperature δTe(ω) can be expressed as

δTe(ω) =
τeA0(ω)∆E

dCe(1 + iωτe)
F+(ω). (10)

To calculate the spin current that results from the in-
crease of the electron temperature, we have to determine
the electron-magnon scattering rate Isd. We take a sim-
plified approach and assume that the density of magnons
that is generated is given by δnd(ω) = Cn,T δTm(ω),

Charge & Heat
Spin

FM NM

spin pumping

screening

Figure 3. Schematic overview of the various contributions
to the laser-induced spin current. The horizontal axis indi-
cates the position within a ferromagnetic/nonmagnetic het-
erostructure with the interface located at z = d. The red and
blue shaded regions indicate the local and nonlocal behav-
ior of the ‘hot’ and ‘thermal’ electrons, respectively. Initially,
(spin-polarized) hot electrons are excited near the interface
at z = 0, resulting in a charge current jh,c (red solid arrow)
and a spin current jh,s (blue solid arrow). Hot electron decay
results in the local transfer of heat (red dashed arrows) and
spin (blue dashed arrows) to the thermal system. The former
drives a spin current jsd

t,s through spin pumping (the green

box), whereas the latter contributes to the spin current jback
t,s .

Additionally, a spin-polarized screening current jscr.
t,s (the gray

box) arises in response to hot electron charge transport.

where δTm(ω) is the Fourier transform of the change of
the magnon temperature and the coefficient Cn,T is given
in Ref. [41] . The rate at which magnons are generated
is given by

iωCnδTm(ω) = Isd(ω) =
Cn,T
τm

(δTe(ω)− δTm(ω)),(11)

where the electron-magnon scattering rate is expressed in
terms of the difference in magnon temperature and elec-
tron temperature, and is proportional to a corresponding
(demagnetization) timescale τm. Combining Eq. (10) and
Eq. (11) gives a closed expression for the electron-magnon
scattering rate in terms of the functions that depend on
the hot electron system. This yields

Isd(ω) =
Cn,T∆E

Ce

(iωτe)A0(ω)F+(ω)

d(1 + iωτe)(1 + iωτm)
. (12)

Physically, the product describes the consecutive pro-
cesses of heating the thermal electrons through the en-
ergy retrieved from decaying hot electrons (described
by F+(ω)), and the subsequent generation of thermal
magnons by an increase of the temperature. By sub-
stituting the expression for Isd(ω) in Eq. (8), the spin
current driven by electron-magnon scattering can be ex-
pressed in terms of the functions that describe the hot
electron dynamics.
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Figure 4. The effective polarization function Peff (discussed
below Eq. (18)) as a function of the polarization of the decay
lengths Pλ and the polarization of the excitation PA.

IV. COMPARISON OF THE HOT AND
THERMAL SPIN CURRENTS

In this section, we directly compare the distinct con-
tributions to the interfacial spin current. First, the total
interfacial spin current is written as

jtot
s (ω) = jh,s(ω) + jsd

t,s(ω) + jback
t,s (ω), (13)

where jh,s corresponds to the direct spin current car-
ried by hot electrons and jsd

t,s corresponds to the thermal
contribution driven by spin pumping. The spin current
jback
t,s is equal to the second term on the right-hand side

of Eq. (8), named after that it drives a backflow that
partially compensates the hot electron contribution. All
the given contributions to the interfacial spin current are
represented in the schematic overview in Fig. 3.

To derive a simple relation that parametrizes the ratio
between the different contributions to the spin current,
we make the following assumptions. First, we assume
that the ferromagnetic layer is very thin such that τg
satisfies τgω � 1. Similarly, we assume that the decay
rate of the hot electrons is very fast τ↑↓ω � 1. This
means that we model a laser pulse that has a duration
σ � τg, τ↑↓. In that scenario we find

jh,s(ω) = 2PAA0(ω) +A0(ω)F−(0), (14)

jsd
t,s(ω) =

−2Cn,T∆E

Ce
(
1 + τg/τs

) (iωτe)A0(ω)F+(0)

(1 + iωτe)(1 + iωτm)
, (15)

jback
t,s (ω) = −2PAA0(ω) +A0(ω)F−(0)

1 + τg/τs
. (16)

Importantly, it shows that jback
t,s is directly proportional

to the hot electron contribution and has an opposite sign.
To explicitly calculate the spin currents in the time do-
main we assume the following temporal profile of the laser
pulse

