
A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 649–663, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SPIN: Service Performance Isolation Infrastructure in
Multi-tenancy Environment

Xin Hui Li, Tian Cheng Liu, Ying Li, and Ying Chen

IBM China Research Lab, Software Park
Beijing 100193, China

{lixinhui,liutc,lying,yingchen}@cn.ibm.com

Abstract. The flourish of SaaS brings about a pressing requirement for Multi-
tenancy to avoid dedicated installation for each tenant and benefit from reduced
service delivery costs. Multi-tenancy’s intention is to satisfy requests from dif-
ferent tenants concurrently by a single service instance over shared hosting re-
sources. However, extensive resource sharing easily causes inter-tenant
performance interference. Therefore, Performance isolation is crucial for Multi-
tenancy environment to prevent the potentially bad behaviors of one tenant
from adversely affecting the performance of others in an unpredictable manner
and prevent the unbalanced situation where some tenants achieve very high per-
formance at the cost of others. Current technologies fail to achieve the goals of
both performance isolation and resource share. This paper proposes a Service
Performance Isolation Infrastructure (SPIN) which allows extensive resource
sharing on hosting systems. Once some aggressive tenants interfere with others’
performance, SPIN gives anomaly report, identifies the aggressive tenants, and
enables a self-adaptive moderation to remove their negative impacts on others.
We have implemented SPIN prototype and demonstrate its isolation efficiency
on the Trade6 benchmark which is revised to support Multi-tenancy. SPIN fits
industry practice for a performance overhead less than 5%.

Keywords: Multi-tenancy, performance monitoring, resource accounting and
management, byte code instrumentation.

1 Introduction

Software-as-a-service (SaaS) [1] permits customers to consume software applications
in a hosting mode as an emerging software delivery model with the capabilities of
lowering total cost of ownership, fast enablement, and seamless scale-up per business
needed, especially by Small and Medium Businesses (SMB). SaaS is typically associ-
ated with "multi-tenant architecture", which is a prerequisite for a SaaS application [2,
3]. Traditionally, there would be only one instance of an application running on a
server, and this instance would only serve one customer, organization, or company
(tenant). In the SaaS world, giving each tenant a dedicated server is a huge waste of
resources and service providers want to put as many tenants on the same server as
possible. Multi-tenancy aims to enable a service environment that user requests from
different tenants are served concurrently by the least amount of hosted service

650 X.H. Li et al.

instances running on the shared hardware and software infrastructure. It requires de-
ployment of a much smaller infrastructure, in contrast to having a dedicated installa-
tion for each tenant, which bring in a number of benefits including improved profit
margin for service provider through reduced delivery costs and decreased service
subscription costs for clients.

Multi-tenancy has two different maturity patterns: the first pattern supports each
tenant with its dedicated service instance over a shared hardware, Operating System
(OS) or a middleware server in a hosting environment whereas the second pattern can
support all tenants by a single service instance over shared hosting resources. The
second pattern is more consistent with the intention of Multi-tenancy. In the environ-
ment of pattern two, the tenant would naturally desire to access and use the service as
if there were dedicated ones. However, extensive resource sharing easily causes inter-
tenant interference on performance. To evolve from pattern one to pattern two and
achieve more efficient Multi-tenancy hosting, performance isolation is crucial to pre-
vent the potentially bad behaviors of one tenant from adversely affecting the perform-
ance of others in an unpredictable manner and prevent the unbalanced situation where
some tenants achieve very high performance at the cost of others.

At present, virtualization technology is used to enable the isolation needed by
Multi-tenancy and isolation management [4, 5, 6]. Some directly depend on Virtual
Machines to create service hosting environments that provide logical boundaries be-
tween tenants. Although these works can help to adapt current software and hardware
for Multi-tenancy with the least cost, virtualization technology belongs to the pattern
one and is not able to cater for the demands of Multi-tenancy. They restrict resource
sharing between different tenants and cause additional management cost.

There are improvements on the original adoption of virtual machine to reduce the
amount of exclusive and dedicated computing resource. SWSoft’s Virtuozzo product
[7] is an example of that technology. This architecture allows service partitions to be
created and configured differently from one another. Although it is tremendously
valuable to SaaS hosters for optimizing their machine allocation, especially for these
ISVs having the same system requirements, virtual service partition in general is not
an effective method for Multi-tenancy, since it needs a different service instance for
each partition and does not support multi-tenants to share all resources of hosting
platform.

