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Following the rising interest in quantum information science, the extension of a heat engine to the quantum
regime by exploring microscopic quantum systems has seen a boom of interest in the last decade. Although
quantum coherence in the quantum system of the working medium has been investigated to play a nontrivial
role, a complete understanding of the intrinsic quantum advantage of quantum heat engines remains elusive.
We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath
is critical for the quantum advantage of a quantum Szilárd engine, where quantum coherence in the working
medium is naturally excluded. By quantifying the non-classical correlation through quantum steering, we reveal
that the heat engine is quantum when the demon can truly steer the working medium. The average work obtained
by taking different ways of work extraction on the working medium can be used to verify the real quantum
Szilárd engine.

Exploring thermodynamics at the quantum level opens up
intriguing possibilities, including testing information theory
in the quantum regime [1–9], the development of quantum
fluctuation theorems [10–19], and the realization of micro-
scopic quantum heat engines (QHE) [20–33]. In particular,
microscopic QHE may operate more efficiently for work ex-
traction than its classical counterpart by exploring the quan-
tum effect. Over the years, enthusiastic interests have been
devoted to implementing QHE by controlling nonequilibrium
dynamics in various microscopic systems, such as atomic
systems [20, 21], trapped ions [22], solid-state spin systems
[23, 24], photonic systems [25], single-electron transistors
[26–29], nuclear magnetic resonance [30–32], superconduct-
ing qubits [33], among others. As quantum coherence is an
intrinsic property for quantum systems, previous studies have
intensively investigated the role of quantum coherence by us-
ing single particles or few-level quantum systems as the work-
ing medium. Recently, some researches show this potential
high efficiency [24, 31, 34–36], while the other investigations
show that quantum coherence effects are generally detrimen-
tal to reaching bounds on the maximum efficiency and power
of these efficient thermal engines [37–41]. Hence understand-
ing the advantage of quantumness in QHE qualitatively and
quantitatively remains a central issue from both a fundamental
and practical perspective of quantum thermodynamics [42].

In this work, we report an experimental demonstration of
a quantum heat engine that can truly exhibit quantum advan-
tage. By building a quantum Szilárd engine, where quantum
correlation exists between the working medium and the ther-
mal bath, we have conclusively identified quantum correlation
as a source of quantum advantage for QHE, since the reduced

state of its working medium is a Gibbs state that naturally
excludes the intrinsic coherence feature. By quantifying the
correlation with quantum steering, we clearly show that an
optimized steering-type inequality, which is expressed by the
average work over different ways of work extraction on the
working medium, can distinguish quantum Szilárd engines
from classical heat engines. The more the quantum steer-
ing inequality is violated, the more average work the quantum
Szilárd engine can output than its classical counterpart.

The Szilárd engine, proposed by Leo Szilárd in 1929
[43, 44], serves as a prototypical model for understanding the
fundamental relation between thermodynamics and informa-
tion science [5, 6, 8, 45–47]. A convensional Szilárd engine
consists of a single atom as the working medium, which is in
the thermal equilibrium within a box [6]. The demon mea-
sures the atom’s microstate and controls the single atom do-
ing work, as shown in Fig. 1(a). To resemble the conventional
Szilárd engine, we construct a modified Szilárd engine with
a quantum system as a proof-of-principal demonstration. We
use one qubit as the working medium, and another qubit as
the bath. In equilibrium, the working medium is in a Gibbs
state [6]