A0(t) =
P0d

∆E(σ
√
π)

exp
(
−t2/σ2

)
, (17)

where σ is the pulse duration, P0 plays the role of an ab-
sorbed laser pulse energy density, and ∆E is the photon

energy. Inverse Fourier transforming Eqs. (14)-(16) (and
for Eq. (15) performing a convolution in the time domain)
yields the temporal profiles of the distinct spin current
contributions. Figure 5(a) shows the resulting interfa-
cial spin current as a function of time after laser-pulse
excitation at t = 0. The used system parameters are pre-
sented in Table A1, which represent a typical magnetic
heterostructure consisting of transition metal ferromag-
net and a nonmagnetic metal that is a good spin sink
(such as Pt). In the figure, the gray line indicates the to-
tal spin current and the blue line shows the contribution
by spin pumping. Furthermore, the red line represents
the hot electron spin current and the dashed blue line
the backflow spin current. The figure shows that for the
used parameters the total spin current is dominated by
the spin pumping contribution. The amplitude of the
latter is approximately a factor ∼ 5 times larger than
the hot electron contribution. Moreover, including the
backflow spin current yields that the hot electron spin
current is almost completely compensated.

To further investigate the role of the several contribu-
tions to spin transport, it is convenient to calculate the
ratio between jsd

t,s and jh,s from Eq. (14) and Eq. (15).
We define η as

max(|jsd
t,s|)

max(|jh,s|)
≡ η ∝ Cn,T∆E

Ce

(
1 + τg/τs

)[ −F+(0)

2PA + F−(0)

]
.

(18)
Note that the exact ratio of the amplitudes also in-
cludes an additional prefactor determined by σ, τe and
τm (not included in Eq. (18)). As is shown in Appendix
A, this additional factor typically scales as σ/τm, which
in our example is of the order of one. The term be-
tween square brackets, on the right-hand side of Eq.
(18), plays the role of an effective polarization Peff of
the hot electron current, and is determined by PA and
Pλ = (λ↑ − λ↓)/(λ↑ + λ↓). This Peff is plotted in Fig.
4 as a function of PA and Pλ, for d/λ = 0.3 with
λ = (λ↑ + λ↓)/2. Peff is shown to be a monotonic func-
tion of PA and Pλ, which explains why it is interpreted
as an effective polarization.

To express the ratio η in terms of fundamental pa-
rameters, we use that for a free electron gas the spe-
cific heat scales as Ce ∼ kB(T/TF )/a3 [43], where a
is the lattice constant and TF is the Fermi tempera-
ture. Furthermore, the magnon density coefficient Cn,T
scales as Cn,T ∼ (kBT )1/2A−3/2kB [41], where the spin-
wave stiffness is proportional to the Curie temperature
A ∼ kBTCa2. By implementing the numerical prefactors
(including multiple factors of π) we estimate the order of
magnitude of η and determine the crucial scaling factors

η ≈

[
2 ∗ 10−2

(−Peff)

1

1 + τg/τs

](
∆E

kBT

)(
TF
TC

)√
T

TC
. (19)

Although the factor between square brackets yields a
number much smaller than one, this number is largely
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Figure 5. The interfacial spin current as a function of time after laser-pulse excitation. The gray line indicates the total
spin current. Furthermore, the blue line indicates the contribution driven by electron-magnon scattering and the red line
shows the hot electron spin current. Finally, the dashed blue line corresponds to the backflow current, as defined in the main
text. (b) Similar calculation as (a), but now including a spin-polarized screening current indicated by the yellow line. (c) The
contributions (indirectly) related to hot electron dynamics are multiplied by a factor of four to visually clarify the role of each
contribution and to show the change of the total spin current (gray).

compensated by the remaining factors. Specifically, for
a transition metal ferromagnet the Fermi temperature
and Curie temperature typically differ an order of mag-
nitude (TF /TC) ∼ 10. Furthermore, for a ∆E of the
order of electronvolts and a temperature close to room
temperature we find the range ∆E/(kBT ) ∼ 102-103.
Altogether, this implies that the contribution by spin
pumping is generally large compared to the contribution
by hot electron transport. In case the backflow is taken
into account, the partial compensation of the hot elec-
tron spin current would lead to a change in the prefactor
(1 + τg/τs)

−1 → τs/τg, resulting in an even larger η for
τs > τg.

