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Zusammenfassung

Die präzisesten Messgeräte, die bisher konstruiert wurden, sind Interferometer. Sie basie-

ren auf Interferenz und damit auf den Welleneigenschaften der verwendeten Ressourcen –

Atome oder Photonen. Ihre Messgenauigkeit ist – nach den Gesetzen der Quantenmechanik

– gegeben durch die Schrot-Rausch Grenze. Diese resultiert aus den Teilcheneigenschaften

der individuell unabhängigen Atome oder Photonen. Diese „klassische“ Grenze ist jedoch

nicht fundamental und kann durch Verschränkung der Teilchen überwunden werden. Dies

ist das Ziel der Quanten-Metrologie. In unserem Labor haben wir eine spezielle Art ver-

schränkter Zustände, gequetschte Spin Quantenzustände, erzeugt. Unsere Messungen erge-

ben, dass der realisierte Quantenzustand, der auf zwei räumlich getrennten Moden eines
87Rubidium Bose-Einstein Kondensates basiert, eine prinzipielle Verbesserung der Messge-

nauigkeit um 35% gegenüber der Schrot-Rausch Grenze ermöglicht. In einem zweiten Ex-

periment haben wir ein neuartiges nicht-lineares Atom-Interferometer entwickelt, das zwei

interne Hyperfein-Zustände der Bose-Einstein kondensierten Atome verwendet. Das lineare

Analogon dieses Interferometers wird heutzutage in Atomuhren eingesetzt die den Zeitstan-

dard definieren. Charakterisierung des Quantenzustandes im nicht-linearen Interferometer

zeigt starke Vielteilchen-Verschränkung – 170 Atome sind nicht separierbar, also nicht unab-

hängig voneinander beschreibbar. Messungen mit dem nicht-linearen Atom-Interferometer

ergeben eine um 15% höhere Präzission als ihr ideales lineares Analog. Damit haben wir di-

rekt experimentell gezeigt, dass nicht-lineare Atom-Interferometrie mit Bose-Einstein Kon-

densaten tatsächlich mit höherer Genauigkeit als „klassisch“ erlaubt möglich ist.

Abstract

Interferometry is the most precise measurement technique known today. It is based on in-

terference and therefore on the wave-like nature of the resources – photons or atoms – in the

interferometer. As given by the laws of quantum mechanics the granular, particle-like fea-

tures of the individually independent atoms or photons are responsible for the precision limit

– the shot noise limit. However this “classical” bound is not fundamental and it is the aim

of quantum metrology to overcome it by employing quantum correlations – entanglement –

among the particles. We report on the realization of spin squeezed states suitable for atom

interferometry based on two external modes of a Bose-Einstein condensate. We detect many-

body entangled states which allow – in principle – for a precision gain of 35% over the shot

noise limit in atom interferometry. We demonstrate a novel non-linear atom interferometer

for Bose-Einstein condensates whose linear analog – the Ramsey interferometer – is used for

the definition of the time standard. Within the non-linear interferometer we detect a large en-

tangled state of 170 inseparable atoms. A measurement with this interferometer outperforms

its ideal linear analog by 15% in phase estimation precision showing directly the feasibility of

non-linear atom interferometry with Bose-Einstein condensates beyond “classical” precision

limits.





Contents

List of Figures iii

1 Introduction 1

2 Spin squeezing, entanglement and quantum metrology 5

2.1 Collective spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 A single spin 1/2 on the Bloch sphere . . . . . . . . . . . . . . . 5

2.1.2 A large collective spin . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Fluctuation engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Coherent spin states . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Visualizing spin states: The Husimi Q-representation . . . . . . . 10

2.2.3 Spin squeezed states . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Spin squeezing and entanglement . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Definition of many-body entanglement . . . . . . . . . . . . . . 12

2.3.2 Entanglement criteria based on collective spin variables . . . . . 13

2.3.3 Experimentally used quantification of entanglement . . . . . . . . 15

2.4 Entangled interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Precision limits in Ramsey interferometry . . . . . . . . . . . . . 18

2.4.2 Heisenberg limit in quantum metrology . . . . . . . . . . . . . . 21

3 Squeezing two mean field modes of a Bose-Einstein condensate 23

3.1 Bose-Einstein condensates in double-well potentials – mean field and beyond 23

3.1.1 Basic concepts of Bose-Einstein condensation . . . . . . . . . . . 23

3.1.2 A bosonic Josephson junction with ultracold atoms . . . . . . . . 25

3.1.3 Rabi, Josephson and Fock: different regimes of a Josephson junction 29

3.2 Ultracold is not enough – finite temperature effects . . . . . . . . . . . . 33

3.2.1 Collective mode energy spectrum of the Josephson Hamiltonian . 33

3.2.2 Strategies for optimum coherent spin squeezing . . . . . . . . . . 35

3.3 Quantum fluctuations in few-well potentials – experimental challenges . . 39

3.3.1 Position stability of the external trapping potentials . . . . . . . . 39

3.3.2 From two to few – the six-well trap . . . . . . . . . . . . . . . . 41

3.4 Spin squeezing across a Josephson junction – experiments . . . . . . . . 44

3.4.1 Detection of number difference and relative phase . . . . . . . . . 44

3.4.2 Measuring the timescale for adiabatic changes . . . . . . . . . . 49

3.4.3 Coherent spin squeezing and many-body entanglement . . . . . . 51

3.4.4 Particle loss and number squeezing . . . . . . . . . . . . . . . . 54

i



Contents

4 Non-linear interferometry beyond the standard quantum limit 57

4.1 Squeezing – internal versus external degrees of freedom . . . . . . . . . . 58

4.1.1 The spin model . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Interaction tuning via a magnetic Feshbach resonance . . . . . . . 62

4.1.3 Experimental characterization of the Feshbach resonance . . . . . 63

4.1.4 What about temperature? . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Fast diabatic spin squeezing by one axis twisting evolution . . . . . . . . 67

4.2.1 Diabatic protocol – one axis twisting . . . . . . . . . . . . . . . . 68

4.3 One axis twisting in action – experiments . . . . . . . . . . . . . . . . . 73

4.4 Quantifying many-body entanglement . . . . . . . . . . . . . . . . . . . 77

4.5 Many experiments in parallel – more than just better statistics . . . . . . . 78

4.5.1 Real time estimation of technical noise . . . . . . . . . . . . . . 81

4.6 Heisenberg minimal uncertainty product and validity of the symmetric

two-mode model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Non-linear atom interferometer beats “classical” precision limit . . . . . . 85

5 Outlook 91

A Precision absorption imaging of ultracold atoms 93

A.1 Hardware and alignment of the imaging system . . . . . . . . . . . . . . 93

A.2 The imaging sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Calibration of the imaging system . . . . . . . . . . . . . . . . . . . . . 95

A.3.1 Atom number calculation . . . . . . . . . . . . . . . . . . . . . . 95

A.3.2 Non-linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3.3 Photon shot noise estimation . . . . . . . . . . . . . . . . . . . . 99

A.3.4 Signal to noise optimization . . . . . . . . . . . . . . . . . . . . 101

A.4 Independent tests of the imaging calibration . . . . . . . . . . . . . . . . 101

B Particle loss and number squeezing 105

C Active stabilization of magnetic fields below the milligauss level 109

Bibliography 113

Acknowledgment 123

ii



List of Figures

2.1 The Bloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A coherent spin state composed of elementary spins. . . . . . . . . . . . 9

2.3 Spin squeezed states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Spin squeezing inequalities as entanglement witnesses. . . . . . . . . . . 14

2.5 Von Neumann entropy and delocalization of the quantum state. . . . . . . 15

2.6 Depth of entanglement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Schematic representation of Ramsey interferometry on the Bloch sphere. . 19

2.8 Precision limit in Ramsey interferometry. . . . . . . . . . . . . . . . . . 20

3.1 Trap geometry of the double-well potential. . . . . . . . . . . . . . . . . 26

3.2 Two methods to calculate the Josephson energy. . . . . . . . . . . . . . . 28

3.3 Charging and Josephson energy for our double-well parameters. . . . . . 29

3.4 Spin fluctuations in different regimes of the Josephson junction. . . . . . 32

3.5 Many-body mode spectrum of the Josephson Hamiltonian. . . . . . . . . 34

3.6 Accessible range of plasma frequency and regime parameter. . . . . . . . 35

3.7 Spin squeezing at finite temperature. . . . . . . . . . . . . . . . . . . . . 36

3.8 Phase diagram at finite temperature. . . . . . . . . . . . . . . . . . . . . 37

3.9 Position noise translates to atomic noise. . . . . . . . . . . . . . . . . . . 39

3.10 Laser beam configuration for the optical potential. . . . . . . . . . . . . . 40

3.11 Local parameters of the Josephson junction array. . . . . . . . . . . . . . 42

3.12 Phonon spectrum of the Josephson junction array. . . . . . . . . . . . . . 43

3.13 Typical single shot pictures showing number and phase detection. . . . . 44

3.14 Squeezed distribution of the atom number difference. . . . . . . . . . . . 45

3.15 Phase coherence for different barrier heights. . . . . . . . . . . . . . . . 47

3.16 Single shot visibility of the interference patterns. . . . . . . . . . . . . . 48

3.17 Timescales for adiabatic barrier ramps. . . . . . . . . . . . . . . . . . . . 49

3.18 Phase coherence and number squeezing. . . . . . . . . . . . . . . . . . . 52

3.19 Many-body entanglement. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.20 Number squeezing and particle loss. . . . . . . . . . . . . . . . . . . . . 55

4.1 Hyperfine structure of the 52S1/2 electronic ground state of 87Rubidium. . 58

4.2 Coupling of the internal two-mode system. . . . . . . . . . . . . . . . . . 60

4.3 Theoretical prediction of the interspecies Feshbach resonance. . . . . . . 63

4.4 Loss rate measurement in the vicinity of the Feshbach resonance. . . . . . 64

4.5 Tuning of the effective nonlinearity. . . . . . . . . . . . . . . . . . . . . 66

4.6 Feasibility of adiabatic number squeezing. . . . . . . . . . . . . . . . . . 68

iii



List of Figures

4.7 One axis twisting evolution. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Coherent phase dispersion on long timescales. . . . . . . . . . . . . . . . 70

4.9 Variance of the Jz spin component versus rotation angle. . . . . . . . . . 72

4.10 Noise tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Quantifying the depth of entanglement. . . . . . . . . . . . . . . . . . . 77

4.12 Atom number distribution over the six optical traps. . . . . . . . . . . . . 78

4.13 Dynamics of the wavefunction overlap. . . . . . . . . . . . . . . . . . . 79

4.14 Spectral sensitivity to phase noise. . . . . . . . . . . . . . . . . . . . . . 80

4.15 Ramsey type coherence measurement. . . . . . . . . . . . . . . . . . . . 81

4.16 Technical noise estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.17 Rotation dependence of the technical noise. . . . . . . . . . . . . . . . . 83

4.18 Ramsey fringe using a spin squeezed state. . . . . . . . . . . . . . . . . . 84

4.19 Optical analog to our non-linear interferometer. . . . . . . . . . . . . . . 86

4.20 Schematic of the non-linear interferometric sequence. . . . . . . . . . . . 87

4.21 Comparison of the linear and non-linear interferometer. . . . . . . . . . . 88

4.22 Interferometry beyond the standard quantum limit. . . . . . . . . . . . . 89

A.1 Setup of the imaging system. . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 PIXIS camera noise curve. . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Imaging parameter calibration. . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Nonlinearity of the absorption imaging system for small atomic clouds. . 100

A.5 Optimum signal to noise ratio. . . . . . . . . . . . . . . . . . . . . . . . 101

A.6 Calibration test for the external squeezing experiments. . . . . . . . . . . 102

A.7 Calibration test for the interferometry and internal squeezing experiments. 103

B.1 Evolution of number squeezing due to one and three body loss. . . . . . . 107

C.1 Measured magnetic noise spectrum in closed loop configuration. . . . . . 110

iv



1 Introduction

Today’s most precise measurement instruments work at the shot noise limit, the precision

bound set by single particle quantum mechanics. Many of these devices are interferome-

ters, based on the interference of two atomic or photonic quantum states. The observable

to be measured causes a relative phase shift ϕ between the two modes of the interferome-

ter. This relative phase shift is observed indirectly as a population imbalance at readout. In

the readout process the population imbalance is obtained by counting the atoms or photons

in each of the modes and their particle-like properties become important.

For uncorrelated quantum states single particle quantum mechanics describes the measure-

ment process. The relative phase ϕ determines the probability for each atom or photon to

be detected in one of the modes – in the balanced case ϕ = 0 the probability for both

modes is equal. The probability distribution of the population imbalance is poissonian and

the measurement uncertainty in the relative phase ∆ϕ2 scales statistically as ∆ϕ2 = 1/N .

Thus, the shot noise limit for the measurement precision arises as the classical statistical

limit of N uncorrelated particles used in the interferometer [1, 2]. One single measurement

with N independent resources is equivalent to N identical measurements using only one

resource. Fundamentally this “classical” noise results from the projection of the quantum

state on the two observed output states in the readout process. Equivalent to the term shot

noise commonly quantum projection noise is used and the resulting precision limit is the

standard quantum limit.

Photonic interferometers are commonly used for distance or velocity sensors [3] while

prominent examples for atomic sensors are measurements of magnetic fields, inertia or

time [4].

Many-body quantum mechanics offers the possibility to overcome the single particle limit

by the use of entanglement as a resource. Focussing on atom interferometry, different

quantum strategies have been proposed to obtain interferometric precision beyond “clas-

sical” bounds [5–8]. The quantum Cramer-Rao bound reveals the fundamental limit [2],

the so called Heisenberg limit for metrology, where the obtainable phase precision scales

as ∆ϕ2 = 1/N2. The potential gain is enormous. In an atomic clock for example one

measures an energy difference ~ω for a certain time t (2π~ is Planck’s constant). The

“classical” uncertainty scales as ∆ω2 = 1/tN , while Heisenberg limited metrology would

allow for an error of ∆ω2 = 1/tN2. Assuming a fictitious Heisenberg limited measure-

ment with 106 atoms lasting one second, a “classical” projection noise limited apparatus

would need 11 days to obtain the same level of precision.
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1 Introduction

Spin squeezing is one example where entanglement provides a resource for quantum en-

hanced metrology. For atomic two-level systems the concept of spin squeezed states and

a mechanism to obtain them was introduced by Kitagawa and Ueda in 1993 [6]. One

year later Wineland, et al. pointed out its potential usefulness for atom interferometry [5].

The basic idea is to use a quantum correlated spin state for Ramsey type interferome-

try [9, 10], where the quantum fluctuations in the different spin directions are redistributed.

Atomic spin squeezing has already been experimentally demonstrated in vapor cell exper-

iments [11–14], ion traps [15] and recently with laser cooled atoms [16]. We demonstrate

spin squeezing in a Bose-Einstein condensate where distinct to vapor cell experiments the

center of mass motion of the atoms is controlled and where many particles contribute to a

single measurement, which is a limitation in ion trap experiments.

In the following paragraph we briefly outline the connection of spin squeezing to inter-

ferometric phase estimation precision. Any two-mode system, and therefore any quantum

state in a two-mode interferometer, can be described by a fictitious spin vector with total

length J . In a symmetric situation, valid for N Bosons in two modes, the Schwinger repre-

sentation [17] connects the three orthogonal components of the spin vector to the creation

and annihilation operators â (b̂) and â† (b̂†) of the two modes. A direct relation between

occupation number difference n and relative phase ϕ on one side and the spin operators

(Ĵx, Ĵy, Ĵz) on the other side exists [18]. Therefore engineering of the quantum fluctu-

ations in the different spin directions can be used to obtain a quantum state that features

reduced fluctuations in the relative phase ϕ, the quantity of interest in interferometry. This

is the basic mechanism to obtain quantum enhanced precision beyond the shot noise limit

with spin squeezed states. However, nature forbids to reduce the variance in the relative

phase ϕ arbitrarily since the population difference n is its conjugate variable. According

to Heisenberg’s uncertainty principle a decrease of the phase variance causes an increase

of the population difference fluctuations which eventually degrades interferometric preci-

sion. Therefore knowledge of the fluctuations in both conjugate variables is important to

characterize the usefulness of a quantum state for interferometry.

An uncorrelated collective spin state with mean spin pointing for example in Jx direction

has isotropic fluctuations in the orthogonal spin directions Jz and Jy. Redistribution of

these fluctuations requires quantum correlations between the different constituents. There-

fore enhanced interferometric sensitivity in atom interferometers is connected to entangle-

ment among the atoms. In 2001 Sørensen et. clarified the connection between metrologi-

cally relevant spin squeezing and entanglement [19, 20].

In this thesis we report on experiments detecting many-body entanglement in a Bose-

Einstein condensate of 87Rubidium atoms. Two different experimental systems are used.

We achieve coherent spin squeezing among two external degrees of freedom of the con-

densate – two mean field modes – populated with approximately 2000 atoms. Despite of

finite temperature in the system we observe up to ξ2
S = −3.8 dB coherent spin squeezing

where ξ2
S is the parameter that quantifies the potential amount of precision gain in inter-

2



ferometry. Spin squeezed states are engineered employing an adiabatic cooling approach

where temperature induced fluctuations are reduced such that spin squeezing grows. Finite

initial temperature and therefore higher entropy in the system is identified as the limiting

factor.

In a second set of experiments we demonstrate coherent spin squeezing between two in-

ternal degrees of freedom of the condensate – two hyperfine states. Microwave and radio

frequency coupling pulses allow for a very accurate control of the collective spin vec-

tor and a narrow magnetic Feshbach resonance is used to tune the interatomic interactions.

We realize a novel non-linear atom interferometer and measurements on 400 atoms directly

demonstrate 15% enhanced interferometric precision beyond the standard quantum limit.

Characterization of the quantum state within the interferometer reveals ξ2
S = −8.2 dB

coherent spin squeezing. This requires the presence of 170 entangled particles [19] and

we exclude less than 80 entangled particles with three standard deviation statistical con-

fidence. These experiments are done at zero effective temperature, but loss of the atoms

from the trap is identified as the limit for the obtainable coherent spin squeezing.

This thesis is organized as described below. After chapter 1, this introduction, we review

the basic concepts of spin squeezing and its connection to many-body entanglement and

interferometry in chapter 2. The following chapter 3 deals with the experiments done with

a single component Bose-Einstein condensate in external double- and few-well potentials.

The results of these experiments have been published in reference [21]. In the last chap-

ter 4 we report on the realization of a non-linear atom interferometer and we directly show

measurement precision beyond the standard quantum limit. Our findings are accepted for

publication in the journal “Nature”. A comprehensive appendix on precision absorption

imaging with high spatial resolution describes the detection method used for the exper-

iments. Throughout the thesis we use the most intuitive units for the energy E. Either

angular frequency ω = E/~ or temperature T = E/kB is given where kB is Bolzmann’s

constant. ~ and kB are normalized to unity and it is useful to remember the conversion

between angular frequency and temperature ω/T ≈ 2π · 20 Hz/nK.

Not directly related to this theses but measured at the same time we published a paper on

Experimental observation of oscillating and interacting matter wave dark solitons [22].
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2 Spin squeezing, entanglement and quantum

metrology

Spin squeezing is a quantum strategy introduced in 1993 by Kitagawa and Ueda [6] which

aims to redistribute the fluctuations of two conjugate spin directions among each other. In

1994 it was theoretically shown that spin squeezed states are useful quantum resources to

enhance the precision of atom interferometers [5] and in 2001 the connection between spin

squeezing and entanglement was pointed out [20].

In this chapter we introduce the spin representation for N two-level atoms. We review the

basic theoretical concepts of spin squeezing and its connection to entanglement. Different

entanglement criteria are discussed and the usefulness of entanglement as a resource in

quantum metrology – focussing on spin squeezed states – is reviewed.

2.1 Collective spins

The mathematical concept of a spin algebra with total spin J is a powerful tool to describe

very different physical systems. Any observable within a spin J system can be expressed

by the three spin operators Ĵx, Ĵy, Ĵz and the identity operator. The 2J + 1 eigenstates of

one of the spin operators make up a basis set of the 2J +1 dimensional Hilbert space. The

choice of the direction is arbitrary since the operators are connected via unitary transfor-

mations.

2.1.1 A single spin 1/2 on the Bloch sphere

One of the simplest nontrivial models in quantum mechanics, a two-level system [23] with

levels |a〉 and |b〉, maps onto a spin J = 1/2 system. This mapping is done by assigning the

state |a〉 to the eigenstate of Ĵz with eigenvalue jz = −1/2 (spin down) and state |b〉 to the

eigenstate with eigenvalue jz = +1/2 (spin up). Two important applications of this model

in atomic physics are the two-level atom and nuclear magnetic resonance experiments.

Any pure quantum state |θ, ϕ〉 = sin(θ/2) |a〉 + cos(θ/2)eiϕ |b〉 of a two-level system can

be conveniently represented on a Bloch sphere. The coordinate axes are chosen such that

the population difference (|b〉 〈b|−|a〉 〈a|)/2 maps to the Ĵz component of the spin and the

coherences (|b〉 〈a|+ |a〉 〈b|)/2 and (|b〉 〈a| − |a〉 〈b|)/2i map to the Ĵx and Ĵy components

respectively. Figure 2.1 shows the quantum state on the Bloch sphere with the definition

of the longitudinal angle ϕ and the polar angle θ. The Hilbert space for a single spin 1/2
system is two dimensional, such that the representation on the surface of the Bloch sphere

does not require any additional assumptions.

5



2 Spin squeezing, entanglement and quantum metrology

Figure 2.1: The Bloch sphere. Schematic representation of the quantum state |θ, ϕ〉 of a spin 1/2
system on the Bloch sphere. The definition of the longitudinal angle ϕ and the polar angle θ are

highlighted and in the following the same notation will be used for the direction of the collective

spin on a generalized Bloch sphere (see section 2.2.2).

2.1.2 A large collective spin

The discussion above can be generalized for N particle systems where each particle is

restricted to two modes – each particle is an elementary spin j = 1/2 system, sometimes

called Qubit.

The collective spin operators Ĵi can be defined as the sum over all elementary spin opera-

tors (Pauli matrices) σ̂
(k)
i , where i = (x, y, z):

Ĵi =
N
∑

k=1

σ̂
(k)
i (2.1)

A basis of the general problem can be obtained as the tensor product of all N bases of the

individual components, each of dimension (2j + 1) – the dimension of the Hilbert space

is huge dim(HN ) = (2j + 1)N = 2N and grows exponentially with the number of Qubits.

The length of the collective spin J is smaller or equal than half the number of Qubits:1

√

J (J + 1) = 〈Ĵ 2〉1/2 ≤ N/2 (2.2)

One often assumed simplification is exchange symmetry among all Qubits. This is physi-

cally motivated since in many experiments all operations done on the ensemble affect each

spin in the same way. One example are nuclear magnetic resonance experiments in homo-

geneous fields.

In the symmetric case each elementary Qubit can be prepared for example in the jz = −1/2

1In this thesis we deal with large spins such that we often approximate
√

J (J + 1) ≈ J .

6



2.2 Fluctuation engineering

state and maximum collective polarization Jz = −N/2 can always be reached. Therefore

the total spin length is given by J = N/2 and the dimension of the Hilbert space dra-

matically reduces to dim(HS) = (2Nj + 1) = (N + 1) – linearly dependent on the

number of Qubits. One possible choice of a basis are the symmetric Dicke states |J,m〉
with −N/2 < m < N/2.