ρGibbs
M =

1 + η

2
|1〉〈1|+ 1− η

2
|0〉〈0|, (1)

where η = (e−β − 1)/(e−β + 1) and β = 1/kBT . Due
to its quantum nature, the modified Szilárd engine is funda-
mentally different from its conventional counterpart in three
folds. Firstly, direct quantum measurement of the working
medium, in general, destroys its quantum state and disturbs
the local thermodynamical situation, like changing the aver-
age energy of the working medium [9]. To avoid such dis-
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FIG. 1. Conventional and modified Szilárd engine. (a) For the con-
ventional Szilárd engine, the working medium is a single atom that
initially stayed in a thermal equilibrium state. A demon measures
which half of the box the atom is in. If the atom is in the right half
of the box, a movable shutter is put down in the middle. Then the
shutter is hung to a load and extracts work from the atom. (b) For
the modified Szilárd engine, both the working medium and the bath
are resembled by a single spin qubit respectively. Alice (the demon)
prepares the initial state of the whole system, performs measurement
M̂i on the bath qubit, and tells Bob the operations Û±

i depending
on the measurement outcomes ±1. Bob implements the operations
Û±

i on the working medium qubit to extract work from its internal
energy.

turbance, the demon instead can choose to perform the posi-
tive operator-valued measurement on the bath and communi-
cate outcome-dependent energy-conserving operations to the
working medium, enabling the subsequent work extraction
[48]. Secondly, for a quantum system of the working medium,
a statistical mixture of states allows for infinitely many differ-
ent ensembles of pure states. Different decompositions may
lead to different extraction ways. Lastly, in general, demon-
strating quantum properties requires at least two measure-
ments that do not commute with each other [42, 49]. Af-
ter taking these differences into account, Fig. 1(b) displays
the prototypical model of our quantum Szilárd engine and the
work extraction ways investigated in this work. The demon,
named Alice, prepares the initial state of the Szilárd engine
and decides the energy-conserving operations Û±i depending
on the outcomes of the measurement M̂i. Bob implements
the operations Û±i on the working medium and extracts work
from it.

We implement this prototypical quantum Szilárd engine
with a Nitrogen-Vacancy (NV) center in diamond. The intrin-
sic nuclear spin of Nitrogen is used as the working medium,
and the electronic spin of the NV center is used as the bath.
High-fidelity spin manipulation [50, 51], on-demand deco-
herence control [52] as well as optical readout of spin state
[53–55] make this quantum system well-suited for demon-
strating microscopic heat engines [23] and understanding the
underlying physics. The relevant quantum circuit consists
of three steps, as shown in Fig. 2(b). The whole system
is optically initialized into |00〉 state and then prepared to
a state with specific quantum correlation by a combination
of microwave control of electron spin, radio-frequency con-
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FIG. 2. Experimental circuit for implementing the modified Szilárd
engine. (a) The experimental system: a Nitrogen-Vacancy (NV) cen-
ter in diamond. The bath and the working medium are resembled by
the intrinsic electron spin and Nitrogen nuclear spin of the NV center.
(b) The quantum circuit for the experimental implementation. In the
state preparation step, different circuits are used to prepare different
types of correlated initial states. The circuit in the left dashed box
is for the Werner states, and the right dashed box is for the Gibbs-
invariant mixed states. θ0,±y and φy are rotations along y axis. The
rotation angle and the dephasing processes are dependent on η and q.
In the measurement step, depending on the decomposition Di=1,2,3,
the electron spin is measured with M̂1,2,3 = σz,y,x. This is equiva-
lently realized by the operations labeled by Di (listed below), which
rotates the measurement basis of M̂i to the σz Pauli basis. Finally
the work is extracted by the controlled rotations Û±

i on the nuclear
spin, and the final energy of the nuclear spin is measured [56].

trol of nuclear spin as well as controllable dephasing pro-
cesses. The measurement-outcome-dependent operations are
realized by the electron-spin-controlled rotation gates (CROT)
on the nuclear spin. The measurements are realized by first
rotating the electron spin to the corresponding basis and then
dephasing the electron spin before implementing the CROT
gates. The extracted work is obtained by reading out the
nuclear spin state and calculate energy difference W =
Tr(ρn,initĤM) − Tr(ρn,finalĤM), with the internal energy of
the working medium ĤM = |1〉〈1| [56].