V. THE ROLE OF SPIN-POLARIZED
SCREENING CURRENTS

Finally, we discuss the role of spin-polarized screening.
It is generally assumed that screening of the charge de-
gree of freedom happens on an extremely short timescale
[28]. This corresponds to the approximation in the model
that the system remains locally charge neutral and that
the total charge current of the hot and thermal electrons
is zero at all times. In the case of charge transport in the
thermal electron system, the efficient screening approx-
imation was already implemented throughout the pre-
vious sections. Additionally, in this work, we have the
excited hot electrons that carry a nonzero charge current
for which we analogously assume it is effectively screened
through transport in the thermal electron system. This
process is schematically depicted in the gray box in Fig.
3. Within the ferromagnetic region it results in an ex-
tra contribution to the spin current since the present
screening currents are subject to spin-dependent trans-
port coefficients. Implementing spin-polarized screening
currents within the toy model yields the following exten-
sion. First, charge neutrality requires the spin density of

the thermalized system to satisfy

δns = ν̃Fµs − Pν(n↑ + n↓), (20)

where Pν = (ν↑ − ν↓)/(ν↑ + ν↓) corresponds to the po-
larization of the density of states at the Fermi energy.
Secondly, the absence of a net charge current requires
that

jt,s =
g

~
µs − Pg(j↑ + j↓), (21)

where we defined Pg = (g↑ − g↓)/(g↑ + g↓). The conduc-
tance we used previously is given by the spin-averaged
conductance g = 2g↑g↓/(g↑ + g↓). Implementing this
within the previous scheme for the thermal electron sys-
tem yields an extra contribution to the spin current

jscr.
s,t (ω) = −Pg(j↑(ω) + j↓(ω))

(τg/τs)

1 + (τg/τs)
. (22)

This is the spin-polarized screening current. Here, the
term proportional to Pν vanished due to the limit ωτ↑↓ �
1. The spin-polarized screening current is calculated for
Pg = 0.2 and represented by the yellow curve in Fig. 5(b).
Depending on the sign of Pg this contribution to the spin
current either enhances or partially compensates the hot
electron contribution. For illustrative purposes, Fig. 5(b)
includes all other contributions to the spin current.

Additionally, we included Fig. 5(c). Here, we mul-
tiplied all terms (indirectly) related to the hot electron
dynamics by a factor of four to emphasize the role of each
separate contribution and to show the change of the total
spin current (in gray). The figure emphasizes that in the
case that the hot electron spin current is enhanced, for in-
stance when taking into account multiple generations of
hot electrons, the total spin current is significantly modi-
fied. Nevertheless, for the parameters used here, the spin
current driven by spin pumping remains the dominant
contribution.
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VI. CONCLUSION AND OUTLOOK

In conclusion, using a single simplified analytical
model, we investigated the role of spin-polarized hot elec-
tron transport and spin transport driven by spin pump-
ing in laser-excited magnetic heterostructures. This toy
model yields that the spin current at the interface of the
heterostructure is dominated by the thermal contribu-
tion initiated by local heating and subsequent spin pump-
ing. We calculated the scaling factors that determine the
ratio between the two contributions. As the latter de-
pends on the fundamental parameters that describe the
magnon system and thermal electron system, it could
be expressed in terms of the Curie temperature, Fermi
temperature, and laser-photon energy. This fundamen-
tal relation yields that the spin current driven by spin
pumping is generally a significant contribution, and is
dominant for the systems considered here.

An interesting extension to the toy model would be to
implement multiple generations of hot electrons and cal-
culate the resulting enhancement of the spin current. In

that way, one reaches a description similar to the model
for superdiffusive spin transport [9, 23]. Additionally, it
would be interesting to implement the conceptual spin-
polarized screening currents within the superdiffusive ap-
proach. Moreover, spin transport by thermal magnons
and interfacial electron-magnon scattering processes are
required to be investigated within this scheme [16, 41].
Nevertheless, it is expected that those extensions leave
the presented scaling factors intact and spin pumping
through local heating remains a dominant channel for
spin-current generation.