Due to their exchange symmetry the elementary spins can be effectively described as

Bosons, the Schwinger Bosons [17]. Employing the second quantization formalism the

creation and annihilation operators of the two modes â† (b̂†) and â (b̂) can be related to the

different spin components [24]:

Ĵ+ = b̂†â

Ĵ− = â†b̂

Ĵx =
1

2
(Ĵ+ + Ĵ−)

Ĵy =
1

2i
(Ĵ+ − Ĵ−)

Ĵz =
1

2
(b̂†b̂ − â†â)

Each of the Dicke states introduced above corresponds to a perfectly defined particle num-

ber difference between the two modes â and b̂ and – since the total number of particles N
is fixed – the Dicke states correspond to Fock states in the two modes â and b̂.

The experiments presented in this thesis deal with two-mode Bose-Einstein condensates.

Identical particles in two modes (as the Bosons in the condensate) can be described by the

symmetric spin model and the Schwinger representation given above is used to relate the

creation and annihilation operators of the two modes to the different spin components.

Even if not formally correct we will use the notation J instead of J for all spins regardless

of symmetry and mention explicitly where the symmetry argument is necessary.

2.2 Fluctuation engineering

The three different orthogonal spin components are conjugate variables. Their commuta-

tion relation is [Ĵi, Ĵj] = i ǫijkĴk, where ǫijk is the Levi-Civita symbol. Therefore any pair

of spin operators obeys a Heisenberg uncertainty relation which – for ∆Ĵ2
z and ∆Ĵ2

y – is

given by

∆Ĵ2
z ∆Ĵ2

y ≥ 1

4
〈Ĵx〉

2
(2.3)

and ∆Ĵ2
z = 〈Ĵ2

z 〉 − 〈Ĵz〉2 is the variance in Ĵz direction.
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2 Spin squeezing, entanglement and quantum metrology

2.2.1 Coherent spin states

Coherent spin states are the most classical-like pure quantum states of a symmetric en-

semble of N elementary j = 1/2 spins or of N two-mode Bosons [24, 25]. They are

constructed by placing all N particles in the same single particle state – in any superposi-

tion of the two modes

|θ, ϕ〉 =
1√
N !

[sin(θ/2)â† + cos(θ/2)eiϕb̂†]N |vac〉 (2.4)

where |vac〉 is the vacuum state. Especially no quantum correlations between the particles

are present. Therefore a coherent spin state features equal variance in any direction Ĵ⊥

orthogonal to the mean spin direction (θ, ϕ) which is given by the sum of the variances

of the 2J elementary spin 1/2 particles. The perpendicular variances ∆σ̂2
⊥ of individual

Qubits are by definition isotropic around (θ, ϕ) since there are no subsystems that could

cause any correlations [6]. The Heisenberg limit (2.2) for a single elementary spin pointing

in σx direction is ∆σ2
z∆σ2

y = 1
4
· 1

4
leading to an isotropic variance of

∆Ĵ2
z = ∆Ĵ2

y = 2J · 1

4
=

J

2
(2.5)

for the collective coherent spin state, which identifies this quantum state as a minimal un-

certainty state since 〈Ĵx〉 = J . We refer to the perpendicular spin fluctuations of a coherent

spin state ∆Ĵ2
⊥ = J/2 = N/4 as the shot noise limit.

We go back to the first quantization formalism in order to obtain the probability distribu-

tion over different sets of basis states – especially the two possible Dicke state bases in the

directions orthogonal to the mean spin direction.

In order to develop a more detailed understanding of the coherent spin state and its fluc-

tuations we start with the discussion of a special case where each particle is in a 50/50
superposition of the two modes with 0 relative phase – each spin points in σx direction and

its quantum state is

|x〉 =

(∣

∣

∣

∣

1

2
,−1

2

〉

+

∣

∣

∣

∣

1

2
, +

1

2

〉)

/
√

2 (2.6)

where we have chosen the Dicke states in σz direction as the basis states. The probability to

observe each individual elementary spin in state up or down is equal
∣

∣

〈

1
2
,±1

2
|x
〉∣

∣

2
= 1/2.

The N atom coherent spin state is a collection of these independent elementary spins

|X〉 =

[(∣

∣

∣

∣

1

2
,−1

2

〉

+

∣

∣

∣

∣

1

2
, +

1

2

〉)

/
√

2

]⊗N

(2.7)

and therefore the measurement of the Jz spin component is equivalent to N measurements

on a single spin. The probability distribution over the Dicke states is therefore binomial.

We could have chosen equally the Dicke states in Jy direction to describe the spin state
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2.2 Fluctuation engineering

1 2 3 N

side view

Figure 2.2: A coherent spin state composed of elementary spins. The figure illustrates the addi-

tion of N elementary Qubits with equal mean spin orientation (indicated by the arrows) to a large

collective spin J . The gray shading on the Bloch spheres visualizes the spread of the quantum

state on the sphere using the Q-representation introduced in section 2.2.2. The isotropic angular

uncertainty decreases with the number of Qubits according to the standard quantum limit.

which shows again that the spin fluctuations in the directions perpendicular to Jx – the

mean spin direction – are isotropic.

A general coherent spin state |θ, ϕ〉 described as superposition of Dicke states |J,m〉 is

given by [26]:

|θ, ϕ〉 =
J
∑

m=−J

cm(θ)e−i(J+m)ϕ |J,m〉 (2.8)

As argued above the coefficients cm(θ) follow a binomial distribution peaked around θ:

cm(θ) =

(

2J

J + m

)1/2

cos(θ/2)J−m sin(θ/2)J+m (2.9)

Figure 2.2 depicts the composition of a large collective spin from elementary spins on

generalized Bloch spheres2. The illustration of the spins is done using the Q-representation

described in section 2.2.2.

The standard quantum limit

Due to the Heisenberg uncertainty principle (2.2) the mean direction (θ, ϕ) of any spin

state can not be defined with arbitrary precision. For a coherent spin state the isotropic

angular uncertainty ∆ϕ = ∆θ, defined by the ratio of the uncertainty of the perpendicular

spin directions ∆J⊥ to the mean spin length J , is given by:

∆ϕ =
∆Ĵ⊥

〈Ĵ〉
=

1√
2J

=
1√
N

(2.10)

2Above we give an example for the mean spin in Jx direction, however for the purpose of better illustration

we have chosen a different direction in the figure.
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2 Spin squeezing, entanglement and quantum metrology

As argued above this limit arises as the classical statistical limit in a system consisting of

N independent constituents [1, 5]. In section 2.4 we discuss the connection of spin states

and Ramsey interferometry and we show that the angular uncertainty limits the interfer-

ometric precision. In this context the “classical” limit (2.10) for a coherent spin state is

known as the standard quantum limit. Figure 2.2 also visualizes the decreasing angular

uncertainty with the number of elementary spins.

2.2.2 Visualizing spin states: The Husimi Q-representation

Employing the Q-representation [27], spin states can be conveniently visualized on a gen-

eralized Bloch sphere with radius J . In order to describe the most general spin state, i.e.

pure states and statistical mixtures, the density matrix formalism is used [24]. The density

operator ρ̂ in coherent spin state basis is given by

ρ̂ =

∫

P (θ, ϕ) |θ, ϕ〉 〈θ, ϕ| dΩ (2.11)

where the integral covers the full solid angle and dΩ = sin(θ) dθ dφ. The probability

distribution P (θ, ϕ) is normalized to one. The Q-representation uses the diagonal elements

of the density operator to represent the quantum state:

Q(θ, ϕ) =
2J + 1

4π
〈θ, ϕ| ρ |θ, ϕ〉 (2.12)

The interpretation of this representation on generalized Bloch spheres differs from the sin-

gle spin j = 1/2 Bloch sphere shown in figure 2.1. In the latter case the dimension of the

Hilbert space is two-dimensional and the quantum state representation on the surface of a

sphere is exact. However for collective spin systems the dimension of the Hilbert space is

2J +1 such that an exact mapping to the surface of a sphere is not possible. We emphasize

the difference even more: The position (θ, φ) on the spin 1/2 Bloch sphere describes the

full quantum state, while the position on the generalized Bloch sphere gives only the mean

spin direction and – within the constraints explained below – its fluctuations.

The Q-representation projects the density matrix on minimal uncertainty states –in partic-

ular coherent spin states. The most obvious consequence is that the minimal extension of a

quantum state in (θ, ϕ) on the Bloch sphere is given by the uncertainties of the basis states

– a single Dicke state features no uncertainty in polar direction but its Q-representation

shows ∆θ ∝ 1/
√

N .

2.2.3 Spin squeezed states

Quantum correlations between the elementary spin 1/2 particles of a collective spin J
can cause anisotropic fluctuations of the spin vector in the directions perpendicular to the

10



2.2 Fluctuation engineering

side view

N correlated Qubits

1 2 3 N

Figure 2.3: Spin squeezed states. The figure illustrates an exemplary pure spin squeezed state on

the Bloch sphere. The individual Qubits feature an isotropic variance, but quantum correlations

between them cause an anisotropic variance of the collective spin state. For a Heisenberg limited

spin squeezed state, one of the perpendicular variances ∆J⊥,min is smaller than the variance of

a coherent spin state (of the same spin length), while the variance in the second perpendicular

direction ∆J⊥,max is increased.

mean spin (figure 2.3). Nevertheless the fluctuations of each individual elementary spin

are always isotropic [6]. In reference [6] quantum states are considered spin squeezed if

the variance of one spin component is smaller than the shot noise limit J/2 for a coherent

spin state:

ξ2
N =

2

J
∆Ĵ2

⊥,min (2.13)

Different definitions of spin squeezing

Definition (2.13) does not take the second perpendicular spin direction into account. Due

to the Heisenberg uncertainty relation (2.2) reduction of the variance in one direction

causes an increase of fluctuations in the other. Real life strategies to obtain spin squeezing

might also involve states that are not minimal uncertainty states. One example is the “one

axis twisting” scheme proposed in [6], which we use in the experiments described in the

last chapter of this thesis. For these states, as for experimentally very important non-pure

quantum states, the variance in some other direction than the squeezed direction can be

much larger than given by the Heisenberg uncertainty relation. This leads to a reduction

of the effective mean spin length 〈Ĵ〉.
Metrologic applications, especially Ramsey interferometry for which spin squeezed states

have been considered useful, require a large mean spin length. In order to measure the use-

fulness of spin squeezed states for these applications another definition of the squeezing

parameter was introduced in reference [5]

ξR =
√

2J
∆Ĵ⊥,min

〈Ĵ〉
(2.14)

11



2 Spin squeezing, entanglement and quantum metrology

whose inverse ξ−1
R measures the precision gain in a Ramsey interferometric sequence rela-

tive to the standard quantum limit (2.10). For a detailed discussion of interferometry with

spin squeezed states see section 2.4.

Spin squeezing among N constituents is related to many-body entanglement. In this con-

text a third spin squeezing criterion was found [20]:

ξ2
S = N

∆Ĵ2
⊥,min

〈Ĵ〉2
= N

∆Ĵ2
z

〈Ĵx〉2
(2.15)

Entanglement is detected by the inequality ξ2
S < 1 as detailed in the following section.

Here we explicitly use the standard assumption throughout this thesis that the mean spin

points in Jx direction and the direction of minimal variance – if not explicitly mentioned

– is the Jz direction.

ξS can be used equivalently to ξR to quantify spin squeezing and precision gain in interfer-

ometry and we refer to it as coherent number squeezing or coherent spin squeezing.

2.3 Spin squeezing and entanglement

2.3.1 Definition of many-body entanglement

For N distinguishable particles the definition of a separable state, i.e. non-entangled state,

is that its N -body density matrix ρ can be written as a direct product of single particle

density matrices ρ(i):

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k (2.16)

pk is a probability distribution to account for incoherent mixtures. Entanglement in many-

body systems (for a general review see [28, 29]) is defined as the non-separability of the

density matrix ρ meaning the equality in equation (2.16) does not hold.

In collective spin systems a separable state is composed of independent elementary spin

1/2 particles. Due to technical limitations the individual elementary spins can not be ad-

dressed in many experiments . However it is important to note that the elementary spins

have to be in principle distinguishable in order to define entanglement among them in

a meaningful way [28]. In the scope of this thesis we deal with N particles in a Bose-

Einstein condensate where the distinguishability is not obvious. However Sørensen and

Mølmer pointed out that by a gedanken local operation one can pinpoint each particle in

space without affecting the spin properties of the system [30]. The distinguishability is

now given via the position of each particle. If entanglement is detected in the system, it

must have been present in the system before the localization, since local measurements can

not generate entanglement [31]. Given that the atoms in the Bose-Einstein condensate are

spaced by more than one wavelength of the detection light (which is usually fulfilled), this

12



2.3 Spin squeezing and entanglement

gedanken local operation means to overcome the technical limitations for addressability

and detection of the individual Qubits.

2.3.2 Entanglement criteria based on collective spin variables

Without the possibility to address the individual Qubits entanglement criteria based on

the collective spin variables are necessary to detect entanglement. Furthermore the ob-

servables in most experiments so far are limited to first and second order moments of the

distributions functions in different spin directions due to rather small counting statistics

and technical noise. Based on these, a complete set of inequalities that is fulfilled for

any separable quantum state has been found [32, 33]. Complete in this sense means that

assuming the only information available are first (〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉) and second moments

(∆Ĵ2
x , ∆Ĵ2

y , ∆Ĵ2
z ) of the distribution functions. These inequalities are:

〈Ĵ2
x〉 + 〈Ĵ2

y 〉 + 〈Ĵ2
z 〉 ≤ N(N + 2)

4
(2.17)

∆Ĵ2
x + ∆Ĵ2

y + ∆Ĵ2
z ≥ N

2
(2.18)

〈Ĵ2
i 〉 + 〈Ĵ2

j 〉 −
N

2
≤ (N − 1)∆Ĵ2

k (2.19)

(N − 1)[∆Ĵ2
i + ∆Ĵ2

j ] ≥ 〈Ĵ2
k 〉 +

N(N − 2)

4
(2.20)

Toth, et al. published these inequalities in references [32, 33] and the authors depict the in-

equalities by a volume containing all separable states in a three dimensional space spanned

by (∆Ĵ2
x , ∆Ĵ2

y , ∆Ĵ2
z ). Figure 2.4 shows this polygon taken from reference [33] (figure 4a)

to illustrate the inequalities.

Throughout this thesis we use the original spin squeezing inequality (2.15) in order to

detect spin squeezing type entanglement experimentally [20]. All separable states fulfill

the inequality ξ2
S ≥ 1, but a subgroup of entangled states violate it. As pointed out in

reference [33], this criterion is equivalent to criterion (2.20) in the limit of large N and the

mean spin pointing in Jx direction. Figure 2.4 shows the original spin squeezing criterion

as a plane. Below this plane all states are detected as entangled.

None of the entanglement witnesses given in this section requires any symmetry assump-

tion. They are valid for the general definition of the collective spin given in equation (2.1).

Entanglement criteria only valid under the symmetric two-mode assumption are discussed

in the next section.

Entanglement criteria for symmetric states

Assuming symmetric states under particle exchange many entanglement criteria simplify.

In this case the detection of spin fluctuations in one direction below the shot noise limit
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Figure 2.4: Spin squeezing inequalities as entanglement witnesses. The figure is taken from

reference [33] (figure 4a) in order to illustrate the spin squeezing criteria as entanglement witnesses.

The polygonal volume contains all separable – non-entangled – states bounded by the optimal spin

squeezing inequalities. The gray plane corresponds to the bound set by the original spin squeezing

inequality (2.15) which detects all entangled states below. The plot was done for 10 elementary

spins and a mean spin of (〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉) = (1, 0, 2).

for N atoms implies entanglement [34–37].

ξ2
N =

4 ∆Ĵ2
⊥,min

N
=

2 ∆Ĵ2
⊥,min

J
≥ 1 (2.21)

holds for any separable symmetric state. For clarity the mean spin is assumed to point in

Jx direction such that 〈Ĵ⊥,min〉 = 0.3 Equation (2.21) is identical to the spin squeezing

definition of Kitagawa and Ueda (2.13) showing that at least in the symmetric two-mode

case entanglement is necessary to redistribute the fluctuations of orthogonal spin compo-

nents. Within this thesis we refer to ξ2
N as number squeezing.

All entanglement witnesses discussed here are based on second moments, therefore they

contain maximally two body correlations 〈σ̂(i)
k σ̂

(j)
k 〉 of the elementary spins i and j in

direction k. The question arises if these criteria detect only bipartite entanglement – the

non-separability of the average two-body density matrix.

Toth, et al. show in reference [33] that in the non-symmetric case the complete set of

separability criteria (equations (2.17)-(2.20)) can detect entanglement even if there is no

bipartite entanglement in the system – the average two-body density matrix of an non-

symmetric state can be separable even if the N -body density matrix is entangled.

The situation is different in the symmetric case. Here the violation of the number squeezing

criterion (2.21) is both necessary and sufficient for bipartite entanglement in the system –

every bipartite entangled symmetric state features number squeezing [34].

3The general expression is
4 ∆Ĵ2

k

N
≥ 1 − 4 〈Ĵk〉

2

N2 [36].
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2.3 Spin squeezing and entanglement

side view side view
a b

Figure 2.5: Von Neumann entropy and delocalization of the quantum state. Panel a depicts

an entangled spin squeezed state on the Bloch sphere. Quantum correlations cause an increased

uncertainty in one spin direction which results in a shortening of the effective spin length. This

shortening is measured by the linearized von Neumann entropy. Panel b shows a non-entangled

incoherent mixture. Loss of coherence results also in a shortening of the mean spin length, making

it hard to use the von Neumann entropy for our experiments where temperature or environmental

noise cause decoherence.

2.3.3 Experimentally used quantification of entanglement

The criteria given above are useful to detect the presence of entanglement, they are en-

tanglement witnesses. However they do not quantify entanglement in the system.4 Two

experimentally used approaches to quantify entanglement are reviewed here.

Von Neumann entropy

In a recent experiment entanglement has been reported based on the von Neumann en-

tropy [38]. However, we clarify in this short section that it is not possible to characterize

entanglement in our experimental system by this measure.

For pure quantum states the von Neumann entropy SN(ρ̂A) = −Tr(ρ̂A log(ρ̂A)) of the

reduced density matrix ρ̂A = TrB(ρ̂) is a measure for bipartite entanglement [28, 31, 39]

between one subsystem ρ̂A and the rest of the system ρ̂B = TrA(ρ̂). There is no difference

on which of the two subsystem SN is evaluated: SN(ρ̂A) = SN(ρ̂B). Expanding the von

Neumann entropy to first order one obtains the linear entropy:

SN = 1 − Tr(ρ̂2
A) (2.22)

Taking subsystem A to be a single elementary spin 1/2 particle, SN can be used to measure

entanglement between one Qubit and the rest of the system. The density matrix ρ̂A can be

expressed as a linear combination of Pauli matrices σi [40]. If the system is additionally in

4Since criterion (2.15) can be related to a gain in interferometric precision (see section 2.4), it measures the

“usefulness” of spin squeezed states as a quantum resource in a known experimental protocol.
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2 Spin squeezing, entanglement and quantum metrology

a symmetric state, the linearized von Neumann entropy can be related to the mean values

of the collective spin J [38, 41]:

SN =
1

2
[1 − 4

N2
(〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2)] (2.23)

Figure 2.5 illustrates the linear entropy measure and clarifies its connection to the spread of

the state on the Bloch sphere. Since mixed states always have an (incoherently) increased

spread it is essential to note its applicability to pure states only. The quantum states real-

ized in our experiments are subject to decoherence making it impossible to apply the linear

entropy measure.

Depth of entanglement

In the context of spin squeezing the depth of entanglement has been proposed to quantify

entanglement [19] which measures the number of non-separable elementary Qubits. This

criterion is valid for incoherent mixtures as well as for pure states making it suitable for

our experiments. However, we once again emphasize that there is no clear definition for

entanglement among indistinguishable particles – distinguishability is the prerequisite to

define entanglement. Furthermore, unique entanglement measures for more than two or

three particles are still a very active field of research [28].

We review the depth of entanglement criterion here and use the label J for the collective

spin of the full system and the label S for subsystems of smaller spin, but not necessarily

S = 1/2. The basic idea is to find the minimal variance ∆Ŝ2
z for a given mean spin length

〈Ŝx〉. Combining the inequality 〈Ŝ2
z 〉 + 〈Ŝ2

y〉 + 〈Ŝz〉2 ≤ S(S + 1) (which is similar to

equation (2.17)) with the Heisenberg uncertainty limit (2.2) one obtains

∆Ŝ2
z ≥ 1

2

[

S(S + 1) − 〈Ŝx〉2 −
√

(S(S + 1) − 〈Ŝx〉2)2 − 〈Ŝx〉2
]

(2.24)

as an analytical estimation of the limit.

Numerical calculations allow to set the bound even tighter [19] and a comparison between

the numerical results and the analytical formula is shown in figure 2.6. From figure 2.6 it

is obvious that large spins S can be more squeezed than small spins5. This implies that a

collective spin J composed of k subsystems with spin S(k) can be more squeezed than the

individual spins S(k). In other words, one perfectly squeezed large spin J has always lower

or equal normalized variance ∆Ĵ2
z /J for a given normalized mean spin length 〈Ĵx〉/J than

the sum of the normalized variances of N independent but individually perfectly squeezed

smaller spins S(k) for the same normalized mean spin length. Based on these findings the

authors of reference [19] derive a lower bound for the variance of the collective spin ∆Ĵ2
z

∆Ĵ2
z /NS ≥ FS(〈Ĵz〉/NS) (2.25)

5As already mentioned a spin S = 1/2 can not be squeezed at all.
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Figure 2.6: Depth of entanglement. The figure shows the minimal allowed normalized variance

∆Ŝ2
z for a given mean spin length 〈Ŝx〉 depending on the total spin S (different line styles). The

black lines are the numerical result taken from reference [19] (figure 1) while the gray lines show

the analytic approximation (2.24) which we use later in this thesis. The spin length S is written as

S = m · 1/2 in order to emphasize the minimal non-separable block size m of the density matrix

in the case of Qubits as elementary spins. The gray area correspond to pairs of 〈Ŝx〉/S and ∆Ŝ2
z/S

for which no entanglement is detected in the system.

where FS(.) is the minimum for spin S shown in figure 2.6.

The interpretation of this result in the case of N spin 1/2 particles is: If one measures the

pair ∆Ĵ2
z /J and 〈Ĵx〉/J outside the gray shaded area in figure 2.6, entanglement has to

be present in the system. Depending on which curve m the measured datapoint falls, the

minimal size of the largest non-separable spin has to be S = m · 1/2 and the number of

these non-separable blocks is N/m.

What happens if N/m is not an integer value? In this case there has to be one or more

smaller blocks of entangled (or even non-entangled) particles, causing larger fluctuations

than in the case of exactly N/m particles with spin S = m · 1/2 since smaller spins cause

larger fluctuations. In order to explain the observed data point, the largest entangled block

has to be even greater than m.

In order to summarize, minimally m entangled Qubits are detected if the measured data-

point falls on the curve for S = m · 1/2.
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2 Spin squeezing, entanglement and quantum metrology

2.4 Entangled interferometry

Entanglement in collective spin systems is not only interesting from a conceptual perspec-

tive but it has also been shown to provide a useful quantum resource. In 1994 Wineland

et al. [5] pointed out, that in particular spin squeezed states can be used to overcome the

standard quantum limit in metrology.

