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Radical pair recombination reactions are normally described using a quantum mechanical master

equation for the electronic and nuclear spin density operator. The electron spin state selective (singlet

and triplet) recombination processes are described with a Haberkorn reaction term in this master

equation. Here we consider a general spin state selective electron transfer reaction of a radical pair

and use Nakajima-Zwanzig theory to derive the master equation for the spin density operator, thereby

elucidating the relationship between non-adiabatic reaction rate theory and the Haberkorn reaction

term. A second order perturbation theory treatment of the diabatic coupling naturally results in the

Haberkorn master equation with an additional reactive scalar electron spin coupling term. This term

has been neglected in previous spin chemistry calculations, but we show that it will often be quite

significant. We also show that beyond the second order in perturbation theory, i.e., beyond the Fermi

golden rule limit, an additional reactive singlet-triplet dephasing term appears in the master equation.

A closed form expression for the reactive scalar electron spin coupling in terms of the Marcus theory

parameters that determine the singlet and triplet recombination rates is presented. By performing

simulations of radical pair reactions with the exact hierarchical equations of motion method, we

demonstrate that our master equations provide a very accurate description of radical pairs undergoing

spin-selective non-adiabatic electron transfer reactions. The existence of a reactive electron spin

coupling may well have implications for biologically relevant radical pair reactions such as those

which have been suggested to play a role in avian magnetoreception. Published by AIP Publishing.

https://doi.org/10.1063/1.5041520

I. INTRODUCTION

The radical pair mechanism has been used extensively to

describe magnetic field effects in many chemical reactions.1–3

In these reactions, the key intermediate is the radical pair. This

intermediate state undergoes spin state selective reactions—

the reaction product and reaction rate depend on the spin state

of the electrons in the radical pair. If the singlet and triplet

electron spin states are close in energy, they can coherently

interconvert due to weak magnetic interactions in the radicals,

such as hyperfine interactions with nuclear spins. The coher-

ent spin dynamics and spin-selective reaction pathways can

give rise to large magnetic field effects on the dynamics and

quantum yields of these reactions.1–4

Radical pair reactions are conventionally described using

the reduced density operator for the spin degrees of freedom

of the radical pair, ρs(t). The unitary evolution of this density

operator due to the interactions contained in the spin Hamilto-

nian Hs is given by the usual Liouville-von Neumann equation.

The non-unitary reactive dynamics are then conventionally

treated by adding an additional term to this equation, known

as the Haberkorn term.5–7 Overall, the full master equation for

the spin density operator is

d

dt
ρs(t) = −

i

~

[

Hs, ρs(t)
]

− {Ks, ρs(t)}, (1)

where [·, ·] is a commutator and {·, ·} is an anti-commutator.

The Haberkorn reaction operator is

Ks =
kS

2
PS +

kT

2
PT, (2)

in which PS and PT are the projection operators onto sin-

glet and triplet electronic states of the radical pair and

kS and kT are the singlet and triplet recombination rate

constants.

This form of master equation has been used successfully

for over 40 years to explain magnetic field effects on radical

pair reactions. However, in recent years, several alternative

master equations have been suggested,8–10 leading to some

debate in the spin chemistry literature as to which master

equation correctly describes the radical pair mechanism.8–14

Alternative approaches based on quantum measurement theory

have been proposed such as the Jones-Hore8,9 master equa-

tion, which is the same as the Haberkorn master equation but

includes an additional singlet-triplet dephasing term of the

form

− kS + kT

2

[

PSρs(t)PT + PTρs(t)PS

]

. (3)

Other more complex master equations based on quantum

measurement theory have also been suggested.10

The Haberkorn master equation predicts that singlet-

triplet coherences in the spin density operator should decay

at a rate of (kS + kT)/2, whereas quantum measurement
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based master equations predict larger decay rates of coher-

ences. Maeda et al.15 used this distinction to experimen-

tally test the validity of the various master equations for a

carotenoid-porphyrin-fullerene triad radical pair and found

that the singlet-triplet coherence decay rate of this radi-

cal pair was uniquely consistent with the Haberkorn master

equation.

It is therefore somewhat surprising that a general deriva-

tion of the Haberkorn master equation from chemical reaction

rate theory has not been presented so far in the literature.

A derivation starting from a microscopic description of the

electron pair recombination reaction was originally alluded

to by Evans et al. in 19737 and eventually presented by

Ivanov et al. in 2010.12 However, their derivation was based

on a highly simplified model of the radical pair reaction. The

nuclear degrees of freedom were treated as a harmonic bath

linearly coupled to the radical pair and product states, and

the total density operator was assumed to remain in the form

W (t) = ρs(t)ρ
eq
n , where ρ

eq
n is the equilibrium density oper-

ator of the nuclear motion bath. These assumptions rarely

hold for real radical pairs, which have anharmonic radical pair

and product states with different equilibrium geometries, lead-

ing to significant coupling between the electronic and nuclear

evolution.

In order to establish a more rigorous connection between

chemical reaction rate theory and the Haberkorn master

equation, we shall consider an important subset of radical

pair reactions—non-adiabatic electron transfers in radical ion

pairs.4,16 Typically these systems consist of an electron donor,

D, and an electron acceptor, A. The system is first energet-

ically excited, often by absorption of a photon. The excited

state undergoes an electron transfer to generate a [D•+A•−]

radical ion pair. This radical ion pair then undergoes coherent

interconversion between its singlet and triplet states and spin-

selective electron transfers to singlet and triplet product states,

as illustrated schematically in Fig. 1.

We shall present a derivation of the Haberkorn master

equation for these spin selective electron transfers of radical

pairs based on the well-established theory of non-adiabatic

electron transfer reactions.17–19 In Sec. II, we describe the

diabatic state model for spin selective radical pair electron

transfer reactions. We outline the general theory and approx-

imations used to derive master equations for this model in

Sec. III, and in Sec. IV, we derive explicit master equations for

electron transfer reactions of radical pairs. In Sec. V, we per-

form exact simulations for a set of model radical pair systems,

FIG. 1. The radical pair mechanism for a photo-generated donor (D) acceptor

(A) radical pair system.

explicitly including all nuclear degrees of freedom, and com-

pare the results to those of our master equations and the

Haberkorn master equation. In Sec. VI, we discuss the sig-

nificance of our results and suggest some experiments that

might be performed to verify them.

II. NON-ADIABATIC REACTIONS OF RADICAL PAIRS

Many experimentally examined radical pair systems

undergo spin state selective electron transfer reactions.2,3

In electron transfer reactions, there is a breakdown of the

Born-Oppenheimer approximation and there are non-adiabatic

transitions between different Born-Oppenheimer (adiabatic)

potential energy surfaces. One can also describe these reac-

tions using diabatic potential energy surfaces.20,21 In the non-

adiabatic limit, it is the off-diagonal coupling between diabatic

states that gives rise to electron transfer.

In our approach, we consider two sets of diabatic elec-

tronic states—the radical pair states |1〉|S〉 and |1〉|Tm〉, and

the singlet product state |2〉|S〉 and the triplet product states

|2〉|Tm〉. Conservation of spin in the electron transfers means

there exists a coupling only between radical pair states and

product states with the same spin state. A schematic represen-

tation of the problem is illustrated in Fig. 2. The Hamiltonian

for the full radical pair system, including all spin, nuclear,22

and electronic degrees of freedom, is

H = H1 |1〉〈1| + H2 |2〉〈2| + ∆SPS

(

fS |1〉〈2| + f
†
S
|2〉〈1|

)

+∆TPT

(

fT |1〉〈2| + f
†
T
|2〉〈1|

)

, (4)

where H j is the Hamiltonian for the nuclear and spin degrees

of freedom in electronic state j. The third term contains the

diabatic coupling between the singlet radical pair state and the

singlet product state, and the fourth term is the same but for the

triplet radical pair and product states.∆S and∆T are the diabatic

coupling constants for the singlet surfaces and triplet surfaces,

respectively. f S and f T are the operators on the nuclear degrees

of freedom but in the following discussion, we will make the

Condon approximation, in which f S and f T are assumed to

be independent of the nuclear coordinates and replaced with

identity operators.20

The radical pair Hamiltonian, H1, may be divided into

three terms: a spin term, H1s, a nuclear term, H1n, and a

nuclear-spin coupling term, H1ns,

H1 = H1s + H1n + H1ns. (5)

The product Hamiltonian, H2, consists of the nuclear term

for each of the spin states HS
2n

and HT
2n

, accompanied by

appropriate spin-state projection operators

H2 = PSHS
2n + PTHT

2n. (6)

We assume that there is no coupling between singlet and

triplet product states. This model for the radical pair sys-

tem is simply the multi-state generalisation of the standard

model of electron transfer.17 Thus far we have made no

assumptions about the forms of the different diabatic potential

energy surfaces, only that the Hamiltonian can be separated as

presented.
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FIG. 2. A schematic diabatic potential energy diagram

for a radical pair system with recombinative singlet and

triplet electron transfer pathways. The singlet and triplet

radical pair diabats are very close in energy, whereas the

singlet and triplet product surfaces have a very different

structure.