In order to understand the effect of quantum correlation,
we first consider two typical global quantum states giving the
same thermalized local Gibbs state as illustrated in Eq. (1).
The first state is a pure entangled state of ρ1 = |ψ〉〈ψ|
with |ψ〉 =

√
1+η

2 |11〉 +
√

1−η
2 |00〉, and the second state

is a separable state of ρ2 = 1+η
2 |11〉〈11| +

1−η
2 |00〉〈00|.

From Bob’s side, he can not distinguish these two cases and
will expect to extract the same work for the same extrac-
tion process. In both cases, Alice measures the bath qubit
by M̂1 = σz or M̂2 = σy , and chooses from operation
Û+

1 /Û
−
1 or Û+

2 /Û
−
2 depending on the measurement result.

For M̂1 measurement, Û+
1 = σx for the measurement result

+1 and Û−1 = I for the measurement result −1. For M̂2 mea-
surement, Û±2 are rotations around the ±x axis for an angle
α = 2arctan

√
(1 + η)/(1− η) [56]. Fig. 3 shows the ex-
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FIG. 3. Difference between work extracted from classical and quan-
tum global states. The quantum (classical) global state is a pure en-
tangled state ρ1 (separable state ρ2). The blue (red) data points are
the work difference of measurement M̂1 = σz (M̂2 = σy), with
errorbars representing one standard deviation. The solid lines are
the theoretical predictions. For the M̂1 measurement, work extrac-
tion from both the classical and quantum global states are optimal,
yielding the same extracted work. While for the M̂2 measurement,
work extraction from the classical state is no longer optimal, and can
extract less work than from the quantum global state.

perimentally extracted work difference between ρ2 (classical)
and ρ1 (quantum). For work extraction with the M̂1 mea-
surement, Bob finds no difference between these two Szilárd
engines constructed by ρ1 and ρ2. The Û+

1 /Û
−
1 operations

extract the largest amount of the work by flipping the working
medium qubit to the lower energy |0〉 state. For the M̂2 mea-
surement, Alice still provides Bob the optimal work extrac-
tion for state ρ1, while for ρ2 it is no longer optimal. Appar-
ently, the average work of these two measurement-based ex-
tractions will unambiguously distinguish the Szilárd engines
with and without specific quantum correlation. If the inves-
tigations only focus on the working medium itself, ignoring
the bath-medium correlation, or are limited to a single way of
work extraction (M̂1 = σz here), which is usually assumed in
previous investigations [16], the effect of quantum correlation
will be missing.

One crucial question is whether and when a Szilárd engine
with quantum correlation can be distinguished from any clas-
sical Szilárd engines with the same Gibbs state of the work-
ing medium. A better classical strategy may exist for the
classical Szilárd engine. However, the optimal average ex-
tracted work for such classical Szilárd engine is bounded by
the local statistical ensemble description, which is a local hid-
den state model (LHS). If the average work output from a
Szilárd engine is greater than the upper bound given by the
LHS model, the quantumness of the Szilárd engine can be
unambiguously identified. This is analogous to the identifi-
cation of quantum steering, which is a special kind of quan-
tum correlation [49, 58]. Specifically, for the classical Szilárd
engines with thermalized Gibbs states Eq. (1) on the work-
ing medium, suppose that Bob would like to extract work

from three dichotomic pure state decompositions Di=1,2,3, of
which the bases are given by Bloch vectors n±1 = (0, 0,±1),
n±2 = (0,∓

√
1− η2, η) and n±3 = (±

√
1− η2, 0, η) respec-

tively. If Bob takes each work extraction Di randomly with
the probability ci, the locally extracted work is bounded by

W
opt

LHS =
1

2

(
η + (c2 + c3)η

2 +
√
c21 + (c22 + c23)(1− η2)