Normally, hosting systems have sufficient resources to meet basic requirements of
tenants, but they can not provide enough resources to meet everything that every
tenant might want with variations on the workload from some aggressive tenants. The
performance experienced by the workload from a given tenant suffers from such re-
source unavailability. We call this situation as Instable state where the hosting sys-
tems have acted their processing capability to the full extent, even exhaustingly to
crash, but can not satisfy requests of every tenant. With this in mind, we advocate a
service performance isolation infrastructure (SPIN) which achieves efficient isolation
and extensive resource sharing simultaneously. SPIN makes anomaly detection for
instable state, identifies aggressive tenants, and enables the multi-tenancy system to
self-adaptively remove negative impacts of the aggressive tenants on others. SPIN has
been implemented as a Plug-in, independent of server and service implementations.
The practice of SPIN in the revised Trade6 [8] demonstrates its accuracy of anomaly
report, effectiveness of performance isolation and little perturbation to the running

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 651

service (less than 5% performance overhead). The implementation and experiment of
SPIN is made based on Web service, a specific kind of popular service.

The rest of this paper proceeds as follows. Section 2 studies the requirements on
performance isolation infrastructure and design of SPIN. Section 3 describes our
prototype implementation. Section 4 evaluates the effect of SPIN with business ser-
vice benchmark. Finally, Sections 5 and 6 discuss related work and conclusions.

2 Service Performance Isolation Infrastructure (SPIN)

In this section, we first outline the requirements of performance isolation in the com-
plex multi-tenant environments. We then examine how to meet these requirements in
our design.

Isolation. The infrastructure should prevent aggressive tenants from interfering with
others. Request from different tenant will trigger different execution in the backend
modules because the instances of these modules are shared among all the tenants
sharing the same suite of resources. For this propose, it is necessary to account re-
source usage for different tenants during their access the shared modules to under-
stand the performance factors of hosting platform. It is not permitted for some
aggressive tenants to encroach resources and cause others’ performance decreasing.

Efficiency. The infrastructure should maximize the overall utilization of resources on
hosting platform, which is the intention to induce Multi-tenancy. This might be
achieved by placing a loose upper bound on resource usage of different tenants. Pre-
reservation of resources [4, 9, 10] can not satisfy this point. This goal is motivated by
the fact that systems are likely to have sufficient resources to meet basic requirements
of tenants, but they probably do not have sufficient resources to meet everything that
tenants might want.

Self-adaptability. The infrastructure should not require user intervention or manual
tuning. This goal is motivated by the large number of tenants which a hoster may
serves as well as the wide range of services and system configurations likely to be
involved.

To meet the above requirements, three principal functionalities, performance
anomaly detection, system monitoring and adaptation decision, are provided in SPIN:

The anomaly detection functionality of SPIN is responsible for signaling the oc-
currence of instable status in the execution environment. The anomaly detection facil-
ity identifies and analyzes any significant variations happening on the performance
metrics, especially the variations those might potentially affect the system’s behavior
in the immediate future. In this way, the infrastructure can preemptively adapt the
system to prevent predicted performance problems from actually occurring.

Although some work [11,12,13,14] has been made on the performance of service
system in the passed years, there are primarily two points preventing these technolo-
gies applied in our anomaly detection. One point is their dependency on threshold. It
is difficult to give threshold values in a deterministic and automatic way since the
presence of Multi-tenancy brings out the complexity and randomness into present
service system. The other point is that they pay no attention on the prediction of

652 X.H. Li et al.

instability. In practice, it is more important to predict and avoid problems on resource
usage in the near future than to remove the negative impact already caused.

The monitoring functionality is responsible for collecting runtime data from the
service components and their execution environment. On one hand, the data are used
for detecting performance anomalies in service hosting platform. On the other hand,
resource consumptions of each tenant must be accounted to identify which tenant is
aggressive and whether the system serves that tenant with effective resource usage.

Under the complex Multi-tenancy environment, existing resource accounting tech-
nologies are impracticable. They [15,16,17,18] uses processes or threads as the ac-
counting unit, while the real-life service applications run with multiple threads’
concurrent execution. An individual thread may traverse various modules of services
in the system. Further more, in the widely used thread pool one thread at one time
serves one service and it will serve another service soon. And one instance of service
serves several tenants and its execution is unaware to underlying thread or process.

The adaptation decision functionality of the infrastructure applies optimal solu-
tions to those detected or predicted performance problems. If the state is instable, we
identify the aggressive tenants from others based on their abnormal resources usage.
Optimal moderation policy will be adopted automatically to isolate the negative effect
and prevent the interference with other tenants.

SPIN starts System monitor and anomaly detection from the beginning. Anomaly
detection is made on the data got by system monitor and reports anomaly state of the
single service instance near before instability's happening. Simultaneously, the re-
source consumptions on the hosting system are also monitored and accounted on each
tenant’s behalf during their service usage. Once anomaly report is given, the resource
consumption trend of different tenants is analyzed to identify which tenant's behavior
causes the instability. Then, adaptive decision function is activated and moderation
policy is executed automatically on the identified tenant to remove its negative effect
on the performance of other tenants. These main functionalities are discussed in de-
tails over the following sections.