2.4.1 Precision limits in Ramsey interferometry

The term Ramsey interferometry [9, 10] is used most often for atomic interferometers based

on internal states. Prominent applications are the definition of the time standard [42] or

high precision magnetometry [43]. However the scheme is more general and applies also

to atom interferometers where the two states are implemented using external degrees of

freedom. These interferometers allow for example for high precision inertia measurements

of gravity or rotation [4, 44, 45]. The optical counterpart of Ramsey interferometry is a

Mach-Zehnder interferometer and the analogy is further discussed in section 4.7.

The Ramsey interferometric sequence

In order to develop an intuitive understanding for the precision limit in interferometry we

discuss the implementation of a typical Ramsey interferometer and visualize the protocol

schematically on Bloch spheres (figure 2.7a). A Ramsey atom interferometer conceptually

consists of at least three building blocks, two beamsplitters and an evolution time in be-

tween. The first beamsplitter, which corresponds to a unitary rotation on the Bloch sphere

around an axis in the equatorial plane, is used to generate a coherent superposition of the

two quantum states. Assuming only one input port to be populated the output is usually a

collective spin state with the mean spin pointing onto the equator. A fixed time τ of free

evolution follows during which a relative phase ϕ between the two modes accumulates

(corresponding to a longitudinal rotation on the Bloch sphere). Depending on the kind

of interferometer this phase is due to differential energy shifts between the states or due

to effective path length differences to be measured [4]. Since the angle in longitudinal

direction on the Bloch sphere ϕ is usually not directly observable, a second beamsplitter

is necessary. This beamsplitter implements another unitary rotation around an axis in the

equatorial plane shifted by 90◦ with respect to the first beamsplitter in order to translate

the longitudinal angle to a polar angle θ. The readout of the interferometer is done by

detection of the population difference Jz of the two output ports, from which the relative

phase ϕ can be deduced. The resulting sinusoidal variation of the population difference

〈Ĵz〉 versus acquired relative phase ϕ is commonly called a Ramsey fringe.
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Figure 2.7: Schematic representation of Ramsey interferometry on the Bloch sphere. Part a

shows the standard Ramsey protocol represented on the Bloch sphere. Beamsplitters correspond

to rotations of the quantum state around an axis in the equatorial plane as indicated by the circular

shaped arrows. The sequence is described in detail in the main text. Panel b shows a similar

protocol but after the first “magic” beamsplitter a spin squeezed state emerges which propagates

through the interferometer resulting in degreased occupation number uncertainty at the readout.

Section 4.7 of this thesis describes the concrete implementation of this “magic” – non-linear –

beamsplitter.

Quantifying interferometric precision

The sensitivity of the interferometer to small phase shifts

∆ϕ−1 =





∆Ĵz

∂〈Ĵz〉
∂ϕ





−1

(2.26)

depends on the mean phase 〈ϕ〉 and is determined by the projection noise ∆Ĵz and the

slope of the Ramsey fringe ∂〈Ĵz〉/∂ϕ. The point of maximum sensitivity is reached where

the mean population difference is zero and the slope is maximal (∂〈Ĵz〉/∂ϕ)max = VN/2.

The visibility V measures the mean spin length 〈J〉 = VN/2. Figure 2.8 illustrates the

phase sensitivity of a Ramsey interferometer.

The amount of precision gain (or loss) relative to standard quantum limit is given by ξ−2
R

or – equivalently – by (ξ2
S)

−1
. The measure can be expressed in visibility V and spin noise

in Jz direction at readout ∆Ĵ2
z :

ξ2
S =

4∆Ĵ2
z

V2N
(2.27)
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Figure 2.8: Precision limit in Ramsey interferometry. We compare schematically the phase es-

timation precision in Ramsey interferometry using a coherent spin state (gray) and a spin squeezed

state (black). The main figure shows a Ramsey fringe whose visibility V is maximal for a co-

herent spin state (V = 1) but smaller for a spin squeezed state. Nevertheless the phase precision

for a squeezed state outperforms the precision obtained for classical interferometer as shown in

the zoom around the point of highest sensitivity. The projection noise is suppressed for the spin

squeezed state such that the ratio of projection noise and slope of the Ramsey fringe is smaller

by a factor ξS compared to the standard quantum limit, which explains the gain in interferometric

precision.

The absolute phase uncertainty – measured as the root mean square deviation – is:

∆ϕ = ξS
1√
N

(2.28)

Spin squeezed states feature reduced noise in one of the spin directions but excess noise in

another direction can be present either due to a non-Heisenberg limited quantum state or

due to an incoherent mixture of several quantum states. The former might limit precision

in standard Ramsey interferometry, but specific correlated quantum states enable even en-

hanced interferometric precision in a generalized interferometer [46]. The latter is easily

limiting interferometric precision at a level above the standard quantum limit and experi-

mentally it requires a large effort to prevent decoherence due to technical noise from the

environment or due to finite temperature in the system. Large noise – quantum or classical

– even in a spin direction that is not directly measured has a degrading effect on interfer-

ometric precision which arises due to the curved surface of the Bloch sphere. As soon

as the noise amplitude is large enough such that the area of uncertainty can no longer be

approximated by a plane, the mean spin is effectively shortened – the visibility decreases
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2.4 Entangled interferometry

V < 1. The same effect has been discussed in the context of the von Neumann entropy

and is illustrated in figure 2.5.

Ramsey interferometry with entangled states

Entanglement can be used as a quantum resource in a Ramsey interferometric sequence

in different ways. In order to increase the phase sensitivity either the slope of the signal

∂〈Ĵz〉/∂ϕ has to be increased or the projection noise ∆Ĵ2
z has to be decreased.

Slope increase can be reached by Schrödinger cat type entanglement which involves max-

imally entangled states that are very fragile to decoherence. Therefore they have been

realized so far with very few particles only [47–49].

Spin squeezing aims to decrease the projection noise. This is possible in gradual steps

meaning that depending on the amount of spin squeezing the precision is gradually in-

creased. Therefore – at least for moderate levels of spin squeezing – these states are

less fragile and they have been realized with a large number of particles but only with a

relatively small squeezing factor [11–16, 21, 50, 51]. Ramsey interferometry with spin

squeezed states is schematically depicted in figure 2.7b where a “magic” beamsplitter pro-

duces an entangled state. Interferometric sensitivity for a coherent spin state and a spin

squeezed state is compared in figure 2.8. For the spin squeezed state the decreased quan-

tum fluctuations ∆Ĵz reduce the projection noise while the increased fluctuations ∆Ĵy

cause a slight decrease of the mean spin length and therefore of the visibility of the Ram-

sey fringe. Nevertheless, the ratio of projection noise and slope of the Ramsey fringe –

and therefore the phase sensitivity – is increased.

2.4.2 Heisenberg limit in quantum metrology

The ultimate limit for metrologic precision is the Heisenberg limit [2], where the phase

estimation error ∆ϕ is given by

∆ϕ =
1

N
(2.29)

for N resources used in a single measurement. This fundamental limit can – up to a con-

stant numerical factor in the order of unity – in principle be reached with both approaches

mentioned above – Schrödinger cat type entanglement or spin squeezing.

Schrödinger cats and metrology

In the context of quantum metrology the Schrödinger cat state is frequently called a NOON

state [52]. Its name originates from its form in Fock states basis:

|NOON〉 = (|N, O〉 + eiϕN |O, N〉)/
√

2 (2.30)

It is a coherent superposition of all atoms in state â and zero atoms in state b̂ and vice

versa. In spin representation the NOON state is the superposition of the two maximal

21



2 Spin squeezing, entanglement and quantum metrology

Dicke states:

|NOON〉 = (|J,−J〉 + eiϕN |J, J〉)/
√

2 (2.31)

The increase of the signal slope for a NOON state is obvious since the phase acquired

between the two components ϕN = Nϕ is N times larger than for a coherent spin state [1,

7, 8]. Experimentally it is important to note that the readout of the interferometer can not

be realized by measuring 〈Ĵz〉. The reason is the vanishing mean spin length 〈Ĵx〉 of this

state. It has been shown that the parity of the state is a useful experimental observable to

make use of NOON states in interferometry and to reach the Heisenberg limit [47, 53].

Spin squeezed states

Spin squeezed states allow to ask for the best achievable interferometry gain demanding a

finite mean spin length such that standard interferometric readout can be used.

The optimum ξR for a given mean spin length was found numerically in reference [19] and

for rather small spins it is shown in figure 2.6. An experimental protocol to generate spin

squeezed states close to the Heisenberg limit was proposed in reference [54]. The authors

show that, using their protocol, the Heisenberg limit can be reached within a factor of two.

Other types of quantum correlated states

Recently it has been pointed out that the Fisher information is the most general criterion

to measure phase sensitivity since it saturates the Quantum Cramer-Rao bound [46, 55].

Calculating the Fisher information for a coherent spin state state evolving under the non-

linear Hamiltonian Ĥ = χĴ2
z , where χ parametrizes the nonlinearity, L. Pezzé and A.

Smerzi recovered Heisenberg limit like scaling for the phase precision [46]. The quan-

tum state here is neither necessarily a NOON state nor a coherently spin squeezed state.

However standard interferometric readout can not be used to extract the phase informa-

tion and a new type of Bayesian readout has to be employed which was experimentally

demonstrated in [55].
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3 Squeezing two mean field modes of a

Bose-Einstein condensate

Bose-Einstein condensation has been predicted in 1924/1925 by Satyendra Nath Bose and

Albert Einstein [56–58]. The Nobel prize 2001 was awarded to Eric A. Cornell, Wolfgang

Ketterle and Carl E. Wieman for the first experimental observation of Bose-Einstein con-

densation in dilute gases of laser cooled alkali atoms in 1995 [59–63]. Almost 15 years

later a whole new sub field of atomic physics developed dealing with Bose-Einstein con-

densates and degenerate Fermi gases. A lot of effort has been made, both experimentally

and theoretically, to explore the basic physics of ultracold quantum degenerate gases [64–

66]. Extraordinary experimental control over the trapped quantum gases and the possibility

to measure and adjust almost all relevant parameters directly (e.g. interaction strength, rel-

ative phases, ...) opens up a new route in atomic physics. The quantum gases can be used

to engineer specific Hamiltonians that map for example to problems in solid state physics

where some measurements are hard to perform and many parameters are not controllable

– ultracold quantum gases are promising candidates for quantum simulators of solid state

systems [67–69]. In the field of quantum metrology degenerate gases have been proposed

to be one experimental system that allows for a precision beyond the “classical” projection

noise limit in atom interferometry – controllable many-body entanglement can be used as

a resource to beat the standard quantum limit [1, 2, 7, 8, 19, 46, 70].

In this chapter we focus on Bose-Einstein condensates in double- and few-well potentials

and in particular on the experimental observation of spin squeezing type many-body en-

tanglement among them. The mechanism of squeezing generation is explained within a

two-mode approximation and limits on the observed spin squeezing due to finite tempera-

ture and environmental noise are discussed.

3.1 Bose-Einstein condensates in double-well potentials –

mean field and beyond

3.1.1 Basic concepts of Bose-Einstein condensation

In this section we discuss some basic principles of Bose-Einstein condensation in dilute

alkali gases necessary to understand the main part of this thesis – coherent spin squeez-

ing in Bose-Einstein condensates and its limits. We follow the arguments given in the

books [64, 65].

Bose-Einstein condensation is a quantum statistical effect that occurs for non- or weakly

interacting Bosons. The occupation number of a single particle state ni obeys the Bose-

23



3 Squeezing two mean field modes of a Bose-Einstein condensate

Einstein statistics ni = [e(ǫi−µ)/kBT − 1]−1, where kB is Bolzmann’s constant and ǫi the

single particle eigenenergy. For high temperatures T ≫ TC the chemical potential µ is

much lower than the single particle ground state eigenenergy ǫ0. With decreasing temper-

ature the phase space density ρ̃ = n λ3
T and simultaneously the chemical potential µ rises.

Here n is the atomic density and λ3
T = (2π~

2/mkBT )3/2 is the cubic thermal de Broglie

wavelength1. When the phase space density ρ̃ exceeds a critical value in the order of

unity2, µ approaches ǫ0 and the ground state becomes macroscopically occupied n0 ≈ N .

This is the mechanism of Bose-Einstein condensation. The functional dependence of the

fraction of atoms in the condensate n0/N as a function of temperature is determined by

the density of states which is given by the dimensionality of the system and the spatial

trapping potential Vext. For a three dimensional harmonic trap n0 follows from:

n0

N
= 1 −

(

T

TC

)3

(3.1)

In alkali vapors with typical densities between 1013 cm−3 and 1015 cm−3 the critical tem-

perature TC is in the 100 nK to few µK regime.

Interacting Bosons

Alkali vapors are not exactly ideal gases but they are weakly interacting dilute gases. Di-

lute means that the gas parameter is much smaller than unity na3 ≪ 1, where a is the

s-wave scattering length describing the interactions among the atoms as contact interac-

tions at low temperatures. The ideals gas formalism remains approximately valid, but the

interparticle interaction causes a modification of the single particle eigenenergies. The

condensate emerges in the lowest collective, mean field state. The theoretical description

of weakly interacting dilute Bose gases was introduced 1947 by Bogoliubov. The key idea

is to replace the annihilation (and creation) operators â0 for the macroscopically occupied

ground state by a complex number â0 →
√

n0e
iϕ0 .

Starting with the exact Hamiltonian of the system expressed in field operators Ψ̂ =
∑

i φiâi

Ĥ =

∫

drΨ̂†

(

−~∇
2m

+ Vext

)

Ψ̂ +
1

2

∫

drdr′Ψ̂†Ψ̂†′V (r − r
′)Ψ̂Ψ̂′ (3.2)

one way to obtain the Gross-Pitaevskii equation is to minimize the grand canonical po-

tential Ω̂ = Ĥ − µN̂ under the Bogoliubov approximation neglecting all states but the

ground state.3 Minimization is done with respect to the condensate wavefunction Ψ0

meaning
∂Ω[Ψ0,Ψ∗

0]

∂Ψ∗

0

= 0 and the Gross-Pitaevskii equation found 1961 independently by

12π~ is Planck’s constant and m the atomic mass.
2 The exact value depends on the density of states.
3φi is the normalized ith eigenfunction of the single particle Hamiltonian, V (r − r

′) is the interatomic

interaction potential, later approximated as a contact interaction V (r − r
′) ∝ δ(r − r

′)
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3.1 Bose-Einstein condensates in double-well potentials – mean field and beyond

L.P. Pitaevskii and E.P. Gross reads:

i~
∂

∂t
Ψ0(r, t) =

(

−~∇
2m

+ Vext(r, t) + g |Ψ0(r, t)|2
)

Ψ0(r, t) (3.3)

Here g = 4π~
2a

m
is the coupling constant proportional to the s-wave scattering length a.

Equation (3.3) describes a weakly interaction Bose-Einstein condensate in the mean field

limit. It reveals the ground state of the system Ψ0, but it does not tell anything about

fluctuations of the system.

3.1.2 A bosonic Josephson junction with ultracold atoms

Some aspects of Josephson junctions in ultracold gases and in solid state

systems

A Bose-Einstein condensate in an external double-well potential models a Josephson junc-

tion in solid state systems [71]. However one big difference is that the trapped ultracold

gas is a closed system meaning the wavefunction vanishes for large distances or equiva-

lently the number of Bosons in the system is fixed. For a solid state junction the system

is coupled to the environment by current carrying wires resulting in a non-fixed number

of cooper pairs in the system. Due to these differences the experimental observables to

characterize the state of the system differ. In solid state systems transport properties like

the current through the junction or the voltage across it can be measured, however there

is no direct way to “look at” the spatial probability distribution of the cooper pairs. In the

case of ultracold gases however the distribution of atoms, their number and the relative

phase between the two wells can be directly measured.

Josephson junctions for ultracold Bosons – experimental setup

An accurate description of our Bose-Einstein condensation apparatus can be found in for-

mer PhD theses from our group [72–74] such that only the experimental parts essential for

the experiments presented in this thesis are discussed here.

A red detuned optical dipole trap [75] with a wavelength of 1064 nm is used to generate the

external trapping potentials for the Bose-Einstein condensate of 87Rubidium atoms in the

F = 2, mF = 2 hyperfine state [76]. Harmonic approximation of the trapping potential

around the potential minimum reveals the trap frequencies ωi of the bare dipole trap. The

transversal frequencies in our tightly focussed single beam trap4 are ωx = ωy = 2π ·425 Hz

and the longitudinal frequency is ωz = 2π · 20 Hz. A second orthogonal trapping beam

can be used additionally to increase the longitudinal trapping frequency continuously up

to ωz = 2π · 70 Hz while the two transversal frequencies remain almost unchanged. An

one dimensional optical lattice – generated using a laser with a wavelength of 843 nm –

superimposed in longitudinal direction allows for splitting of the trap into two or more

4 The beam waist is 5.1 µm.
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3 Squeezing two mean field modes of a Bose-Einstein condensate

ba

Figure 3.1: Trap geometry of the double-well potential. Panel a illustrates the most important

trap parameters which are the well distance d = 5.7 µm, the barrier height V0 and the longitudinal

trap frequency of the dipole trap ωz . b, The chemical potential µ and the barrier height V0 define

the wavefunction overlap 〈Ψl|Ψr〉 between the left and the right mode. The overlap defines the

Josephson coupling EJ between the modes which can be controlled by the barrier height V0.

wells depending on the longitudinal confinement ωz. The periodicity of the optical lattice

is set to d = 5.7 µm by choosing an angle of 8.5◦ between the two lattice beams. The

height of the potential barrier V0 ∝ Ilatt between the wells can be accurately controlled by

adjusting the intensity Ilatt of the optical lattice beams.5 Further technical details of the

lattice setup and its calibration can be found in reference [72]. Figure 3.1a schematically

shows the double-well trap geometry and in figure 3.10 later in this thesis the laser beam

configuration can be found.

The Josephson Hamiltonian

The quantum state of a Josephson junction is governed by two competing processes. Over-

lap of the wavefunctions in the barrier region (figure 3.1b) results in a tunnel contact with

a Josephson energy EJ and therefore in a finite probability for the atoms (or cooper pairs

in solid state junctions) to cross the barrier. In the bosonic Josephson junction realized

in our lab this Josephson energy is easily adjustable throughout the experiments since the

wavefunction overlap depends on the height of the barrier V0. On the other hand there

is a finite effective interaction energy EC between the bosons which is in the solid state

case governed by the junction capacitance and in the atomic case it is given by the elastic

interactions between the atoms in the individual wells. The Josephson Hamiltonian

H =
1

2
ECn2 − EJ cos(ϕ) (3.4)

5The barrier height is tunable between V0 = 2π · 250 Hz and V0 = 2π · 3000 Hz.
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3.1 Bose-Einstein condensates in double-well potentials – mean field and beyond

describes this situation with occupation number difference n and relative phase ϕ between

the two wavefunctions.6

From here on we focus on an atomic Josephson contact, where the two wavefunctions are

the mean field orbitals in the left Ψl =
√

nl(r)e
iϕl and the right Ψr =

√

nr(r)e
iϕr well of

the double-well potential with occupation number difference n = (nl − nr)/2 and relative

phase ϕ = ϕl−ϕr.7 The localized wavefunctions can be expressed as a linear combination

of the lowest energy symmetric ΨS and antisymmetric ΨA solution of the Gross-Pitaevskii

equation (3.3):

Ψl,r =
1√
2
(ΨS ± ΨA) (3.5)

Charging energy EC and Josephson energy EJ

For a fixed total number of atoms N = nl+nr the energies EC and EJ define the properties

of the system. The Charging energy EC is given by the derivative of the chemical potential

with respect to the atom number [77]

EC =
∂µ

∂nl

=
∂µ

∂nr

(3.6)

which holds for approximately equal population of the two modes. It is often necessary to

estimate the order of magnitude of EC which – as a rule of thumb – is µ/N .

The Josephson energy EJ can be calculated using two different approaches. In the regime

where the barrier height V0 between the two wells is greater than the chemical potential

µ, EJ is given by the energy difference between the symmetric and antisymmetric mean

field orbitals EJ ∝ µA − µS [78, 79]. This is very intuitive due to the similarity to a

standard two-level atom coupled to an electromagnetic radiation field, where the splitting

of the dressed states is the Rabi coupling between the two levels [80]. But one has to be

careful with this analogy since interactions alter the properties of the Josephson junction

(see section 3.1.3).

The second approach to calculate EJ is valid in a larger range of parameters especially for

V0 . µ. In reference [77] an analogy of the bosonic Josephson junction to a capacitor in

classical electrodynamics is drawn. The fictitious dielectric in the capacitor is nonuniform

and its distribution is given by atomic density n(r). Based on this analogy EJ = ~
2

m
C

is calculated from the capacitance of this capacitor C which is bounded from below and

above
∫

dx dy
∫ zr

zl
dz n(x, y, z)−1

≤ C ≤
[∫ zr

zl

dz
∫

dx dy n(x, y, z)

]−1

(3.7)

where the two double-well potential minima are located at zl and zr.

6A dependence of EJ(n) from the occupation number difference is omitted here, i.e. we assume n ≪ N .

This term is included in the discussion presented in section 3.1.3
7nl,r(r) is the atomic density of the left (right) mode and nl,r =

∫ 0,∞

−∞,0
drnl,r(r) the mode occupation

number.
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Figure 3.2: Two methods to calculate the Josephson energy. a, The Josephson energy EJ , cal-

culated using the two methods detailed in the main text is plotted versus the height of the potential

barrier. The two bounds for the capacitance are not distinguishable on this scale, while for V0 < µ
the deduced Josephson energy differs significantly from the value obtained with the “∆µ” method.

The gray shaded area gives the range of the chemical potential µ which increases with increasing

barrier since the number of atoms N = 2000 is chosen constant while the onsite confinement rises.

The calculations were done for a double-well trap with underlying frequencies of the dipole trap

of ωx = ωy = 2π · 420 Hz and ωz = 2π · 65 Hz. Panel b shows the resulting plasma frequency

ωpl – the tunneling rate (see section 3.2.1 for more details) between the two wells. The dashed

line indicates the longitudinal dipole trap frequency, the maximum possible tunnel frequency in

our setup. It is obvious that the “∆µ” method violates this bound identifying the capacitor method

as the correct way to calculate EJ for low potential barriers.

Numerical calculation of EC and EJ

Both parameters EC and EJ can be calculated from the mean field wavefunction obtained

from the Gross-Pitaevskii equation (3.3). In our group a numerical code exists to solve the

equation in three dimensions by a split step Fourier transform algorithm [74].

In figure 3.2 the two approaches to calculate the Josephson energy EJ are compared. In a

harmonic trap the fastest possible tunneling time is bounded by the inverse trap frequency

ω−1
z since the trap frequency sets the minimal time for the atoms to move from one side of

the trap to the other. Figure 3.2b shows that the “capacitor” method to calculate EJ gives

correct results in the regime V0 < µ since the tunnel frequency ωpl approaches the trap

frequency ωz in the limit of vanishing barrier height (see section 3.2.1 for the definition of

ωpl).
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Figure 3.3: Charging and Josephson energy for our double-well parameters. The figure shows

the dependence of the Charging energy EC and the Josephson energy EJ from the barrier height

V0. On the left logarithmic plotting was chosen which reveals an exponential change in EJ for

V0 > µ. The linear double axis plot on the right hand side is more useful to highlight the range

400 Hz . V0 . 1700 Hz where our experiments are carried out.

Figure 3.3 shows EC and EJ calculated for different barrier heights V0 separating the two

wells. The calculation is done for the dipole trap parameters valid for our double-well ex-

periments and 1600 atoms in total. With increasing barrier height, EJ drops a few orders

of magnitude while EC stays constant within a factor of two. This identifies EJ as the

main control parameter for our system.

