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Abstract

The mechanisms that determine spin relaxation times of localized electrons in impurity bands
of n-type semiconductors are considered theoretically and compared with available
experimental data. The relaxation time of the non-equilibrium angular momentum is shown to
be limited either by hyperfine interaction, or by spin–orbit interaction in the course of
exchange-induced spin diffusion. The energy relaxation time in the spin system is governed by
phonon-assisted hops within pairs of donors with an optimal distance of about 4 Bohr radii.
The spin correlation time of the donor-bound electron is determined either by exchange
interaction with other localized electrons, or by spin-flip scattering of free conduction-band
electrons. A possibility of optical cooling of the spin system of localized electrons is
discussed.

1. Introduction

Strange though it may seem, 40 years of research (since
the pioneering work by Lampel [1]) on optical orientation
of electron and nuclear spins have not filled all the major
blank spaces in this very interesting area of physics.
Answers to many questions of primary importance are being
approached just now. One of these actively developed fields
with a long history is the problem of spin memory—not
only in nanostructures brought forth by sophisticated novel
technologies, but also in bulk semiconductor crystals. A
part of this broad field, the physics of relaxation processes
in the spin system of interacting localized electrons in non-
magnetic n-type semiconductors, is the subject of this paper.
It consists of an extended theoretical introduction—partly
based on published results, partly original—followed by a
survey of relevant experiments. The consideration is limited
to direct-gap semiconductors, like GaAs, which are mainly
studied in the experiments on optical orientation. Aiming at
bringing together experiment and theory, I will concentrate on
bulk crystals where localizing potentials and the concentration
of localization centres are determined by doping and can
be easily calculated. The concentrations and temperatures
considered are those low enough for electrons to remain
localized.

2. Relaxation time scales in spin systems

Non-equilibrium spin polarization created by an external
pumping (for instance, by circularly polarized light) persists
during some characteristic time after switching off the pump.
This time is often called the spin memory time. It should be,
however, noted that relaxation processes in spin systems are
not, generally, characterized by a single time scale. Depending
on the experimental conditions, the observed ‘spin memory
time’ can be determined by different relaxation processes.

These may include, for instance, relaxation of the
components of the vector of total angular momentum (the spin
relaxation proper) or of the energy of the spin system. The
relaxation of a component of the angular momentum along
a certain axis requires only that the spin interactions lack
symmetry with respect to the rotation about this axis. The
energy relaxation of the spin system also requires coupling
of this system with an energy reservoir of sufficient capacity
(phonons, for instance). Clearly, the relaxation of angular
momentum and the relaxation of energy can be provided by
quite different interactions, resulting in disparate scales of
corresponding relaxation times. For example, the relaxation
of the angular momentum of nuclear spins in a solid is provided
by their magneto–dipole interaction and occurs during 10−4 s,
while the energy transfer from the nuclear spin system to the
lattice may take hours [2, 3]. The difference of relaxation times
for angular momentum and energy is usually insubstantial for
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free electrons, because in this case the main spin relaxation
mechanisms are powered by the motion of electrons, very
efficiently transforming the energy of spin interactions into
kinetic energy. As we shall see, for localized electrons this
difference may be of primary importance.

There is also a difference between relaxation times of
longitudinal and transverse spin components in a magnetic
field. The latter is important for interpretation of experiments
on ‘spin beats’ and magnetic resonance, which are outside the
scope of this paper. The longitudinal time is normally longer
than the transversal time for two reasons. One is that the
relaxation of the longitudinal spin component is accompanied
by dissipation of the Zeeman energy, which requires coupling
of the spin system with the lattice. The second reason for this
difference is that the Zeeman splitting slows down transitions
between spin sublevels of individual spins.

In the following, we will specify which sort of relaxation
is discussed each time when such a difference may occur.

3. Specifics of spin relaxation in n-type
semiconductors

In n-type semiconductors, the electron spin relaxation is
usually distinctly slower than in p-type ones. The main
reason is the absence of the powerful relaxation channel due
to exchange scattering of electrons by holes (the Bir–Aronov–
Pikus mechanism). At high temperatures, the spin relaxation
is dominated by the Dyakonov–Perel mechanism that involves
the electron spin precession in effective magnetic fields of
a spin–orbit nature, arising when the electron moves. Such
spin–orbit fields exist in semiconductors and semiconductor
structures lacking inversion symmetry. They are proportional
to odd powers of the electron wave vector components (third
power in bulk cubic crystals and, typically, first in two-
dimensional structures). Their direction is determined by the
directions of the wave vector and of the crystal axes. For
example, the spin–orbit field in zinc blende crystals is given
by the expression

BSO
x = αSOh̄3(μBgm

√
2mEg)

−1kx

(
k2
y − k2

z

)
(1)

(other components are obtained by permutation of indices).
Here m is the electron effective mass, Eg is the band gap, k is
the electron wave vector, μB is the Bohr magneton, g is the
conduction-band electron g-factor, and αSO is a dimensionless
constant. For GaAs, αSO ≈ 0.07 [4, 5].

When the electron is scattered, the direction of the spin–
orbit field is changed randomly. If, while the electron spin
turns around the spin–orbit field, the field changes its direction
many times, the spin relaxation time τS is given by the
following formula:

1

τS

= 〈�2〉τc, (2)

where 〈�2〉 = 〈(μBgBSO/h̄)2〉 is the mean-squared Larmor
frequency of the electron spin in the spin–orbit field, and τc is
the correlation time of this field, proportional to the momentum
relaxation time of electrons [6]. Equation (2) is valid also
for Fermi-edge electrons in a degenerate semiconductor; in

this case 〈�2〉 is determined by the Fermi momentum [7, 8].
However, lowering the temperature results in quite different
behaviour in non-degenerate semiconductors. In that case,
the concentration of electrons in the conduction band becomes
very small, the electrons being bound to localization centres (in
bulk crystals, to donor impurities). The ensemble of localized
electron states is often called the impurity band. Bound
states have zero average wave vectors, and for this reason
the Dyakonov–Perel mechanism does not work for localized
electrons. Still, as we shall see, the spin–orbit interaction
remains a major cause of spin relaxation for impurity-band
electrons.

4. Spin–orbit interaction and the asymptotic
form of the donor wavefunction

The spin–orbit interaction does not cause spin relaxation of a
single localized electron, because, due to the Kramers theorem,
it does not split the electron spin sublevels. Combined with
the electron–phonon interaction, the spin–orbit coupling can
induce spin-flip transitions, but at liquid helium temperatures
their intensity is fairly low; according to Khaetskii and
Nazarov [9], in quantum dots the corresponding spin relaxation
times exceed 0.1 s. At the same time, the structure of the
electron wavefunction changes: it becomes a spinor whose
components with different spin indices are different functions
of coordinates. This fact is of primary importance for spin
relaxation in the impurity band, and we will discuss it in detail.
As mentioned above, in semiconductors lacking the inversion
symmetry the spin–orbit interaction results in the appearance
of spin-dependent terms in the Hamiltonian of the conduction
band, having the general form μBg �BSO(�k) · �S, where the
effective spin–orbit field �BSO(�k) is an odd function of the
wave vector components. Because of their smallness, these
terms have practically no effect on the binding energy, and
the wavefunction shape near the localization centre. But the
behaviour of the wavefunction at large distances is seriously
changed. The asymptotic form of the wavefunction far away
from the centre, where the localizing potential is close to zero,
can be obtained in the quasi-classical approximation [10]. The
wavefunction at a distance larger than some (arbitrary) r0 can
be approximately written as

� ∝ exp

(
iS(�r)

h̄

)
, (3)

where S(�r) = h̄
∫ r

r0
�k d�r ′ is the action; the integral is along

the straight trajectory emerging from the centre, and the wave
vector should be found using the condition

(h̄k)2

2m
+ μBg �BSO(�k) · �S = E − U(�r). (4)

At large distances from the centre the potential energy U(�r)
can be neglected. Using the smallness of the spin–orbit terms,
we can seek k in the form: k = k0 + �k, where k0 =√