2.1 Anomaly Detection Model

For SPIN, we propose a new model to achieve sensitive anomaly detection. Wallace
has proven in his paper [4] that the relationship between the mean arrival rate of ser-
vice requests and the mean service rate is proven tightly correlated with the stability
of system. If the difference between the arrival rate and service rate is positive, the
system is stable and the request arrivals do not beyond the processing capability of the
system; otherwise, the system is instable. In this model, the value of difference is used
to execute the anomaly detection instead of the dependency on any threshold. Besides
Queueing Theory, the model adopts a combination of Discrete Wavelet Transform
(DWT) multi-resolution analysis [19] and Autoregressive (AR) model [20] to make a
prediction on the difference value. It is named with WAQ accordingly. In this way,
instability of service system in the short term is predictable, which provides conven-
ience for system moderation and is favorable to health maintenance. Followings are
the detailed calculation process.

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 653

For model WAQ, the following data items are got by monitoring as the inputs:

(,) 0,1,2,...,i ic t i k= (a)

Where represents the number of requests that enter the service system at sampling
time ,

(,) 0,1, 2,...,i ib t i k=

(b)

Where represents the number of requests that have been processed at sampling
time ,

From the above data items (a) and (b), we can derive the pure increasing rate by
Equation (1):

1

, 1,2,3,...,i i
i

i i

c b
x i k

t t −

−= =
−

(1)

Let series {Xi} i= 1,2,..,k be the input of prediction model. In the prediction model,
the original discrete series of pure increasing rate is firstly decomposed into approxi-
mate series and several detail series. The result of single branch reconstruction of
each decomposed series is more unitary than the original series in frequency, and it
can be easy to predict by autoregressive method. At last, the prediction value of in-
creasing rate can be obtained by synthesis of each reconstructed series’ prediction
result [20]. The prediction process works as follows:

Firstly, and are got respectively by Mallat Algorithm [21] as
the approximate series and detail series at resolution level j. In this way, the original
series {Xi} i= 1,2,..,k is transformed into a set of stationary series and AR model is a
powerful tool for prediction of such series [22]. The predicting expressions can be
expressed as Equation (2) and (3):

, 1 , 1
1

1,2,...
p

j k i j k i
i

a a jφ+ − +
=

= =∑

(2)

, 1 , 1
1

1,2,...
p

j k i j k i
i

d d jφ+ − +
=

= =∑

(3)

Where and are the prediction values of approximate series and detail
series at resolution level j respectively. is the corresponding coefficients of

AR(p). Then, and are reconstructed respectively from
and by Mallat Algorithm.

As Equation (4) presents, is derived as the prediction value of time from
the original increasing rate series {Xi}.

~ ~ ~ ~ ~

1 1, 1 2, 1 , 1 , 1...k k k j k j kx d d d a+ + + + += + + + + (4)

654 X.H. Li et al.

If >0, the system will be instable at the time and the anomaly report is
sent out.

2.2 System Monitoring

System Monitoring function of SPIN gets inputs to feed Anomaly Detection Model
and accounts resource usage on behalf of each tenant. When Anomaly Detection
Model triggers an anomaly report, aggressive tenants will be identified according to
the characteristics of their resource consumption.

Model inputs are got by accounting how many requests come to the server and are
processed every sampling interval. Following sections introduce the design of SPIN
on resource accounting for each tenant.

2.2.1 Resource Consumption Accounting on Behalf of Tenants
In SPIN, we adopt a new mechanism to monitor resource usage within the service
execution and allow the proper assignment of resource usage to tenants. The design of
monitoring mechanism is guided by two key constraints. The first is that the monitor
function must keep active during the normal service execution to provide the ability
of resource consumption tracking and therefore have minimal discernible impact to
the service’s runtime performance. As for the resources we focus, CPU and memory
are our primary focus. The second constraint originates from the fact that hoster plat-
form is dynamically deployed with object code service applications. This means that
there is no opportunity to use the source code to implement the function of monitor-
ing. Meanwhile, we do not make any modification on service container regarding the
applicability of SPIN in practice.

The whole monitor is event based. Two kinds of events are triggered and listened:
one is triggered by entry or exit of a service boundary, the other event is produced
when some resource is consumed, like the allocation of memory.

For every boundary change event, present executing service is put into a stack,
named accounting stack, for resource accounting. The accounting stack is designed to
easily find present running tenant on which resource is accounted. Otherwise we have
to get the whole stack of thread and walk it down to find the present executing service
and tenant. Massive performance overhead will be induced into service running to
frequently get stack data and walk stack.