3.1.3 Rabi, Josephson and Fock: different regimes of a Josephson junction

The Josephson junction in two-mode approximation

The mean field treatment of the Josephson junction discussed above is not sufficient to

explain fluctuations in the occupation number difference n and the relative phase ϕ. We

employ a two-mode description with constant parameters obtained from the mean field

model to describe these fluctuations.

Within the two-mode approximation Ψ̂ = φlâl+φrâr the Josephson Hamiltonian (3.4) can

be derived from the general Hamiltonian (3.2). As a first result the two site Bose-Hubbard

Hamiltonian is obtained [18]

HBH ≈ K

8
(â†

l âl − â†
râr)

2 − ∆E

2
(â†

l âl − â†
râr) −

J
2

(â†
l âr + â†

râl) (3.8)

where the large occupation number per site leads to renormalized (compared to single

particle parameters) onsite interactions K = EC and hopping J = 2EJ/N [81]. These

29



3 Squeezing two mean field modes of a Bose-Einstein condensate

parameters are calculated from the mean field wavefunctions as described in the previous

section. The term proportional to ∆E describes a possible differential energy shift between

the two modes. In equation (3.8) higher order terms like pair tunneling are neglected [79,

82].

The Bose-Hubbard Hamiltonian can be expressed in phase ϕ̂ and number difference n̂
operators which reveals the Josephson Hamiltonian. Definition of the phase operator is

not straightforward, however it can be done in the limit of large atom number N [18].

Phase and number operator fulfill the canonical commutation relation [ϕ̂, n̂] = i. The

Josephson Hamiltonian is then given by:

ĤJ = −∆E n̂ +
EC

2
n̂2 − EJ

√

1 − 4n̂2

N2
cos ϕ̂ (3.9)

Another way describing beyond mean field effects which provides an intuitive picture in

many cases is to rewrite the two-mode Bose-Hubbard Hamiltonian using the Schwinger

spin representation introduced in section 2.1 [18]:

H = −∆EĴz +
EC

2
Ĵ2

z − 2EJ

N
Ĵx (3.10)

Connected to this spin model the parameters χ = EC/2 accounting for the nonlinearity

and the Rabi frequency Ω = 2EJ/N describing the coupling of the two modes on the

single particle level are commonly found in the literature.

In the limit where equation (3.9) is valid it is equivalent to equation (3.10) meaning there

is a connection between the spin components on one side and the occupation number

difference n̂ and the relative phase ϕ̂ on the other side [18]. For n ≪ N the translation

between these variables is

Ĵx ≈ N cos(ϕ̂)/2

Ĵy ≈ N sin(ϕ̂)/2 (3.11)

Ĵz = (n̂l − n̂r)/2 = n̂

These equations connect the mean spin length 〈Ĵx〉 (assuming the spin polarization to point

in Jx direction) with the coherence 〈cos(ϕ̂)〉:

〈Ĵx〉 =
N

2
〈cos(ϕ̂)〉 (3.12)

The symmetric two-mode model can be easily solved numerically by exact diagonalization

up to occupation numbers N = O(103). The theoretical predictions throughout this thesis

are obtained using this numerical method.
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3.1 Bose-Einstein condensates in double-well potentials – mean field and beyond

Quantum fluctuations in Rabi, Josephson and Fock regime

The operators Ĵi belong to a J = N/2 spin algebra. Normalizing the spin operators to

j = 1/2 in order to compare interaction and tunneling on the single particle level the

Hamiltonian is Hnorm = N2EC ĵ2
z/2 − 2EJ ĵx and the essential parameter identifying the

different regimes of the Josephson junction becomes obvious [83]:

Λ =
N2 EC

4EJ

=
Nχ

Ω
(3.13)

Three regimes are identified [18], the

• Rabi regime with Λ ≪ 1

• Josephson regime with 1 ≪ Λ ≪ N2

• Fock regime with Λ ≫ N2

Here we focus on the quantum fluctuations of the ground state of the Josephson Hamil-

tonian in the different regimes assuming no bias ∆E and we use the spin language to

describe the fluctuations.

Deep in the Rabi regime the ground state of equation (3.10) is a coherent spin state on

the equator of the Bloch sphere |θ = π/2, ϕ = 0〉 featuring equal fluctuations in the two

orthogonal spin directions ∆Ĵ2
z = ∆Ĵ2

y = N/4.

With decreasing Josephson energy EJ the system enters the Josephson regime and quan-

tum fluctuations ∆Ĵ2
z decrease at the cost of fluctuations in ∆Ĵ2

y , however the mean spin

length 〈Ĵx〉 is still close to N/2. In the Rabi and Josephson regime the Josephson Hamil-

tonian (3.9) can be used to calculate the variances in the two spin directions by means of

a simple analogy: The ground state features rather small fluctuations in n and ϕ, such that

equation (3.9) can be expanded and one obtains a harmonic oscillator type Hamiltonian:

Ĥ = EJ
ϕ̂2

2
+

(

EC +
4EJ

N2

)

n̂2

2
(3.14)

By direct comparison to the well known harmonic oscillator result [40], the fluctuations in

Ĵz = n̂ and Ĵy ≈ Nϕ̂/2 are found to

∆Ĵ2
z =

1

2

√

EJ

EC + 4EJ/N2
(3.15)

∆Ĵ2
y =

N2

4

1

2

√

EC + 4EJ/N2

EJ

(3.16)

In the Fock regime the harmonic approximation breaks down since the quantum state

spreads around the full Bloch sphere, resulting in vanishing coherence 〈cos(ϕ)〉 ≈ 0 and

mean spin length. Spin fluctuations in Jz direction (number fluctuations) are highly sup-

pressed in the Fock regime and the remaining fluctuations correspond to less than one atom

∆Ĵ2
z . 1 (see figure 3.4).
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Figure 3.4: Spin fluctuations in different regimes of the Josephson junction. Panel a, shows

the representation of the ground state of the Josephson junction on the Bloch sphere in the three

different regimes. The histograms represent the probability distribution of the quantum state over

the Jz and Jy Dicke eigenbasis respectively. The distribution in Jz narrows while the variance in

Jy increases. Note that the distribution of Jy in the Fock regime shows fringes with a period of

1/N which in principle can be used for increased sensitivity in interferometry [46, 84]. b, shows

the normalized fluctuations in Jz , the coherence 〈cos(ϕ)〉 which is connected to the spread around

the Bloch sphere and the coherent spin squeezing parameter ξ2
S as a function of Λ. The calculation

was done for 100 atoms.
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Coherent spin squeezing and the Josephson ground state

In the Rabi regime (EC = 0) the ground state – a coherent spin state – is a minimum

uncertainty state. Up to a small correction this remains valid over the whole range of

Λ [85]. The ground state shows almost minimal allowed fluctuations in ∆Ĵ2
z for a given

coherence 〈Ĵx〉 and coherent spin squeezing close to the Heisenberg limit is possible8. The

best spin squeezing in the different regimes characterized by Λ is shown in figure 3.4b [54].

3.2 Ultracold is not enough – finite temperature effects

Temperature in comparison to other relevant energy scales

For a dilute Bose gas confined in a three dimensional harmonic trap with mean trapping

frequency ωT = (ωxωyωz)
1/3 the critical temperature is TC ≈ 0.94 ~ωT N1/3 [64]. The

chemical potential in Thomas-Fermi approximation is µ = ~ωT (15Na/aho)
2/5/2 where

aho =
√

~/mωT is the mean harmonic oscillator length. For our experimental parameters

these two numbers are TC ≈ 150 nK and µ ≈ 50 nK.

It is hard to achieve temperatures much below the chemical potential µ by standard evapo-

rative cooling schemes, since evaporation below µ means to “cut into the condensate”. In

our setup we measured temperatures down to 10 nK, a fifth of the chemical potential [86].

The fraction of non-condensed atoms can be estimated from equation (3.1) and is in the

order of 10−3 meaning less than ten atoms are not in the condensate. Effects due to these

few thermal atoms are negligible for our level of experimental precision. The lowest en-

ergy of transversal excitation is set by the trap frequencies (ωx = ωy = 2π · 425 Hz) and

it is approximately twice as large as the temperature. Exclusively the lowest many-body

modes of the Josephson junction have energies much below T as discussed in the following

section.

3.2.1 Collective mode energy spectrum of the Josephson Hamiltonian

The energy spectrum of the Josephson Hamiltonian for different regime parameters Λ is

shown in figure 3.5. Our experiments are done in the Josephson regime (see figure 3.6b for

the accessible range of Λ depending on the barrier height V0) where for small eigenenergies

(Ek ≪ 2EJ ) the many-body mode spectrum is a linear Harmonic oscillator spectrum.

For these states phase and number fluctuations are rather small. The oscillator’s angular

frequency ωpl – called plasma frequency – can be easily found by a taylor expansion up to

second order of equation (3.9) and a comparison to a standard harmonic oscillator:

ωpl =

√

EJ

(

EC +
4EJ

N2

)

(3.17)

8The authors of reference [54] show that the Heisenberg limit can be reached within a factor of two.
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Figure 3.5: Many-body mode spectrum of the Josephson Hamiltonian. The figure shows the

energy spectrum of the many-body modes in the Rabi (a), Josephson (b) and in the Fock regime

(c). In the Rabi regime the spectrum is completely harmonic in contrast to the Fock regime, where

the eigenstates are grouped in degenerate pairs and the energy splitting between two distinct pairs

grows quadratically. In the Josephson regime both features are contained in the spectrum. The

lowest modes show a linear behaviour, while the high lying modes are pairwise degenerate and the

spectrum is quadratic.

The equation can be reformulated as ωpl =
√

ECEJ(1 + Λ−1) = Ω
√

1 + Λ. In the first

form one recognizes the limit in the Josephson regime ωpl =
√

ECEJ where Λ ≫ 1, while

the latter shows, that the Plasma frequency approaches the Rabi frequency in the Rabi

regime where Λ ≪ 1.

The high lying eigenstates (Ek ≫ 2EJ ) are grouped in degenerate pairs and their spacing

grows quadratically with the eigenstate label Ek+2 − Ek = k2EC/8, since the energy is

governed by the quadratic part of the Hamiltonian. [74]

Thermal population of the collective modes

For low but finite temperatures9 T ≪ 2EJ in thermal equilibrium only the linear part

of the spectrum is thermally populated and the diagonal elements of the density matrix ρ
expressed in the eigenbasis of the Josephson Hamiltonian are given by

ρkk = C e−T/k·ωpl (3.18)

where C normalizes the density matrix. As mentioned in section 3.1.2 the largest possible

plasma frequency for a double-well trap realized by splitting a harmonic trap in z-direction

is the longitudinal trap frequency ωz. The ratio of temperature and longitudinal trap fre-

quency is T/ωz ≈ 3 for our parameters meaning at least the three lowest many-body states

9In the experiment we typically have T/2EJ,max ≈ 10−2.
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Figure 3.6: Accessible range of plasma frequency and regime parameter. We control the

Josephson junction by changing the barrier height V0. This figure shows the range in which the

plasma frequency ωpl (a) and the regime parameter Λ (b) can be tuned for our double-well experi-

ment loaded with 1600 atoms.

are populated at the e−1 level. Figure 3.6a shows the plasma frequency of our experimen-

tally realized double-well trap with 1600 atoms in total.

The ground state of the Josephson junction is close to a minimal uncertainty state, but

finite entropy in the system, i.e. more than one populated many-body mode, causes in-

creased fluctuations in the atom number difference n and the relative phase ϕ, or in other

words the variances ∆Ĵ2
z and ∆Ĵ2

y in the spin directions orthogonal to the mean spin

increase [86, 87]. Figure 3.7a shows the dependence of number squeezing, coherence

and coherent spin squeezing ξ2
S as a function of temperature in the Josephson regime for

ωpl = 2π · 60 Hz (and Λ = 150), the largest (smallest) value reachable for our parameters.

Figure 3.7b and c show these quantities for a fixed temperature and for fixed entropy (three

thermally populated many-body modes) but different values of Λ. In the isothermal case

calculated for T = 20 nK no spin squeezing develops – the number fluctuations are con-

stant while the coherence vanishes with rising Λ. This is a big difference to the adiabatic

case where the coherence also drops to zero but before number squeezing develops such

that the coherent spin squeezed regime ξ2
S < 0 dB can be reached.

3.2.2 Strategies for optimum coherent spin squeezing

In our experiment the Bose-Einstein condensate is in a thermal equilibrium state with

T ≈ 10 − 20 nK right after evaporative cooling. The challenge is to achieve the best pos-

sible coherent spin squeezing given these temperature constraints. The control parameter

available is the barrier height V0 that can be dynamically changed within each experimen-
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Figure 3.7: Spin squeezing at finite temperature. From top to bottom the evolution of number

squeezing, coherence and coherent spin squeezing are shown. In panel a these observables are

given versus temperature for Λ = 150 and ωpl ≈ 60 Hz. Only for temperatures below approxi-

mately 15 nK number squeezing and coherent spin squeezing ξ2
S < 0 dB are present. b, The isother-

mal evolution of the quantum state for T = 20 nK is shown versus regime parameter Λ. Almost

constant number fluctuations and degrading coherence prevent coherent spin squeezing to develop.

Part c shows the results of an adiabatic calculation assuming initially three thermally populated

many-body modes. For intermediate values of Λ coherent spin squeezing can be reached. The

calculations were done for values close to our experimental parameters, especially EC = 2π · 1 Hz

and N = 1600. EJ was controlled by changing Λ. For the connection between Λ, the plasma

frequency ωpl and the barrier height V0 in our experiment see figure 3.6.

tal realization.

As discussed above an isothermal approach – condensation in a trap with fixed barrier

height V0 – would not produce coherent spin squeezing since the plasma frequency ωpl de-

creases with increasing barrier height V0 leading to a larger number of thermally occupied

many-body states. The quantum state follows the isothermal lines shown in figure 3.8.

A better approach is to follow the adiabatic lines in figure 3.8. Experimentally this can be

done by condensation in a small barrier height situation and subsequent adiabatic ramp up

of the optical lattice V0. In this case only a small number of many-body modes is populated

initially. Since the entropy in the system stays constant, but the energy of all many-body

states decreases with rising Λ, number squeezing and coherent spin squeezing develops as

a result of adiabatic cooling.
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Figure 3.8: Phase diagram at finite temperature. The phase diagram – number squeezing ver-

sus coherence – is shown for the same parameters that have been used in figure 3.7. The dotted

black lines illustrate the limits for number squeezing and coherent spin squeezing. The dashed

line corresponds to the ground state of the Josephson junction. Gray solid lines are isothermals at

different temperatures indicated on the left. The black lines correspond to an adiabatic evolution of

the system where the number of initially thermal populated many-body modes is given in brackets.

The regime parameter Λ – or experimentally the barrier height V0 – increases for each line from

the right to the left.

Adiabatic cooling and its limits

Ramp up of the potential barrier V0 results in a changing energy spectrum of the system.

Starting in the Josephson regime with rather low Λ and high Josephson energy EJ , the

Josephson energy decreases which has two major implications: The plasma frequency

decreases leading to adiabatic cooling, but the boundary region between the linear and

quadratic part of the spectrum also moves towards the lower eigenstates. Up to inter-

mediate barrier heights V0 where only a negligible fraction of the occupied states lie in

non-harmonic part of the spectrum the quantum state of the system can be described by

the harmonic oscillator Hamiltonian given in equation (3.14). For a given thermal density

37



3 Squeezing two mean field modes of a Bose-Einstein condensate

matrix ρ the fluctuations in the atom number difference n̂ are given by

〈n̂2〉 = Tr(ρ n̂2) =

∑

k e−Ek/T 〈k| n̂2 |k〉
∑

k e−Ek/T
(3.19)

where the eigenenergies are Ek = k · ωpl and the matrix element for harmonic oscillator

eigenfunctions |k〉 is 〈k| n̂2 |k〉 = (k + 1/2)
√

EJ/EC . It follows that

〈n̂2〉 =

√

EJ

EC

(

3

2
+

1

eωpl/T − 1

)

≈ T

EC

(3.20)

where ωpl/T ≪ 1 for the last approximation.10

Assuming adiabatic evolution, the initial ratio of ωpl,i/T stays constant, but the matrix

element is evaluated at the final value of the Josephson energy EJ,f .11 This results in

decreased number fluctuations as compared to the initial state:

〈n̂2〉(f) ≈ T

EC

√

EJ,f

EJ,i

=
Teff

EC

(3.21)

The argumentation holds as long as the distribution stays thermal, i.e. only the linear part

of the spectrum is populated. An effective temperature Teff = T
√

EJ,f/EJ,i can be as-

signed to the system in the final state which is lower than the initial temperature T .

This adiabatic cooling mechanism can be understood in a very intuitive way: The en-

ergy in the system is given by the temperature E = 〈k〉ωpl = T . Adiabaticity means

the mean occupation number 〈k〉 does not change during the evolution and therefore

Tf/Ti = ωpl,f/ωpl,i =
√

EJ,f/EJ,i, and one recovers the same result as above for T = Ti

and Teff = Tf .

Adiabatic cooling reaches its limit in the Fock regime, when all states are double degener-

ate and the energy splitting between the pairs increases quadratically. The matrix element

〈k| n̂2 |k〉 = k2 has to be calculated for |k〉 being eigenstates of the number difference

operator and the degeneracy has to be taken into account. The cooling limit follows from

〈n2〉 =
2
∑

k k2e−2k ωpl/T

∑

k e−Ek/T
≈ 1

2

(

Ti

ωpl,i

)2

(3.22)

and it is determined by the initial entropy which is measured by Ti/ωpl,i.

10n̂ and ϕ̂ are symmetric variables in equation (3.14). The fluctuations in the relative phase ∆ϕ̂2 ≈ T/EJ

are obtained in the same way as described for ∆n̂2 = 〈n̂2〉, but replacing the matrix element by

〈k| ϕ̂2 |k〉 = (k + 1/2)
√

EC/EJ .
11For our parameters EC,f ≈ EC,i = EC holds.
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Figure 3.9: Position noise translates to atomic noise. The schematic illustrates the connection

of number difference fluctuations and relative position fluctuations between optical dipole trap

and optical lattice ∆z. The chemical potential µ is constant in both wells which results in an

occupation number difference between the left and right mode dependent on the differential energy

shift ∆Vharm between them.

3.3 Quantum fluctuations in few-well potentials – experimental

challenges

3.3.1 Position stability of the external trapping potentials

As discussed above finite temperature limits the minimum achievable fluctuations ∆Ĵ2
z

and ∆Ĵ2
y and therefore the coherence 〈cos(ϕ)〉. Beside cooling to ultra low tempera-

tures the second technical challenge is the position stability of the different optical dipole

traps [76]. Relative movement of the dipole trap with respect to the position of the poten-

tial barrier causes fluctuations of the atom number difference n between the left and the

right well. Figure 3.9 illustrates this situation. The optical dipole trap generates harmonic

confinement in longitudinal direction Vharm = mω2
zz

2/2, where m is the atomic mass.

Fluctuations of the energy difference ∆Vharm between the two potential minima separated

by d due to fluctuations of the barrier position ∆z is given by:

∆Vharm =
∂Vharm

∂z
∆z = mω2

zd ∆z (3.23)

In the local density approximation [65] the overall chemical potential µ = Vharm(z)+µat(z)
is the same for the two wells and the contribution due to interatomic interactions µat(z)
balances the change in Vharm(z): ∆Vharm = ∆µat

∆µat =
∂µat

∂nl

∆nl = EC∆n (3.24)

With the experimental parameters for the double-well potential EC ≈ 2π · 1 Hz and

ωz ≈ 2π · 60 Hz we obtain

∆z =
EC

mω2
zd

∆n . 125nm (3.25)
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Figure 3.10: Laser beam configuration for the optical potential. Panel a, illustrates the beam

setup required to generate a double-well trap at the crossing point of the four laser beams. In part b

one of the dipole trap beams is omitted which results in a smaller longitudinal trapping frequency

and decreased sensitivity of the atomic fluctuations to position fluctuations. Smaller longitudinal

confinement results in more than two populated lattice sites. For the chosen total atom number of

5300 atoms in this trap typically six to seven wells are populated. The important distances between

the main elements are indicated and the interferometric position stabilization of the optical lattice

is schematically shown.

as the position fluctuation leading to an extra noise of the same order as the shot noise limit

ξ2
N = 0 dB for 2000 atoms. Since these technical induced fluctuations add to the variance

caused by the atomic quantum state, their magnitude has to be much smaller than the shot

noise level in order to measure a reasonable amount of number squeezing. As a figure of

merit, position fluctuations of 60 nm between different experimental realizations limit the

best observable number squeezing to ξ2
N ≈ −6 dB.

Ultra stable optical traps

Figure 3.10a shows schematically the setup of the laser beams necessary to generate the

double-well potential. As as described in section 3.1.2 and in reference [72] the setup con-

sists of four laser beams of which one generates the main dipole trap, an additional dipole

trap beam increases the longitudinal confinement12 and two beams interfere to generate the

one dimensional lattice with lattice spacing d = 5.7 µm. The dipole trap potential mini-

mum is positioned such that it coincides with a node of the red detuned optical lattice, thus

making up the double-well potential. The position of the interference pattern is actively

12The frequency of this beam differs from the frequency of the main dipole beam by 30 MHz to average

their interference pattern.

40



3.3 Quantum fluctuations in few-well potentials – experimental challenges

stabilized at a reference position which is chosen as close as possible to the atomic cloud,

but outside the vacuum chamber. Position feedback is implemented by control over the

relative phase between the two lattice beams [76]. However the positions where the inter-

ference pattern is interferometrically stabilized and where the optical trapping beams for

the dipole traps are launched are macroscopically spaced by approximately 20 cm. Rel-

ative position stability in the order of a few tens of nanometers is therefore a technical

challenge. We mount all optical beams – avoiding mechanical stress as good as possible

– on a massive casted block of AlMg4,5Mn aluminum alloy for optimal passive stability.

This block is hold to the optical table by its own weight and it is carried by three steel balls

similar to a standard mirror mount design. The required stability of ca. 60 nm is still hard

to achieve day to day13 but the experimental results presented below suggest that we are

close to this level of stability.

3.3.2 From two to few – the six-well trap

Quantitative measurements of number and phase fluctuations require long measurement

time since the repetition rate of our experiment is one minute and we need approximately

100 experimental repetitions per parameter set to have reasonable statistics. Fulfilling the

double-well stability requirements on a timescale of a few hours is experimentally hard to

achieve.

In order to decrease the sensitivity to position fluctuations we omit the trapping beam that

provides extra longitudinal confinement (figure 3.10b). The longitudinal frequency of the

trapping potential is in this case ωz = 2π · 20Hz for ωx = ωy = 2π · 425Hz. The spa-

tial stability requirement given in equation (3.25) is proportional to the inverse quadratic

trap frequency ω−2
z . A reduction of ωz by a factor of three from the double- to the few-

well geometry relaxes the required position stability to ∆z ≈ 350 nm for ξ2
N ≈ −10 dB

maximum number squeezing. Loading a 87Rubidium Bose-Einstein condensate of ap-

proximately 5300 atoms into this trap results in a chemical potential of µ ≈ 1 kHz and

the condensate has a longitudinal extension of ca. 40 µm. Six to seven lattice sites are

populated after superposing the one dimensional optical lattice where the actual number

of sites depends on the relative position of lattice and dipole trap potential minimum.

Our detection system allows for the measurement of the atom number in each of the wells

and for the measurement of the relative phase between two next neighbors (see section 3.4).