2m(E−U(r))

h̄2 ≈ i
√

2mEB

h̄2 , EB is the electron binding energy.
The spin–orbit correction �k is found from the condition
h̄2k0�k

m
+ μBg �BSO(�k0) · �S = 0, yielding �k = mμBg �BSO(�k0)· �S

h̄2k0
.
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As �BSO is an odd function of the wave vector, �k is a real
number. Finally, we obtain

� ∝ exp

(
−
√

2mEB

h̄2 r

)

× exp

⎛
⎝i

mμBg �BSO
(√ 2mEB

h̄2
�r
r

) · �S
h̄
√

2mEB

r

⎞
⎠ . (5)

The spin-dependent multiplier in this expression has the form
of the operator of finite rotation for the spin S. For this reason,
if near the centre the localized electron state corresponds to a
certain spin direction (i.e. its spin projection on a certain axis
equals 1/2), then at the distance r from the centre the spin will
have the same projection on the axis turned through the angle
[11]

γ (r) =
h̄mμBgBSO

(√ 2mEB

h̄2
�r
r

)
r

√
2mEB

(6)

around the spin–orbit field �BSO
(√ 2mEB

h̄2
�r
r

)
. One can define the

spin–orbit length LSO by the condition
√

〈[γ (LSO�λ)]2〉 = 1,
where the angle is averaged over the directions of a unit vector
�λ. For GaAs, the spin–orbit length is about 5 μm. Using this
parameter, one can write the angle-averaged rotation angle as

〈γ 2(r)〉1/2 = r/LSO. (7)

5. Spin rotation of the electron hopping from donor
to donor and anisotropic exchange interaction

The asymptotic behaviour of the wavefunction of the localized
electron affects the spin dynamics, if there is more than one
localization centre for the electron. Consider two centres
(i) and (j), situated not very far from each other. The
wavefunctions of electrons localized at these two centres
are �α

i = F(|�r − �Ri |) exp(i�γ (�r − �Ri)�σαβ/2)χβ and �α
j =

F(|�r − �Rj |) exp(i�γ (�r − �Rj)�σαβ/2)χβ , where �Ri and �Rj are
position vectors of the two ions, �γ (�r) = γ (�r) �BSO(�r)/| �BSO(�r)|,
�σαβ = (

σx
αβ, σ

y

αβ, σ z
αβ

)
is a vector of the Pauli matrices, and

χ is an eigenfunction of spin 1/2. One can see that �
1/2
i

and �
−1/2
j are no longer orthogonal. Therefore, the electron

tunnelling between these two centres may be accompanied by
a spin flip.

The functions �
1/2
i and �

−1/2
j have one remarkable

property. Let us choose different systems of spinor indices
for centres (i) and (j), defining them by the relation χ

j
α =

exp(i�γ ( �Rij )�σαβ)χi
β , where �Rij = �Rj − �Ri . This simply

means using different coordinate frames for spins at the two
centres. These frames are transformed into each other by the
rotation through the angle γ ( �Rij ). Under this choice, the
two functions, �α′

i = F(|�r − �Ri |) exp(i �γ (�r − �Ri)�σα′β/2)χi
β

and �α
j = F(|�r − �Rj |) exp(i�γ (�r − �Rj)�σαβ/2)χ

j

β =
F(|�r − �Rj |) exp(i�γ (�r − �Ri)�σαβ/2)χi

β , will regain the spin
orthogonality along the line connecting the two centres. All
the overlap integrals entering the tunnelling matrix elements
are governed by the narrow region along this line, where the

product of the two wavefunctions is the largest. For this reason,
the electron with the spin index +1/2 at one centre will, after
tunnelling to the other centre, remain in the +1/2 spin state,
but in a rotated frame. In other words, the main effect of
tunnelling from (i) to (j) on the electron spin is just turning the
spin through the angle γ ( �Rij ).

If the centre (j) is occupied by another electron, the
electrons will be coupled by the exchange interaction. Since
the exchange integrals are also governed by the ‘tunnelling
corridor’ along the straight line connecting the centres, the
effect of the spin–orbit interaction is very similar to that in
the case of tunnelling: the exchange interaction will now
couple spin operators defined in different coordinate frames:
�

H ex = 2Jij
�S ′
i · �S ′

j [12]. As shown in [13], in the case of
linear in k spin–orbit terms this result is exact for any distance
between localization centres, not only in the asymptotic
region. Transforming the spin operators back to the laboratory
frame, we obtain the following expression for the exchange
Hamiltonian [12]:
�

H ex = 2Jij
�S ′
i · �S ′

j = 2Jij

[
cos γij

�Si · �Sj + sin γij

�γij

γij

· �Si

× �Sj + (1 − cos γij )

( �γij

γij

· �Si

)( �γij

γij

· �Sj

)]
. (8)

Here, the first term is the scalar exchange interaction, the
second one is the Dzhyaloshinskii–Moriya interaction, and
the third one is the pseudo-dipole interaction. These three
components of the exchange Hamiltonian have different
symmetry. The scalar interaction conserves both the value
of the total spin of the two electrons and its projection on
any axis. The pseudo-dipole interaction does not conserve
the projection of the total spin (with an exception for the case
when the quantization axis is directed along �γij ), but conserves
its value. Finally, the Dzyaloshinskii–Moriya interaction does
not conserve even the value of the total spin (more precisely, all
its matrix elements between the states with the same squared
total spin are zero).

6. Spin–orbit relaxation mechanisms due to spin
diffusion in the impurity band

As shown in the previous section, in the presence of spin–
orbit interaction both tunnelling to empty donors and exchange
interaction with other localized electrons may result in a
change of the electron spin state. Therefore, they can, in
principle, bring about the spin relaxation. In this section, we
will consider specific mechanisms of spin–orbit relaxation.
We will imply that injection and measurement of the spin
polarization is performed in a zero magnetic field. In this
case, the spin kinetics is usually characterized by a single
relaxation time τS .

Let us start from the relaxation by tunnel hops. Since the
binding energies of localized electrons are distributed within
the impurity-band energy width, such hops are accompanied
by absorption or emission of acoustic phonons. It is a random
process. While the electron hops from donor to donor, its spin
experiences random rotations (recall that the angle γ (�rij ) and
the axis of the rotation depend on �rij ). Since γ (�rij ) is typically

3



Semicond. Sci. Technol. 23 (2008) 114009 K V Kavokin

small (of the order of 10−2 rad), the memory about the initial
spin orientation vanishes only after a large number of hops, N,
when the accumulated rotation angle  becomes of the order
of 1. Using equation (7), one can write

1 = 2 =
∑〈

γ 2
ij

〉 =∑〈
r2
ij

〉/
L2

SO = 3DhτS

/
L2

SO. (9)

Thus, the hopping spin relaxation time τh
S can be expressed in

terms of the spin–orbit length and the coefficient of hopping
diffusion Dh [14]:

τh
S = L2

SO

/
3Dh. (10)

Similarly, the isotropic exchange interaction in the ensemble
of disordered spins of localized electrons leads to the
spin diffusion. Anisotropic corrections to the exchange
Hamiltonian result, according to equation (7), in a spin rotation
through the angle γij when the spin is transferred between the
electrons localized at the centres (i) and (j). In full analogy
with equation (10), the spin relaxation time in the case of
exchange-dominated relaxation is

τ ex
S = L2

SO

/
3Dex, (11)

where Dex is the coefficient of exchange diffusion. Combining
equations (10) and (11), we obtain the expression

τS = (1/τh
S + 1

/
τ ex
S

)−1 = L2
SO

/
3(Dh + Dex) = L2

SO

/
3DS,

(12)

where DS is the coefficient of spin diffusion by all the
mechanisms. This formula generalizes the conclusions on
the relation between transport and spin relaxation, [15, 16,
14], to any kind of spin transport.

The spin–orbit length LSO is determined by the material
constants and the binding energy of localized electrons. It
is, therefore, the same for both mechanisms. Thus, the
dependence of the spin relaxation time on temperature and
impurity concentration is determined solely by the diffusion
coefficient.