For every resource consumption event caught, the top unit is gotten from the ac-
counting stack as the owner of the resource consumption. In other words, the account-
ing stack is active at the time of resource being consumed and used as the context
within which to determine accountability. Section 3 discusses the specifics of the
implementation of accounting stack and accounting process.

2.2.2 Aggressive Tenants Identification
After the anomaly report, it is needed to identify aggressive tenants who are apt to
consuming resources faster than others. They consume resource with a trend of
growth, even snatch resource from other tenants and cause the degradation of others.
The identification is made offline for performance consideration.

For each tenant, all the accounting events are recorded. Based on these events, the
time series of each tenant’s resource consumption is provided to users. Because the

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 655

absolute volume of resource consumption of different tenants can fall in different
scale ranges, the percentage of each tenant's consumption in all is calculated and used
to execute clearly comparison among all tenants.

We rank tenants according to the ratio of resource volumes between two consecu-
tive accounting events (For convenience of description, the events are presented by ti
and ti-1, i>=1, and the volumes of the two events are presented by Vti and Vti-1.), find
the tenants with maximum ranks and report the tenant as aggressive ones. Because
resource usage can be different from one request to another, the ratio value of one
tenant may fluctuate up and down. We uses a decay factor f, where 0 <f < 1 to adjust
for the jitter. We considers only those tenants whose volumes satisfy Vti > (1-f)*Vti-1
on consecutive accounting events as potential candidates. The decay factor keeps the
ratio value of tenants that shrink a little in this accounting time, but which may ulti-
mately be growing. We find that the decay factor is increasingly important as the size
of the resource accounts decreases. Choosing the decay factor balances between too
much information and not enough.

To rank tenants, we firstly calculate the growth factor (G) of each accounting event
as Gti = Pti*(R-1), where P is the number of accounting event (ti) that Vti has been
potentially growing and R is the ratio of Vti at this event and Vti-1 at the previous
event such that R>1, since R>1, G>0. Each tenant’s rank Rti is calculated by accumu-
lating the growth factors G over several accounting events such that absolute growth
is rewarded (Rti = Rti+Gti) and decay is penalized (Rti= Rti-|Gti|). Higher ranks repre-
sent a higher likelihood that the corresponding volume of the tenant grows aggres-
sively. Since we only report tenants that have been potentially growing for some
minimum number of events, we do not report the tenant related with a rise appearing
firstly in a series.

2.3 Adaptation Decision

Design of moderation policy is not the focus of this paper, but SPIN indeed provides
an open infrastructure to adopt freely policy for the moderation of service behavior to
requests from aggressive tenants. It helps to set and enforce effectively proper policy
to limit or isolate the negative effect of aggressive tenants on others.

3 Implementation of SPIN

In this section, the challenges met during our implementation of System Monitoring
are described considering the goals of not modifying source code and providing a
runtime monitoring with low performance overhead. Implementations of the other
two functions focus on the algorithms in Section 2 and are omitted here to save space.
System Monitor function is executed by two main phases, the instrumentation phase
and the data collection phase. The instrumentation phase consists of bytecode instru-
mentation of the services and operations to be monitored. The data collection phase
consists of running the program, gathering resource usage data, and accounting the
consumption on proper tenants. They are respectively introduced in the following two
sections.

656 X.H. Li et al.

3.1 Instrumentation to Maintain Accounting Stack

The Accounting Stack is implemented through the instrumentation of all service inter-
face methods’ entry and exit points with specific method calls. For every tenant, an
accounting stack is built at the first time this tenant sends request for service usage. In
the instrumentation phase, bytecodes of the services to be monitored is manipulated to
insert the methods that maintain the Accounting Stack. On a Web service’s entry a
stack frame containing boundary information is pushed onto the Accounting Stack.
On a Web service’s exit a stack frame is popped from the stack. For every resource
consumption event, resource consumed is accounted on owner of present accounting
stack. In this way, a complete record is kept on the service chain accessed by this
tenant and resource usage during the service time. It should be noted that we perform
the instrumentation integrated with service lifecycle as a part of service deploy proc-
ess. An array of statically allocated stack elements is employed here to avoid dynamic
memory allocation and de-allocation during the push and pop operations. This help to
address the efficiency concerns.

3.2 Data Collection by Resource Consumption Agent

Accounting Stack calculates the accounting unit. Meanwhile, determining resource
consumption and billing the current accounting unit are the responsibilities of Re-
source Consumption Agent. We have built prototypes for two important resources,
CPU and the Java heap.