The coupling between the radical pair spin states is con-

tained in the spin Hamiltonians H1s and H1ns. We shall assume

that the radical pair singlet and triplet potential energy sur-

faces lie very close in energy (i.e., the radical pair has a small

exchange coupling), in which case the spin dynamics will be

much slower than the nuclear dynamics. The nuclear-spin cou-

pling term H1ns causes spin relaxation of the radical pair.23 In

the following discussion, we assume that the spin relaxation is

very slow and so we ignore this term in H1. From this point on,

we also set ∆T = 0, which means we ignore the triplet recom-

bination pathway. This is done to simplify the discussion and

notation, but the generalisation to ∆T , 0 is straightforward

and is presented in Appendix B.

The ensemble of radical ion pairs is described by the den-

sity operator W (t) for the full system. We assume that initially

there are no coherences between electronic states and that

the nuclear degrees of freedom are in thermal equilibrium on

each diabatic potential energy surface. Therefore the density

operator starts in a state of the form

W (0) = ρ1s(0)ρ
eq

1n
|1〉〈1| + ρ2s(0)ρ

eq

2n
|2〉〈2|. (7)

The initial spin density operators are denoted by ρjs(0). We

are ignoring the triplet reaction, and therefore, for state 2,

this initial spin density operator should only contain singlet

components and thus should satisfy

ρ2s(0) = PSρ2s(0)PS. (8)

ρ
eq

jn
is the thermal equilibrium density operator for the nuclear

degrees of freedom on diabat j,

ρ
eq

jn
=

1

Zjn

e−βHjn , (9)

where β−1 = kBT and Zjn = Trn[e−βHjn ]. Because we are

ignoring the triplet product, we have that H2n ≡ HS
2n

. The

radical pair and product potential energy surfaces are in gen-

eral very different so ρ
eq

1n
, ρ

eq

2n
. This is important and

was overlooked in the approach taken by Ivanov et al. in

Ref. 12.

Previous derivations of master equations for radical pair

reactions have only considered simple system-bath models

with harmonic baths and linear system-bath couplings.10,12

We would like to emphasise that the present approach is

more general—the diabatic potential energy surfaces may

be highly anharmonic and the results presented extend

straightforwardly to the case of more complex coupling

between the electronic states [i.e., for general f S and f T in

Eq. (4)].

III. QUANTUM MASTER EQUATIONS

The Liouville von Neumann equation describes the

dynamics of the full density operator of the system,

d

dt
W (t) = LW (t). (10)

The Liouvillian superoperator L is defined by

LA = − i

~
[H, A], (11)

for any operator A on the Hilbert space. The expectation value

of an operator, O, is given by

〈O〉 = Tr[OW (t)], (12)

where Tr denotes the trace over the full Hilbert space.

Exact evolution of the density operator for the full system,

including all spin, electronic, and nuclear degrees of freedom,

is a formidable task given the large size of the full Liouville

space (the space of operators on the Hilbert space). However,

in spin chemistry, we are rarely interested in the dynamics

of the full system. More often we are interested only in the

populations of the radical pair electron spin states and the cor-

responding product states. This information is fully contained

in the reduced density operators for the spin degrees of freedom

of the radical pair and product states,

ρ1s(t) = Trn[〈1|W (t)|1〉], (13a)

ρ2s(t) = Trn[〈2|PSW (t)PS |2〉]. (13b)

Here Trn denotes the partial trace over the nuclear degrees of

freedom. The aim of this work is therefore to obtain a set of

equations for the dynamics of the reduced density operators—

these equations are referred to as master equations.

A. Liouville space projection superoperators

In order to obtain master equations for the reduced den-

sity operators, it is useful to introduce Liouville space pro-

jection superoperators. These project operators in the full
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Liouville space to some subspace of Liouville space.24,25 We

require that our projection superoperator, P, has the following

property:

ρ1s(t) = Trn[〈1|PW (t)|1〉], (14a)

ρ2s(t) = Trn[〈2|PS(PW (t))PS |2〉]. (14b)

If we can obtain a master equation for the projected den-

sity operator, PW (t), then from this we can straightforwardly

obtain the equations of motion for the reduced density oper-

ators. The master equation for PW (t) is also simplified if our

initial density operator is fully contained within the projected

subspace,

PW (0) = W (0). (15)

As such, we need to define a projection superoperator P sat-

isfying these properties. To this end, we define P as a sum of

two other projection superoperators,

P = P1 + P2. (16)

These projection superoperators are defined as follows:

P1A = ρ
eq

1n
|1〉〈1|Trn[〈1|A|1〉], (17a)

P2A = ρ
eq

2n
|2〉〈2|Trn[〈2|PSAPS |2〉], (17b)

where A is any Hilbert space operator. We see that P2
j = Pj

so these are indeed projection superoperators. Also P1P2

= P2P1 = 0 and therefore P is also a projection superop-

erator. Noting that the projected density operator is related to

the reduced density operators by

PjW (t) = ρ
eq

jn
|j〉〈j |ρjs(t), (18)

we see that P also clearly satisfies properties (14)

and (15).

B. The Nakajima-Zwanzig equation

To derive an exact equation of motion for PW (t), we

divide the Hamiltonian into a reference part H0 and a per-

turbation V as

H = H0 + V . (19)

For the Hamiltonian in Eq. (4), we define the reference

Hamiltonian H0 and the perturbation V as

H0 = (H1n + H1s)|1〉〈1| + H2 |2〉〈2|, (20a)

V = ∆(|1〉〈2| + |2〉〈1|)PS, (20b)

where we have explicitly set ∆T = 0 and ∆S ≡ ∆. We have also

neglected the spin-nuclear coupling term. Given this, we can

write the Liouvillian as

L = L0 + LV , (21)

with L0 and LV defined by

L0A = − i

~
[H0, A], (22a)

LV A = − i

~
[V , A], (22b)

for any operator A. Our Liouville space projection superoper-

ator, P, commutes with the reference Liouvillian,

PL0 = L0P. (23)

The interaction picture Liouvillian of V, LI
V (t), is defined

as

LI
V (t)A = e−L0tLV eL0tA = − i

~

[
V I(t), A

]
, (24)

where A is any Hilbert space operator, and the interaction

picture perturbation operator V I(t) is

V I(t) = eiH0t/~Ve−iH0t/~. (25)

A product of an odd number of interaction picture Liouvillians

of V has the following property:

PLI
V (t2n+1) · · ·LI

V (t1)P = 0, (26)

the proof of which is given in Appendix A.

Using standard projection superoperator techniques,24,25

the equation of motion for the projected density operator is

found to be

d

dt
PW (t) = L0PW (t) +

∫ t

0

K(t − t0)PW (t0)dt0. (27)

This is the Nakajima-Zwanzig equation.24,25 The kernel K(t)

is given by26

K(t) = eL0tPLI
V (t)

(

T exp

[∫ t

0

QLI
V (τ)dτ

])
QLVP. (28)

Here Q is the complementary projection superoperator

Q = 1 − P and T is the chronological time-ordering oper-

ator for Liouville space superoperators. We would like to

emphasise that Eq. (27) is formally exact. However it is

also no easier to solve than the Liouville von Neumann

equation for the full system. The reason we introduce it

is that Eq. (27) provides a useful starting point for obtain-

ing approximate master equations for the projected density

operator.