The temperature and concentration dependence of Dh

is known from the theory of hopping conductivity [10]. It
decreases exponentially with lowering donor concentration.
Its temperature dependence is also exponential:

Dh ∝ exp
(
− ε3

kT

)
exp

(
α

N
1/3
D a

)
, (13)

where ε3 ≈ e2N
1/3
D

ε
, ND is the concentration of donors, and

α is a number between 1 and 2. With further lowering
of the temperature into the millikelvin range, a crossover
to variable range hopping is possible. In this case, the
temperature dependence of the diffusion coefficient is given
by the Mott law: Dh ∝ exp

(−( T0
T

)1/4)
, where T0 is a

characteristic temperature. The concentration dependence of
Dh is determined by the exponential decrease of the overlap
integral with distance, as well as by the dependence of
the efficiency of phonon activation on the energy difference
between the two bound electron states. The diffusion goes over
donors belonging to the infinite cluster, with the inter-donor
distance of the order of the average value

(
N

−1/3
D

)
. Therefore,

the diffusion coefficient can be written as Dh ≈ 1
3kN

−2/3
D τ−1

W ,

where k is the compensation degree of the semiconductor (i.e.
the number of empty donors per one electron), and the mean
waiting time of the tunnel hop is τW = τW0 exp

(
ε3
kT

+ α
aN1/3

)
.

The time parameter τW0 can be estimated as τW0 = 〈
w0

ij

〉−1

[10], where

w0
ij = E2

D�ij

πds5h̄4

(
2e2

3εa

)2 r2
ij

a2

[
1 +

(
�ija

2h̄s

)2
]−4

. (14)

Here, ED is the constant of deformation potential, d is the
crystal density, s is the sound velocity, ε is the dielectric
constant and a is the Bohr radius of the donor. Taking the
parameters of shallow donors in GaAs, assuming α = 1.73 [10]
and estimating the characteristic energy difference between
different donor-bound states as �ij ≈ ε3 = e2

ε
N

1/3
D , we obtain

τW0 ≈ 5 × 10−2(NDa3)3, that yields τW0 ≈ 4 × 10−12 s for
ND = 1015 cm−3 and τW0 ≈ 4 × 10−9 s for ND = 1016 cm−3.
At T = 4.2 K this results in τW ≈ 2 × 10−3 s and τW ≈
7 × 10−3 s, respectively. For a compensated semiconductor,
the corresponding diffusion coefficients are of the order of
10−7 cm2 s−1, in accord with the values recalculated using the
Einstein relation from experimental data on hopping mobility
[10]. At weak compensation, Dh becomes smaller. With
the value of the spin–orbit length for GaAs, LSO ≈ 5 μm,
we obtain τh

S ≈ L2
SO

/
Dh ≈ 1 s. This result makes us

conclude that the spin–orbit relaxation powered by the hopping
diffusion is unable to explain the experimentally measured
spin relaxation times of n-GaAs at liquid helium temperatures
(of the order of 10−7 s). It is, however, possible that
this mechanism is more effective in quantum wells at low
concentrations of electrons, where hopping occurs between
states localized at structure imperfections. Beside this, we
shall see that hopping may provide the energy relaxation in
the spin system of localized electrons.

The spin diffusion by exchange interaction weakly
depends on temperature within the range 〈J 〉 < kBT <

EB ln
(

ND

NC

)
, where NC is the effective density of states in

the conduction band. The lower boundary of this range
is determined by spin ordering in the system of localized
electrons, and the upper boundary by thermal activation into
delocalized states of the conduction band. The compensation
dependence is also weak, while k 	 1. The spin diffusion
coefficient can be estimated as

Dex ≈ 1
3

〈
r2
ij

〉〈J 〉/h̄. (15)

The exchange constant J for hydrogen-like centres is given by
the formula [17]

Jij = 0.82
e2

εa

( rij

a

)5/2
exp

(
−2rij

a

)
. (16)

The exchange constant should be averaged over the infinite
cluster; the percolation theory suggests that this can be done
by replacing rij with αN−1/3/2, where α ≈ 1.73 [10].
Substituting the parameters of GaAs, we obtain for ND =
1015 cm−3 〈J 〉 ≈ 0.1 μeV, Dex ≈ 5 × 10−3 cm2 s−1 and
τS ≈ 3 × 10−6 s, and for ND = 1016 cm−3 〈J 〉 ≈ 170 μeV,
Dex ≈ 1.5 cm2 s−1 and τS ≈ 10−7 s. As we shall see,
the model of exchange diffusion demonstrates very good

4
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agreement with the experimental data for GaAs with ND around
1016 cm−3.

The exchange-induced spin relaxation can be alternatively
described as a relaxation induced by random fields of the
anisotropic exchange interaction, in analogy to the Dyakonov–
Perel mechanism [7]. The correlation time of this field is

τc ≈ 〈J 〉/h̄ ≈ (3N
2/3
D Dex

)−1
, (17)

and the corresponding spin precession frequency is � =
〈J 〉〈γ 2

ij

〉1/2/̄
h.

Applying the motional-averaging formula given by
equation (2) then results again in equation (14).

It should be noted that the moment-expansion approach
to the calculation of the spin relaxation rate, used in [11],
is not applicable to the disordered system of donor-bound
electrons. The reason is that, because of the exponentially
large variation of exchange constants, the means of the second
and fourth powers of the exchange field, used in that method,
are determined by a small number of closely spaced clusters
of donors. Therefore, the calculated relaxation times do not
characterize the entire ensemble of electrons; for instance,
this method gives a wrong concentration dependence of
τs . The correct approach to the calculation of relaxation
times in disordered systems with exponential variation of the
interaction strength is to use the percolation theory, as done
in this section. The contribution of small clusters should be
accounted for separately; this is the subject of the following
section.

7. Spin–orbit relaxation in small clusters

Because of the exponential dependence of the exchange
constant on the distance between centres, even a small
proportion of donors separated by distances much less than
the average one, may give a sizable contribution to the spin
relaxation rate. This idea was first put forward by Liubinskii,
Dmitriev and Kachorovskii for the case of hopping relaxation
[14]. According to [14], any electron has a probability to
visit small clusters by hopping diffusion. However, as we
have shown in the previous section, the hopping diffusion,
at least in bulk semiconductors, is much slower than the
exchange spin diffusion. Therefore, the realistic scenario of
cluster-dominated spin relaxation is the following: electrons
in small clusters are coupled with the rest of the donor-bound
electrons by isotropic exchange interaction, which determines
their spin correlation time τc ≈ 〈J 〉/h̄. However fast is the spin
relaxation within the cluster, its contribution to the total spin
relaxation rate cannot exceed (Ncl/ND)/τc, where Ncl is the
concentration of such clusters. Since the spin relaxation time
by exchange diffusion is τ ex

S = L2
SO/3Dex = L2

SON
−2/3
D τc, the

contribution of small clusters may become dominant only if
Ncl/ND > N

−2/3
D /L2

SO. This is the upper estimate of the cluster
contribution, corresponding to ‘black hole’ clusters having a
very fast spin decay rate. To get more realistic estimates and
to find Ncl, one should consider contributions of two types of
relevant clusters: those composed of filled donors, and those
where one or more donors are empty.

Let us first estimate the contribution of filled clusters,
where the spin relaxation is provided by the anisotropic
exchange interaction.

The concentration of clusters of closely spaced donors
rapidly decreases with increasing number of donors in the
cluster. Therefore, we can safely consider only clusters
comprising the smallest number of donors, which can provide
spin relaxation. It is easy to see that this number is three.
Indeed, the exchange Hamiltonian (equation (8)) splits the
levels of a pair of spins into two groups, a singlet and a triplet.
As distinct from the case of purely isotropic exchange, these
states are not eigenstates of the total spin, but of an analogous
operator composed of electron spins in tilted coordinate frames
[12]. But, because of smallness of the angle γij , these states
are, in fact, very close to the eigenstates of the total spin. If, for
instance, we place two electrons with the total spin projection
+1 on the pair of donors, the probability that they form a singlet
state is of the order of γ 2

ij 	 1. The probability of occupying
the triplet state is 1 − γ 2

ij ≈ 1, and, since the levels within
the triplet are not split, the total spin projection of the two
electrons will not further change, and will remain close to 1
forever.