The center of Resource consumption agent is a native agent with architecture pre-
sented in Figure 1. Two trackers are built to collect CPU usage and Memory usage
respectively. CPU Tracker probes CPU for calculation of cycles by sampling. Every a
sampling interval, the consumption of CPU in this interval are accumulated and ac-
counted on the Current Accounting Tenant (CAT) which is reserved in Accounting

Accounting
Stack

JVMTI
BCI

ObjectFree
hook

Push/Pop
Service ID

vmObjectAlloc
hook

Object
<init>

callback

newarray
bytecode
callback

cl
as

sl
oa

d

Object Allocated
Object
Freed

Current
Tenant

Service Implementation

CAU Change
callback

Memory Tracker CPU Tracker

Tenant/Service ID, MemoryAlloc, MemoryFree, MemoryNet, CPUTime, CPUInst
Tenant/Service ID, MemoryAlloc, MemoryFree, MemoryNet, CPUTime, CPUInst

JVMTI
BCI

Fig. 1. Java Native Agent

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 657

Stack. Similarly, Memory tracker tracks memory allocation and de-allocation. We
implement trackers by a Java Virtual Machine Tool Interface (JVMTI) agent. JVM TI
[23] provides a set of standard interfaces for tracking object lifecycles and the state of
JVM. A JVM TI agent can be notified of interesting occurrences through events and
can control the service application through many functions, either in response to
events or independent of them.

Special attention should be paid to the accounting of reusable resource, like mem-
ory allocated on Java Heap. The memory allocated will be reclaimed if it is no longer
used. Each time an object is allocated, the object is also tagged with the ID of the
accounting tenant. Tracking object deallocation is relatively simpler: JVM TI pro-
vides an event callback, i.e. ObjectFree, which notifies us every time an object is
freed. On an object free event, we retrieve the tag of the freed object to determine the
accounting tenant that was charged for this object. The memory consumption of that
tenant is decreased accordingly.

Another point needs attention is the JNI cost caused by Accounting Stack which
must communicate any change in the CAT to the Resource Consumption Agent.
While our Agent runs in native space and as such the CAT must be made available in
native space. To reduce the cost, we have used java.nio.ByteBuffer, whose instance is
allocated outside the garbage-collected heap and can be accessed from both Java and
native code. The use of ByteBuffer has been proved much more efficient to copy the
CAU into native space than a Java native method does. On each object allocation, the
Resource Accounting Agent retrieves the current accounting tenant from the Byte-
Buffer and charges it for the allocation.

4 Experiments and Evaluation

IBM Trade6 works as a performance benchmark and Web service sample application
by providing a real-world workload, enabling performance research and verification
test of the service Platform. It models an electronic stock brokerage providing Web
services-based online securities trading. Routine stock operations, such as selling,
watching holdings, and so on, are encapsulated into Web services and accessed by
client at the runtime. We have revised Trade 6 to enable Multi-tenancy and adopt it in
our experiments to SPIN’s effectiveness on performance isolation and measure over-
head of SPIN implementation.

Experiment Configuration: We deployed Trade6 backend Web services on a
2.66GHz desktop with 2GB RAM, Windows XP, WebSphere Application Server
V6.1, and DB2 V8.2. WebSphere Application Server is configured to use 1G heap.
Trade 6 provides a stress client to simulate workload and service requests and we put
it on another desktop with the same configuration parameters. The two machines are
connected by 100Mbps LAN.

Experiment Scenario: We simulate the case that Trade6 serves five tenants, identi-
fied as tenant 0 to tenant 4. At the beginning, requests from 5 tenants are balanced, i.e.
the request numbers of different tenants are identical. After 2 minutes, the request
number from tenant 0 is increased largely so that the increase has negative impact on
performance of other tenant or even pushes the whole system to the edge of crashing.
What we want to see from this experiment is how SPIN can help in such scenario.

658 X.H. Li et al.

Following sections give detailed experiment data and explanation on anomaly report,
isolation effectiveness and performance overhead of SPIN.

4.1 Anomaly Report

The experiment concerns firstly anomaly detection of WAQ model. Two time series
alpha (Fig.2 (a)) and beta (Fig.2 (b)) are got by monitoring with a sampling interval
of 100 milliseconds. The alpha series and beta series are respectively the arrival proc-
ess and service process of hosting system. Series y=alpha-beta (Fig.2 (c)) represents
the changes on processing capability of service system over time. Some bursts occur
around the time points 300, 600, 1000, 1600, and 2000.

Fig. 2. Time series of service request arrival (a), request processing (c), and pure request in-
crease (c) with settings of 2000 thread and 1500 times iterations

In our analysis, decomposition is made on the series at the resolution level one for
clear experiment. WAQ threw out anomaly report after 190000 milliseconds since the
start of the benchmark. In comparison, we do not adopt any moderation in the first
running and find the service system finally collapse after about 20000 milliseconds
later than the anomaly report.