C. Incoherent recombination approximation

We are mostly concerned with systems for which the non-

adiabatic reaction rate is well defined. For this to be true, there

must be a separation of time scales between the dynamics of

PW (t) and those of the kernel K(t). This is true if the spin

dynamics are much slower than the nuclear dynamics. To for-

malise this, we start by taking the one-sided Fourier transform

of the Nakajima-Zwanzig equation. This transform is defined

as17

f̂ (ω) = lim
η→0+

∫ ∞
0

e+i(ω+iη)t f (t)dt, (29)

and the inverse transform for t ≥ 0 is given by

f (t) =
1

2π

∫ ∞
−∞

e−iωt f̂ (ω)dω. (30)

The transform of Eq. (27) is

− iωPŴ (ω) − PW (0) = L0PŴ (ω) + K̂(ω)PŴ (ω). (31)

If the kernel K(t) decays on a much faster time scale than

the dynamics of PW (t), then PW (ω) will be much more

sharply peaked around ω = 0 than K̂(ω). This means that

we can approximate K̂(ω)PŴ (ω) as K̂(0)PŴ (ω).17 With this

approximation and inverting the one-sided Fourier transform,

we obtain the following Markovian and time homogeneous

equation for the projected density operator,

d

dt
PW (t) = L0PW (t) + K̂(0)PW (t), (32)
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in which the superoperator K̂(0) is given by

K̂(0) =

∫ ∞
0

K(t0)dt0. (33)

If we cannot make this approximation, then a rate con-

stant based description of the reaction is not appropriate for

describing the radical pair recombination.

We note that in replacing K̂(ω) with K̂(0) we do not affect

the long time limit ofPW (t). This can be seen by taking the for-

mal solution to the one-sided Fourier transform of the master

equation,

PŴ (ω) = −
(

iω + L0 + K̂(ω)
)−1

PW (0), (34)

and noting that the long-time limit of PW (t) is given by

lim
t→∞

PW (t) = lim
ω→0

(−iω)PW (ω). (35)

Clearly replacing K̂(ω) with K̂(0) does not affect the long-time

limit of PW (t).

D. Field independent rate approximation

The evaluation of K̂(0) is complicated by the H1s term

appearing in H0. However, if the spin dynamics of the radical

pair are much slower than the nuclear dynamics (i.e., if the

energy scale of H1s is much smaller than that of H jn), then we

can set H1s to zero inside this kernel. The a posteriori justifica-

tion for this is that this approximation gives recombination rate

constants that are independent of an applied magnetic field, as

is observed experimentally.

To formalise this, we defineKn(t) = K(t)|H1s=0 as the field

independent rate kernel,

Kn(t) = PLn
V (t)

(

T exp

[∫ t

0

QLn
V (τ)dτ

])
QLVP, (36)

where we define the nuclear interaction picture Liouvillian as

Ln
V (t)A = e−LntLV eLntA = − i

~
[Vn(t), A] (37)

and the nuclear interaction picture perturbation as

Vn(t) = eiHnt/~Ve−iHnt/~, (38)

in which Hn = H1n |1〉〈1| + H2n |2〉〈2|PS. With this approxima-

tion, the master equation for PW (t) is

d

dt
PW (t) = LsPW (t) + KPW (t), (39)

in which the spin Liouvillian is defined as

LsA = −
i

~
[H1s |1〉〈1|, A] (40)

and the rate superoperator K is defined as

K =

∫ ∞
0

Kn(t0)dt0. (41)

To obtain Eq. (39), we have used the fact that L0P = LsP.

The key difference between this master equation and others

widely used in non-adiabatic reaction rate theory is that K is

a superoperator on the spin degrees of freedom as well as the

electronic and nuclear degrees of freedom. The rate superop-

erator is still not significantly easier to evaluate than the full

kernel K(t), so to proceed further we need to use perturbation

theory to approximate K.

E. Perturbative expansion

In the non-adiabatic limit, we assume that the diabatic

coupling ∆ is small. In this limit, we can make a perturbative

expansion of the rate kernel.17 This is achieved by expanding

the time-ordered exponential in Eq. (28). Property (26) of P
means that all odd terms in the expansion vanish and the rate

superoperator can be written as

K =
∞
∑

k=1

K(2k), (42)

where K(2k) is proportional to ∆2k .17 Truncation of this expan-

sion at K(2n) gives an approximate master equation with the

leading order error of O(∆2n+2).

IV. MASTER EQUATIONS FOR NON-ADIABATIC
REACTIONS OF RADICAL PAIRS

Having described the general framework for obtaining

perturbative master equations for the dynamics of the pro-

jected density operator, we will now explicitly obtain master

equations accurate to second and fourth order in the diabatic

coupling ∆ for our radical pair model.

Before proceeding, we note that since P = P1 + P2 we

can rewrite Eq. (39) as

d

dt
PjW (t) = LsPjW (t) +

2
∑

k=1

KjkPkW (t), (43)

where

Kjk = PjKPk . (44)

K11 is the superoperator describing the loss of the radical pair,

and K12 describes the back reaction process, transferring pop-

ulation from state 2 to 1. Similarly K22 describes loss from

state 2 via the back reaction, and K21 describes transfer of

population from state 1 to state 2 in the forward reaction. This

gives a convenient way to separate the terms in the master

equations for the reduced density operators.

At this point, it is also useful to introduce the follow-

ing further notation. The perturbation V may be written

as

V = ∆(σ+ + σ−)PS, (45)

where σ+ = |2〉〈1| and σ− = |1〉〈2|. We note that only

alternating sequences of σ+ and σ− are non-zero and that

only even alternating sequences connect |j〉 with itself. For

example,

〈1|σ−σ+ · · ·σ−σ+ |1〉 = 1, (46)

and only odd alternating sequences connect |1〉 with |2〉,

〈1|σ−σ+ · · ·σ−σ+σ− |2〉 = 1. (47)

Similarly, Vn(t) into Eq. (37) can be written in terms of σn
±(t)

as

Vn(t) = ∆
(

σn
+(t) + σn

−(t)
)

PS, (48)

where σn
+(t) is given by

σn
+(t) = σ+e+iH2nt/~e−iH1nt/~ (49)
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and σn
−(t) = σn

+(t)†. These observations allow us to dramati-

cally simplify the multiple commutators appearing in Kjk , as

any terms not of these forms vanish.

A. Second order master equation

The second order term in K is given by

K(2)
=

∫ ∞
0

PLn
V (t0)LVPdt0. (50)

This is obtained by expanding the time ordered exponential in

Eq. (36), retaining only the leading O(∆0) term. First we will

use this to evaluate K(2)

11
, the second order term appearing in

K11. We can write the Liouvillians in terms of commutators

as

P1L
n
V (t0)LVP1W (t) = − 1

~2
P1

[

Vn(t0), [V ,P1W (t)]
]

. (51)

Writing Vn(t0) in terms of σn
±(t0) and expanding the commu-

tators, there are 16 terms in this expression for K(2)

11
. Using

properties (46) and (47) of σ±, we can eliminate all but two of

these terms, which leaves

K(2)

11
P1W (t) = −∆

2

~2

∫ ∞
0

dt0P1

(

σn
−(t0)σ+PS(P1W (t))

+ (P1W (t))PSσ−σ
n
+(t0)

)

. (52)

With some further manipulations using Eqs. (17) and (49), we

can simplify this to

K(2)

11
P1W (t) = −∆

2

~2

∫ ∞
0

dt0

(

c
(2)

1
(t0)PS(P1W (t))

+ c
(2)

1
(t0)∗(P1W (t))PS

)

, (53)

where the function c
(2)

1
(t) is defined as

c
(2)

1
(t) = Trn

[
ρ

eq

1n
e+iH1nt/~e−iH2nt/~

]
. (54)

The integral of this function from t = 0 to∞ has both real and

imaginary parts. Splitting up the real and imaginary parts, we

find that the K(2)

11
term can be written as

K(2)

11
P1W (t) = −


k

(2)

f

2
PS,P1W (t)

 −
i

~

[
2J (2)PS,P1W (t)

]
,

(55)

where k
(2)

f
is the Fermi golden rule non-adiabatic rate constant

for the forward reaction,27

k
(2)

f
=

2∆2

~2

∫ ∞
0

Re
[
c

(2)

1
(t)

]
dt, (56)

and J (2) is a reactive contribution to the electron spin coupling

given by

J (2)
=

∆
2

2~

∫ ∞
0

Im
[
c

(2)

1
(t)

]
dt. (57)

We therefore see that the K(2)

11
term contains a Haberkorn

reaction term in which the rate constant is the well-known

Fermi golden rule non-adiabatic electron transfer rate. How-

ever it also contains a reactive contribution to the scalar

electron spin coupling, which is not present in the tra-

ditional Haberkorn treatment. We will demonstrate later

that this term is not in general negligible for radical pair

reactions.