)
,

(2)
namely the local work extraction bound [56]. A quantum
strategy for Alice can be to measure M̂1,2,3 = σz,y,x ac-
cording to the decomposition D1,2,3 Bob wants to use, and
then instruct Bob to perform the corresponding work extrac-
tion operation Û±1,2,3 depending on the measurement result
±1. This strategy is optimal for the pure entangled state ρ1,
and guarantees the maximal extracted work (1 + η)/2, ex-
ceeding the local work extraction bound. A genuine quan-
tum Szilárd engine can therefore be defined by the violation
of the work extraction inequality W ≤ W

opt

LHS, which means
Bob’s average work output from such engine is larger than
what could be obtained from any classical Szilárd engine with
the same Gibbs state of the working medium. It can clearly di-
vide heat engines into two categories, quantum and classical,
where no classical statistical description exists for quantum
heat engines.

To demonstrate the classification of quantum and classi-
cal Szilárd engines, our experiment adopt the Gibbs-invariant
mixed states and the Werner states as the global quantum state
of the Szilárd engine. The Gibbs-invariant mixed states are
ρGI = qρ1 + (1− q)ρ2, where the parameter q tunes the sys-
tem between the fully quantum case (ρ1 at q = 1) and the fully
classical case (ρ2 at q = 0). For a given η, the reduced state of
the working medium is always the same Gibbs state, indepen-
dent of the mixing parameter q, as also mentioned in [42]. For
different η and q, we measure the average extracted work W 3

(c1 = 1/3, c2 = 1/3, c3 = 1/3), and the difference between
W 3 and the local work extraction bound W

opt

LHS are shown in
Fig. 4(a). It is clearly shown that for some parameters the
Szilárd engines can output more work than the local work
extraction bound W

opt

LHS, excluding any classical description,
hence the quantum nature is revealed. The theoretical bound-
ary of the quantum Szilárd engines is plotted as the dashed
black line. For the line with q = 1, η > −1, the global state
is the pure entangled state ρ1. Given that any pure entangled
state is steerable [58], we would expect the work extraction
inequality to identify the quantumness over the whole line, as
shown in the left plot of Fig. 4(b). In the right plot of Fig. 4(b),
the results for the work extraction inequality WB as proposed
in [42] is also displayed. As shown in the right inset,WB fails
to identify quantumness in this region, while in the left inset
it is identified successfully, showing the advantage of the in-
equalities proposed here over WB [42, 58]. The other type of
global state is the Werner state, which is the best-known class
of mixed entangled states, and first revealed the difference be-
tween the notion of entanglement and Bell nonlocality [59].
For Werner states ρw = qρ1+

1−q
4 I⊗ I with different η and q,
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FIG. 4. Identification of quantumness with the work extraction inequality. (a) Violation of the work extraction inequality W 3 for the Gibbs-
invariant mixed states. The color indicates the difference between the extracted work and its local work extraction bound, with the white color
indicating the boundary where the work extraction inequality is violated. The dashed black line is the theoretical prediction of the boundary.
(b) Comparison between the extracted work and its local work extraction bound for the pure entangled states. The data points are experimental
results of the extracted work, with the errorbars representing one standard deviation, and the solid lines representing the theortical predictions.
The dashed lines are the local work extraction bound. The color of red represents the work extraction with (c1, c2, c3) = (1/3, 1/3, 1/3),
and yellow represents the the work extraction inequality proposed in [42]. From the insets, the extracted work of W 3 violates its local work
extraction bounds, whereas WB doesn’t, showing that work extraction inequality W 3 is more effective than WB. (c,d) Violation of the work
extraction inequality W 2 and W 2 for the Werner states. (e) Comparison between the extracted work and its local work extraction bound for
the standard Werner states. For the standard Werner states (η = 0), the work extraction inequalities can be violated when q > 1/

√
2 for W 2

and q > 1/
√
3 for W 3, as marked by the dashed black lines. This is consistent with the well-known linear steering inequalities [60]. (f,g)