Figure 3 presents that the predicted curve consists well with the monitored one,
which demonstrates that WAQ can predict the changes both in arrival rate and service
rate efficiently, no matter how wild fluctuations are. The accuracy of presented pre-
diction (see Tab.1) is studied in terms of MRE (Mean Relative Error) [20]. Table.1
illustrates that the precision improves as the order of AR used in WAQ increases.
Here we think that the parameter of order is properly set to “50” for the high precision
and smaller computational complexity of WAQ.

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 659

Fig. 3. Comparison of pre-series and post-series with ARP(15)

Table 1. MRE of Arrival Rate with different AR(p)

2.25%3.08%4.68%6.34%20.11. %36.94%MRE

AR(60)AR(50)AR(40)AR(30)AR(15)AR(5)

2.25%3.08%4.68%6.34%20.11. %36.94%MRE

AR(60)AR(50)AR(40)AR(30)AR(15)AR(5)

4.2 Isolation of Aggressive Tenant

After the anomaly report, the trace file written by system monitoring during service
access is analyzed and resource volume of each tenant is collected. Figure 4 presents
how CPU consumptions of every tenant change from the start to the anomaly report
time. Other resources, such as memory, are omitted here to save space. In the forepart
of the curves, each tenant consumes similar CPU cycles. A sudden rise occurs on the
curve from the time of 1340. Tenant 0 is identified as the aggressive tenant because
its consumptions of CPU cycles show the fastest increasing rate.

0

500

1000

1500

2000

1

1

9

4

1

2

0

1

1

2

0

8

1

2

1

5

1

2

2

2

1

2

2

9

1

2

3

6

1

2

4

3

1

2

5

0

1

2

5

7

1

2

6

4

1

2

7

1

1

2

7

8

1

2

8

5

1

2

9

2

1

2

9

9

1

3

0

6

1

3

1

3

1

3

2

0

1

3

2

7

1

3

3

4

1

3

4

1

1

3

4

8

1

3

5

5

1

3

6

2

1

3

6

9

1

3

7

6

1

3

8

3

1

3

9

0

1

3

9

7

1

4

0

4

Time(*100 Millisecond)

C
y
c
l
e
s
(
*
1
0
0
0
0
0
0
)

tenant0 tenant1 tenant2 tenant3 tenant4

Fig. 4. CPU consumption curve for each tenant

With the rise of tenant 0, obvious drops lie on other tenants’ consumption which
decreases to almost 0 near the anomaly report time, 1407. Tenant 0 has already im-
pacted negatively on other tenants. Without SPIN, the duration of this status will
finally lead the non-aggressive tenants into the danger of starvation and service sys-
tem into crash. The SPIN implementation adopts a direct policy to restrict and serve

660 X.H. Li et al.

0

200

400

600

800

1000

1200

1400

1600

1

1

9

4

1

2

0

2

1

2

1

0

1

2

1

8

1

2

2

6

1

2

3

4

1

2

4

2

1

2

5

0

1

2

5

8

1

2

6

6

1

2

7

4

1

2

8

2

1

2

9

0

1

2

9

8

1

3

0

6

1

3

1

4

1

3

2

2

1

3

3

0

1

3

3

8

1

3

4

6

1

3

5

4

1

3

6

2

1

3

7

0

1

3

7

8

1

3

8

6

1

3

9

4

1

4

0

2

1

4

1

0

1

4

1

8

1

4

2

6

1

4

3

4

1

4

4

2

1

4

5

0

1

4

5

8

Time(*100 Millisceond)

C
y
c
l
e
s
(
*
1
0
0
0
0
0
0
)

tenant0 tenant1 tenant2 tenant3 tenant4

Fig. 5. CPU consumption curve with the moderation function open of SPIN

the requests from tenant 0 in the inverse ratio of its rise. Figure 5 presents the curve
under the same simulation of workload with the moderation of SPIN open. The
growth of Tenant 0 is limited not to reach the dangerous peak. The CPU consump-
tions of other tenants originally decrease and generally experience rallies. The per-
centages of non-aggressive tenants’ consumption taking in all basically recover to the
balanced state, which demonstrates the effectiveness of SPIN to keep performance
isolation in Multi-tenancy environment. In practice, it is suggested to adopt a modera-
tion policy consistent with SLA of different tenants.

4.3 Performance Overhead

To understand performance overhead brought into the original execution of service
system, we watch the values of average response time before and after adoption of
SPIN. To observe the values under different scales of workload, we tune two parame-
ters, the number of threads (simulated clients) executing service access and iterations
times executed in each thread. Performance overhead is calculated as (Ti-To)/To for
each different setting of the two parameters, where Ti and To are the average response
time with SPIN and original benchmark respectively.