We follow the same procedure to evaluate the K(2)

12
term.

First expanding the double commutator as before, writing

Vn(t0) in terms of σn
±(t0), and using the properties of σ±, we

obtain

K(2)

12
P2W (t) =

∆
2

~2

∫ ∞
0

dt0P1

(

σn
−(t0)(P2W (t))σ+

+σ−(P1W (t))σn
+(t0)

)

. (58)

Again with some manipulations using Eqs. (17) and (49), we

can simplify this to

K(2)

12
P2W (t) = k

(2)

b
S−P2W (t). (59)

In this expression, k
(2)

b
is the Fermi golden rule rate constant

for the back reaction,

k
(2)

b
=

2∆2

~2

∫ ∞
0

Re
[
c

(2)

2
(t)

]
dt, (60)

where c
(2)

2
(t) is given by

c
(2)

2
(t) = Trn

[
ρ

eq

2n
e+iH2nt/~e−iH1nt/~

]
, (61)

and S− is a superoperator that transfers a projected opera-

tor P2A from the projected subspace of P2 to the projected

subspace of P1,

S−P2A = ρ
eq

1n
|1〉〈1|Trn[〈2|P2A|2〉]. (62)

Repeating these steps for K(2)

21
and K(2)

22
, we find

K(2)

21
P1W (t) = k

(2)

f
S+P1W (t) (63)

and

K(2)

22
P2W (t) = −k

(2)

b
P2W (t), (64)

where we have defined S+ as the superoperator that trans-

fers the singlet component of a projected operator P1A to the

projected subspace of P2,

S+P1A = ρ
eq

2n
|2〉〈2|PSTrn[〈1|P1A|1〉]PS. (65)

Combining these results, we now have a full master equa-

tion for PW (t). By tracing out the nuclear and electronic

degrees of freedom as in Eq. (14) and using PS =
1
4
− S1 · S2

(where we use unitless spin operators), we obtain the following

set of master equations for the reduced spin density operators

for the two electronic states,

d

dt
ρ1s(t) = −

i

~

[

H1s, ρ1s(t)
]

− i

~

[
(−2J (2))S1 · S2, ρ1s(t)

]

−


k
(2)

f

2
PS, ρ1s(t)

 + k
(2)

b
PSρ2s(t)PS, (66a)

d

dt
ρ2s(t) = k

(2)

f
PSρ1s(t)PS − k

(2)

b
ρ2s(t). (66b)

These quantum master equations (QMEs) have the leading

order error of O(∆4) within the incoherent recombination

approximation. The first term in the master equation for the
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radical pair reduced density operator ρ1s(t) is the normal coher-

ent spin evolution term and the second term is an additional

reactive contribution to the scalar electron spin coupling. The

third term in (66a) is a Haberkorn type term describing the

singlet-selective reaction and the fourth term describes the

back reaction. The master equation for the singlet product

state, Eq. (66b), is a simple first order kinetic equation, with

the first term describing the forward reaction and the second

term describing the back reaction.

Equations (66a) and (66b) are a key result of this paper.

The Haberkorn master equation for the radical pair spin-

density operator has been derived from a first principles

description of the radical pair reaction. This first principles

approach also naturally results in a reactive contribution to

the scalar electron spin coupling, which emerges as a cor-

rection to the conventional Haberkorn master equation. In

Appendix B, we give the full version of these quantum master

equations including the triplet recombination pathway. One

important difference in this case is that the contribution to J (2)

from the triplet reaction pathway has the opposite sign because

PT = 3/4 + S1 · S2.

We may understand the origin of the reactive electron-

spin coupling as follows. The coupling between two states

is known to cause shifts in the energies of the states and the

lowest order correction to the energy levels is of order ∆2.

Because in the model we have considered thus far, the diabatic

coupling only exists between singlet radical pair and prod-

uct states, only the singlet state of the radical pair is shifted

in energy. The net result of this is an electron spin coupling

which is related to the thermally averaged energy shift of radi-

cal pair singlet state. When the triplet recombination pathway

is included as in Appendix B, a net reaction electron spin

coupling emerges from the difference between the thermally

averaged energy shifts of the singlet and triplet radical pair

states.

B. Fourth order master equation

As demonstrated above, a second order treatment of the

non-adiabatic coupling naturally yields the Haberkorn master

equation for the radical pair reaction with an additional elec-

tron spin coupling term. We now go beyond the non-adiabatic

limit and examine the fourth order contribution in ∆ to the

master equation. We will see that a fourth order treatment of

the diabatic coupling not only gives the expected fourth order

corrections to the rate constants and electron spin coupling but

also gives rise to a reactive singlet-triplet dephasing term in

the master equation, similar to that introduced by Jones and

Hore.8,9

The full expression for K(4) is

K(4)
=

∫ ∞
0

dt0

∫ t0

0

dt1

∫ t1

0

dt2

×PLn
V (t0)Ln

V (t1)(1 − P)Ln
V (t2)LVP. (67)

As before, we consider each component K(4)

jk
of K(4) in

turn.

For K(4)

11
, we can write terms in the integrand as nested

commutators, for example,

P1L
n
V (t0)Ln

V (t1)Ln
V (t2)LVP1W (t)

=

1

~4
P1

[

Vn(t0),
[

Vn(t1),
[

Vn(t2), [V ,P1W (t)]
] ] ]

. (68)

We then expand the nested commutators and write Vn(tn) in

terms of σn
±(tn). Overall there are 768 terms appearing in this

expansion, but using the properties ofσ±, we can eliminate the

majority of these terms. This leads to a Haberkorn term and an

electron coupling term as in K(2)

11
. Additionally, non-vanishing

terms with PS on both sides of P1W (t) appear, for example,

terms of the form

P1(σ−σ+PS(P1W (t))PSσ−σ+). (69)

Noting that PS = 1 − PT, we can write PS(P1W (t))PS as

PS(P1W (t))PS =
1

2
{PS, (P1W (t))} − 1

2
(PT(P1W (t))PS

+ PS(P1W (t))PT). (70)

We notice that this produces terms in K(4)

11
which contribute to

the Haberkorn reaction term and an additional singlet-triplet

dephasing term as in Eq. (3). After some manipulations, the

final result for K(4)

11
is

K(4)

11
P1W (t) = −


k

(4)

f

2
PS,P1W (t)

 −
i

~

[
2J (4)PS,P1W (t)

]

− k
(4)

d

(

PS(P1W (t))PT + PT(P1W (t))PS

)

.

(71)

Here we define k
(4)

f
as the fourth order contribution to the

forward rate constant, J (4) as the fourth order contribution

to the reactive electron spin coupling, and k
(4)

d
as the fourth

order singlet-triplet dephasing rate. The explicit expressions

for these quantities are somewhat lengthy, involving triple time

integrals, and are given in Appendix C. Repeating this for the

other components of the fourth order rate superoperator, we

find

K(4)

12
P2W (t) = k

(4)

b
S−P2W (t), (72)

K(4)

21
P1W (t) = k

(4)

f
S+P1W (t), (73)

K(4)

22
P2W (t) = −k

(4)

b
P2W (t), (74)

where k
(4)

b
is the fourth order contribution to the back reaction

rate.

Combining these expressions for the fourth order super-

operator components with the second order terms and Eq. (43)

and taking the trace over the nuclear and electronic state

degrees of freedom as in Eq. (14), we find that the fourth order

master equations for the reduced density operators for the spin

degrees of freedom are

d

dt
ρ1s(t) = −

i

~

[

H1s, ρ1s(t)
]

− i

~

[

(−2J)S1 · S2, ρ1s(t)
]

−
{

kf

2
PS, ρ1s(t)

}

− kd

(

PSρ1s(t)PT + PTρ1s(t)PS

)

+ kbPSρ2s(t)PS, (75a)
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d

dt
ρ2s(t) = kf PSρ1s(t)PS − kbρ2s(t). (75b)

Here we define J = J (2) + J (4), kf = k
(2)

f
+ k

(4)

f
, kb = k

(2)

b
+ k

(4)

b
,

and kd = k
(4)

d
. These quantum master equations have the

leading order error, within the incoherent recombination and

field-independent rate approximations, ofO(∆6). The rate con-

stants kf and kb are the same rate constants as those appear-

ing in other formal expressions for the non-adiabatic rate

to fourth order.17,19 Equations (75a) and (75b) are the sec-

ond key result of this paper. They show that fourth order

contributions in the diabatic coupling to the recombination

dynamics give rise to a singlet-triplet dephasing term in the

master equation for the radical pair spin density operator in

addition to the Haberkorn term and a reactive electron spin

coupling.