This provides access to the local spin variables of two neighboring wells and we approx-

imate each well pair as a single Josephson junction. Figure 3.13a (b) shows absorption

pictures taken in the double- and few-well trap situation respectively.

13The thermal expansion coefficient of alluminium is ca. 23 × 10−6/K at room temperature, leading to a

temperature stability requirement of 10 mK over a few hours, the typical duration of the experiment.
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Figure 3.11: Local parameters of the Josephson junction array. The local Charging and Joseph-

son energy for each Josephson junction in the few-well trap is calculated following the recipes given

in section 3.1.2. We choose a geometry with two equally populated wells in the center as shown in

the insets and the calculation was done for 5300 atoms with the trapping parameters as given in the

main text. The line style distinguishes the different well pairs. In panel a the Charging and Joseph-

son energy is plotted, while panel b shows the resulting local plasma frequency. Interestingly the

maximum local plasma frequency is much larger than the longitudinal trap frequency ωz .

Temperature in the few-well case

The few-well configuration can be described as an array of non-identical Josephson junc-

tions. The mean field Gross-Pitaevskii wavefunction is used to calculate the Charging

energy E
(m)
C and Josephson energy E

(m)
J for each junction m as given in equations (3.6)

and (3.7). In figure 3.11 the results for our experimental parameters are plotted versus

barrier height V0.

In order to estimate the effect of finite temperature in the double-well case the argument

ωpl → ωz for vanishing barrier height V0 → 0 was used in section 3.2. Figure 3.11b shows

that this argument does not hold any more in the few-well case. The extension of one local

Josephson junction is much smaller than the extension of the condensate in longitudinal

direction. Therefore the local plasma mode corresponds to a rather short wavelength –

high energy – excitation as compared to the trap dipole mode. This argumentation is a

simplification since the energy spectrum in the few-well situation shows a band structure

with M − 1 modes per band for M wells.

Figure 3.12 shows the eigenmodes in the lowest band of our few-well trap for 5300 atoms.

The calculation was done in harmonic – phonon – approximation treating the system as

coupled oscillators with different masses (E
(m)
C ) and spring constants (E

(m)
J ). Exact nu-

merical diagonalization following reference [88] reveals the eigenmodes. The harmonic
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Figure 3.12: Phonon spectrum of the Josephson junction array. The figure shows the energy

of the eigenmodes in the lowest band of the few-well trap versus barrier height V0. For low barrier

heights V0 the frequency of the lowest mode matches approximately the longitudinal trap frequency

ωz while the local plasma frequency of the central well pair compares to the energy of the high

lying modes. The calculation was done in harmonic approximation which is expected to hold for

barriers up to V0 ≈ 1.5 kHz (illustrated by the shading). For greater barriers the local Josephson

energies are comparable to the Charging energies and the system is close to the Fock regime (see

figure 3.11).

approximation does certainly not hold any more in the high lattice case where each Joseph-

son junction enters the Fock regime. However for the qualitative arguments presented here

only the low lattice regime is important.

The local plasma mode is not an eigenmode of the problem, but its energy is in the up-

per part of the first band. We expect that a few of the eigenmodes overlap with the local

plasma modes but as argued above the short wavelength modes should contribute most.

The discussion here shows that the local treatment is an approximation neglecting the long

wavelength excitations in the system.

Comparing the frequency of the plasma excitation of the central well pair with the typical

temperature, we obtain T/ωpl ≈ 3, approximately the same number that was found in the

double-well situation. Our experiments in the double- and few-well situation are effec-

tively in a similar entropy regime.
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a b

c d

Figure 3.13: Typical single shot pictures showing number and phase detection. The left col-

umn of the figure shows number (a) and phase (c) detection for the double-well case. Both variables

can also be locally measured in the few-well situation. Number detection (b) is straightforward

while for the phase measurement (d) the correct expansion time has to be chosen in order to allow

only condensates from neighboring lattice sites to interfere (see also figure 3.15).

3.4 Spin squeezing across a Josephson junction –

experiments

3.4.1 Detection of number difference and relative phase

In order to measure coherent spin squeezing ξ2
S = N∆Ĵ2

z /〈Ĵx〉2 fluctuations in one spin

direction ∆Ĵ2
z , the mean spin length 〈Ĵx〉 and the total number of atoms N have to be de-

tected. Measurement of the atom number difference n = Jz, its fluctuations, and the total

atom number N is straight forward and the only requirement is an accurately calibrated,

linear imaging system with single lattice site resolution. Measurement of the mean spin

length 〈Ĵx〉 = N〈cos(ϕ)〉/2 is possible via the measurement of the relative phase ϕ which

is revealed from an interference pattern between the wavefunctions from two neighboring

wells. A detailed discussion of the statistical analysis to calculate atom number fluctua-

tions and the coherence follows later in this section, but in the next paragraph we discuss

the requirements on the detection system to measure n and ϕ in a single realization of the

experiment.

We installed an absorption imaging system with single lattice site resolution that was de-

veloped in our group. Details on the setup, its calibration and on the imaging sequence

can be found in appendix A. Figure 3.13a (b) shows images of the condensate in the

double-well and few-well trap where the imaging parameters were adjusted for on site

atom number detection. The images in figure 3.13c (d) correspond to relative phase mea-

surements and show single shot interference patterns for the two and few-well case. In

the few-well situation the relative phase between two neighboring wells is deduced from

local interference patterns. Therefore the detection requires the correct expansion time of
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Figure 3.14: Squeezed distribution of the atom number difference. Shown are the detected

atom number difference fluctuations for a number squeezed state where in total approximately

1000 measurements contribute. The histogram shows the experimental raw data after filtering by

the Grubb outlier test and linear drift removal. The gray curve is the expected distribution for a

shot noise limited quantum state without experimental noise, while the black curve is the inferred

distribution (assuming a gaussian shape) after subtracting known noise from the experimental data.

the condensates such that only the wavefunctions from two next neighboring lattice sites

overlap. Fringes are observed after a short expansion in the harmonic trap in absence of the

lattice potential (2 ms) followed by a free expansion (400 µs to 900 µs). In order to choose

the proper timing, we image the cloud after different free expansion times and observe the

formation of the interference pattern. For too short expansion times, clouds released from

neighboring wells do not overlap which is easily seen in the images. In the case of a low

lattice depth, all wells are in phase leading to a maximum of the interference pattern at the

middle positions between the wells. We choose the timing such that this central maximum

is clearly visible.

Number squeezing and coherence measurements require to measure the statistical quanti-

ties ∆n2 and 〈cos(ϕ)〉. However the detection process of the Bose-Einstein condensate is

destructive such that the experiment has to be repeated with the same parameters in order

to measure distributions of n and ϕ. Typically one dataset consists of 25 to 40 experimen-

tal “shots” and in order to reduce statistical uncertainties we average three to four of these

datasets such that approximately 100 single experimental realizations contribute.

Occupation number difference and its fluctuations

The atom number in each well is extracted from an absorption picture where the signal

on each pixel corresponds to the column density of atoms convolved with the point spread

function of the imaging system (σpsf ≈ 700 nm). We choose the number of atoms in the

trap and the expansion time before imaging such that the detected signal can be unam-

biguously assigned to individual wells (see appendix A for more details). By pixel-wise
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3 Squeezing two mean field modes of a Bose-Einstein condensate

summation over the area on the picture containing more than 99% of the atoms per well

we obtain the occupation number. We checked that the detected total atom number and

its fluctuations do not depend critically on the size of the summation area. Given the

atom number in each well the calculation of the atom number difference for each well pair

n = (nl − nr)/2 is straight forward but the deduction of the variance ∆n̂2 of the quantum

state requires some caution.

A Grubb outlier detection algorithm [89] is used to filter the atom number difference n for

rare outliers caused by technical problems. It detects typically zero but maximally 1 to 2
points per dataset (at a 5% significance level). Due to possible slow drifts of the trapping

potentials (on the timescale of one hour) we correct each dataset by removing a linear

slope. Statistical simulations were performed to test this procedure and biasing was found

to be negligible.

For each dataset, we define p = 〈nl/N〉 the probability for an atom to be found in the left

well where N = nl+nr is the total atom number per wellpair. If p 6= 1/2 the atom number

difference n depends on the total atom number as n = (p− 1/2)N . Therefore fluctuations

in the total atom number between different experimental runs contribute to the measured

variance. We compute

∆n2
raw = 〈[(nl − nr)/2 − (p − 1/2)N ]2〉 (3.26)

in order to avoid taking these fluctuations into account. Since p is typically close to 1/2
this correction has only a small effect.

Additional noise ∆n2
l(r),psn in the atom number nl(r) per well due to photon shot-noise

from the detection process contributes to the variance ∆n2
raw. We deduce this extra noise

as the sum over the variance per CCD pixel in the integration area where the contribu-

tion per pixel is inferred from the light intensity on the absorption and on the reference

picture. A measured CCD camera noise calibration curve relates the mean counts to the

variance per pixel and permits to calculate the additional atomic variances δn2
l(r),psn for

each experimental realization (see appendix A). We subtract this contribution

∆n2
psn = [1/4 + (p − 1/2)2]〈δn2

l,psn + δn2
r,psn〉 (3.27)

and obtain the corrected number fluctuations:

∆n2 = ∆n2
raw − ∆n2

psn (3.28)

Number squeezing is detected when the measured fluctuations ∆n2 are lower than expected

for a binomial distribution – the shot noise limit.

ξ2
N =

∆n2

p(1 − p)〈N〉 < 1 (3.29)
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Figure 3.15: Phase coherence for different barrier heights. Panels a and b show phase mea-

surements in the double-well situation for a high barrier in a and for a low barrier in b. The two

columns c, d on the right show the respective phase measurements in the few-well situation. Each

line in the images corresponds to an transversally averaged profile of a single experimental realiza-

tion. The graphs below show the average of the pictures above in vertical direction. In the few-well

case the boundaries between different well pairs are indicated. For a high barrier V0 (a and c) the

relative phase measured in each shot is almost random and the average visibility is decreased, while

a stable relative phase is observed for low barriers (b and d).

Figure 3.14 shows the histogram of measured atom number differences where several

datasets were combined resulting in approximately 1000 total counts. The two gaussian

curves represent the distributions expected for a shot noise limited state and for the de-

tected number squeezed state where the measured variance is corrected for total atom

number fluctuations and photon shot noise.

Relative phase and coherence

We measure the coherence of the quantum state for the same experimental parameters as

chosen for the corresponding number fluctuation measurement. In order to deduce the

relative phase between two neighboring wells we Fourier transform the transversally aver-

aged interference pattern and extract the phase ϕ from the dominant frequency component.

In the few-well situation we slice the picture at the center position of each well and infer

the relative phase between two wells based on these slices (see figure 3.15). We calculate

the coherence 〈cos(ϕ)〉 by ensemble averaging cos(ϕ) over each dataset where ϕ is ob-

tained from the single shot interference patterns. Figure 3.15 shows profiles of exemplary

datasets for high and low coherence in the double- and few-well system. Each pixel row

of each picture is a vertically averaged single shot profile where the depth of gray shading

corresponds to the number of atoms per pixel. The ensemble averaged profile is shown

below, which also reveals the coherence from its visibility.
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Figure 3.16: Single shot visibility of the interference patterns. The fringe visibility observed in

a single experimental realization is compatible with unity when the finite optical resolution is taken

into account. The figure shows the observed average singe shot visibility (solid circles) compared to

the expected visibility for a pure two-mode situation including the effect of finite optical resolution

(open squares). Experiment and prediction agree within a few percent. The trend in the observed

data which is due to the dependence of the visibility from the fringe wavelength is reproduced by

the theory. The wavelength decreases with rising barrier since the in the tighter trapping results in

increased kinetic energy at the time of release.

In the few-well situation each slice contains only 11 pixels, therefore photon shot noise

in the individual images is one limiting factor for the phase estimation precision. Experi-

mentally we find smallest fluctuations when calculating the phase of the interference fringe

relative to the absolute position of the fringe on the camera sensor. However from repeated

measurements of the center of mass position of a small atomic cloud we extract root mean

square fluctuations of the imaging systems position in the order of one pixel. Both effects,

finite signal to noise and position fluctuations, limit the phase precision to ∆ϕmin ≈ 23◦

in the few-well situation. We do not correct for the this additional noise leading to a sys-

tematic underestimation of the true coherence across the junction.

It is more general to extract the coherence from the ensemble averaged interference pat-

terns shown in the lower part of figure 3.15 than ensemble averaging the individual phases,

since in a non-two-mode situation the single shot visibility of the patterns might be already

decreased. The drawback of this method however is an underestimation of the coherence

due to the finite resolution of the imaging system. We found that the single shot visibility

is compatible with unity taking the finite resolution of the imaging system into account

(figure 3.16), which justifies our method to compute the coherence.
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Figure 3.17: Timescales for adiabatic barrier ramps. We ramp up the barrier height V0 from

2π · 430 Hz to 2π · 1650 Hz in a linear way varying the total ramp time. Panel a shows the results

of the measurements for the few-well situation. The gray shaded area is a theoretical simulation

within the local two-mode model assuming temperatures between 20 nK and 40 nK. The two dif-

ferent symbols correspond to the two central well pairs in the optical lattice. Panel b shows the

same experiment but in the double-well geometry. Temperature alone as the limiting factor for

number squeezing can not explain the observed data (hatched area). Including relative position

fluctuations of dipole trap and lattice beams, the experimental observation is reproduced for the

same temperatures as in the few-well case.

3.4.2 Measuring the timescale for adiabatic changes

In section 3.2 we discussed the effects of finite temperature on the fluctuations in atom

number difference and relative phase. Adiabatic cooling was presented as one approach

to achieve number squeezing despite of thermally induced fluctuations. In order to change

the state of the system adiabatically the timescale τ in which the potential barrier V0 is

ramped up and therefore the plasma frequency ωpl is changed has to be smaller than the

inverse plasma frequency itself [54, 90]. Therefore it is hard to drive the system adiabati-

cally into the Fock regime where EC/4EJ ≫ 1 if the Charging energy EC is small since

this requires ramp times τ ≪ E−1
C . For our parameters ramp times τ on of the order of

a few tens of seconds are necessary to reach the ultimate cooling limit given in equation

(3.22). These long times are not realizable in the experiment without significant perturba-

tion of the system due to the environment which leads to particle loss and heating [86].
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3 Squeezing two mean field modes of a Bose-Einstein condensate

Due to these disturbing effects the experimental duration should be chosen as short as pos-

sible and the optimal ramp duration for a given situation is best found experimentally. We

start with a Bose-Einstein condensate in a low barrier trap of V0 = 2π · 430 Hz. Now we

ramp up the potential barrier in a linear manner to a fixed end height of V0 = 2π · 1650 Hz.

We repeat this experiment varying the total ramp time and measure the number squeezing

parameter ξ2
N . Figure 3.17 shows that ramps with a slope smaller than 2π · 10 Hz/ms are

found to be adiabatic within the detection accuracy of our experiment.

In the double-well situation with 1100 atoms in total we measured up to very long ramp

times in the order of a few seconds. Number squeezing however levels around ξ2
N ≈ −2 dB

which is explained taking position noise into account as detailed below. The data shows

even an upward trend for long ramps which is attributed to heating and atom loss.

We load 5300 atoms in total into the few-well trap corresponding to a occupation number

of N ≈ 2200 atoms in each of the two central well pairs. Number squeezing increases

from ξ2
N ≈ −2 dB for a low barrier to the best observed value of ξ2

N = −6.6+0.8+0.8
−1.0−0.8 dB.

This number is calculated by averaging over several datasets such that approximately 1000
experimental realizations contribute. The given uncertainties are one standard deviation

statistical errors of the mean over all datasets followed by an upper bound of 20% for sys-

tematic errors due to a possible calibration error of the atom number detection. We find

adiabatic cooling of approximately a factor of three. At V0 = 2π · 1650 Hz the system is

not yet in the Fock regime (see figure 3.11), however the highest occupied modes are not

any more in the linear part of the spectrum. This results in large fluctuations in the rela-

tive phase and a loss of coherence across the Josephson junction (see figure 3.15). Since

the main experimental goal is to generate many-body entanglement and coherent number

squeezing we tried to find the optimum ramp time to this intermediate barrier height. Fur-

thermore the detected number squeezing of ξ2
N = −6.6 dB means fluctuations of only 10

atoms out of 2200 which is close to the detection threshold of our imaging system.

The gray shaded area in figure 3.17 shows the result of a numerical simulation of the two-

mode Josephson Hamiltonian using the dependence of the Hamiltonian parameters EC and

EJ on the barrier height V0 shown in figures 3.11 and 3.3. In the theory the initial tempera-

ture was adjusted to fit the data and the upper bound of the area corresponds to T = 40 nK

while the lower line corresponds to T = 20 nK. In order to fit the double-well data, we

need to take position fluctuations of the trapping beams into account which limit the best

observable number squeezing. Position fluctuations with a root mean square amplitude of

∆z ≈ 80 nm explain the data (see section 3.3).

We restricted the change of the optical lattice intensity to linear ramps since they require

only one parameter, the ramp time τ , for given initial and final barrier height. In future ex-

periments the achieved number squeezing might be optimized further using custom ramp

shapes obtained from optimal control schemes [91, 92].
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3.4 Spin squeezing across a Josephson junction – experiments

3.4.3 Coherent spin squeezing and many-body entanglement

Optimizing coherent spin squeezing

Knowing the timescales for the barrier ramp the challenge is to find a final barrier height

V0 where the amount of number squeezing and phase coherence allows to achieve coherent

spin squeezing ξ2
S < 0 dB.

In order to answer this question experimentally we follow a barrier ramp with a slope

of 2π · 4 Hz/ms (few-well trap) from a low barrier situation where the condensate is ob-

tained to a variable end value.14 Figure 3.18a shows the results for the few-well situation.

Open and solid data points correspond to the two central well pairs in the lattice each

populated by approximately 2200 atoms. The phase coherence 〈cos(ϕ)〉 is plotted in the

upper panel and below the measured number squeezing ξ2
N is shown. For barrier heights

below ca. 2π · 1000 Hz we find high phase coherence and simultaneously a considerable

amount of number squeezing. Averaging the measurements between V0 = 2π · 650 Hz and

V0 = 2π · 900 Hz we calculate the best coherent spin squeezing:

ξ2
S = −3.8+0.3+0.8

−0.4−0.8 dB (3.30)

This value is obtained from approximately 500 phase and number difference measurements

and the uncertainties are one standard deviation statistical errors of the mean followed by

bounds on possible systematic errors. The systematic error is due to uncertainties in the

imaging calibration and due to the afore mentioned underestimation of the phase coher-

ence.

The gray shaded areas are the predictions from a two-mode approximation of the Joseph-

son Hamiltonian assuming adiabatic evolution, where the initial temperature was adjusted

to fit the data. The lower bound corresponds to T = 10 nK and the upper bound to

T = 30 nK, implying an entropy of three to ten thermally populated many-body states

across the junction. Reasonable good agreement with the data confirms the adiabatic cool-

ing model and the local two-mode approximation presented above. For the phase measure-

ment a maximal coherence of 〈cos ϕ〉2 = 0.85 was taken into account to match the theory

with the data, limited by the phase detection method as described in section 3.4.1. Since

the phase measurement relies on the overlap of the wavefunctions from two neighboring

wells after expansion, we ramp the barrier within 10 ms to V0 = 2π · 1650 Hz for all final

barrier heights lower than this value. This is necessary since the expansion velocity af-

ter release depends on the onsite interaction energy and the intra-well trap frequency and

therefore on the barrier height and the atom number.

Figure 3.18b summarizes the results for the double-well trap. The different symbols

represent two different measurements where the barrier was ramped up with a slope of

2π · 2 Hz/ms (solid triangles) and 2π · 8 Hz/ms (open diamonds). As in the few-well case

14We ramp from V0,i = 2π · 430 Hz for all end values V0 ≥ 2π · 430 Hz and from V0,i = 2π · 250 Hz for all

other end values.
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Figure 3.18: Phase coherence and number squeezing. The experiments carried out to optimize

coherent number squeezing are shown here. The upper row shows the evolution of the coherence,

while the lower row shows the number squeezing. Part a summarizes the results of the measure-

ments done in the few-well situation. As shown in the inset we follow a fixed slope to different

barrier heights and before detection we ramp up the optical lattice within 10 ms to the end value of

2π · 1650 Hz. Solid and open symbols correspond to the two central well pairs in the optical lattice

populated with 2200 atoms each. The gray shaded area shows the result of a local two-mode cal-

culation assuming adiabatic evolution with three to ten populated many-body modes. Part b shows

the equivalent measurement for the double-well with 1600 atoms in total. Solid and open symbols

correspond to two distinct measurements where the slope of the barrier ramp was different (see

main text). The gray shaded area is the result of a two-mode calculation with the same assumptions

as in the few-well case.

adiabatic evolution within the two-mode model is assumed for the same initial tempera-

ture and entropy.15 No upper limit for the phase coherence is necessary here since a longer

expansion time allows to observe the interference pattern spread over many pixels such

that the deteriorating effects of the detection noise are negligible on this level of precision.

Averaging the data between V0 = 2π · 650 Hz and V0 = 2π · 1200 Hz we measure a best

coherent spin squeezing of ξ2
S = −2.3+0.2+0.8

−0.6−0.5 dB.

Comparing the results for the few-well and double-well situation we find a better coherent

spin squeezing in the few-well situation. This is explainable by the stringent spatial sta-

15The position noise of optical lattice and dipole trap was smaller in this measurement since the data can be

reasonably explained without taking it into account.
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3.4 Spin squeezing across a Josephson junction – experiments

bility requirement in the double-well case (see section 3.3) making it hard to obtain better

number squeezing.

The best measured spin squeezing of ξ2
S = −3.8 dB potentially allows for a phase precision

gain of 1 − ∆ϕsq

∆ϕsql
= 35% in an ideal Ramsey type interferometer (see section 2.4). ∆ϕsql

is the phase error given by the standard quantum limit while ∆ϕsq denotes the phase error

that could be obtained using a spin squeezed state for the same total atom number.

Systematic deviations from the theory

In the coherence graph for the few-well situation (figure 3.18a) a systematic overestimation

of the coherence by the two-mode theory is visible, while the observed dependence of the

number squeezing is reproduced. We attribute the larger phase fluctuations to contributions

from the longer wavelength modes present in the few-well situation (see section 3.3). The

effect of more than two modes is currently analyzed in collaboration with the group of J.

Ruostekoski in Southampton, GB.

Many-body entanglement

In section 2.3 we discussed the connection of number squeezing and coherent spin squeez-

ing to many-body entanglement. We briefly summarize the arguments given there: While

number squeezing ξ2
N < 0 dB detects entanglement in a symmetric situation, coherent

spin squeezing ξ2
S < 0 dB requires entanglement without any symmetry assumption. In

figure 3.19 we plot our results in this context.

Data points shown are obtained by averaging the data in figure 3.18 and the symbols are

chosen correspondingly. Solid data points are calculated averaging the measurements be-

tween V0 = 2π·650 Hz and V0 = 2π·900 Hz (V0 = 2π·650 Hz and V0 = 2π·1200 Hz) while

open symbols represent averaged data above V0 = 2π · 1300 Hz (V0 = 2π · 1400 Hz) for

the few- (double-) well case.16 For the high barrier situation phase coherence is lost due

to temperature induced fluctuations while number squeezing increases slightly as com-

pared to the intermediate barrier height regime (solid symbols). Assuming a symmetric

two-mode situation which is valid for a Bose-Einstein condensate restricted to two modes

all points shown correspond to a non-separable many-body density matrix. However the

solid symbols are located below the curved dotted black line, which is the boundary for

coherent spin squeezing and many-body entanglement is unambiguously detected.