Figure 6 presents the overhead histograms with various settings of thread number
(the parameter of iteration times is set to 2000) and interaction times (the parameter of
thread number is set to 1500). For each setting, the benchmark runs 10 times, and the
final results are obtained by calculating the geometric mean of the median of setting.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Thread Number

O
v
e
r
h
e
a
d

(
%
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

Iteration Number

O
v
e
r
h
e
a
d

(
%
)

Fig. 6. Overhead histograms with various thread number and various interaction times

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 661

Overhead values with different settings are all less than 5%, which presents little
negative impact caused by SPIN and its practicability under product environment.

5 Related Works

Performance isolation is not a new idea [24]. Jordan et al. [25] applies the concept of
a Java resource accounting interface to isolate applications inside a JVM at the granu-
larity of isolates to J2EE platforms. In comparison, our work focuses on performance
isolation of tenants on the same copy of service. Work in [25] still depends on the
resource reservation approaches and thresholds setting to limit the performance fac-
tors of isolations. Isolation for single Java virtual machines have been studied exten-
sively [26, 27] and they focus on the security of multi-task in one JVM.

Authors in [11, 12] apply Queuing Theory in the study of Web service and adopt
response time, throughout and reliability to evaluate performance of a service system.
Three birth-death (BD) models are introduced in [13] to prove results on system
throughput with the condition that the parameters of BD process have the same ratio.
Renaud et al [14] address failure rate for the Web services market using Markov chain
and Queueing Theory. They do not concentrate on the identifying how and when a
service system becomes instable, but the comprehensive evaluation of performance.

In addition, there are some prior works for dealing with performance problems in
server applications. That include request deletion in web servers [28], request prioriti-
zation or frame dropping in multi-media or real-time applications [29], and the crea-
tion of system level constructs supporting these application-level actions [30,31].
They share with adaptive techniques the use of runtime system monitoring and of
dynamically reacting to certain monitoring events, but they differ in that focus is put
on the decision of proper moderation policy. No attention is paid by them on the
anomaly detection of service system. Moreover, they do not care about the resource
monitoring at levels other than Process.

6 Conclusion and Future work

SPIN is purposed in this paper to achieve performance isolation of Multi-tenants on
the service hosting platform with the maximum resource share. By a detection inde-
pendent of any threshold, SPIN gives anomaly report in advance of the instability of
service system. Resources, like CPU, consumed during service access are accounted
on behalf of each tenant. Tenants whose consumption presents a trend of continuous
growth are identified as aggressive ones that moderation will execute on. SPIN has
been implemented open to self-tuning moderation without relying on user’s input or
directions. Practice of SPIN in Trade6 which has been revised to Multi-tenancy model
demonstrates its accuracy of anomaly detection, effectiveness of isolation, and the
low performance overhead (less than 5%).

Next step, we plan to adapt SPIN for SLA of different tenants. We will build sepa-
rate anomaly detection for various tenants. Especially, proper moderation policy
needs to design considering various SLA.

662 X.H. Li et al.

References

1. Carraro, G., Chong, F.: Software as a Service (SaaS): An Enterprise Perspective, Micro-
soft2. Corporation (October 2006), http://msdn2.microsoft.com/

2. Gianforte, G.: Multiple-Tenancy Hosted Applications: The Death and Rebirth of the Soft-
ware Industry. RightNow Technologies Inc. (2005), http://www.rightnow.com

3. Chong, F., Carraro, G., Wolter, R.: Multi-Tenant Data Architecture, Microsoft Corporation
(2006), http://msdn2.microsoft.com/

4. Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K.G.: Virtualization Based Techniques
for Enabling Multi-tenant Management Tools. DSOM, 171–182 (2007)

5. Czajkowski, G., Daynes, L.: Multitasking without compromise: a virtual machine evolu-
tion. In: Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2001 (November 2001)

6. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco (1999)

7. SWSoft, Virtuozzo, http://www.sw-soft.com/virtuozzo
8. IBM. WebSphere Application Server, Trade6 benchmark,

https://www14.software.ibm.com/wbapp/iwm/web/preLogin.do?sou
rce=trade6

9. Waldspurger, C.A.: Memory resource management in vmware esx server. SIGOPS Operat-
ing Systems Review 36, 181–194 (2002)

10. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Geiger: Monitoring the buffer
cache in a virtual machine environment. In: The 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-XII), pp.
14–24 (2006)