The physical origin of the dephasing can be understood as

follows. Fourth and higher order terms in ∆ in the kernel con-

tain transition state recrossing contributions.18,19,28,29 These

recrossing contributions project the radical pair spin system

onto the singlet state, which is known to result in singlet-triplet

dephasing.30 This results in an additional decay of coher-

ences as well as a reduction in the total recombination rate

constant.

We can see that higher order terms in∆ appearing inKwill

not introduce additional spin superoperators to this equation

because P2
S
= PS, but the parameters kf, kb, J, and kd will

all contain higher order contributions. Therefore the master

equation accurate to all orders in ∆ has the form of the fourth

order master equation, Eq. (75). This is of the same form of

the Jones and Hore master equation,8,9 but unlike in the Jones-

Hore master equation the dephasing rate kd is not necessarily

equal to kf/2. We should note that the dephasing only appears at

fourth order in ∆, so the leading order terms in ∆ in the master

equation are the Haberkorn term and the reactive electron spin

coupling. In the supplementary material, we show that this is

true when the triplet recombination pathway is included as

well.

C. Marcus-Hush theory limit

Marcus-Hush theory provides an approximate formula for

the rate of an electron transfer reaction in the non-adiabatic

(second order in ∆) and classical limits.31–33 Here we extend

the Marcus theory for the rate constant to obtain an analogous

expression for the reactive contribution to the scalar electron

spin coupling.

One way to derive Marcus theory is to start from the

spin-boson model34 for the electron transfer.33 Within this

model, the N nuclear degrees of freedom are treated as a

bath of harmonic modes and H1n and H2n can be written

as

H1n =

N
∑

k=1

*,
P2

k

2mk

+
1

2
mkω

2
k Q2

k + ckQk
+-, (76a)

H2n =

N
∑

k=1

*,
P2

k

2mk

+
1

2
mkω

2
k Q2

k − ckQk
+- − ǫ , (76b)

where Pk and Qk are the momentum and position operators for

bath mode k and mk andωk are the mass and angular frequency

of the mode. ǫ is the bias which for this model is exactly the

negative of the free energy difference between the states, ∆rG.

The reorganisation energy, λ, is related to ωk , mk , and the

coupling constants ck by

λ =

N
∑

k=1

2c2
k

mkω
2
k

. (77)

Within the classical Marcus-Hush approximation, we replace

all quantum mechanical operators with the corresponding clas-

sical variables, i.e., Pk → pk and Qk → qk , and we replace the

trace over bath mode k in Eq. (54) with

Trk →
1

2π~

∫ ∞
−∞

dpk

∫ ∞
−∞

dqk . (78)

Integrating out the momenta, the classical approximation to

c
(2)

1
(t) is then

c
(2)

1,cl
(t) = eβλ/4+iǫ t/~

N
∏

k=1

*,
2πkBT

mkω
2
k

+-
1
2

×
∫ ∞
−∞

dqke−(mkω
2
k
q2

k
+2ckqk )/2kBT+2ickqk t/~. (79)

Performing the integrals and evaluating the product, we find

that this gives

c
(2)

1,cl
(t) = ei(ǫ−λ)t/~−kBTλ(t/~)2

, (80)

and using Eq. (56), we obtain

k
(2)

f,cl
=

∆
2

~

√

π

kBTλ
e−(λ−ǫ )2/4λkBT , (81)

which is the well-known Marcus-Hush theory expression for

the electron-transfer rate. Now using Eq. (80) in Eq. (57), we

obtain the following expression for the reactive electron spin

coupling:

J
(2)

cl
=

∆
2

4

√

π

kBTλ
e−(λ−ǫ )2/4λkBT erfi

(

ǫ − λ
2
√

kBTλ

)

, (82)

where erfi(x) is the imaginary error function,

erfi(x) =
2
√
π

∫ x

0

ez2

dz. (83)

This is the third main result of this paper, a formula for the reac-

tive scalar electron spin coupling in the non-adiabatic limit

which depends only on parameters in the Marcus-Hush for-

mula for the electron transfer rate. It should be noted that

the integral of c
(2)

1
(t) appearing in Eqs. (56) and (57) is an

analytic function of ǫ in the upper half-plane and therefore

the forward rate constant, k
(2)

f
, and the reactive electron spin

coupling, J (2), are related by a Kramers-Kronig relation. It

can also be shown that this is true for anharmonic diabatic

surfaces.

The Marcus-Hush theory values for k
(2)

f,cl
and 2J

(2)

cl
/~ are

plotted in Fig. 3 for T = 300 K and λ = 1 eV. We see that

in both the symmetric electron transfer and strongly inverted

regimes, the scalar electron spin coupling can in fact be orders

of magnitude larger than the rate constant. For example, for

this set of parameters when ǫ = 0 or ǫ = 2λ, the ratio of these

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-030830
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FIG. 3. The Marcus-Hush theory rate constant and the reactive scalar electron

spin coupling as a function of ǫ /λ forλ= 1 eV and T = 300 K. Hereτ is defined

by τ−1
= ∆

2
√

π/(~2kBTλ).

quantities, |2J
(2)

cl
/~k

(2)

f,cl
|, is over 1000. However, close to the

maximum in the Marcus-Hush theory rate constant, the rate

constant is much larger than the reactive contribution to the

scalar electron spin coupling, i.e., k
(2)

f,cl
≫ |2J

(2)

cl
/~|. Clearly in

general we cannot say whether or not the reactive contribution

to the scalar electron spin coupling is negligible.

V. NUMERICAL TESTS

In deriving the master equations for the radial pair elec-

tron transfer reaction, we introduced three approximations:

(1) the incoherent recombination approximation, (2) the field

independent rate approximation, and (3) the perturbative

expansion of the rate superoperator. In order to demonstrate

that these approximations are valid for radical pair electron

transfers, we now compare master equation results to an

exactly soluble model for a condensed phase electron transfer

reaction.

A. Model radical pair systems

In general, the potential energy surfaces of radical pair

systems are highly complex and solving the Liouville von Neu-

mann equation for the full radical pair for arbitrary potential

energy surfaces is generally not tractable. However, for small

systems and for certain potential energy surfaces, methods

exist that can produce numerically exact results for the quan-

tum dynamics. We consider one such exactly soluble system—

the spin-boson model.34,35 In this model, the electronic system

is coupled to an infinite bath of harmonic oscillators. The

spin-boson model has been applied extensively as a model

of condensed phase electron transfer.28,33,36–39 The Hamilto-

nians for the radical pair and product surfaces are given by

Eq. (76). The coupling constants ck are related to the spectral

density for the system J(ω) by

J(ω) =
π

2

N
∑

k=1

c2
k

mkωk

δ(ω − ωk). (84)

In our model, we use the Debye spectral density, which is given

by

J(ω) =
λ

2

ωωc

ω2 + ω2
c

, (85)

in which λ is the reorganisation energy and ωc is the cut-

off frequency. For the spin-boson model, we can obtain exact

results using the Hierarchical Equations of Motion (HEOM)

method.35

We consider two model radical pair spin Hamiltonians and

initial conditions, in which we only include the singlet reaction

pathway. In Model I, we take the spin Hamiltonian H1s to be 0

and we consider a system initially in a superposition of singlet

and triplet states (|S〉 + |T0〉)/
√

2 so the initial spin density

operator is

ρ1s(0) =
1

2
(|S〉〈S| + |S〉〈T0 | + |T0〉〈S| + |T0〉〈T0 |), (86)

and we choose ρ2s(0) to be 0. This somewhat artificial model

is chosen to allow easy comparison of the decay rates of

the populations and the singlet-triplet coherences as a func-

tion of the diabatic coupling ∆. For this, we can exactly

calculate all parameters appearing in the second and fourth

order master equations using the analytic expressions given in

Appendixes C and D.