This property of the exchange interaction within a pair of
electrons can be better understood if we treat anisotropic terms
in equation (8) at small γij as perturbations to the singlet–triplet
spectrum formed by the isotropic exchange. As mentioned
above, the Dzyaloshinskii–Moriya interaction does not couple
states with the same value of the total spin. Therefore, splitting
of triplet levels due to this interaction appears as a second-order
perturbation. It is easy to find that it is equal to γ 2

ij J/2. To the
opposite, the pseudo-dipole term couples triplet levels directly
and results in their splitting in the first order. The value of
the energy splitting is exactly equal to that induced by the
Dzyaloshinskii–Moriya interaction, but has the opposite sign.
As a result, these two contributions cancel each other.

This cancellation of splitting is a result of the specific
spectrum of the pair of spins, having only one energy parameter
J. It does not happen in any other case; in particular, it
does not happen for a triad whose spectrum consists of two
doublets and a quadruplet [18]. We will not need to perform
cumbersome calculations for the case of a triad, because the
structure of the spectrum can be guessed using qualitative
considerations. The two doublets will not split at all because
of the Kramers theorem. The quadruplet, corresponding to
the total spin 3/2, will split into two doublets separated by
the energy of the order of γ̃ 2Jmin, where �̃γ = �γ12 + �γ23 + �γ13,
and Jmin is the least of the three exchange constants. This
estimate is based on the following considerations. The
splitting appears in the second order in the Dzyaloshinskii–
Moriya interaction and in the first order in the pseudo-dipole
interaction, hence, quadratic dependence on γ . It becomes
zero if one of the exchange constants is zero, because in this
case we have an open triad, whose Hamiltonian can be written
as J12 �S1 · �S ′

2 + J23 �S ′
2 · �S ′′

3, where primed and double-primed
spin operators are obtained by rotation through angles �γ12 and
�γ12 + �γ23, respectively. This Hamiltonian commutes with the
operator �F = �S1 + �S ′

2 + �S ′′
3. This operator is an analogue of

the total spin, and therefore the multiplets in its spectrum are

5
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not split. Finally, it should become zero for the same reason if
γ̃ = 0, because in this case the Hamiltonian can be written as
J12 �S1 · �S ′

2 + J23 �S ′
2 · �S ′′

3 + J13 �S1 · �S ′′
3 (we assume that the angles

are small), and again commutes with �F . The rotation angles in
the small closed triad cancel out up to the second order in the
case of linear in k spin–orbit terms [14]; but in the bulk crystal
with cubic spin–orbit terms this does not happen, and one can
estimate γ̃ ≈ R/LSO, where R is the size of the cluster.

The above consideration suggests that, if a small cluster of
three donors with the size R is in the quadruplet state (which,
for weakly polarized electrons, happens with the probability
0.5), the spin–orbit interaction will make its spin polarization
oscillate with the characteristic frequency

�SO (R) ≈
(

R

LSO

)2

Jmin(R)/h̄. (18)

The spin relaxation time in the cluster is determined not only
by �SO, but also by the correlation time of the electron spin, τc.
If �SOτc 	 1, the spin relaxation time at the cluster is given
by the well-known motional-averaging formula (see [19]):(

τ cl
s

)−1 ≈ �2
SOτc. (19)

Otherwise,
(
τ cl
s

)−1 ≈ τ−1
c . In this case, the contribution of

clusters to the rate of spin relaxation of the entire electron
ensemble is equal to the rate at which the spin polarization
is fed into the clusters from surrounding donors (‘black hole’
regime):

wbh = Nbh

ND

τ−1
c . (20)

Here Nbh ≈ 8π2

9 N2
DR6

c exp
(− 4

3πNDR3
c

)
is the concentration

of clusters where the largest distance between two donors
does not exceed a critical radius Rc, defined by the condition(

Rc

LSO

)2
Jmin(Rc) = h̄τ−1

c = 〈J 〉.
In the regime of short correlation time, the spin relaxation

will be governed by clusters of the minimal possible size.
At low temperatures, this size is limited by freezing out
the clusters where the largest of the exchange constants,
Jmax, exceeds kBT . Such clusters remain in the lowest
states, which are Kramers doublets, and do not contribute to
spin relaxation. Thus, if the correlation time is short, the
relaxation will be determined by triads with all the inter-
donor distances approximately (with the precision to ±aB )
equal to the ‘freezing radius’ RT, defined by the condition
J (RT ) = kBT . The concentration of such clusters can be
estimated as NT = 4π3

√
3N3

DR3
T a3

B exp
(− 4

3πNDR3
T

)
. Their

contribution to the overall relaxation rate is

wT = NT

ND

(
RT

LSO

)4 (
kBT

h̄

)2

τc. (21)

The crossover to the ‘black hole’ regime occurs when
RT becomes equal to Rc, i.e. when h̄τ−1

c becomes equal

to
(

RT

LSO

)2
J (RT ). At this point (corresponding to ND ≈

1015 cm−3), the spin relaxation rate due to the exchange
interaction in small clusters reaches its maximum, about
105 s−1, which is two orders of magnitude faster than the
relaxation by exchange diffusion at that concentration. We
shall see, however, that this is much slower than the relaxation

rate provided in this range of impurity concentrations by the
hyperfine interaction.

Unlike the hopping diffusion, which is much slower than
its exchange counterpart, phonon-assisted hops within closely-
spaced donor clusters can go faster than the spin exchange.
But the electron–phonon interaction appears very selective to
the spatial and energy separation of the donors, diminishing
the number of clusters that actually contribute to the spin
relaxation. This is a very important matter for the entire
subject, since such hops also provide energy relaxation of
the electron spin system, and we shall consider it in detail.

Equation (14), with which we calculated the hopping
probability in the infinite cluster, assumed that the tunnelling
matrix element is much smaller than the energy separation
of the two donor-bound states. If this condition is not
satisfied, �ij in equation (14) should be replaced with εij =√

�2
ij + 4I 2

ij , where Iij = 4
3EB

rij

a
exp

(− rij

a

)
is the tunnelling

matrix element [10]. This results in the following expression
for the waiting time of the hop between donors i and j:

τ−1
w = E2

Dεij I
2
ij

πds5h̄4

[
1 +
(εij a

2h̄s

)2
]−4 [

exp

(
εij

kBT

)
− 1

]−1

.

(22)

Since Iij � εij /2, the most frequent hops occur within pairs
having εij ≈ 2h̄s

a
, i.e. those interacting with phonons whose

wave vectors match the extent of the donor wavefunction in
the k-space. The hopping probability rapidly decreases when
εij deviates from this value. The optimal pair should have
�ij � 2h̄s/a and Iij ≈ I (r0) = h̄s/a; the latter condition
imposes a restriction on the inter-donor distance: rij = r0 ±a.
For shallow donors in GaAs, 2h̄s/a ≈ 0.12 meV, yielding
r0 ≈ 4a. Finally, because usually 2h̄s/a ≈ 0.1 meV <

kBT , the exponential in the Bose factor can be expanded:
exp

( εij

kBT

) − 1 ≈ εij

kBT
. The waiting time for the optimal pair

then reads

τ opt
w ≈

(
E2

DkBT

16πda2
Bs3h̄2

)−1

(23)

For GaAs at liquid helium temperature, τ
opt
w is of the order of

10 ps.
The concentration of optimal pairs is

Nopt ≈ ND · 4πr2
0 · 2a · (2h̄s/a)ρF , (24)

where ρF = kND

(
εe2N

1/3
D

)−1
is the density of states at

the Fermi level in the impurity band [10]. For GaAs with
ND = 1015 cm−3 and k = 0.1, Nopt/ND ≈ 4 × 10−3. The
average probability of the hop can then be written

〈(
τ opt
w

)−1〉 = E2
DkBT

da2s2h̄
kNDr2

0

(
e2N

1/3
D

/
ε
)
. (25)