11. Hopp, W.J.: Single Server Queueing Models. In: Chhajed, D., Lowe, T. (eds.) When Intui-
tion Fails: Insights From Basic Operations Management Models and Principles. Springer,
Heidelberg (scheduled for publication, 2007)

12. Hall, R.W.: Queueing methods for services and manufacturing. Prentice-Hall, Englewood
Cliffs (1990)

13. Feng, W.: Improving Service for Service Systems with Different Arriving Rate, PDCATa-
pos. In: Proceedings of the Fourth International Conference on Volume, pp. 315–318 (Au-
gust 2003)

14. Renaud, O., Starck, J.L., Murtagh, F.: Wavelet-based Forecasting of short and long mem-
ory time series [EB/OL]

15. Czajkowski, G., Eicken, T.V.: Internet Servers, Safe-Language Extensions, and Structured
Resource Control. In: Proceedings of the Technology of Object-Oriented Languages and
Systems, Nancy, France, pp. 295–304 (1999)

16. Hulaas, J., Kalas, D.: Monitoring of Resource Consumption in Java-based Application
Servers. In: Proceedings of the 10th HP OpenView University Association Plenary Work-
sop (HPOVUA 2003), Geneva, Swizerland (2003)

17. Liang, S., Viswanathan, D.: Comprehensive Profiling Support in the Java Virtual Machine.
In: Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and Sys-
tems (COOTS 1999), San Diego, CA, pp. 229–240 (1999)

18. Sutherland, D.F., Greenhouse, A., Scherlis, W.L.: The Code of Many Colors: Relating
Threads to Code and Shared State. ACM SIGSOFT Software Engineering Notes 28(1),
77–83 (2002)

19. Liu, Z.-X.: Short-term load forecasting method based on wavelet and reconstructed phase
space. Machine Learning and Cybernetics 8, 4813–4817 (2005)

 SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment 663

20. XiangXu, B., XinMing, Y., Hai, J.: Network Traffic predicting based on wavelet transform
and autoregressive model. In: Tsui, F.-C., Sun, M., Li, C.-C., Sclabassi, R.J. (eds.) Recur-
rent neural networks and discrete wavelet transform for time series modeling and predic-
tion, ICASSP, vol. 5(9-12), pp. 3359–3362 (May 1995)

21. Akaike, H.: Fitting autoregressive models for prediction. Annals of the Institute of Statisti-
cal Mathematics 23(1) (December 1971)

22. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Represen-
tation. IEEE Transactions on pattern analysis and machine intelligence 11(7), 674–693
(1989)

23. Sun Microsystems, Inc. JVM Tool Interface (JVMTI), http://java.sun.com/-
j2se/1.5.0/docs/guide/jvmti/

24. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the art of virtualization. In: Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles, SOSP 2003 (2003)

25. Jordan, M.J., Czajkowski, G., Kouklinski, K., et al.: Extending a J2EETM Server with
Dynamic and Flexible Resource Management International Middleware Conference, Mid-
dleware 2004 (2004)

26. Czajkowski, G.: Application isolation in the Java Virtual Machine. In: Proceedings of the
15th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, OOPSLA 2000 (2000)

27. Back, G., Hsieh, W., Lepreau, J.: Processes in KaffeOS: Isolation, Resource Management,
and Sharing in Java. In: Proceedings of the 4th International Conference on Operating Sys-
tem Design and Implementation (OSDI), San Diego, CA, pp. 334–346 (2000)

28. Provos, N., Lever, C.: Scalable Network I/O in Linux. In: Proceedings of the USENIX
Technical Conference, FREENIX track (2000)

29. Sundaram, V., Chandra, A., Goyal, P., et al.: Application performance in the QLinux mul-
timedia operating system. In: Proceedings of the 8th ACM International Conference on
Multimedia 2000 (2000)

30. Poellabauer, C., Schwan, K., West, R., et al.: Flexible User/Kernel Communication For
Real-Time Applications In Elinux. In: Proceedings of the Workshop on Real Time Operat-
ing Systems and Applications (2000)

31. West, R., Schwan, K.: Dynamic Window-Constrained Scheduling for Multimedia Applica-
tions. In: Proceedings of the IEEE International Conference on Multimedia Computing and
Systems, ICMCS 1999 (1999)

	SPIN: Service Performance Isolation Infrastructure in Multi-tenancy Environment
	Introduction
	Service Performance Isolation Infrastructure (SPIN)
	Anomaly Detection Model
	System Monitoring
	Adaptation Decision

	Implementation of SPIN
	Instrumentation to Maintain Accounting Stack
	Data Collection by Resource Consumption Agent

	Experiments and Evaluation
	Anomaly Report
	Isolation of Aggressive Tenant
	Performance Overhead

	Related Works
	Conclusion and Future work
	References