In Model II, we consider a radical pair in an external mag-

netic field, B, with a single I = 1/2 nuclear spin in one of the

radicals. The spin Hamiltonian for Model II is

H1s = ω0S1z + ω0S2z + aI · S1. (87)

ω0 = −~γeB is the Zeeman frequency of the electron spin,

with gyromagnetic ratio γe, and Siz is the z component of

the unitless electron spin operator for radical i. The hyperfine

coupling constant between the nuclear and electron spins in

radical 1 is denoted by a, and S1 and I are the electron and

nuclear spin vector operators for radical 1. The initial state

is chosen to be a pure singlet radical pair so ρ1s(0) is given

by

ρ1s(0) =
1

2
PS (88)

and ρ2s(0) = 0. This is chosen as a realistic model of a singlet-

born photogenerated radical ion pair, in particular, to demon-

strate the importance of including the reactive contribution to

the scalar electron spin coupling and the validity of the field

independent rate approximation.

B. Simulation details

1. Model parameters

In both models, we use the Debye spectral density with

~ωc = 1.24 meV. This relatively small value for ~ωc is used to

increase the computational efficiency of the exact calculations.

In Model I, we set the bias ǫ between the radical pair state and

singlet product state to 0 eV and the reorganisation energy

λ = 0.25 eV, and in Model II, we set ǫ = 0.1 eV and λ = 0.5 eV.

All simulations are run at a temperature of T = 300 K. We vary

the diabatic coupling∆ between 0.1 and 3 meV for Model I and

in Model II we set ∆ = 0.1 meV. The spin system parameters

in Model II are chosen to be ω0/|~γe| = 0.5 mT and a/|~γe|

= 1.5 mT as typical radical parameters.

2. Exact simulations

Numerically exact results for the spin-boson model are

obtained using the well-established Hierarchical Equations
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of Motion (HEOM) method.40 We use a Matsubara expan-

sion of the bath correlation functions and a frequency based

truncation scheme41 to construct the hierarchy of auxiliary

density operators required for this method. Using this trunca-

tion scheme, results converged to graphical accuracy for Model

I and Model II are obtained using a maximum frequency of

250 ωc. This corresponds to a hierarchy of 369 auxiliary

density operators, including contributions from the first two

Matsubara modes.

In order to efficiently integrate over the long time scales

required here, it is necessary to use an adaptive order and time

step Taylor series integrator. The scaling scheme of Shi et al.42

is used in order to allow for effective control of the errors in

the integrator.

3. Master equations

The second and fourth order rate constants, kf and kb, elec-

tron spin couplings, J, and dephasing rates, kd, are obtained

using the analytic expressions for the spin-boson model which

are given in Appendixes C and D. The parameters are calcu-

lated by discretizing the spectral density into a finite set of

modes using the standard procedure.36–38 We find that a dis-

cretization into 1000 modes gives converged results for all

parameters. The sets of calculated master equation parameters

for both models are given in Table I.

For Model I, the master equations, Eqs. (1), (66), and

(75), are analytically soluble. The resulting expressions for

the matrix elements of ρ1s(t) and ρ2s(t) are

ρSS(t) = 〈S|ρ1s(t)|S〉 =
1

2

kb + kf e
−(kf +kb)t

kf + kb

,

ρST0
(t) = 〈S|ρ1s(t)|T0〉 =

1

2
e−2iJt/~−(kf/2+kd)t ,

ρT0S(t) = 〈T0 |ρ1s(t)|S〉 = ρST0
(t)∗,

ρT0T0
(t) = 〈T0 |ρ1s(t)|T0〉 =

1

2
,

ρ2(t) = 〈S|ρ2s(t)|S〉 =
1

2
− ρSS(t).

(89)

In Model I, kf = kb because in this model ǫ = 0. In the second

order master equation, kd is zero, and for the Haberkorn mas-

ter equation, Eq. (1), J = kd = 0 (i.e., we still account for the

back-reaction in the way predicted by the second order master

equation). For Model II, the master equations form a set of lin-

ear equations which can be solved numerically using standard

techniques.

TABLE I. Parameters for the master equations for Models I and II, calculated

using the expressions given in the main text and Appendixes C and D.

Model I Model II

~
2k

(2)

f
/2∆2 0.660 94 ns 0.240 57 ns

~
2k

(2)

b
/2∆2 0.660 94 ns 5.027 0 × 10☞3 ns

2~J(2)/∆2
☞3.395 2 ns ☞2.078 9 ns

~
4k

(4)

f/b
/2∆4

☞1.063 4 × 10☞5 ps3 . . .

2~3J(4)/∆4 2.437 0 × 10☞6 ps3 . . .

~
4k

(4)

d
/∆4 1.044 7 × 10☞5 ps3 . . .

C. Results

1. Model I

In Fig. 4, we compare our master equation and exact

HEOM simulations for radical pair Model I for a range of val-

ues of the diabatic coupling between 0.1 and 3.0 meV. In panels

(d)–(i), we also plot the Haberkorn prediction for the time evo-

lution of the singlet-triplet coherence using the numerically

exact forward rate constant which is obtained by fitting ρSS(t)

[panels (a)–(c)] from the HEOM simulation to a function of

the form given in Eq. (89).

The radical pair singlet population, ρSS(t), shown in pan-

els (a)–(c), is captured qualitatively for all values of ∆ by both

the second and fourth order master equations. The Haberkorn

fit to ρSS(t), using Eq. (89), is numerically exact (R2 = 1),

which demonstrates the validity of incoherent recombination

approximation for this model. The fitted rate constants are

kf = 0.030 54 ns−1, 10.63 ns−1, and 20.58 ns−1 for ∆ = 0.1,

2.0, and 3.0 meV, respectively. As ∆ increases, the agree-

ment between the exact results and the master equation results

decreases, with the second order quantum master equation

(QME) increasingly overestimating the forward and backward

rate constants and the fourth order QME increasingly under-

estimating them. This is of course unsurprising given that

our master equations are derived from perturbation theory.

Improvements to perturbation theory can be made using the

Padé-approximant k ≃ k(2)/(1 − k(4)/k(2)) for the rate constant,

as has been explored in studies by other authors.17,19,28,39,43

The absolute value of the singlet-triplet coherence,

|ρST0
(t)|, is shown in panels (d)–(f) of Fig. 4. For the master

equations, |ρST0
(t)| = (1/2)e−(kf/2+kd)t , which depends only

on kd and kf and not on J. Panels (d)–(f) show that the fourth

order QME provides as good a description of the evolution of

the coherences as it does for ρSS(t) in panels (a)–(c). It is at

first surprising that the second order QME provides an equally

good description of the evolution of |ρST0
(t)|. This is because

for the parameters in Model I k
(4)

f
/2 + k

(4)

d
≈ 0 (see Table I),

and therefore, the total decay rate of |ρST0
(t)| for both the sec-

ond and fourth order QMEs is approximately k
(2)

f
. In other

words, because the second order QME overestimates kf for

larger ∆, it coincidentally describes |ρST0
(t)| very well for all

values of ∆ examined here. The Haberkorn prediction for the

evolution of |ρST0
(t)|, which uses the numerically exact kf but

which does not include any additional dephasing, increasingly

underestimates the decay rate as∆ increases, which shows that

there is in fact additional singlet-triplet dephasing for larger

values of the diabatic coupling strength.

Furthermore, the Haberkorn master equation, which does

not include a reactive electron spin coupling term, fails to cap-

ture the evolution of the imaginary part of the singlet-triplet

coherences, Im[ρST0
(t)], which is shown in panels (g)–(i) of

Fig. 4. Our master equations capture the oscillation frequency,

which arises due to the reactive scalar electron spin coupling

J, exceptionally well in these examples. The most signifi-

cant deviation is for ∆ = 3.0 meV, shown in panel (i), where

the second order master equation slightly overestimates the

oscillation frequency.

This model demonstrates that the conventional Haberkorn

reaction operator provides an accurate description of the



064107-11 Fay, Lindoy, and Manolopoulos J. Chem. Phys. 149, 064107 (2018)

FIG. 4. The singlet population, absolute value, and imaginary part of the singlet-triplet coherence for the radical pair Model I with three different values of the

diabatic coupling calculated using HEOM and the three different master equations. ∆ = 0.1 meV for (a), (d), and (g); ∆ = 2.0 meV for (b), (e), and (h); and

∆ = 3.0 meV for (c), (f), and (i).

reduced density operators in the small ∆ limit, provided

the second order correction to the scalar electron spin cou-

pling is included. The additional singlet-triplet dephasing term

becomes more significant for larger values of ∆. However in

the non-adiabatic limit, ∆ → 0, the most important terms

are the Haberkorn reaction term and the reactive electron

spin coupling, which provide a sufficient description of the

dynamics.