The inset in figure 3.19 clarifies the effect of finite temperature on the spin squeezing in

our experiment. In contrast to the main figure the vertical axes is rescaled to show the

best achievable number squeezing for a given phase coherence (gray line). Ideal measure-

ments on the ground state of a Josephson junction would yield results close to this line.

The measured data points are approximately 25 dB above the best achievable coherent spin

16In the double-well case two more data points not shown in figure 3.18 between V0 = 2π · 1650 Hz and

V0 = 2π · 1800 Hz contribute to the averaging.
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Figure 3.19: Many-body entanglement. We summarize the results shown in figure 3.18 in the

context of many-body entanglement. Diamonds correspond to the double-well measurements and

circles (squares) to the two central well pairs in the few-well trap. One standard deviation statistical

error bars are given and the gray shaded boxes are systematic errors. They are asymmetric in the

horizontal direction since our method to measure the coherence suffers from a systematic underesti-

mation. The phase diagram – number squeezing versus coherence – is divided in three regions: The

coherent spin squeezed region below the curved dotted line (marked as 0 dB), the number squeezed

region below the straight dotted line and the non-squeezed region above. For intermediate barrier

heights (solid data points) we find coherent spin squeezing which requires many-body entangle-

ment. The curved lines are the boundaries for the indicated amount of coherent spin squeezing.

Open symbols represent measurements taken for a high barrier. Number squeezing is slightly

larger than for intermediate barriers, but phase coherence is decreased. The measurements lie in

the number squeezed region where entanglement is only required for a symmetric quantum state.

The inset shows our measurements in comparison to the lowest achievable number fluctuations at

a given coherence revealing the large effect of increased entropy due to finite temperature.

squeezing showing large room for future improvement if the entropy of the system can be

better controlled.

3.4.4 Particle loss and number squeezing

The results on squeezing presented above rely on an accurate calibration of the atom num-

ber detection (see also appendix A). An independent test of the calibration can be done

by monitoring the evolution of number squeezing when the system is subject to parti-
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Figure 3.20: Number squeezing and particle loss. We measure the evolution of number squeez-

ing with particle loss in order to test for our absorption imaging calibration. Data shown as gray

diamonds correspond to measurements where we condensed directly into a high barrier trap setup

with negligible coupling between the wells. No number squeezing is observed in this case. Black

circles show measurements where we start from a squeezed state and hold the atoms in the trap for

different times. One and three body losses cause a decay of number squeezing. The black solid line

is the theoretical prediction where the loss coefficients are extracted from the observed total atom

number decay shown in the inset. The gray square data point summarizes the fluctuation measured

after 10 s starting with a slightly squeezed state. The particle loss reduces the uncertainty in the

number squeezing (gray shaded area) which allows for a good quantitative comparison to the the-

ory. In order to obtain a strong test of our calibration we repeat the experiment 1000 times resulting

in small statistical errors. The given error bars represent two statistical standard deviations and

show good agreement with the theory.

cle loss. Appendix B details the calculation of the evolution of number squeezing when

one and three body loss is present (two body loss is negligible for 87Rubidium in the

|F, mF 〉 = |2,±2〉 states [93, 94]). We perform three different measurements:

Evolution of number squeezing under loss starting with an uncorrelated

state

We prepare a Bose-Einstein condensate in a very high lattice situation (V0 = 2π · 2700 Hz)

such that the tunneling time τpl = 2π/ωpl between adjacent sites is in the order of a few

tens of seconds and therefore longer than the experimental timescale. The condensates
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on the different lattice sites are independent and we expect poissonian number fluctua-

tions between them. Only small dynamics in the number squeezing versus particle loss

is expected due to correlations stemming from three particle loss. The gray diamonds in

figure 3.20 show the measured number squeezing versus the evolution time. Although we

loose approximately two-thirds of the atoms (see inset), the measured data points scatter

around ξ2
N = 0 dB showing that the calibration of our imaging is correct. Due to limited

statistics we are not able to observe the dynamics due to three body loss.

Evolution of number squeezing under loss starting with an number

squeezed state

As a further test we monitor the decay of number squeezing when particle loss is present.

We prepare the system in a number squeezed state with an initial number squeezing of

approximately ξ2
N = −6 dB and measure the relative atom number fluctuations after dif-

ferent hold times. The result is plotted as solid circles in figure 3.20. Number squeezing

decays and asymptotically approaches ξ2
N = 0 dB. The solid black line shows the predic-

tion for three and one particle loss obtained from the Master equation approach described

in appendix B. The three and one body decay coefficients where obtained from fits to the

observe decay of the mean atom number shown in the inset. Within the statistical uncer-

tainties the model reproduces our data.

Number squeezing after loss – high statistics

The gray square data point in figure 3.20 is the strongest test of our imaging calibration.

Here we start with a slightly squeezed state by condensing into a V0 = 2π · 430 Hz lattice

which is the usual starting point for most of the experiments presented above. After a fast

barrier ramp up in 20 ms to V0 = 2π · 2700 Hz we expect an initial number squeezing

−3 dB < ξ2
N < 0 dB as detected in the measurement shown in figure 3.17. We measure

the relative atom number fluctuations after 10 s evolution time during which two-thirds

of the atoms are lost and we find ξ2
N = −0.7+0.7

−0.7 dB, where the indicated errors are 95%
statistical confidence bounds. This has to be compared to the expected fluctuations of

−1.2 dB < ξ2
N < −1 dB predicted from the measured loss rates. 1000 experimental

realizations contribute to the measurement which allows for a quantitative comparison

with the theory. Within the remaining statistical uncertainties we find good agreement

between theory and experiment.
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quantum limit

In the experiments described in the previous chapter we detected coherent spin squeezed

atomic quantum states. However the implementation of a real atom interferometer where

the two modes are defined by two mean field wavefunctions in a double well potential is

difficult. One of the problems is the limited range in which the system parameter Λ can

be tuned – especially the Rabi regime is not accessible for our setup [18]. Therefore the

realization of a beamsplitter, i.e. a π/2 pulse between the two external modes, remains

an open challenge [84]. The second issue is due to the tuning of the Hamiltonian param-

eters by changing the external trapping potential. Standard coupling pulses in an atom

interferometer cause unitary rotations which requires diabatic changes of the hamiltonian

parameters. This involves a fast change of the external trapping potential which is – with-

out exiting the system – only possible if the timescale corresponding to the local intra-well

trapping frequencies is much faster than the inverse plasma frequency. This requirement

is not fulfilled for our setup and fast changes of the barrier height initiates the breathing

motion or even dipole motion of the individual condensates1.

In the experiments described in this chapter we overcome these problems and we present

an interferometric measurement directly demonstrating phase precision beyond the stan-

dard quantum limit. The thesis is structured in a pedagogical way such that the reader can

follow the arguments presented step by step. Therefore the prerequisites necessary to im-

plement the novel non-linear interferometer are described first, while the main result can

be found in section 4.7 at the end of the thesis.

An interacting two-mode system defined by atomic hyperfine states

We extend our experimental setup such that two internal hyperfine states of the 87Rubidium

atoms are used as the two modes to overcome the limitations mentioned above. The cou-

pling between the two states can be tuned in much cleaner way since it does not require

any change of the external trapping potential but electromagnetic radiation is employed.

Today’s time standard is based on shot noise limited Ramsey interferometry [42] imple-

mented on a similar atomic system – two hyperfine states of Cesium atoms. The mi-

crowave technology required for precise coupling pulses is therefore readily available and

the experimental techniques necessary to realize standard linear interferometry are well

known [95].

1We use the excitation of these modes when changing the barrier height V0 abruptly for a calibration of

V0 [74]
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4 Non-linear interferometry beyond the standard quantum limit

Figure 4.1: Hyperfine structure of the 52S1/2 electronic ground state of 87Rubidium. This

schematic figure shows the two ground state hyperfine manifolds of 87Rubidium including their

Zeeman splitting. The level splittings are not to scale. We work at rather low magnetic fields such

that the Zeeman splitting between neighboring states is in the order of 2π · 6 MHz. The two states

labeled |a〉 and |b〉 form an effective two-level system with common mode first order Zeeman shift.

However, our goal is to implement high precision non-linear atom interferometry utiliz-

ing the interactions between the particles. Therefore the experimental system has to ful-

fill some specific requirements, which are low sensitivity to magnetic field noise and –

most important – finite interaction strength among the atoms. A Bose-Einstein conden-

sate of 87Rubidium has been considered as a promising candidate to create coherent spin

squeezing based on two hyperfine states [20]. Figure 4.1 shows the hyperfine structure of
87Rubidium in the electronic ground state. The |F, mF 〉 = |1, 1〉 and |2,−1〉 states in the

lower and upper hyperfine manifold are suitable states for this experiment. They fulfill

the two major requirements – the tunability of interspecies interactions [96–98] and their

Zeeman energy shifts are – to first order – common mode with respect to magnetic fields.

4.1 Squeezing – internal versus external degrees of freedom

In this section we work out the main differences between the external double-well system

and two-mode system based on two hyperfine states with respect to the generation of

spin squeezed states. It is clarified that the two systems can be described by the same

Hamiltonian but also that the experimental limitations are very different. A fast, diabatic

squeezing protocol is shown to be suitable for the realization of coherent spin squeezing

based on hyperfine states of 87Rubidium.

58



4.1 Squeezing – internal versus external degrees of freedom

4.1.1 The spin model

In section 3.1.3 different theoretical descriptions of the external system assuming various

approximations have been discussed. On this level of precision, where higher order cor-

rections to the Hamiltonian are neglected [18] the internal system is described by the same

Hamiltonians [99]. The main assumption in the internal case is that the spatial wavefunc-

tions of the two hyperfine states are identical [100–102], an issue discussed in detail below.

Distinct to the external double well case the Hamiltonian parameters can be switched very

fast and also the Rabi regime is easily reached. Therefore arbitrary rotations on the Bloch

sphere are possible and detection of any spin direction can be done by a proper unitary ro-

tation of the state before readout. The spin component to be measured is rotated to the Jz

direction which is detected by the occupation difference n between the two states [103].

This is a major difference to the experiments discussed in the previous chapter, where

phase readout was done by observation of a spatial interference pattern.

The spin Hamiltonian provides the most intuitive description in the internal case

H = −∆ω0Ĵz + χĴ2
z − ΩĴx (4.1)

where we use the parameters χ for the nonlinearity and the Rabi frequency Ω instead of

the Josephson parameters EC and EJ . The motivation for this nomenclature becomes clear

throughout this chapter but, in brief, we use a diabatic technique switching the Hamiltonian

parameters such that either the Rabi frequency dominates or the coupling is switched off

Ω = 0 such that the evolution is purely due to the non-linear term.

The coupling Ω

The Hamiltonian parameters are revealed differently than in the external case. The cou-

pling between the two modes |a〉 := |1, 1〉 and |b〉 := |2,−1〉 is purely given by single

particle physics and its strength – the Rabi frequency Ω – is controlled by the inten-

sity of the electromagnetic radiation. The energy of the two states differs by approxi-

mately ω0 = 2π · 6.8 GHz and their Zeeman quantum number mF is distinct by two.

We use a similar scheme as described in references [97, 104, 105] to couple the two

states by a two-photon transition as shown in figure 4.2. We choose a single-photon

detuning δ = −2π · 200 kHz to the |2, 0〉 intermediate state allowing for maximal two-

photon Rabi frequencies Ω = 2π · O(1 kHz). Our experiments require an offset mag-

netic field of approximately B0 = 9.1 G resulting in a Zeeman shift of ca. 2π · 6.3 MHz

between two neighboring Zeeman sub-states in the same hyperfine manifold. Therefore

the two-photon pulses comprise of two frequencies, one in the microwave regime around

ωMW = 2π ·6.841 GHz and one in the radio-frequency regime around ωRF = 2π ·6.3 MHz.

We stress a big difference to the external case – the coupling can be switched from max-

imum to exactly zero and vice versa faster than any other timescale in the experiment.
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4 Non-linear interferometry beyond the standard quantum limit

Figure 4.2: Coupling of the internal two-mode system. This schematic shows the relevant three

level scheme necessary to implement the Rabi coupling Ω between the states |a〉 and |b〉. Two

electromagnetic radiation fields ωMW and ωRF are used to couple the two states with a single-

photon detuning δ to the |2, 0〉 intermediate state. The individually off resonant photon fields cause

a light shift of the Zeeman levels here represented as the effective shifts δls,a and δls,b. These shifts

are linearly dependent on the intensity of the two electromagnetic fields, especially they drop to

zero when the fields are switched off resulting in a detuning of the two-photon transition during the

free evolution time.

Detuning – rotation around the Jz axis

The first term in equation (4.1) proportional to Ĵz describes a rotation of the state around

the Jz axis of the Bloch sphere. A priori the angular frequency is given by the energy dif-

ference ω0 between the two states. However the position of the state on the Bloch sphere

is measured in a rotating frame whose angular frequency is given by the joint frequency

of the two-photon coupling. For resonant pulses this matches exactly the energy splitting

between the two modes such that there is no relative rotation in the resonant case [80].

However, for a two-photon coupling scheme the two states experience a differential light

shift due to the single-photon detuning δ (see figure 4.2). This light shift involves con-

tributions from several of the hyperfine states since we are not dealing with an isolated

three level problem. It can be measured accurately by Ramsey spectroscopy where alter-

nately one of the electromagnetic radiation fields is present during the evolution. For the

typical microwave and radio-frequency power used in our experiments it is in the order of

δls,a+δls,b = −2π ·150 Hz. This effect leads to a different resonance frequency ω0 whether

the coupling is on or off. Since accurate unitary rotations require resonant coupling, finite

rotation dynamics ∆ω0 around the Jz axis during free evolution is not avoidable.2

Two other effects cause a differential energy shift of the two modes, of which one – the

2Technologically a coherent change of the frequency of one of the two electromagnetic fields is not possible

in our experiment.
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4.1 Squeezing – internal versus external degrees of freedom

second order Zeeman shift – is a single particle effect and the second – a mean field in-

teraction induced chemical potential difference between the two condensates – is a many

particle effect. Mainly the first effect causes experimental difficulties when preparing spin

squeezed states since the magnetic field is not controllable to an arbitrary precision and its

fluctuations result in excess phase noise. For a more detailed discussion see section 4.5.

The analogy to the detuning ∆ω0 in the external double well experiments is described in

section 3.3 where relative position fluctuations of the different trapping beams were found

to be most critical.

Miscibility and the nonlinearity χ

Calculation of the nonlinearity χ requires the knowledge of the mean field wavefunctions

φa,b of the two modes |a〉 and |b〉.3 From the two-mode ansatz (see section 3.1.3) used to

derive equation (4.1) the nonlinearity follows [20, 99, 100, 102]

χ =
gaa

2

∫

dr |φa|4 +
gbb

2

∫

dr |φb|4 − gab

∫

dr |φa|2 |φb|2

≈ 1

2
(gaa + gbb − 2gab)

∫

dr |φa|4 (4.2)

with coupling constants gij = 4π~
2aij/m and s-wave scattering lengths aij between states

i and j. The mean field wavefunctions of each mode are normalized to unity
∫

dr |φi|2 = 1.

The last approximation assumes equal spatial mean field wavefunctions for both modes.

The same expression can be derived in the external double well case [78, 90] for the cal-

culation of the charging energy EC/2, however the big difference is that the overlap of the

two mean field wavefunctions is small in this case such that the third term in the first line

of equation (4.2) almost vanishes. In the external case the last approximation therefore

certainly does not hold.

For 87Rubidium and the chosen hyperfine states the background s-wave scattering lengths

aij are almost equal [96, 97, 101]

aaa = 100.44 aB

abb = 95.47 aB

aab = 97.7 aB (4.3)

where aB is the Bohr radius. Therefore the effective scattering length is close to zero

aaa + abb − 2aab = 0.5 aB resulting in a negligible nonlinearity χ = 2π · O(10−3 Hz).
There are two possibilities to increase the nonlinearity χ, one involves independent control

of the external potentials seen by the two states such that the wavefunction overlap can be

3We use the labeling |a〉 and |b〉 for both the single particle states and the mean field modes which is

not rigorously correct. However since we neglect external dynamics and assume perfect wavefunction

overlap this labeling is justified.
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4 Non-linear interferometry beyond the standard quantum limit

tuned [101, 106], the second is to make use of a magnetic Feshbach resonance which

provides a handle to control the interspecies s-wave scattering length aab [107]. The latter

method is suitable for our experimental setup since we work with optical dipole traps

where Feshbach resonances can be readily used, but state selective potentials are hard to

implement.

The ratios of the background scattering lengths given above cause another difficulty. The

two condensates tend to de-mix [108] since the miscibility condition a2
ab < aaaabb [109]

is not fulfilled. Depending on the external trapping of the Bose-Einstein condensates this

leads to a breakdown of the two-mode approximation and the Hamiltonian (4.1) is no

longer appropriate to describe the system. However for the chosen states the system is very

close to the miscible regime and a small decrease of 0.3% of the interspecies scattering

length aab would ensure miscibility.

4.1.2 Interaction tuning via a magnetic Feshbach resonance

A suitable interspecies Feshbach resonance between the |1, 1〉 and |2,−1〉 states around

B0 = 9.10 G has been reported [96–98] and tunability of the interstate scattering length

aab in the order of 10% has been shown [97]. Figure 4.3 shows the theoretical prediction

of the dependence of the scattering length from the magnetic field

aab(B) = abg
ab (1 − δB

(B − B0 − iγB/2
) (4.4)

with a resonance width of δB = 2.0 mG and a decay width of γB = 4.7 mG accounting

for enhanced inelastic spin relaxation and three body loss [96] (abg
ab = 97.7 aB is the back-

ground value). Thus – distinct to the experiments on external degrees of freedom where no

suitable Feshbach resonance exists in the low magnetic field regime – the nonlinearity χ
between the two hyperfine states can be rather easily tuned. The maximum achievable non-

linearity is limited by the enhanced inelastic losses when working close to the Feshbach

resonance (figure 4.3b) [107]. Furthermore, in a spin squeezing experiment these losses

limit the maximum achievable correlations between the spin directions [110]. Therefore

a balance between elastic and inelastic enhancement of the scattering properties is impor-

tant and the optimal magnetic field for our experiments is chosen taking this problem into

account (see section 4.1.3).

Figure 4.3a reveals that the elastic interspecies scattering length is lowered for B > B0

causing the system to enter the miscible regime. Nevertheless the single spatial mode

approximation – both hyperfine states share the same spatial wavefunction – does not nec-

essarily hold in a dynamic experiment since a sudden change of the hyperfine state, as

done by a π/2 pulse, initiates external dynamics in the system due to the different mean

field potentials seen by the two states (aaa 6= abb). However the effect of these dynamics

has shown to be negligible for our optical trap configuration (see section 4.5) [101] and in

principle it could be even further suppressed by working in the breath together regime as

proposed in [100, 101].
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Figure 4.3: Theoretical prediction of the interspecies Feshbach resonance. Panel a shows the

dependence of the elastic part of the scattering length – the real part of equation (4.4) – around a

magnetic field of B0 = 9.10 G. The interspecies scattering length is decreased for B > B0 and the

system enters the miscible regime. The boundary for aab between the miscible and non-miscible

regime is shown by the gray line revealing miscibility in a large range above the resonance. In b

the Lorenzian shaped inelastic part of the scattering length – the imaginary part of equation (4.4) –

is plotted.

Due to the small elastic width of the resonance absolute stability of the magnetic field

in the order of a few milligauss is required. We can achieve this stability on intermediate

timescales of a few hours after which slow thermally induced drifts cause a change of the

magnetic field. We measure drifts of approximately 5 mG on the timescale of one day.

Technical constraints of our active magnetic field stabilization forbid fast changes in the

magnetic field during the experimental sequence (see appendix C). Therefore the two-

photon coupling pulses have to be done close to the Feshbach resonance and effects of

radio-frequency dressing of molecular states can become important depending on the fre-

quency of the radio-frequency coupling field [96]. However, for the chosen detuning

δ = −2π · 200 kHz we see none of these effects.

4.1.3 Experimental characterization of the Feshbach resonance

Magnetic Feshbach resonances allow for convenient tuning of the interaction strength in

experiments with ultracold atoms. Not only elastic collision properties are altered but in

most cases also the inelastic collision rate increases [107]. A loss rate measurement is

performed in order to determine the enhanced inelastic collision rate close to the reso-

nance while mean field spin dynamics can be employed to measure the effect of elastic

collisions [83].
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Figure 4.4: Loss rate measurement in the vicinity of the Feshbach resonance. a, Exemplary

loss curves for both hyperfine states and two magnetic fields are shown. The dashed and solid lines

are exponential fits to the data from which the loss rates are extracted. The respective life times

are given in the legend of the figure. Panel b shows the loss rate in the vicinity of the Feshbach

resonance including a Lorenzian fit to the data for both hyperfine states. The greater loss rate of

the |2,−1〉 state with respect to the |1, 1〉 state is explained by additional dipolar relaxation losses

in the |2,−1〉 state. The slight offset between the center of the two fits is not significant – within

the fit uncertainties the two centers match.

Spin relaxation losses

Even far away from the Feshbach resonance fast losses limit the lifetime of the |b〉 = |2,−1〉
state since it is a not a maximal Zeeman state. Dipolar relaxation in two body collisions

causes one or both of the atoms to change the total spin from F = 2 to F = 1 (only mF

is conserved during a two body collision) freeing 2π · 6.8 GHz kinetic energy. This has

to be compared to an optical dipole trap depth of a few kHz, such that the probability to

loose both colliding atoms is very large. For typical densities in our experiment dipolar

relaxation losses limit the lifetime to approximately 250 ms causing an upper limit on the

duration of the experimental sequence even without the extra loss due to the Feshbach res-

onance4.

The interspecies Feshbach resonance between the two hyperfine states has a rather large

4Dipolar relaxation is a two body process meaning its rate L2 ∝ K2N is proportional to the

number of atoms in the trap. The loss coefficient for the |2,−1〉 state was measured to

K2 = 8.8 × 10−14cm3/s [111]
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4.1 Squeezing – internal versus external degrees of freedom

inelastic width caused by enhanced two body collisions – dipolar relaxation losses – and

three body collisions involving molecule formation [107]. We perform a measurement

of the magnetic field dependent loss rate around the interspecies resonance centered at

B0 = 9.10 G. For the estimation of the loss rate we fit the observed atom number decay

Ni(t) with an exponential model Ni(t) = Ni(0)e−t/τloss where i = a or b (figure 4.4a).

This is an approximation since the loss rate τ−1
loss due to two and three body loss is density

dependent and the decay is not exactly exponential. Figure 4.4b summarizes the result of

this measurement. The Lorenzian fit reveals a inelastic width of 11.7 mG.5

At B = 9.13 G the loss rate is τ−1
loss ≈ 10 Hz resulting in a loss of 10% to 15% of the atoms

after 20 ms, the typical timescale for a diabatic squeezing experiment (see section 4.2).

The loss limits the number squeezing to approximately ξ2
N = −10 dB, which is close to

the theoretical optimum achievable for our experimental parameters, i.e. total atom num-

ber and external trap configuration [101]. Therefore we choose B = 9.13 G as our working

point.6

The rather short lifetime of the condensate in a superposition of the two internal states due

to the losses described above is another difference to the external squeezing experiments

in a double well potential. It is the main limitation to obtain larger spin squeezing in the

internal system and restricts the available methods to obtain a reasonable amount of spin

squeezing (see section 4.2).