However, the contribution of such pairs to spin relaxation is
suppressed, because the successive hops within the pair are
accompanied by spin rotations through the same angle γij

in opposite directions. As shown by Lyubinskiy [20], the
situation changes in a longitudinal magnetic field. The easiest
way to understand this effect is to go to the coordinate frame,
rotating around the external magnetic field B with the Larmor
frequency ω = μBgB. In the rotating frame, the external

6
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field becomes zero [2], while the spin–orbit fields rotate.
Successive hops there and back between the two donors now
result in spin rotations about different axes. When the Larmor
frequency becomes larger than the inverse waiting time, the
correlation between the directions of successive spin turns in
the rotating frame is completely lost. As a result, closely
spaced pairs start to contribute to the relaxation of all the
spin components, including the component along the external
field B. Since this component is the same in the rotating and
laboratory frames, it follows from the above consideration
that the longitudinal magnetic field accelerates the hopping
spin relaxation. The resulted spin relaxation rate is equal to〈(
τ

opt
w

)−1〉 ·(LSO/r0)
2, which amounts to approximately 105 s−1

for GaAs with ND = 1015 cm−3 and k = 0.1.
The results of this section can be summarized as

follows. Relaxation in small clusters, either by phonon-
assisted tunnelling or by the anisotropic exchange interaction,
limits the spin relaxation time at the level of, approximately,
10−5 s. At donor concentration around 1015 cm−3, this time is
shorter than one due to exchange diffusion. But, as shown in
the following section, spin relaxation by nuclei is much faster
in this doping range.

8. Relaxation of the electron spins by nuclei

The localized electron is coupled with a large number of
nuclear spins within its orbit by the Fermi contact interaction,
proportional to the scalar product of the electron and nuclear
spins, and to the squared electron wavefunction at the location
of the nucleus [3, 21]. The hyperfine interaction can be
expressed in terms of the effective nuclear magnetic field BN

applied to the electron spin. This field can be as strong as a few
tesla, if nuclear spins are polarized. If they are not polarized,
there is still some fluctuation nuclear field due to incomplete
compensation of fields produced by randomly directed nuclear
spins. This fluctuation field is described by the Gaussian
statistics. Its root-mean-square value can be estimated as〈

B2
Nf

〉1/2 = BN max/
√

NN, (26)

where BN max is the maximum value of the nuclear field,
corresponding to fully polarized nuclear spins, and NN is the
number of nuclei in the localization volume of the electron.
Typically, NN is of the order of 105. A calculation for the case
of a shallow donor in GaAs gives

〈
B2

Nf

〉1/2 = 54 G [22].
Because of the smallness of magnetic moments of nuclei

as compared to that of the electron, nuclear spins evolve on
much longer time scales than electron spins. For this reason,
nuclear fields can always be considered quasi-stationary. The
regimes of spin relaxation in this situation are governed by
the electron correlation time τc. If μBg

〈
B2

Nf

〉1/2
τc > 1,

all the components of the electron spin, perpendicular to
the local nuclear field, will disappear on average during
the period of spin precession in the nuclear field (typically,
a few nanoseconds). The remaining polarization, which
amounts to 1/3 of the initial value, relaxes during much longer
time determined by the nuclear spin dynamics [23, 24]. If
μBg

h̄

〈
B2

Nf

〉1/2
τc 	 1 (the regime of short correlation time),

the time of electron spin relaxation by nuclei is given by the
motional-averaging formula

τ−1
sN =

(μBg

h̄

)2 〈
B2

Nf

〉
τc. (27)

The most powerful mechanism limiting the electron
correlation time in the impurity band is the exchange-induced
spin diffusion. Therefore, τc ≈ (

N
2/3
D Dex

)−1
, and one

can expect τsN to increase rapidly with increasing donor
concentration, starting from several nanoseconds in the most
lightly doped crystals (compare figures 1 and 3)

9. Interaction with free electrons

Since at a low concentration of donors localized electrons
are well isolated from each other, even a small concentration
of free electrons in the conduction band may strongly affect
the spin correlation time of bound electrons. The probability
of spin exchange between a donor-bound electron and a free
electron in the conduction band can be calculated using the
results of the theory of electron scattering by atomic hydrogen
[25]. It is determined by the difference of phase shifts for
the triplet and singlet scattering. If, for example, the bound
electron is in the spin-up state, and the free electron is in the
spin-down state, the two-electron spin state can be written as
a superposition of the states with the total spin I equal to 0 and
1:

↑↓= 1√
2

[
1√
2
(↑↓ − ↓↑) + 1√

2
(↑↓ + ↓↑)

]
= 1√

2
[(1,m = 0) + (0,m = 0)] , (28)

which, after scattering, transforms into
1√
2

[
1√
2
fs (↑↓ − ↓↑) + ft

1√
2
(↑↓ + ↓↑)

]
= 1

2 [(fs + ft ) ↑↓ + (fs − ft ) ↓↑] , (29)

where m denotes the spin projection. In the limit of low kinetic
energy of electrons, scattering amplitudes for I = 0 (singlet)
and I = 1(triplet) states are angular independent, and equal to
[18]

fs = k−1 sin(η0s) eiη0s ,

ft = k−1 sin(η0t ) eiη0t ,

(30)

where η0s and η0t are zeroth-order phase shifts. The spin-flip
scattering cross-section is now written

σsf = 4π

k2
|fs − ft |2 = π

k2
sin2 (η0s − η0t ) . (31)

The phase shifts have been calculated numerically and can
be found in the literature on atomic collisions. Using the
dependence of η0s −η0t on kaB from figure 1 of [25], one may
propose an approximation formula:

σsf (k) ≈ 20.6πa2
B

1 + (3.9kaB)3 (32)

reproducing the numerical results with the precision better
than 0.02 for kaB � 0.7. The probability for a bound electron
to flip its spin as a result of collision with a free one is

wb
sf = 〈σsf(k)h̄knc/m〉 = nc

NC

h̄

πma2
B

Q(b), (33)

7
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Figure 1. Spin correlation time determined by exchange diffusion
and interaction with free electrons versus donor concentration,
calculated using the parameters of GaAs. Symbols: experimental
values, determined from suppression of spin relaxation by
longitudinal magnetic fields.

where Q(b) = ∫∞
0

20.6x3

1+(3.9x)3 exp(−x2/b), b = kBT
EB

, nc is the
concentration of free electrons, and NC is the effective density
of states in the conduction band. We assume that nc 	 NC

and therefore use the Boltzmann statistics. It is worth noting
that at ND > 1016 cm−3 (for GaAs) σsf may exceed the mean-
squared distance between adjacent donors; at such impurity
concentrations, the model of independent scatterings fails,
and equation (33) can be used only for rough estimations.
Equation (33) is applicable when the thermal energy is less
than the Bohr energy of donors; if this condition is satisfied,
the function Q can be, with good precision, approximated by
the formula

Q(b) ≈ 0.192[
√

1 + (10b)2 − 1]. (34)

In thermal equilibrium, the electron concentration in the
conduction band is nc ≈ NC exp(−EB/kBT ), corresponding
to nc ≈ 6×1010 cm−3 at T = 4.2 K, and nc ≈ 4×105 cm−3 at
T = 2 K. Using equation (33), we obtain wb

sf ≈ 3 × 109 s−1 at
T = 10 K, wb

sf ≈ 3×105 s−1 at T = 4.2 K, and wb
sf ≈ 0.02 s−1

at T = 2 K. Under optical excitation nc can be, of course, much
higher; it depends on the excitation wavelength and intensity,
doping and temperature, and may vary very strongly from
experiment to experiment.

The correlation time determined by interaction with free
electrons is plotted as a function of donor concentration in
figure 1.

The probability for the free electron to flip its spin in a
collision with a donor-bound electron is equal to

wi
sf = ND

NC

h̄

πma2
B

Q (b) . (35)

It is as large as, approximately, 1010 s−1 already at ND =
1014 cm−2. This means that exchange scattering by neutral
donors is the main spin relaxation mechanism for conduction-
band electrons at low temperatures, and their mean spin is
equal to the mean spin of localized electrons with good

precision [26]. Therefore, localized and free electrons form a
spin system characterized by common relaxation times.