2. Model II

In Fig. 5, we plot the radical pair singlet population,

PS(t) = Trs[PSρ1s(t)], for Model II, comparing the exact

HEOM results, the second order QME results, and the

Haberkorn QME results. The Haberkorn master equation

results use the Fermi golden rule rate k
(2)

f
given in Eq. (56),

FIG. 5. The radical pair singlet population as a function of time for the radical

pair Model II. The exact HEOM results, second order quantum master equation

(QME), and Haberkorn master equation are shown. The Haberkorn master

equation uses the Fermi golden rule rate constant but does not include the

reactive electron spin coupling.

which appears in the second order QME, but the reactive elec-

tron spin coupling term is excluded. Our second order QME

quantitatively agrees with the exact HEOM results. However,

for times greater than 10 ns, the Haberkorn master equation

results deviate significantly from the exact results. Both the

frequencies and magnitudes of the oscillations in the singlet

radical pair population are incorrect for the Haberkorn master

equation.

This simple model illustrates two important points. First

for this model H1s , 0, but in our results we do not need to

account for this in calculating the reaction rate constants for the

QME as is demonstrated by the agreement between our sec-

ond order master equation and the exact results. This illustrates

the validity of the field independent rate approximation. Sec-

ond, these results show that for a physically reasonable model

for the radical pair electron transfer, it is essential to include

the reactive electron spin coupling term. Previous derivations

of the Haberkorn reaction operator12 have ignored this term,

and because these were not so directly related to reaction rate

theory, it was difficult to say whether or not this was valid.

The present results, combined with our expression relating the

Marcus-Hush theory of electron transfer to the reactive elec-

tron spin coupling [Eq. (82)], now provide strong evidence that

the reactive contribution to the scalar electron spin coupling is

not in general negligible.

VI. CONCLUDING REMARKS

In this paper, we have used the well-established theory of

electron transfer reactions17,19,28,29 to derive quantum master

equations for spin selective electron transfers of radical pairs.

Our results confirm the validity of the well-known Haberkorn

master equation with two corrections. First, we find that there

is a reactive contribution to the scalar electron spin coupling

that results from the coupling between the spin, electronic,
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and nuclear degrees of freedom—this arises at leading order

in the diabatic coupling along with the Haberkorn reaction

term. Second, a Jones-Hore-like8,9 reactive contribution to the

singlet-triplet dephasing rate emerges at fourth order in the

diabatic coupling. These additional terms are simple and can

be straightforwardly included in quantum and semiclassical

simulations of radical pairs.16,44–49

We have also derived a simple expression for the reac-

tive scalar electron spin coupling within the framework of

Marcus theory. This expression, Eq. (82), is fully consis-

tent with the Marcus-Hush expression for the singlet and

triplet electron transfer rate constants and gives the reactive

scalar electron spin coupling solely in terms of the param-

eters appearing in the Marcus-Hush formula for the rate

constants.

We have validated our master equations, and the approx-

imations required to derive them, by comparison with exact

numerical simulations for a simple, but widely studied, model

of condensed phase electron transfer. In particular, these results

demonstrate the importance of including the reactive contribu-

tion to the scalar electron spin coupling. The approach taken

in this work can also be generalised to more complex systems

with multiple reaction pathways and/or more complex mech-

anisms of electron transfer, such as long range superexchange

and hopping mechanisms.4,50,51

At this point, it is worth noting that although the

Haberkorn reaction term does not contain electron spin cou-

pling or singlet-triplet dephasing terms, these terms often

appear anyway in models of radical pair reactions because

there are other well-known physical mechanisms that give

rise to them. Direct exchange and superexchange interactions

between radicals give rise electron spin coupling,2,4 and mod-

ulation of these interactions by molecular motion leads to

singlet-triplet dephasing.26,30,46,52 The coupling strength and

dephasing rate are often fitted to experimental data, such as

Magnetically Affected Reaction Yield (MARY) spectra2,3 or

Time Resolved Electron Paramagnetic Resonance (TREPR)

spectra,4,53 and these fitted parameters would naturally contain

both reactive and non-reactive contributions. As previously

noted by Jones and Hore in the context of the dephasing rate,8,9

disentangling these contributions in real experimental data is

likely to be very difficult because of the difficulty in quantita-

tively predicting any single contribution to the dephasing rate

or electron spin coupling.

Despite the difficulties in separating reactive and non-

reactive contributions to the electron spin coupling, we would

like to suggest two simple experiments that might be able

to disentangle them. Suppose that for a given radical pair

the singlet recombination rate is much larger than the triplet

recombination rate and that the dominant contribution to

the reactive electron spin coupling comes from the sin-

glet pathway (∆S ≫ ∆T). Using the Marcus-Hush theory

expressions for kS ≡ k
(2)

f,cl
and J ≡ J

(2)

cl
in Eqs. (81) and

(82), we see that their ratio depends only on the Marcus-

Hush activation energy Ea = (λ − ǫ)2/4λ and the sign of

ǫ − λ,

2J

~kS

=

1

2
sign(ǫ − λ)erfi*,

√

Ea

kBT
+-. (90)

The recombination rate constants and total scalar electron spin

coupling can be measured by TREPR or MARY spectroscopy

and Ea can be determined from the temperature dependence

of kS. By comparing the theoretical ratio of 2J/~ to kS, one

could determine the relative sizes of the reactive and non-

reactive contributions to the total electron spin coupling. This

argument applies equally in the case where the triplet rate

is much larger than the singlet, but the sign of 2J/~kT is

reversed.

An alternative suggestion is to measure the sign of the

electron spin coupling of a molecular radical ion pair by

TREPR spectroscopy54 under conditions where it is known

that either the singlet or triplet reaction pathway dominates.

Some radical pair systems undergo an inversion of the domi-

nant reaction pathway on changing solvent conditions.55 This

would not be expected to change the sign of any non-reactive

exchange coupling, which is typically controlled by through-

bond interactions, but would invert the sign of the reactive

spin-coupling (see Appendix B).

The existence of reactive contributions to singlet-triplet

dephasing rates and electron spin coupling in electron trans-

fer reactions in radical pairs may have significant implications

for theoretical investigations into magnetoreception in birds

and other animals. In many models of the radical pair based

avian magnetoreceptor, electron spin coupling is neglected

on the assumption that the two radicals are well-separated in

space.56,57 We now however have a strong theoretical basis for

saying that an electron spin coupling will be present due to the

spin-selective radical pair recombination.

Overall, we hope that this work will put the Haberkorn

master equation, and all previous studies of electron transfer

reactions in radical pairs which have used it, on a stronger

theoretical footing. In the non-adiabatic limit, the Haberkorn

reaction term gives the correct description of spin-selective

electron transfer processes, provided a reactive scalar electron

spin coupling is also included in the master equation. Other

master equations proposed by other authors do not correctly

describe the spin-selective recombination process for the type

of reaction considered in this work.

Finally, we should note that a reactive contribution to the

scalar electron spin coupling, similar to that proposed here, has

been suggested previously by Vitalis and Kominis in Ref. 58.

However, their description of the recombination process is

quite different to ours, and it is not related in such a direct

way to standard electron transfer rate theory. Moreover we

have explicitly verified the accuracy of the scalar electron spin

coupling terms in our second and fourth order master equa-

tions by comparison with exact HEOM results in physically

reasonable electron transfer regimes.

SUPPLEMENTARY MATERIAL

In the supplementary material, we outline the generalisa-

tion of our fourth order quantum master equation, Eq. (75),

to the case where a triplet recombination pathway is included

and to the case where the diabatic coupling is non-constant,

i.e., f S , 1 in Eq. (4). We demonstrate that the general

form of our fourth order master equation is unchanged in

these cases, but the expressions for the rate, dephasing, and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-030830
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spin coupling constants appearing in the master equation are

changed.
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APPENDIX A: PROOF OF EQ. (26)

In order to prove the result in Eq. (26), we first note that

V I(t) is given by

V I(t) = ∆
(

G(t)eiH1st/~PS |1〉〈2| + |2〉〈1|PSe−iH1st/~G(t)†
)

,

(A1)

where

G(t) = e+iH1nt/~e−iH2nt/~. (A2)

We also note that G(t)eiH1st/~PS is an operator that does not

act on the electronic state degree of freedom and that for any

operator A, PA is diagonal in the diabatic electronic state

basis. That is, PA = |1〉〈1|B + |2〉〈2|C, where B and C are

the operators that only act on the nuclear and spin degrees of

freedom.