Tuning of the nonlinearity χ

Despite of the strong inelastic collisions it is still possible to tune the nonlinearity χ in

a useful way. Mean field spin dynamics are used to extract the effective nonlinearity

which is measured from the frequency difference between small amplitude oscillations

around zero relative phase and π relative phase [83]. Experimentally a coherent spin state

|θ = π/2, ϕ0〉 is prepared on the equator but with small offset relative phase such that

ϕ0 = 0 + ǫ or ϕ0 = π + ǫ where ǫ ≈ 0.1 · π. This initial quantum state evolves under the

Josephson Hamiltonian (4.1) and at time t the quantum state is:

|θ, ϕ〉 (t) = e−it(χĴ2
z−ΩĴx) |θ = π/2, ϕ0〉 (4.5)

Sinusoidal oscillations in the population imbalance 〈Ĵz〉(t) versus time are observed and

their respective frequency ωpl,π is extracted. In mean field approximation analytic expres-

sions for the expected oscillation frequencies have been derived [83]:

ωpl,π = Ω
√

1 ± Λ (4.6)

5At the time this measurement was done the active magnetic field compensation was not yet installed.

Therefore we measure a larger width as theoretically expected. The inelastic width extracted from the

measurement shown in figure 4.5 agrees well with the theoretical prediction.
6Experimentally we also found the best number squeezing at this magnetic field.
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Figure 4.5: Tuning of the effective nonlinearity. a, The difference between the frequencies of

small amplitude oscillations around zero and π relative phase reveal the nonlinearity χ. The black

solid line is a fit assuming the real part of equation (4.4) as the functional dependence between

elastic collision enhancement and magnetic field. Panel b shows the deduced interspecies scat-

tering length aab in the vicinity of the Feshbach resonance. From the fit we obtain an inelastic

width of γB = 4.6 ± 0.7 mG in accordance with the theoretical prediction. Compared to the direct

measurement of the loss rate enhancement presented in figure 4.4 the active magnetic field stabi-

lization was installed in this measurement which explains the difference in the observed widths.

The elastic width extracted from the fit is δB = 1.6 ± 0.2 mG. We find the center of the resonance

at B0 = 9.092 G, but since we did not focus on a precise calibration of the absolute magnetic field

we estimate a systematic error of approximately 10 mG on this value. The background scattering

length abg
ab was chosen as a free parameter and the fit reveals abg

ab = 96.5 ± 0.7 aB .

The difference of these two frequencies reveals the effective nonlinearity χ since the Rabi

frequency Ω and the atom number N are known:

χ =
ΩΛ

N
=

(

ω2
pl − ω2

π

)

2NΩ
(4.7)

Figure 4.5a shows the deduced nonlinearity around the Feshbach resonance. The evolution

was measured for a Rabi frequency of Ω = 2π ·200 Hz7 and for the same atom numbers as

used in the following experiments. We find χ = 2π ·0.063 Hz at B = 9.13 G in accordance

with simulations using the Gross-Pitaevskii equation.

In figure 4.5b we deduce the interspecies scattering length aab from the measured non-

linearity using equation (4.2). We calculate the integral
∫

dr |φa|4 for the wavefunction

7A lower Rabi frequency than for the usual coupling is chosen here in order to work in a higher Λ situation.
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4.2 Fast diabatic spin squeezing by one axis twisting evolution

φa obtained from the numerical solution of the Gross-Pitaevskii equation. Due to this

procedure we estimate a possible systematic error of 10% in the data shown in figure 4.5b.

4.1.4 What about temperature?

Finite temperature and entropy is the limiting factor for the squeezing experiments based

on two mean field modes of a Bose-Einstein condensate in an external double well poten-

tial. In section 3.2 an argument was given that thermal excitation of the dipole mode in

trap-splitting direction translates to increased entropy in the Josephson many-body modes

which limits coherent spin squeezing. The situation is very different when two internal

states are used. As described later, the experiments start with a system in a maximal Dicke

state – only state |a〉 is populated while the second |b〉 is exactly empty. We ensure this

starting condition by pulsing a resonant laser pulse to remove possible population in the

upper hyperfine manifold prior to the squeezing experimental sequence. The thermal en-

ergy scale is seven orders of magnitudes smaller than the energy difference between the

two hyperfine states resulting in negligible thermal excitation initially. After preparing a

coherent spin state with finite population in both modes thermal effects might become an

issue through a coupling to the mean field dynamics of the condensates. However during

the short timescale of our experiment – approximately 20 ms – we find no sign of ther-

malization and the all experimental results are explained by a zero temperature two-mode

model.

The fraction of thermal atoms is also negligible since we work at very low temperatures

T/TC ≈ 1/15 resulting in a thermal fraction of 1 − N0/N ≈ 10−3 – approximately one

atom out of 1000 is not in the condensate.

4.2 Fast diabatic spin squeezing by one axis twisting evolution

Adiabatic protocol

In the external squeezing experiment we used an adiabatic scheme to generate spin squeez-

ing. In principle this is also possible for squeezing based on internal degrees of freedom,

but given the combination of rather fast losses and small nonlinearity, it is – even at zero

temperature – not the optimal way. This becomes clear when looking at the occupation

number fluctuations for the Josephson ground state given in equation (3.16) which can be

used to express the number squeezing ξ2
N in dependence of the regime parameter Λ

ξ2
N =

4∆n2

N
=

√

1

1 + Λ
(4.8)

and Λ = Nχ/Ω. Typical values for the parameters are Nχ = 2π · 50 Hz which requires

to reduce Ω from approximately 2π · 500 Hz adiabatically to 2π · 3 Hz in order to achieve

ξ2
N ≈ −6 dB. In order to check the required ramp time for an adiabatic evolution (assuming

a linear ramp) we perform a numerical simulation within the two-mode approximation
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Figure 4.6: Feasibility of adiabatic number squeezing. In order to estimate the possibility to

reach significant spin squeezing close to the ground state of the Josephson Hamiltonian we per-

formed a zero temperature two-mode simulation for our parameters. Starting with a spin state on

the equator of the Bloch sphere we reduce the Rabi frequency from 2π · 500 Hz to 2π · 3 Hz by

linear ramping with different total ramp time. Within the lifetime of the condensate (marked by the

gray line), we find that the ramping is not yet adiabatic and only approximately ξ2
N ≈ −4 dB of

number squeezing can be reached. Estimation of the effect of particle losses reduces this number

even further to approximately ξ2
N,loss ≈ −2 dB (see main text).

(figure 4.6). The measured lifetime of the atoms is approximately 250 ms and linear ramps

of that duration are not yet adiabatic but the number squeezing is only ξ2
N ≈ −4 dB.

No particle losses are taken into account in figure 4.6, but assuming – as an estimation –

only single particle loss from a squeezed state with ξ2
N ≈ −6 dB, loss of 50% of the atoms

degrades the squeezing to ξ2
N,loss ≈ −2 dB. These arguments show that a different scheme

is necessary to achieve significant number squeezing for our parameters.

4.2.1 Diabatic protocol – one axis twisting

Particle loss clearly limits the experimental time available to achieve spin squeezing. Em-

ploying dynamic strategies spin squeezing can be produced much faster than with adia-

batic techniques. One example is the 1993 proposed one axis twisting scheme which uses

non-linear phase dispersion as the basic mechanism [6] and it has been already considered

useful for Bose-Einstein condensates [20, 102]. The scheme is similar to Kerr effect based

squeezing protocols in quantum optics where a material with a Kerr nonlinearity is used

such that the refractive index nlight ∝ n2|E|2 is proportional to the light intensity |E|2.

The light experiences intensity dependent phase modulation within this medium resulting

in quadrature squeezing [112].
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Figure 4.7: One axis twisting evolution. Panel a illustrates the initial coherent spin state on the

equator of the Bloch sphere. The histogram shows the binomial probability distribution over the

Dicke states. The zoom window illustrates the quantization on the Jz axis – the different Dicke

states – of which each eigenstate m rotates with a different angular frequency m · χ around the

vertical axis. Part b illustrates the quantum state after a short evolution time τ < τdeph. The

isotropic uncertainty developed into an elliptical one with spin squeezing present under an angle

α0. The histogram shows the squeezed probability distribution over the eigenstates in a coordinate

system rotated by α0.

In the original one axis twisting scheme for atoms, a coherent spin state |θ = π/2, ϕ〉
evolves for a given time τ under the Hamiltonian:

Ĥ = χĴ2
z (4.9)

Given this Hamiltonian, the time evolution of any quantum state is determined by the

unitary operator

Û(t) = e−i t χĴ2
z (4.10)

which describes a Jz dependent rotation around the Jz axis.

In section 2.2.1 coherent spin states were introduced in the first quantization formalism. It

was pointed out that a coherent spin state on the equator of the Bloch sphere |θ = π/2, ϕ〉
can be described as a coherent superposition of several Dicke states where the probability

distribution over these basis states is binomial. Within this picture the one axis twisting

evolution (equation (4.10)) of an initial coherent spin state can be nicely visualized. Each

Dicke state |J,m〉 composing the coherent spin state rotates with a different frequency

around the Jz axis where the difference in rotation frequency between next neighboring

Dicke states is χ (figure 4.7a).
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Figure 4.8: Coherent phase dispersion on long timescales. The graphic depicts the quantum

state on the Bloch sphere for different evolution times τ . For short times optimum coherent spin

squeezing develops, but when the phase is spread around the full Bloch sphere the amount of

coherent spin squeezing is significantly decreased. Complicated interference structures develop for

longer times and the last Bloch sphere illustration shows a partial revival of the wavefunction at

τ = 1/4 · 2π/χ. For an odd number of atoms the dynamics is periodic with period duration 2π/χ
while for an even number of particles a phase of π distinguishes the initial quantum state from the

quantum state t = 2π/χ and the revival period is twice as long [113]. The calculation was done

for 100 atoms.

For short evolution times τ < τdeph this shearing effect results in spin squeezing under an

axis rotated by the angle α0(τ) with respect to the equator of the Bloch sphere (figure 4.7b).

τdeph = (σmχ)−1 is the dephasing time, after which the coherence 〈cos(ϕ)〉 ≈ 2/N〈Ĵx〉 8

has dropped from a value close to unity to 〈cos(ϕ)〉 = e−1 due to the interaction induced

spread of the state around the Bloch sphere [114]. In general τdeph is inversely proportional

to the extension of the quantum state over the Dicke basis σm which, for a coherent spin

state on the equator of the Bloch sphere, is σm =
√

N/2.

At evolution times τ & τdeph reduced quantum fluctuations under a certain axis are still

present but the coherence is very low such that the quantum state is no longer optimally co-

herently spin squeezed. After even longer times the dynamics show highly nonclassical in-

terference effects [115–117] finally resulting in a revival of the coherence at τrev = 2π χ−1

when each neighboring pair of Dicke states is in phase again [116]. Figure 4.8 visualizes

the quantum state on the Bloch sphere for different evolution times τ .

The best achievable noise suppression in general interferometry still increases with evo-

lution time even if coherent spin squeezing degrades. It has been recently shown [46]

that a new type of Bayesian interferometer readout can be employed to make use of these

quantum states (see also section 2.4). Nevertheless this is beyond the scope of this thesis

since we focus on standard readout of the population imbalance as used in most of today’s

Ramsey interferometers.

8We assume here without loss of generality 〈Ĵy〉 = 0 such that the twist is symmetric to the Jy axis.
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4.2 Fast diabatic spin squeezing by one axis twisting evolution

Timescales to achieve squeezing – adiabatic versus diabatic

The maximum squeezing achievable with the diabatic one axis twisting technique is [6,

20]:

ξ2
S =

32/3

2
N−2/3 (4.11)

This has to be contrasted to the maximum squeezing that can be generated using the adia-

batic technique which is given by ξ2
S ≈ 2 N−1 at the boundary to the Fock regime where

the coherence is still reasonable high [54]. The maximum squeezing is better in the adi-

abatic case however the adiabaticity criterion requires evolution times τadiab ≈ 1/χ. The

best squeezing in the one axis twisting protocol is achieved after τdia ≈ N−2/3 · 1/χ, a

factor of N2/3 faster favoring the diabatic protocol.

The timescales given here are not taking particle loss into account. Losses limit the max-

imum achievable squeezing and the optimum is reached after a shorter time as compared

to the lossless case [101]. For our experimental parameters (N ≈ 500, χ ≈ 0.1 Hz)

we expect the best diabatic spin squeezing including particle losses to be in the order of

ξ2
S ≈ −10 dB after a non-linear evolution time of τdia = O(10 ms) [118].

Analytic expression for the variance of the twisted quantum state

The initial quantum state – a coherent spin state |θ = π/2, ϕ〉 – features isotropic variance

in the directions perpendicular to the mean spin vector. After a certain evolution time τ
under the one axis twisting Hamiltonian (4.10) correlations between the two orthogonal

directions have been built up and the variance of the spin state is no longer isotropic – the

two dimensional variance has an elliptical shape9.

Experimentally the fluctuations of the quantum state in Jz direction can be measured and

arbitrary unitary rotations of the quantum state are possible. The normalized variance

ξ2
N in Jz direction after an unitary rotation α around the center of the quantum state (see

figure 4.9) has been calculated analytically [6]:

ξ2
N(α) = 1 +

N − 1

4

[

A −
√

A2 + B2 cos(2(α + δ))
]

(4.12)

where the following abbreviations are used:

A = 1 − cos(2χt)N−2 (4.13)

B = 4 sin(χt) cos(χt)N−2

δ =
1

2
arctan

(

B

A

)

The required rotation of the quantum state before readout of the population imbalance

Jz has been implemented in our lab. Therefore an experimental characterization of the

9We assume small fluctuations ∆J2

⊥,max
as compared to the total atom number ∆J2

⊥,max
< N2/4 such

that the Bloch sphere can be locally approximated by a plane.
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Figure 4.9: Variance of the Jz spin component versus rotation angle. The figure shows the

prediction of equation (4.12) for the normalized variance ξ2
N in Jz spin direction versus rotation

angle α around the center of the spin state. The variance is symmetric in intervals 0 ≤ α < 180◦

and optimal number squeezing is detected for a rotation angle α0. At α0 + 90◦ the maximally

uncertain axis is rotated to the Jz direction. The Bloch sphere illustrations show the quantum state

and the probability distribution in Jz prior to readout for no rotation, in the number squeezed region

and when the anti-squeezed direction is rotated to the vertical axis.

quantum state after one axis twisting evolution is possible and the measurements can be

compared to the analytic expression (4.12). The following section 4.3 describes this ex-

periment in detail.

Prior to our experiments this noise tomography technique has already been performed ex-

perimentally [13, 14]. Coherent spin squeezing and an anisotropic variance distribution

have been found for a hot atomic sample in a vapor cell. However the experimental pro-

tocol used to generate spin squeezing was a quantum non-demolition measurement based

method and not the interaction dependent one axis twisting method presented here.
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4.3 One axis twisting in action – experiments

4.3 One axis twisting in action – experiments

For an internal Josephson contact in a Bose-Einstein condensate one axis twisting and

noise tomography can be experimentally realized by an interferometric sequence similar

to the standard Ramsey scheme [9, 10]. In the following we report on these experiments.

Adiabatic transfer: The Landau-Zener sweep

Starting with 87Rubidium atoms in a magneto-optical trap, all our experiments require

evaporative cooling in a magnetic time-orbiting-potential trap prior to the transfer of the

atoms into the optical dipole traps [73]. Final evaporation is done in the optical traps,

defining the temperature and atom number of the Bose-Einstein condensate in a repeat-

able manner. However, magnetic trapping requires collisionally stable low field seeking

states [23] which are in the case of 87Rubidium the |F, mF 〉 = |1,−1〉 and |2, 2〉 hyper-

fine states. Different to the external squeezing experiment we prepare the Bose-Einstein

condensate now in the |1,−1〉 state. A radio-frequency Landau-Zener sweep within the

F = 1 hyperfine manifold is used to transfer the atoms with very high efficiency to the

state |a〉 = |1, 1〉. The radio-frequency is linearly ramped from 2π·1.5 MHz to 2π·2.5 MHz

in 20 ms realizing the sweep at a moderate magnetic field of B = 3.2 G.10

Interferometric one axis twisting sequence

Here we present the specific implementation of the one axis twisting idea for our exper-

iment. While the magnetic field is actively stabilized at B = 9.13 G (see appendix C)

we prepare a coherent spin state by a fast Ωt = π/2 pulse. The Rabi frequency is

Ω ≈ 2π · 600 Hz such that the nonlinearity can be neglected during the pulse (Rabi regime

with Λ = 0.08). After this first coupling pulse the phase of the coherent spin state is

defined to ϕ = 0, meaning the center of mass of the spin state is located on the Jx axis.

The state evolves under the Hamiltonian (4.9) for a time τ , symmetrically interrupted by a

spin echo pulse after τ/2, until another rotation pulse with appropriately chosen phase is

used to rotate the spin state. The pulse phase of the last pulse is adjusted to assure rotation

around the center of the spin state and the rotation angle α = Ωtα is set by the duration of

the pulse tα. The main external noise source in our experiment are magnetic field fluctua-

tions and we choose the axis of the spin echo pulse such that is perpendicular to the spin

polarization direction for lowest noise sensitivity (see appendix C).11

Here it is important to note that there are two possibilities to control the longitudinal rota-

tion axis of the coupling pulses: The first one is to set the state rotation angle ϕ(t) via a

10The single-photon Rabi frequency for the coupling of the Zeeman sub-states is approximately 2π ·10 kHz.
11Experimentally the phase of the coupling pulses at time t can be found by a measurement of the population

imbalance versus pulse phase of a final π/2 pulse. The zero crossings identify the two phases where the

rotation axis hits the center of the spin state.
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4 Non-linear interferometry beyond the standard quantum limit

controlled detuning ∆ω0 such that ϕ(t) = −∆ω0t at time t. In our setup it is more conve-

nient to choose a second method where we use the fact that the phase ϕ is defined relative

to the phase of the combined microwave and radio-frequency radiation field. Therefore the

longitudinal position of the quantum state on the Bloch sphere or equivalently the pulse

rotation axis can be chosen by the phase of the subsequent coupling pulses.

In order to perform noise tomography we repeat the experiment 60 times12 for each angle α
and extract the number squeezing ξ2

N for each dataset. For an evolution time of τ = 18 ms

we find the optimal number squeezing and the results are plotted in figure 4.10. For details

of the calculation of ξ2
N from the raw data see section 3.4.1. A graphical representation

of the tomography sequence can be found in figure 4.20 where the non-linear beamsplit-

ter sequence is depicted which is equivalent to the tomography sequence but for a fixed

rotation angle α.

Optimal number squeezing

The optimal number squeezing is ξ2
N = −6.9+0.8

−0.9 dB detected under an angle of α0 = 16.5◦

where the errors are one standard deviation of the mean over several datasets – in total 634
experimental realizations contribute.13 We use the six-well one-dimensional optical lattice

trap explained in section 3.1.2 in all experiments on internal spin squeezing, but the bar-

rier separating the individual sites is very high (V0 ≈ 2π · 2.5 kHz) such that the individual

condensates are independent. As detailed in section 4.5 this is an experimental trick to

increase the statistics and to estimate the technical noise stemming from single particle

effects. Data from different wells contribute to the data shown in figure 4.10 and we use

all wells with total atom number between 200 and 450, while the mean total atom number

over all datasets is 400.

Subtracting technical noise (see section 4.5 for details) we find an optimum number squeez-

ing of ξ2
N = −8.2+0.9

−1.2 dB close to the theoretical optimum [118]. As this value is cleaned

from all known extra noise contributions it is the best estimation of the true variance of

the quantum state. The black solid data points in figure 4.10 show the technical noise

corrected data.14

Measuring the coherence

A rotation by α = α0 + 90◦ transforms the most uncertain spin component to the Jz di-

rection. Here we measure increased number fluctuations of ξ2
N,max = 10.3+0.3

−0.4 dB. These

fluctuations limit the coherence of the quantum state: Assuming, as a gedanken exper-

iment, we rotate the most uncertain axis to the Jy direction (a rotation by α0 ) then

∆Ĵ2
y = N2

4
∆ϕ2. For N ≫ 1, ϕ ≪ π and a gaussian probability distribution p(ϕ) the

1260 experimental repetitions define one dataset in all measurements done in context with the internal spin

system.
13In order to obtain better statistics we average the measurements for α = 16◦ and α = 17◦.
14As explained in section 3.4.1 we always remove the photon shot noise in these experiments.
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Figure 4.10: Noise tomography. The figure shows the result of the noise tomography experiment.

The gray open circles represent the photon shot noise corrected data, while the black solid data

points are additionally corrected for known technical noise. Panel a is a close up of the number

squeezed region (the dashed area in panel b), where for clarity statistical error bars have been

added for the black solid data only. The black line is the theoretical prediction from equation

(4.12) where all parameters have been extracted from independent measurements as detailed in the

main text. Panel b shows the complete measurement over the full range of the rotation angle α.

It is worth noticing that the experimental data without correcting for technical noise do not show

number squeezing ξ2
N < 0 dB around the second minimum of the theory. From the rotation angle

dependence of the technical noise we can estimate the main noise sources in the experiment as

detailed in section 4.5.1 and appendix C.

coherence follows to:

〈cos(ϕ)〉 =

∫

dϕ cos(ϕ)p(ϕ)
∫

dϕ p(ϕ)
= e−∆ϕ2/2 (4.14)

Noticing that after a unitary rotation by α = α0 + 90◦ the maximum number fluctuations

measure these phase fluctuations ∆ϕ2 = 4∆Ĵ2
z

N2 = ξ2
N,max/N , then the coherence is given

by:

〈cos(ϕ)〉 = e−ξ2
N,max

/2N (4.15)

Validity of the symmetric two-mode model is crucial here and we tested for it experimen-

tally as described in section 4.6. The coherence follows to 〈cos(ϕ)〉 = 0.986 ± 0.001 and
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4 Non-linear interferometry beyond the standard quantum limit

we find coherent spin squeezing ξ2
S = ξ2

N/〈cos(ϕ)〉2 of:

ξ2
S =

ξ2
N

〈cos(ϕ)〉2 = −8.2 dB (4.16)

This large amount of coherent spin squeezing allows in principle for a gain of 61% in

the phase precision ∆ϕ of ideal Ramsey type interferometry with respect to the standard

quantum limit [5].

Comparison to the one axis twisting theory

The black line in figure 4.10 is the theoretical prediction detailed at the end of section 4.2

without any adjustable parameter. The nonlinearity assumed is χ = 2π · 0.063 Hz as ex-

tracted from the mean field spin dynamics experiment presented in section 4.1.3. The main

discrepancy between theory and experimental data is in the squeezed regions. We attribute

this difference to a loss of approximately 15% of the atoms during the total experiment

duration of ca. 20 mswhich degrades the achievable squeezing [101]. The good agreement

with the theory shows that our measurements are well described by the two-mode model

and the observed phase dispersion can be fully explained by non-linear one axis twisting

dynamics.
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Figure 4.11: Quantifying the depth of entanglement. This figure shows the measured number

fluctuations and coherence in context of the entanglement measure proposed in [19]. The theory

lines are the analytic approximation of the numerical results from reference [19] underestimating

the amount of entangled particles as shown in figure 2.6. The numbers on the different lines give

the minimum non-separable block size of the density matrix. The inset shows our measurement

centered at the line for 170 entangled particles. The gray shaded ellipse is the three standard

deviation uncertainty region excluding less than 80 entangled particles on this statistical precision

level.