10. The influence of longitudinal magnetic fields
on spin relaxation

Spin relaxation in a zero or very weak magnetic field requires
only breaking the angular-momentum conservation (which is
realized by hyperfine and/or spin–orbit interactions). In a
longitudinal (i.e. parallel to the mean spin) magnetic field of
considerable strength, changing the mean spin of electrons
is accompanied by changing their energy, which should be
eventually dissipated into the crystal lattice. The energy
relaxation of the electron spin system can go in one or two
steps, depending on the strength of the magnetic field applied.

In strong fields, B  〈J 〉 /μBg, the energy μBgB,
released in the spin-flip transition, cannot be absorbed by the
spin system, and the transition should be accompanied with
absorption/emission of a phonon. The phonon-assisted spin
relaxation in strong magnetic fields has been a subject of many
theoretical works [9, 27]. As collective spin interactions in the
impurity band are less important for this process, we will not
consider it here.

In weak to moderate fields, B � 〈J 〉 /μBg, the spin-
flip transition can go without phonon assistance, the energy
being temporarily stored within the spin system in the
form of exchange energy. Its dissipation into the lattice
goes independently, by phonon-assisted transitions within
the energy spectrum of the spin system, broadened by the
exchange interaction. The issues related to the energy
relaxation of the electron spin system in magnetic fields will
be discussed in the following section.

Here, we will concentrate on the magnetic-field
dependence of the relaxation rate of the non-equilibrium
angular momentum. In this view, it is worth recalling general
expressions for spin relaxation induced by random magnetic
fields [19]. If the correlation time of the random field is shorter
than the period of the electron spin precession in this field,
then the spin relaxation rate in a zero external field is given
by the motional-averaging formula (equations (2), (19), (27)).
Applying a constant longitudinal field B slows down the spin
relaxation by the factor 1

1+(ωτc)
2 , where ω = μBgB/h̄. The

characteristic field that diminishes the spin relaxation rate two
times is then equal to B1/2 = h̄

μBgτc
. This expression is very

general, but not universal. It is true when the random field is
characterized by a single correlation time. This is correct in the
case of exchange-induced relaxation, with τc ≈ (N2/3

D Dex
)−1

.
In the case of hopping relaxation, however, there are two very
different time parameters of equal importance, the duration of a
single hopping transition τh and the waiting time τw. Since the
spin–orbit field affects the spin during the hopping transition,
it is the time τh that enters the suppression factor. The hopping
transition takes the time of the order of the inverse frequency
of phonons assisting the tunnelling. As a result, in the case of
hopping the suppression field is

B1/2 = h̄

μBgτh

≈ 〈�ij 〉/μBg. (36)

8
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For GaAs with ND = 1015 cm−3 τh is of the order of 1 ps,
and this field exceeds 10 T. The much longer waiting time
τw may also show up, in a rather unexpected way, in the
field dependence of the spin relaxation rate. As shown
by Lyubinskiy [20], relatively weak magnetic fields, of the
order of 1

μBgτw
, make the spin relaxation faster. This unusual

effect, resulting from the contribution of closely spaced pairs
of donors into the spin relaxation, has been discussed in
section 7.

Spin relaxation can also be affected by magnetic
localization of electrons. Magnetic fields are known to
strongly suppress the hopping conductivity by diminishing
the overlap of wavefunctions of localized electrons [10]. In
magnetic fields up to several tesla, the hopping conductivity
decreases as an exponential function of the squared magnetic
field. As both the hopping probability and the exchange
constant are proportional to the same exponential factor
exp(−2rij /aB), the magnetic-field dependence known from
the theory of hopping conductivity [10] can be universally
applied to spin diffusion in the impurity band:

DS (B) = DS (0) exp

(
−0.04

aBe2

NDc2h̄2 B2

)
. (37)

In the case of GaAs, the exponent reaches 1 at B = 1 T for ND =
1015 cm−3, and at B = 3 T for ND = 1016 cm−3. These fields are
of the same order as B1/2 = h̄

μBgτc
. Having in mind that there

are several contributions to the spin relaxation rate, exchange
diffusion, hyperfine interaction, hopping and exchange in
small clusters, depending differently on τc ∝ D−1

S , one can
expect, generally, a complex pattern of the magnetic-field
influence on spin relaxation.

11. Energy relaxation of electron spins in a
longitudinal magnetic field

The anisotropic exchange interaction provides relaxation of
the non-equilibrium polarization of electron spins, but does
not provide transfer of their energy to the crystal lattice. The
same is true for the relaxation due to the hyperfine interaction:
in that case, electron spins are coupled only with the nuclear
spin system having a very small heat capacity and very long
energy relaxation time [3].

For that reason, spin relaxation in the system of localized
electrons is, generally, characterized by two times rather than
a single time τs : the relaxation time of the non-equilibrium
angular momentum, T2 (in the zero magnetic field, T2 = τs),
and the energy relaxation time, T1. If the condition T2 	
T1 is satisfied, the spin system can be characterized by a
spin temperature θ , which can be different from the lattice
temperature T (for an introduction to the concept of spin
temperature, see [2]). In that case, optical spin orientation
in the longitudinal magnetic field, when a change of the
polarization of spins is accompanied by changing their energy,
should be interpreted as cooling of the spin system. Spin
cooling is well known for nuclear spin systems; now we should
find out whether or not it may occur for electrons.

Let us estimate the energy relaxation time T1. The energy
transfer between the spin system and the lattice may result from

phonon-assisted spin flips of electrons. But the spin–phonon
scattering time of a single localized electron at liquid helium
temperatures is about 0.1 s or longer [9]. The spin relaxation
by phonon-assisted hopping is also ineffective, as shown
above. However, hopping can provide energy relaxation of
the electron spin system even without spin flips. Indeed,
when an electron hops from donor to donor, the constants
of its exchange interaction with other electrons change, due
to their exponential dependence on distance, by the values of
the order of themselves. As a result, the energy of the spin
system changes by the value of the order of the mean exchange
energy per one electron. The total number of hops in unit time
is determined by optimal pairs (see section 7). The waiting
time for a hop in such a pair, τw

opt, given by equation (23), is
of the order of 10 ps. If the correlation time is shorter, the
hopping contribution to the energy relaxation rate, 1/T1h, is
of the order of

(
τw

opt

)−1
Nopt/ND , where the concentration of

optimal pairs is given by equation (24). If τw
opt is shorter than

τc, 1/T1h is determined by the energy transfer to optimal pairs
from other electrons and can be estimated as (τc)

−1Nopt/ND .
An approximation formula,

T1h ≈ (τc + τw
opt

)
ND/Nopt, (38)

can be used to calculate T1h in both regimes. In GaAs,
the crossover between the two regimes occurs at donor
concentrations near 1016 cm−3, where T1h ≈ 10−9 s. With
decreasing concentration below ND = 1016 cm−3, T1h becomes
longer, following the increase of τc. Eventually, it becomes
as long as several microseconds at ND around 1015 cm−3,
exceeding the spin relaxation time, which in that range of
concentrations is limited by the hyperfine interaction.

Another possible mechanism of energy relaxation is the
thermal activation of localized electrons into the conduction
band. One can expect that in the temperature range where
hopping conductivity dominates, activation is a more rare event
than a tunnel hop. A quantitative estimate confirms this. The
probability of thermal activation is given by the principle of
detailed equilibrium:

wa = 1
2Ncσcvt exp(−EB/kBT ), (39)

where Nc = 2 (2πmkBT )3/2

(2πh̄)3 is the effective density of states in the

conduction band, σc = 8m3E2
D

3h̄4d

(
e2

εkBT

)3
is the cross-section of

capture of a free electron to the donor-bound state, vt =
√

8kBT
πm

is the thermal velocity [28]. For GaAs, wa is 200 s−1 at T =
4.2 K, and 10−6 s−1 at T = 2 K.