First let us consider LI
V (t1)PA. From the definition

of LI
V (t) in Eq. (24), it is clear that this will be of the

form

LI
V (t1)PA = |1〉〈2|B′ + |2〉〈1|C ′, (A3)

where B′ and C ′ are the operators on the nuclear and spin

degrees of freedom. P removes any off-diagonal terms in

the diabatic electronic state basis, P(|1〉〈2|B′) = 0 and

P(|2〉〈1|C ′) = 0, and therefore, the result in Eq. (26) clearly

holds for n = 0,

PLI
V (t1)P = 0. (A4)

It is now straightforward to extend this to all products of

an odd number of LI
V (tk)s. Again from the definition of LI

V (t)

in Eq. (24), we see that

LI
V (t2)LI

V (t1)PA = |1〉〈1|B′′ + |2〉|2 〉C ′′, (A5)

where B′′ and C ′′ again only operate on the nuclear and spin

degrees of freedom. We see that this is of the same form as PA

and therefore

PLI
V (t3)LI

V (t2)LI
V (t1)P = 0. (A6)

Iterating this argument, we see that in general an even number

of LI
V (tk)s acting on PA give an operator that only contains

terms which are diagonal in the diabatic electronic state basis

and an odd number of LI
V (tk)s acting on PA give an oper-

ator that only contains terms that are off-diagonal in this

basis. Because P removes any terms which are off-diagonal,

Eq. (26) clearly holds for any product of an odd number

of LI
V (tk)s.

APPENDIX B: INCLUDING THE TRIPLET
REACTION PATHWAY

The same techniques outlined in the main text can be

used to derive the second order master equations for a rad-

ical pair undergoing both singlet and triplet state selective

electron transfer reactions, i.e., when we consider the full

Hamiltonian Eq. (4) with ∆T , 0. In doing so, we assume

that there are initially no coherences between the singlet and

triplet product states and that initially the nuclei on each state

are at thermal equilibrium on that diabatic potential energy

surface. The general form of the second order master equa-

tions for the radical pair spin density operator, ρ1s(t), and the

singlet and triplet product spin density operators, ρS
2s

(t) and

ρT
2s

(t), is

d

dt
ρ1s(t) = −

i

~

[

H1s, ρ1s(t)
]

− i

~

[
(−2J (2))S1 · S2, ρ1s(t)

]
−
{
K

(2)
s , ρ1s(t)

}
+ k

(2)

b,S
PSρ

S
2s(t)PS + k

(2)

b,T
PTρ

T
2s(t)PT, (B1a)

d

dt
ρS

2s(t) = k
(2)

f,S
PSρ1s(t)PS − k

(2)

b,S
ρS

2s(t), (B1b)

d

dt
ρT

2s(t) = k
(2)

f,T
PTρ1s(t)PT − k

(2)

b,T
ρT

2s(t). (B1c)

Here K
(2)
s is the Haberkorn reaction operator with the sec-

ond order forward rate constants for the two spin selective

recombination pathways,

K
(2)
s =

k
(2)

f,S

2
PS +

k
(2)

f,T

2
PT, (B2)

and J (2) is now the full reactive electron spin coupling, which

is a difference of singlet and triplet components,

J (2)
= J

(2)

S
− J

(2)

T
. (B3)

The triplet contribution appears with the opposite sign to the

singlet contribution because PS =
1
4
− S1 · S2 and PT =

3
4

+

S1 · S2. The expressions for the parameters in these equations

are the same as the expressions appearing in the main text but

with H2n replaced with HS
2n

for k
(2)

f,S
, k

(2)

b,S
, and J

(2)

S
and with HT

2n

for k
(2)

f,T
, k

(2)

b,T
, and J

(2)

T
.

The extension of this to fourth and higher orders in ∆S

and ∆T is presented in the supplementary material. The fourth

order master equation is of the same form as Eq. (B1) but

with an additional singlet-triplet dephasing term in the equa-

tion for ρ1s(t). It should also be noted that when the Condon

approximation is not made, i.e., when f S and f T in Eq. (4) are

not assumed to be identity operators, the form of the master

equation is not changed, but the expressions for kf, kb, J, and

kd are modified. This is also discussed in the supplementary

material.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-030830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-030830
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-030830


064107-14 Fay, Lindoy, and Manolopoulos J. Chem. Phys. 149, 064107 (2018)

APPENDIX C: FOURTH ORDER RATE EXPRESSIONS

The expressions for the fourth order contributions to

the reaction rate constants, singlet-triplet dephasing rate, and

scalar electron spin coupling are related to the correlation

functions c
(2)

1
(t) and c

(2)

2
(t), defined in Eqs. (54) and (61),

as well as the three-time correlation functions defined as

follows:

c
(2)

1
(t0, t1, t2) = Trn

[
ρ

eq

1n
G(t0)G(t1)†G(t2)

]
, (C1)

c
(2)

2
(t0, t1, t2) = Trn

[
ρ

eq

2n
G(t0)†G(t1)G(t2)†

]
, (C2)

where G(t) is given by Eq. (A2). The fourth order contribution

to the rate constant is19

k
(4)

f
= −2∆4

~4

∫ ∞
0

dt0

∫ t0

0

dt1

∫ t1

0

dt2

(

Re
[
c

(4)

1
(t0, t1, t2) + c

(4)

1
(t2, t1, t0) + c

(4)

1
(t1, t0, t2) + c

(4)

1
(t2, t0, t1)

]
− 2Re

[
c

(2)

1
(t0 − t1)

]
Re

[
c

(2)

1
(t2)

]
− 2Re

[
c

(2)

2
(t0 − t1)

]
Re

[
c

(2)

1
(t2)

])
. (C3)

The fourth order contribution to the back-reaction rate, k
(4)

b
, is

obtained by simply swapping the state indices 1 and 2 in the

above expression. The fourth order contribution to the electron

spin coupling is

J (4)
= − ∆

4

2~3

∫ ∞
0

dt0

∫ t0

0

dt1

∫ t1

0

dt2

×
(

Im
[
c

(4)

1
(t0, t1, t2)

]
− Im

[
c

(2)

1
(t0 − t1)c

(2)

1
(t2)

])
. (C4)

Finally, the fourth order singlet-triplet dephasing rate constant is

k
(4)

d
=

∆
4

~4

∫ ∞
0

dt0

∫ t0

0

dt1

∫ t1

0

dt2

(

Re
[
c

(4)

1
(t2, t1, t0) + c

(4)

1
(t1, t0, t2) + c

(4)

1
(t2, t0, t1)

]
−Re

[
c

(2)

1
(t0 − t1)∗c(2)

1
(t2)

]
− 2Re

[
c

(2)

2
(t0 − t1)

]
Re

[
c

(2)

1
(t2)

])
. (C5)

The rate constant expression in Eq. (C3) is consistent with

that obtained previously by others—e.g., Ref. 19. The triple

integrals in these expressions were evaluated numerically to

calculate the parameters for the fourth order master equation

results for Model I in Fig. 4.

APPENDIX D: SPIN BOSON CORRELATION
FUNCTIONS

Analytic expressions for the spin-boson correlation func-

tions can be obtained using harmonic oscillator coherent

states.39 These expressions are

c
(2)

1
(t) = exp(ζ(t) + iǫ t/~), (D1)

c
(4)

1
(t0, t1, t2) = exp

(

ζ(t1) + ζ(t0 − t2)

− ζ(t0) − ζ(t2) − ζ(t0 − t1)

− ζ(t1 − t2) + iǫ(t0 + t2)/~
)

, (D2)

where the function ζ(t) is given by

ζ(t) = −κ(t) + iφ(t), (D3)

in which κ(t) and φ(t) are related to the spectral density

by

κ(t) =
4

π~

∫ ∞
0

dω
J(ω)

ω2
coth(

β~ω

2
)(1 − cos(ωt)), (D4)

φ(t) = − 4

π~

∫ ∞
0

dω
J(ω)

ω2
sin(ωt). (D5)

The equivalent expressions for c
(2)

2
(t) and c

(4)

2
(t0, t1, t2) are

obtained by changing ǫ in the above expressions to −ǫ . These

expressions give rate constants consistent with those obtained

previously.39 We numerically integrated these functions to cal-

culate the rate constants, dephasing rates, and scalar electron

spin coupling strengths appearing in the QMEs for Models I

and II.
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