VII. ACKNOWLEDGMENTS

This work is part of the research programme of the
Foundation for Fundamental Research on Matter (FOM),
which is part of the Netherlands Organisation for Sci-
entific Research (NWO). R.D. is member of the D-ITP
consortium, a program of the NWO that is funded by
the Dutch Ministry of Education, Culture and Science
(OCW). This work is funded by the European Research
Council (ERC).

[1] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot,
Phys. Rev. Lett. 76, 4250 (1996).
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Appendix A: Notes on the spin current driven by
spin pumping

In this appendix, we present some details regarding
the temporal profile of the spin current induced by spin

pumping. To calculate jsd
t,s, we have to perform an inverse

Fourier transformation of the right-hand side of Eq. (15),
including the function

G(ω) =
iωτe

(1 + iωτe)(1 + iωτm)
. (A1)

Disregarding the factors of 2π (which in the end all van-
ish), the function in the time domain is given by

G(t) =
τe

τe − τm

(
e−t/τm

τm
− e−t/τe

τe

)
θ(t). (A2)

The spin current is calculated by performing a convo-
lution between G(t) and the temporal profile of the laser
pulse. To determine the scaling factor arising from this
convolution we calculate

J(t) =

∫
dt′G(t− t′) exp

(
− t
′2

σ2

)
. (A3)

The extra scaling factor that should be added to Eq.
(19) is given by the maximum of J(t), as it corresponds to
how much the (Gaussian) amplitude decreases after the
convolution withG(t) is performed. J(t) is plotted in Fig.
6(a), together with the temporal profile of the Gaussian
pulse. Here we used the values for σ, τm and τe as given in
Table A1. In the range 0.1 ps < τm ≤ 1 ps, which is the
typical order of magnitude for the demagnetization time
of a ferromagnetic transition metal, the amplitude scales
as σ/τm, as was mentioned in the main text. The ratio
σ/τm is indicated by the dashed gray line in Fig. 6(b).
Finally, we note that Table A1 presents the parameters
used in the calculations.
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Figure 6. (a) Function J(t) (solid black line) corresponds
to the convolution of a Gaussian (dashed gray line) and the
function G(t) in the text. (b) The maximum of J(t) plotted
as a function of τm, compared to the function σ/τm.

https://doi.org/10.1103/PhysRevLett.119.017202
https://doi.org/10.1103/PhysRevLett.119.017202
https://doi.org/10.1103/PhysRevB.95.014402
https://doi.org/10.1103/PhysRevB.95.014402
https://doi.org/10.1038/s41467-018-05135-2
https://doi.org/10.1038/s41467-018-05135-2
https://doi.org/10.1002/adma.201804004
https://doi.org/10.1002/adma.201804004
https://doi.org/10.1021/acs.nanolett.0c03373
https://doi.org/10.1002/advs.202001996
https://doi.org/10.1103/PhysRevB.102.054442
https://doi.org/10.1103/PhysRevB.102.054442
https://doi.org/10.1038/s41467-020-17676-6
https://doi.org/10.7566/JPSJ.90.081009
https://doi.org/10.7566/JPSJ.90.081009
https://doi.org/10.1103/PhysRevB.105.144416
https://arxiv.org/abs/2103.11710
https://doi.org/10.7567/JJAP.57.090307
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/PhysRevB.105.144420
https://doi.org/10.1103/PhysRevB.105.144420
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1016/j.jmmm.2020.167156
https://doi.org/10.1016/j.jmmm.2020.167156


9

Table A1. Parameters used in the calculations presented in
the main text. The chosen values represent a typical mag-
netic heterostructure consisting of transition metal ferromag-
net and a nonmagnetic metal similar to Pt.

symbol value units

γ = Ce/Tamb [44] 1077 Jm−3K−2

Tamb 300 K
∆E 1 eV
P0 0.2 · 108 Jm−3

σ 0.1 ps

A a 400 meVÅ
2

d 3 nm
λ b 10 nm
PA

c −0.2
Pλ

c −0.2
τe [3] 0.45 ps
τm [3] 0.15 ps
τs [38] 0.1 ps
τg

d 0.05 ps

a Used to calculate Cn,T as given in Ref. [41].
b From a decay rate of 10 fs and a Fermi velocity of 1 nm fs−1.
c A minus sign is present since we defined the spin down

electrons as the majority spin population.
d Estimated using the values for g (Ni/Pt) and ν̃F (Ni) from Ref.

[41].
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