The interaction with free electrons, considered above
(section 9), can also provide energy relaxation. Free electrons
receive energy from localized ones at the rate 〈εex〉wi

sf and give
it up to the lattice at the rate kBTe/τe, where Te is the kinetic
temperature of free electrons, τe is their energy relaxation
time by phonon emission, and 〈εex〉 is the mean exchange
energy of localized electrons. The time T i

1 , characterizing the
energy relaxation via free electrons, is determined by these
two successive processes:

T i
1 = (wb

sf

)−1
+

ND 〈εex〉
nckBTe

τe. (40)

9
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Figure 2. Energy relaxation time T1 determined by hopping in
optimal pairs, compared with the spin relaxation time determined by
the anisotropic exchange interaction and hyperfine interaction.
Calculations are performed with the parameters of GaAs, T = 4.2 K.

At liquid helium temperatures, τe is of the order of
nanoseconds. Using the results of section 9, one can estimate
that, if the electron concentration in the conduction band is
determined by thermal activation, T i

1 is of the order of 10−4 s
or longer. The presence of optically pumped electrons can,
however, make it much shorter.

Summarizing the above paragraphs, we can conclude
that the energy relaxation of the spin system of bound
electrons is provided mainly by tunnel hops in optimal pairs of
donors. At high donor concentrations, the energy relaxation
is faster than the spin relaxation determined by the anisotropic
exchange interaction. With lowering concentration, the
energy relaxation becomes less effective because of increasing
isolation of donors from each other, which slows down the
energy transfer to optimal pairs (see figure 2). At the same
time, the spin relaxation time gets shorter due to the hyperfine
relaxation. As a result, the inequality between relaxation
times of angular momentum and energy becomes weaker and
even reverses. This may also happen in the case when the
number of empty donor states is very low—for example, in
heterostructures where additional electrons may come from
barriers. In all these situations, the decay of spin polarization
in a longitudinal magnetic field will be limited by the energy
relaxation of the spin system. The spin dynamics in this regime
will be considered in the following section.

12. Spin dynamics under cooling of the electron
spin system

If the non-equilibrium mean spin relaxes faster than the energy,
the system of interacting spins can be characterized by a
spin temperature, which may be different from the lattice
temperature. The nuclear spin system of a semiconductor
[3] is a well-known example. Let us now obtain differential
equations for the mean spin and spin temperature of the system
of donor-bound electrons under optical pumping.

The influx of mean spin due to optical spin orientation in n-
type semiconductors is equal to S0−S

τj
, where S0 is the mean spin

of optically excited electrons, S is the mean spin of resident
electrons and τj is the characteristic time of replacement of
a resident electron by a photo-excited one (τj is inversely
proportional to the pumping intensity) [29]. Here, we consider
only the spin components along the external magnetic field.

In the longitudinal magnetic field, this spin influx is
accompanied by an energy influx, equal to μBgB S0−S

τj
(per one

electron). The rate of change of the reciprocal spin temperature

β = 1
kBθ

due to this energy influx equals μBgB S0−S

τj

(
∂U
∂β

)−1
,

where U is the total energy of the spin system; U = Tr
(
ρ̂Ĥ
)
,

where ρ̂ is the spin density matrix, Ĥ is the Hamiltonian of the
spin system. Taking the derivative of energy by the reciprocal
temperature, we obtain

∂U

∂β
= ∂

∂β
Tr(ρ̂Ĥ ) = ∂

∂β

∑
i εi exp (−βεi)∑
i exp (−βεi)

=
∑

i ε
2
i exp(−βεi)∑

i exp(−βεi)
−
(∑

i εi exp(−βεi)
)2(∑

i exp(−βεi)
)2

= 〈ε2〉 − 〈ε〉2 = �ε2 (41)

where εi is the energy of the ith spin state.

Since the isotropic exchange and Zeeman interactions
commute, and the anisotropics corrections are small, one can
write

∂U

∂β
= �ε2

z + �ε2
ex. (42)

If the spin ensemble is weakly polarized, �ε2
ex ≈ 〈J 2〉,

and �ε2
z = 〈(μBgBsz)

2〉 ≈ 1
4 (μBgB)2. Optical pumping

also results in an increase of the exchange energy due to
disruption of spin–spin correlations. In the high-temperature
approximation, the mean exchange energy of a localized
electron equals �ε2

exβ. Replacement of resident localized
electrons with photo-excited ones having zero exchange

energy results in the energy influx �ε2
exβ

τj
.

Finally, the reciprocal spin temperature relaxes to the
reciprocal lattice temperature with the time T1, and the mean
spin S relaxes to its quasi-equilibrium value, corresponding
to the reciprocal spin temperature β, Sβ ≈ β

4 μBgB, with the
time T2.

Now we can write the differential equations for β and S:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β̇ = (μBgB + 〈J 〉S)

μ2
Bg2B2/4 + �ε2

ex

S0 − S

τj

− �ε2
ex

μ2
Bg2B2/4 + �ε2

ex

β

τj

− β − 1/kBT

T1
,

Ṡ = S0 − S

τj

− 1

T2
(S − Sβ).

(43)

It is convenient to rewrite these equations in terms of the
current value of the mean spin, S, and its quasi-equilibrium

10
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value, Sβ:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṡβ = f (B)

(
1 +

〈J 〉
μBgB

S

)
S0 − S

τj

− (1 − f (B))
Sβ

τj

− Sβ − SL

T1
,

Ṡ = S0 − S

τj

− 1

T2
(S − Sβ),

(44)

where f (B) = (μBgB)2

(μBgB)2+4�ε2
ex

≈ (μBgB)2

(μBgB)2+3〈J 〉2/4
, and SL ≈

1
4kBT

μBgB is the equilibrium value of the mean spin at the
lattice temperature.

Under the constant-wave excitation, equation (44) yields
the following expressions for the quasi-equilibrium mean spin,
Sβ , and the non-equilibrium part of the mean spin, S − Sβ :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sβ = f (B)S0 + (T2 + τj )T
−1

1 SL

1 + (1 − f (B))T2τ
−1
j + (T2 + τj )T

−1
1

,

S − Sβ = T2

τj

(
1 − f (B) + τjT

−1
1

)
S0 − τjT

−1
1 SL

1 + (1 − f (B))T2τ
−1
j + (T2 + τj )T

−1
1

.

(45)

With increasing pump intensity, the mean spin changes from
S ≈ SL at τj  T1 to S ≈ S0 at τj 	 T2. Under moderate
pump intensity, when T2 	 τj 	 T1, equation (45) simplifies⎧⎪⎪⎨

⎪⎪⎩
S − Sβ ≈ T2

τj

S0,

Sβ ≈ f (B) S0 +
τj

T1
SL.

(46)

The decay of spin polarization after pumping by a pulse of
circularly polarized light is described by equation (44) at
τj = ∞: ⎧⎪⎪⎨

⎪⎪⎩
Ṡβ = −Sβ − SL

T1

Ṡ = − 1

T2

(
S − Sβ

)
.

(47)

The increase of the magnetic field results in changing the quasi-
equilibrium part of the mean spin from a small value τj

T1
SL,

determined by heating the spin system by optical pumping, to
a value close to the mean spin of photo-excited electrons, S0.

In weak magnetic fields, B 	 2�εex
μBg

√
T2
τj

, the spin polarization

is purely non-equilibrium, and an exponential decay with
the time T2 should be observed. In intermediate fields, of

the order of 2�εex
μBg

√
T2
τj

, a two-exponential decay is expected:

first the decay of the non-equilibrium spin with the time T2,
and then diminishing of the quasi-equilibrium part due to
relaxation of the spin temperature with the time T1. Finally,

in moderately strong fields, 2�εex
μBg

√
T2
τj

< B < �εex
μBg

, only

the quasi-equilibrium polarization remains, decaying with the
time T1. It is worth noting that all these changes occur in
magnetic fields too small to affect T2, which increases in the
characteristic field B1/2 = h̄

μBgτc
≈ �εex

μBg
.