Correspondence between quantum steering and work extraction inequality violation [61]. The experimental results in (a,d) are plotted as the
vertical axis of the data points, and the horizontal axis is the steering inequality violaiton calculated from the corresponding states. The clear
positive correlation demonstates the effectiveness of identifying quantum steering with work extraction inequalities.

the average extracted work W 2 (c1 = 1/2, c2 = 1/2, c3 = 0)
and W 3 (c1 = 1/3, c2 = 1/3, c3 = 1/3) are measured, as
shown in Fig. 4(c,d). Especially, for standard Werner states
(η = 0), the above work extraction inequalities can be vio-
lated when q > 1/

√
2 for W 2 and q > 1/

√
3 for W 3, as

shown in Fig. 4(e). These results are consistent with the well-
known linear steering inequalities [60], and strongly demon-
strate that the task of clarifying quantum Szilárd engine can

be one-to-one mapped to the problem of identifying quan-
tum steering when the system is standard Werner states. To
further reveal the correspondence between quantum steering
and the work extracted from the Szilárd engine, we plot the
experimental work extraction inequality violation shown in
Fig. 4(a,d) versus the steering inequality violation, which is
derived from the all-versus-nothing proof of steering paradox
[61]. This steering inequality includes naturally the usual lin-



5

ear steering inequality [60] as a special case, and thus can de-
tect more quantum states. As shown in Fig. 4(f,g), for both the
Gibbs-invariant mixed states and the Werner states, the results
show positive correlation, demonstrating that the work extrac-
tion inequality is an effective indicator for quantum steering
between the working medium and the bath, hence correctly
identifies the quantumness of the Szilárd engine.

Conclusions-. We have experimentally demonstrated a
truly quantum Szilárd engine in diamond when the demon can
“steer” the working medium where an optimized steering-type
inequality that we derived can be violated. Our theoretical and
experimental results show that a quantum heat engine which
excludes intrinsic coherence feature in working medium, can
truly exhibit quantum advantage. We hope our work triggers
further studies to generalize our results to the other kind of
quantum heat engines. Our work can be naturally extended to
the case of the working medium with higher dimensions. In
the future, it will be interesting to study these heat engines
where the working medium is a higher dimensional system.
The investigation of quantifying genuine high dimensional
quantum steering [49, 62] can benefit to it. As well, our re-
search can stimulate the bloom of high-dimensional quantum
steering.

This work was supported by the National Key R&D
Program of China (Grant No. 2018YFA0306600,
2017YFA0305200), the Chinese Academy of Sciences
(Grants No. XDC07000000, No. GJJSTD20200001, No.
QYZDY-SSW-SLH004), the National Natural Science
Foundation of China (Grant No. 81788101, 12075245,
12104447), China Postdoctoral Science Foundation (Grant
No. 2020M671858), Anhui Initiative in Quantum Informa-
tion Technologies (Grant No. AHY050000), the Natural
Science Foundation of Hunan Province (2021JJ10033), the
Fundamental Research Funds for the Central Universities, and
Xiaoxiang Scholars Programme of Hunan Normal university.

[1] Landauer, R. Irreversibility and heat generation in the com-
puting process. IBM journal of research and development 5,
183–191 (1961).

[2] Jaynes, E. T. Information theory and statistical mechanics.
Physical Review 106, 620 (1957).

[3] Cox, R. T. The algebra of probable inference. American Journal
of Physics 31, 66–67 (1963).

[4] Bennett, C. H. Notes on landauer’s principle, reversible com-
putation, and maxwell’s demon. Studies In History and Philos-
ophy of Science Part B: Studies In History and Philosophy of
Modern Physics 34, 501–510 (2003).

[5] Plenio, M. B. & Vitelli, V. The physics of forgetting: Lan-
dauer’s erasure principle and information theory. Contempo-
rary Physics 42, 25–60 (2001).

[6] Maruyama, K., Nori, F. & Vedral, V. Colloquium: The physics
of maxwell’s demon and information. Reviews of Modern
Physics 81, 1 (2009).
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