One can see that, in a general case, there are two decay
times, T1 and T2. The observed relaxation pattern is determined
largely by the excitation conditions: magnetic field in which
the electrons are excited, excitation intensity and its spectral
position, which may strongly affect T1 by changing the
concentration of photo-excited conduction-band electrons or
excitons.

13. Possible pitfalls for experiments on spin
relaxation

Spin relaxation in n-type semiconductors is studied with
a variety of experimental techniques, mainly using optical
orientation of electron spins. Recently, spin noise
spectroscopy, developed earlier [30] for atomic gases, has
been modified and applied to semiconductors [31]. The latter
method has an apparent advantage of not perturbing the spin
system studied, while none of the more traditional approaches
is fully free of this shortcoming.

There are several ways in which optical pumping affects
spin relaxation. The most obvious are listed below:

(1) The spin lifetime is limited by the recombination time
of electrons with photo-excited holes. This has been
understood since classical works of Dyakonov and Perel
[29], and normally precautions are taken to avoid this
effect. It is easily eliminated by determining τs from a
cut-off of the dependence of the Hanle curve width on
pumping at zero pump intensity [7], or by measuring
the spin dynamics after the hole recombination time
in experiments with pulsed excitation [31]. The same
measures remove the effects of the exchange scattering by
holes (the Bir–Aronov–Pikus spin relaxation mechanism).

(2) A population of delocalized electrons is created in the
conduction band, which remains there after recombination
of holes with localized electrons. The concentration
of free electrons in bulk crystals decreases back
to the equilibrium value during the capture time
τt = (kNDσcvt )

−1, which for GaAs at liquid helium
temperatures amounts to about 1 ns.

The situation can be different in heterostructures
where re-charging effects can take place. This
was demonstrated in [22] by changing the excitation
wavelength. Under the illumination just above the band
gap, additional electrons came to the GaAs layer (ND =
1014 cm−3) from AlGaAs barriers. There were not
enough donor-bound states to accommodate them, and
a population of free electrons was created. As a result
of exchange scattering, the correlation time of donor-
bound electrons was reduced to approximately 10−10 s;
according to equations (33) and (34), this requires
about 7 × 1013 free electrons per cubic centimetre. At
such a short correlation time, relaxation by nuclei was
suppressed; equation (27) gives the spin relaxation time of
about 300 ns, which was indeed measured using the Hanle
effect under resonant excitation near the band edge with a
tuneable Ti-sapphire laser [22]. Under illumination with
much higher photon energy, additional electrons were
removed from the GaAs layer, and the spin relaxation time
dropped down to 5 ns, which corresponds to the long-
correlation-time regime of hyperfine relaxation, typical
for isolated donors.

It should be noted that the effect of illumination may
be different depending on the structure design, wavelength
and intensity of light. Often charge carriers are transferred
not from, but into the studied layers [32]. In lightly
doped crystals, spin density of photo-excited electrons
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may exceed that of localized ones and mask their spin
dynamics.

(3) Excitation light can heat up delocalized electrons and/or
change the spin temperature of localized ones, as
described in section 12. This can affect, first of
all, measurements of the spin correlation time using
suppression of spin relaxation by longitudinal magnetic
fields. The increased relaxation time observed in a
magnetic field may be, in fact, the energy relaxation time
T1, which determines the spin dynamics of the cooled spin
system.

14. Experimental studies of spin relaxation of
localized electrons in n-type semiconductors: past,
present and future

Extended (up to 30 ns) spin relaxation times in lightly doped
n-type crystals of GaAs were observed already at early stages
of research on optical spin orientation by Weisbuch [33]. In the
late 1990s, Dzhioev et al [34] and Kikkawa and Awschalom
[35] reported measuring τs = 42 ns at ND = 4 × 1015 cm−3

and 130 ns at ND = 1016 cm−3, correspondingly. The most
comprehensive, to date, study of spin relaxation in bulk n-type
semiconductors was performed by Dzhioev et al [7]. Spin
relaxation times were measured using the conventional Hanle
effect (depolarization of photoluminescence by a transversal
magnetic field) in bulk GaAs crystals with ND spanning the
range from 1014 to 1017 cm−3. For most concentrations, the
measurements were performed at two temperatures, 4.2 K
and 2 K, not showing a significant difference in τs between
these two temperatures. For a few concentrations below
ND = 5 × 1015 cm−3, dependences of the polarization of
photoluminescence on the longitudinal magnetic fields were
measured and used to determine the correlation time τc (see
section 10). Later, the results for several other samples within
the same concentration range were reported, measured with a
time-resolved photoluminescence technique [36, 37] and using
the Hanle effect detected with the photoinduced Kerr rotation
[38]. In [36, 37], spin relaxation time was measured as a
function of temperature and longitudinal magnetic field. The
experimentally measured spin relaxation times from [7, 35–
38] are plotted in figure 3 against donor concentration in the
range below ND = 2 × 1016 cm−3 (above this concentration,
electrons in GaAs are delocalized). The theoretical curves
are calculated for the hyperfine and anisotropic exchange
mechanisms. Since there are no fitting parameters in the
theory, the agreement with the majority of the experimental
data looks remarkable. Still, some discrepancies are seen.
Firstly, the relaxation times for ND = 4 × 1015 cm−3 and
ND = 1016 cm−3, reported in [38], are much longer than those
measured by other groups. Secondly, experiments in lightly-
doped samples show very large scattering and generally longer
times than predicted by theory. Thirdly, the experiments of
[36, 37] demonstrate rather strong temperature dependence
of the spin relaxation time—in contrast to the data of [7]
revealing practically no difference between τs at 2 K and
4.2 K.

Figure 3. Experimental data on spin relaxation time in GaAs in a
zero or weak magnetic field versus donor concentration. Lines
present the theory taking into account the two most powerful
relaxation mechanisms: by hyperfine interaction and spin–orbit
interaction in the course of exchange diffusion.

These features are probably related to the behaviour
of the spin correlation time that, in the motion-narrowing
regime, determines the spin decay rate via the hyperfine
interaction. This time was measured from the dependences
of the electron mean spin or spin relaxation time on the
longitudinal magnetic field [7, 36, 37]. As seen from figure 1,
in the low-doping range experimentally measured values of τc

are systematically shorter than theoretical ones, determined
by the exchange diffusion. In addition, a non-monotonic
magnetic-field dependence of the spin relaxation time was
observed in a GaAs sample with ND = 1015 cm−3 [37].
The origin of these effects is not quite clear, but most likely
it is the interaction with free electrons. The concentration
of the latter in those experiments might have exceeded the
thermally equilibrium value due to either optical pumping
or injection from barriers in heterostructure samples. This
phenomenon, qualitatively demonstrated in [22], has not yet
been systematically studied.

The polarization dynamics of the spin system of impurity-
band electrons in longitudinal magnetic fields is affected,
as follows from the above theory, by an exceedingly large
number of factors. Electron–phonon, hyperfine, exchange and
spin–orbit interactions are deeply involved. The magnetic
field affects spin relaxation via splitting of spin levels and
magnetic localization of electrons. As a result, some relaxation
mechanisms are suppressed, and others (like relaxation in
small clusters) may come into play. Under certain conditions,
optical spin orientation in magnetic fields may bring about
cooling of the electron spin system, and the decay of spin
polarization will be governed by relaxation of energy rather
than angular momentum. Disentangling this complex of
phenomena requires systematic experiments in a range of
impurity concentrations, with varying temperature, magnetic
field and pump intensity, which has not yet been done. This
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is an obvious target for experimental research for the nearest
future.

The quantitative understanding of the spin physics in
impurity bands of bulk semiconductors, once it is reached,
would be a good basis for studying spin systems of localized
electrons in quantum wells and quantum-dot arrays. These
nanostructures, attractive for researchers from many points
of view, unfortunately lack the uniformity of the localizing
potential that greatly simplifies bringing together experiment
and theory in bulk crystals. Possibly for this reason, interesting
experimental results obtained in low-dimensional structures
with localized interacting electrons remain so far disparate, and
there is no general picture of spin dynamics in such systems.
Hopefully, these difficulties will soon be overcome.
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