4.4 Quantifying many-body entanglement

Coherent spin squeezing is one example where entanglement provides a quantum resource

useful to overcome limits set by single particle quantum mechanics [5, 20]. In 2001

Sørensen and Mølmer showed how the fluctuations in one perpendicular spin direction

and the coherence of the system can be used to measure many-body entanglement in the

system (see also section 2.3.3) [19]. We are able to detect both quantities and thus we use

the depth of entanglement measure to quantify entanglement in our system. Figure 4.11

shows our measurement in context of this quantitative criterion where we use the analytic

approximation from equation (2.24) to plot the theory lines in the figure.

The measured values for coherence 〈cos(ϕ)〉 = 0.986 ± 0.001 and number squeezing

ξ2
N = −8.2+0.9

−1.2 dB imply entanglement of 170 particles in the sense of the non-separable

block size of the many-body density matrix. On a three standard deviation statistical un-

certainty level we can exclude less than 80 entangled particles in the system.
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Figure 4.12: Atom number distribution over the six optical traps. The upper part of the figure

shows the total atom number in each of the optical traps – the six central wells are populated,

well one and eight are empty. Below typical absorption pictures are shown, here for a 50/50
mixture of both species. the lengthened shape of the |1, 1〉 component is due to the longer expansion

time before imaging during which the optical lattice is kept on. Extensive details on the imaging

procedure can be found in appendix A.

4.5 Many experiments in parallel – more than just better

statistics

As already mentioned in section 4.3 the Rubidium atoms are trapped in an one dimensional

optical lattice. The total atom number is typically 2300 distributed over six wells of the

lattice and tunneling between the wells is negligible resulting in independent condensates

in the individual wells. Figure 4.12 shows the typical total atom number per lattice site.

The central wells contain approximately 400 atoms15, the outer ones 100 to 200 atoms. The

local trapping frequencies in each well are ωx = ωy = 2π · 425 Hz and ωz = 2π · 420 Hz.

This optical lattice configuration has a few important advantages over the single trap con-

figuration. The most obvious one is the increased statistics since we perform six experi-

ments in parallel. But there are two more points worth noticing:

Suppressed external dynamics

The lattice increases the local trap frequency in z-direction from 2π · 20 Hz to 2π · 420 Hz.

Compared to the – now in all directions – large trap frequencies the difference in the mean

15Depending on the relative position of dipole trap and optical lattice the central well can contain up to 450
atoms.
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Figure 4.13: Dynamics of the wavefunction overlap. The figure shows the calculated dynamics

in the wavefunction overlap after an abrupt internal state change, e.g. due to a π/2 pulse. The

wavefunction overlap shows negligible dynamics on the 10−4 level. The simulation was done for

500 atoms in total in a ωx = ωy = 2π · 425 Hz and ωz = 2π · 420 Hz trap and for the scattering

length aab decreased by 10% from its background value.

field potentials for atoms in state |a〉 and |b〉 is small, such that only small amplitude dy-

namics are initiated after an abrupt internal state change. The single spatial mode approxi-

mation – both modes share the same spatial wavefunction – is therefore valid. Figure 4.13

shows the dynamics of the mean field wavefunction overlap after a π/2 pulse simulated

with the two component Gross-Pitaevskii equation for our parameters.

Technical noise

Spin readout is performed in a destructive way, meaning a new Bose-Einstein condensate

has to be prepared for each single measurement. Since fluctuation measurements require

ensemble averaging our results are sensitive to shot-to-shot fluctuations of the experimen-

tal parameters. But next to these shot-to-shot variations also fluctuations of the differential

energy shift during the evolution time have to be taken into account. Therefore the one

axis twisting Hamiltonian (4.9) becomes:

Ĥ = −∆ω0(t)Ĵz + χĴ2
z (4.17)

The fluctuations ∆ω0(t) result in random rotation frequencies of the spin state around the

Jz axis during the evolution time τ . The resulting phase noise in the integrated rotation an-

gle ∆φ̃(τ) =
∫ τ

0
∆ω0(t)dt translates into increased fluctuations in the occupation number

difference depending on the rotation angle α of the last coupling pulse in the experimental

sequence (see section 4.3).

The main contribution to the differential energy shift originates from magnetic field noise.

The |1, 1〉 and |2,−1〉 hyperfine states share the same linear Zeeman shift, but at B ≈ 9.1 G

the differential quadratic Zeeman shift is ∂ω0/∂B = 2π · 10 Hz/mG requiring for a very

high magnetic field stability. We use an active feedback technique and synchronization of

the experiment to the power line frequency in order to stabilize the magnetic field to the
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Figure 4.14: Spectral sensitivity to phase noise. The figure shows the normalized spectral sen-

sitivity of the system to phase noise for a free evolution time of 20 ms. The black line shows the

altered sensitivity for a spin echo sequence which is normalized to the zero frequency sensitivity

limit in the no-echo case (gray line). The most important effect of the echo pulse is to remove the

zero frequency phase noise sensitivity.

100 µG level (for details see appendix C).

The spin echo pulse mentioned in section 4.3 is used to reduce the low frequency phase

noise sensitivity of the system. The normalized spectral sensitivity with and without spin

echo pulse is shown in figure 4.14. It depends on the total sequence length τ and can in

principle be modified using further echo pulses – a “bang-bang control” technique [119].16

Long time coherence measurement

We perform a Ramsey type coherence measurement and compare the observed visibility

of Ramsey fringes versus time for two experiments – with and without echo pulse. The

experimental sequence starts with a π/2 pulse which prepares a coherent spin state on the

equator of the Bloch sphere. After a chosen hold time thold a second π/2 pulse recombines

the two modes for phase sensitive readout. If a spin echo pulse is used, the free evolution

is interrupted symmetrically by the π pulse at thold/2. Figure 4.15 shows the measured vis-

ibility of the |1, 1〉 component as a function of hold time thold. The experiment was done

at a magnetic field of B ≫ 9.1 G away from the Feshbach resonance such that coherent

phase spreading due to the non-linear interaction is small.

The observed decay of the visibility can be fitted by a gaussian V = e−t2/2τ2
dec in both

16Experimentally the number of echo pulses should be kept minimal, since the coupling pulses introduce

additional noise due to fluctuations of pulse phase and power.
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Figure 4.15: Ramsey type coherence measurement. The figure shows the visibility of a Ram-

sey fringe extracted from the atoms in the |1, 1〉 state measured versus hold time thold. Due to a

detection problem at the time the measurement was done the information of the second spin state

|2,−1〉 can not be used. However the purpose of the figure is to estimate the effect of the spin echo

pulse which is nicely shown by the data. The coherence time can be significantly enhanced by the

π echo, a strong indication for low frequency phase noise present in our experimental setup.

cases. We find with τdec = 108 ms without and τdec = 325 ms with the spin echo pulse.

Low frequency magnetic field fluctuations that represent a non-markovian bath [120] are

expected to cause this kind of coherence decay that can be partially cancelled by the spin

echo technique. Since spin relaxation loss is not negligible on the experimental timescales

the total atom number decreases with a lifetime of a few hundred milliseconds. The data

shown in figure 4.15 does not take this decay into account explicitly, meaning the visibil-

ity is extracted from the observed Ramsey fringes normalized to the total atom number

detected at each time thold.

4.5.1 Real time estimation of technical noise

Big technical effort is necessary to minimize the environmental noise and to detect spin

squeezing in our system (see appendix C). However, excess noise is not perfectly can-

celled which leads to observed spin fluctuations larger than the intrinsic fluctuations of

the quantum state. The six-well trap configuration can be used to monitor this technical

noise “real time” and to remove it from the variance measurements. The fluctuations of

the measured Jz component of the spin vector can be translated into angular fluctuations

in θ, the polar angle on the Bloch sphere. Noise sources acting on the single particle level

such as coupling pulse errors or the integrated phase noise due to differential energy shifts

cause angular errors that – depending on the experimental sequence – add to the fluctua-
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Figure 4.16: Technical noise estimation. Performing six experiments in parallel, spatially spaced

by a few micrometer, allows for “real time” monitoring of the technical noise. Noise measurement

is done by binning of the data for all different combinations of k wells resulting in a set of different

total atom numbers {N (k)
i } (left part of the figure). This provides a measure for the scaling of the

normalized occupation number fluctuations ξ2
N with total atom number N . The linear slope β2 is

extracted for each dataset and the measured fluctuations in each individual well are corrected for

the technical noise. The graph on the right of the figure shows the result of this procedure for one

exemplary dataset.

tions of θ. Due to the single particle nature of these effects the contribution to the observed

fluctuations ∆Ĵ2
z,tech = β2J2 is quadratic in the total spin length J = N/2. Here β2 indi-

cates the angular fluctuations in polar direction at the time of measurement stemming from

technical noise.

Performing six experiments in parallel offers the possibility to check the dependence of

the observed occupation number fluctuations on the total atom number for each measured

dataset – “real time” – such that ∆Ĵ2
z,tech can be subtracted accurately. We bin the indi-

vidual wells in all possible combinations and bin sizes and calculate the fluctuations for

each binning. This procedure allows to calculate the number squeezing ξ2
N for different

total atom numbers N . Figure 4.16 illustrates this procedure and shows the obtained cor-

relation of the number squeezing and the total atom number for one exemplary data set.

The correlation is due to the technical noise which affects all – otherwise independent –

condensates in the same way17. We extract the slope β2 and remove the technical variance

∆Ĵ2
z,tech(N) from the variance measured in each individual well with total atom number

N .

17The spacing between the wells is only 5.7 µm such that magnetic field fluctuations and the electromagnetic

radiation fields for the coupling are homogeneous over the whole system.
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Figure 4.17: Rotation dependence of the technical noise. The figure shows the normalized

technical noise contribution in the tomography experiment. The noise shown here is the difference

between the open gray and the solid black data presented in figure 4.10. Within the first 180◦ of

rotation the noise is maximal for angles around 90◦ identifying longitudinal phase noise ∆φ̃ as the

main noise contribution. The difference in the noise level between the two gray shaded areas can be

explained by shot-to-shot magnetic field fluctuations, which result in fluctuations of the coupling

pulse rotation axis in polar direction (see appendix C).

In the noise tomography experiment described in section 4.3 the correction is small for

small rotation angles but without noise removal no number squeezing is detected after a

α = α0 + 180◦ rotation. This indicates pulse power fluctuations or shot to shot magnetic

field drifts to which this rotation close to 180◦ is most sensitive (see appendix C).18 For

α = 90◦ the measurement is maximally sensitive to longitudinal phase noise ∆φ̃ origi-

nating from differential energy shifts between the two modes. Figure 4.17 shows the nor-

malized experimental noise versus rotation angle detected in the tomography experiment.

18Fluctuation measurements on a coherent spin state after a 7π/2 pulse in a Rabi cycle still show shot noise

limited noise characteristics. This indicates negligible pulse power fluctuations in our experiment and

suggests again that shot-to-shot magnetic field fluctuations are the main noise source.
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Figure 4.18: Ramsey fringe using a spin squeezed state. The figure shows a Ramsey fringe

obtained for a spin squeezed state prepared using the 18 ms one axis twisting sequence explained

in section 4.3. From the sinusoidal fit we extract a visibility of V = 1.00± 0.02 in good agreement

with 0.986 ± 0.001, the value deduced assuming the symmetric two-mode model.

4.6 Heisenberg minimal uncertainty product and validity of the

symmetric two-mode model

Validity of the symmetric two-mode model

Some arguments given in the previous sections for example the calculation of the coher-

ence from the maximum anti-squeezing ξ2
N,max in section 4.3 require the validity of the

symmetric two-mode model. We test this assumption by comparing the two-mode co-

herence 〈cos(ϕ)〉2m = e−ξ2
N,max

/2N with the coherence 〈cos(ϕ)〉 = V measured via the

visibility V in a Ramsey experiment. The Ramsey method reveals the actual coherence

taking all deteriorating effects into account. In order to perform the Ramsey measurement

we prepare a spin squeezed state by the one axis twisting sequence detailed in section 4.3.

The last coupling pulse which was used to rotate the quantum state around its center in the

previous experiment is now replaced by a π/2 pulse whose phase ϕ is changed over the

full [0, 2π] interval.

We use the data from the central four wells obtained in 847 experimental repetitions re-

sulting in 3388 data points in total. Figure 4.18 shows the obtained Ramsey fringe where
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4.7 Non-linear atom interferometer beats “classical” precision limit

the data points represent the normalized population imbalance n/N measured in the dif-

ferent experiments and the black solid line is a sinusoidal fit to the data. The fit reveals

a visibility V = 1.00 ± 0.02, confirming the two-mode model from which a visibility

of 〈cos(ϕ)〉2m = 0.986 ± 0.001 was predicted. Since the coherence deduced from the

maximum anti-squeezing is more accurate, we use this value for the various calculations

presented, e.g. coherent spin squeezing, number of entangled particles and the Heisenberg

uncertainty product.

Heisenberg uncertainty product

As discussed in section 2.2 the Heisenberg minimal uncertainty product for the spin oper-

ators is

∆2
H =

4 ∆Ĵ2
z ∆Ĵ2

y

〈Ĵx〉2
≥ 1 (4.18)

which can be expressed in the measured quantities ξ2
N and 〈cos ϕ〉:

∆2
H =

ξ2
N,min ξ2

N,max

〈cos(ϕ)〉2 (4.19)

Experimentally we find

∆2
H = 1.65 ± 0.35 (4.20)

which is only slightly larger than the value of ∆2
H = 1.01 predicted by the two-mode the-

ory. The discrepancy between the two numbers can be explained from the difference of the

best measured number squeezing of ξ2
N,min = −8.2 dB to the value ξ2

N,min,Ueda = −10.3 dB

which is the theoretical prediction without particle loss. The ratio of these two numbers is

1.62, identifying particle loss as the main deteriorating effect in this measurement.

4.7 Non-linear atom interferometer beats “classical” precision

limit

For a long time interaction among particles has been regarded as a drawback for atom

interferometry [121, 122]. Recent theoretical work however revealed that -in principle-

one axis twisting dynamics does not spoil interferometric precision and even more that it

can lead to interferometry close to the ultimate Heisenberg limit [46].

We experimentally realize a novel non-linear atom interferometer and show interferometric

precision beyond the standard quantum limit. The interferometric scheme is related to a

standard Ramsey interferometric sequence, where the accumulated phase ϕ between two

modes is measured (see section 2.4). The phase of interest is accumulated within a time τ
which is bounded between two π/2 coupling pulses. These two pulses are the analog to

beamspitters in optical Mach-Zehnder interferometry (see figure 4.19a) [4], where the first

beamsplitter creates a coherent superposition of the two modes |a〉 and |b〉 while the last

pulse is necessary to translate the acquired phase into a observable population difference.
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nonlin.

BS

a b

Figure 4.19: Optical analog to our non-linear interferometer. Panel a shows the analog of op-

tical Mach-Zehnder interferometry to a standard Ramsey sequence for an atomic interferometer

based on internal states of the atoms. The analog to a beamsplitter in optics is a π/2 pulse and the

acquired phase ϕ, the longitudinal angle on the Bloch sphere, translates into an population imbal-

ance at the output. b, Atom interferometry beyond the standard quantum limit can be realized by

the replacement of the first beamsplitter with a non-linear one. The non-linear beamsplitter pro-

duces an entangled – phase squeezed state – at its output where the reduced variance in longitudinal

direction translates into reduced noise in the population imbalance Jz at the output.

A non-linear beamsplitter for Bose-Einstein condensates

In our non-linear atom interferometer the first beamsplitter is replaced by a non-linear

beamsplitter (figure 4.19b). At its output a coherent spin squeezed state appears which

propagates for a time τ until a standard linear beamsplitter – a π/2 pulse – couples the two

modes before readout. As described in section 2.4 coherent spin squeezed states allow for

interferometric precision beyond the standard quantum limit.

The realization of the non-linear beamsplitter is closely related to the noise tomography

experiment presented in section 4.3 and its implementation is detailed in figure 4.20. We

use the same experimental parameters as for the tomography experiment, in particular the

magnetic field is constant at B = 9.13 G and the twisting time is 18 ms symmetrically split

by a spin echo pulse. The angle of the last rotation pulse around the center of the quantum

state is chosen to α = α0 + 90◦, such that the spin direction with minimal fluctuations is

in Jy direction – a phase squeezed state is prepared. We choose a short interferometric

evolution time of τevo = 2 µs in order to avoid magnetic field fluctuations to spoil our

measurement.
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Figure 4.20: Schematic of the non-linear interferometric sequence. The figure summarizes the

non-linear beamsplitter and the following interferometric sequence graphically. The action of each

coupling pulse is shown on the Bloch sphere and the evolution of the Jz component of the spin

and its variance is indicated by the gray shaded curve and its width. The rotation axis and angle of

each pulse and the experimental durations of the different intervals are given below. The non-linear

beamsplitter sequence (dashed area) is a special case of the noise tomography sequence described

in section 4.3 with the last rotation chosen to α = α0 + 90◦.

Performance of the non-linear interferometer

For a straightforward and very intuitive characterization of the performance of the non-

linear interferometer we carry out repeated measurements around the working point of

the interferometer and calculate the phase precision. We vary the mean acquired phase

〈ϕ〉 across an interval [−16◦, 16◦] and detect the mean population imbalance 〈Ĵz〉 and its

variance ∆Ĵ2
z (figure 4.21). This allows us to draw an uncertainty band whose horizon-

tal width gives the phase measurement precision ∆ϕ. In order to compare the perfor-

mance of the non-linear interferometer to a standard linear Ramsey scheme, we replace

the non-linear beamsplitter by a single π/2 pulse and repeat the same measurement. Since

approximately 15% of the atoms are lost during the non-linear sequence (which takes ap-

proximately 18.5 ms longer than the linear one) we experimentally adjust the atom number

in the linear case in order to have a similar number at the time of detection. We find an

increase of phase precision of 31% when using the non-linear interferometer as compared

to the linear one, however due to the presence of classical noise – mainly magnetic field

noise and readout photon shot noise – this number alone does not imply improvement be-

yond the standard quantum limit. We stress that no noise correction is done on the data

presented in this section – the shown data points represent the raw data after filtering for

rare outliers (see section 3.4.1).
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Figure 4.21: Comparison of the linear and non-linear interferometer. We directly compare

the performance of the linear and non-linear interferometer. An offset has been added to center

the results of both measurements relative to each other. The black (gray) dashed lines are a fit

through the upper and lower ends of the two standard deviation error bars for the non-linear (linear)

interferometer. The horizontal width of the included areas measure the phase precision. We find

31% increased phase precision for the non-linear interferometer as compared to the linear one.

In order to claim measurement precision above the standard quantum limit it is important

to compare the results to the precision of an ideal linear interferometer that does not suffer

from any technical noise. Knowledge of the coherence of the quantum state is crucial for

this comparison and we measure the visibility V of a Ramsey fringe obtained when scan-

ning the phase ϕ in the interferometer over the full interval [0, 2π]. We find V = 0.98±0.02
for the linear and V = 0.92 ± 0.02 for the non-linear interferometer (figure 4.22a). The

signal for an ideal linear interferometer is inferred by calculating the expected fluctuations

for a binomial distribution ∆Jz,sn =
√

p(1 − p)N – the shot noise level – for the data mea-

sured at each mean value of the relative phase 〈ϕ〉.19 This reveals error bars whose upper

and lower ends are linearly fitted and the slope m of the fits is corrected by m/V in order

to take the decreased coherence into account. Figure 4.22b shows the data of figure 4.21

and additionally the uncertainty regions expected for an ideal linear interferometer. Even

though technical imperfections deteriorate the precision of the non-linear interferometer

we find
∆ϕnl

∆ϕl

= 0.85 (4.21)

where ∆ϕnl(l) is the phase error of the non-linear (ideal linear) interferometer, implying

15% increased phase sensitivity beyond the standard quantum limit.

19As a reminder, p = 〈na/N〉 is the probability for an atom to be found in mode |a〉.
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Figure 4.22: Interferometry beyond the standard quantum limit. Panel a shows a Ramsey

fringe recorded at the output of the linear (gray) and non-linear interferometer (black). The solid

lines give the total number of atoms N/2 as a reference. We find a coherence of 0.98± 0.02 in the

linear and 0.92 ± 0.02 in the non-linear case. b, Comparison of the interferometer performance to

an ideal linear Ramsey interferometer (gray shaded areas) reveals a increase in phase precision by

15% when using the non-linear atom interferometer (black). The individual data points are shown

without any noise subtraction and the solid lines are linear fits through the lower and upper ends of

two standard deviation error bars. Our implementation of the linear Ramsey scheme performs 24%
worse than the ideal one (gray) highlighting the effect of technical induced fluctuations. An offset

has been added to separate the two measurements for clarity.

The linear interferometer measurements show 24% larger phase noise than expected for

an ideal interferometer highlighting the effect of excess technical noise. In order to es-

timate the amount of this noise in the non-linear measurement we calculate the mean

number squeezing over all datasets for the non-linear interferometer which are shown in

figure 4.22b and find ξ2
N = −2.1 dB. Subtracting photon shot noise and technical noise

(see section 3.4.1 and section 4.5) we calculate ξ2
N = −4.3 dB. This value still differs

from the best measured number squeezing at the output of the non-linear beamsplitter

(ξ2
N = −8.2 dB). This difference is due to the long measurement duration for the full inter-

ferometer dataset which is in the order of 24 hours. Slow magnetic field drifts (on the order

of 5 mG per day) become important since the nonlinearity χ changes and the performance

of the non-linear interferometer degrades.
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4 Non-linear interferometry beyond the standard quantum limit

The best detected coherent spin squeezing the output of the the non-linear beamsplitter

of ξ2
S = −8.2 dB (see section 4.3) allows in principle for a phase precision gain of 61%

compared to the standard quantum limit. In a possible future experimental setup magnetic

field noise and read out noise due to the detection process have to be reduced in order to

make use of the full precision increase. Nevertheless our experiment shows the feasibil-

ity of non-linear atom interferometry based on interacting atoms and together with novel

readout techniques it might lead to real life interferometric sensors operating beyond the

standard quantum limit.
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5 Outlook

The obtained results on spin squeezing in a Bose-Einstein condensate on both external

and internal degrees of freedom open up a very promising road toward applied quantum

atom optics. A non-linear atom interferometer with absolute precision competitive to the

limit of todays best linear interferometers becomes within reach for real life measurements.

For an atom interferometer based on external degrees of freedom a more specialized trap

design with higher spatial stability, maybe involving non-harmonic potentials, might be

used to overcome the limitations in stability and tunability. The realization of a beam spit-

ter analog among the external modes is a defined goal in this context. Entropy control in

splitting direction is another issue here. The production of larger number squeezing re-

quires lower entropy in the Josephson many-body modes which might be realizable with a

trap design such that the trap frequency in splitting direction is larger than the thermal en-

ergy scale. This transversal splitting has been realized in atom chip interferometers [123],

where a first evidence of number squeezing has been observed [124].

The extraordinary experimental control in the experiments based on internal atomic states

allowed for the realization of a prototypal non-linear interferometer. Our result shows the

validity of the simple two-mode model for this system and is in agreement with the pre-

dictions of references [101, 110]. The authors also calculated the parameters for optimal

spin squeezing including particle loss for a large number of atoms (N = O(105)). Given

this number of atoms, state of the art microwave technology together with well designed

magnetic shielding might already allow for non-linear precision measurements with ultra-

cold atoms that compete with the best available linear measurements.

We developed the experimental technology to detect and control a Bose-Einstein conden-

sate in two different two-mode systems with very high precision. These experiments can in

principle be combined resulting in effectively four modes among which cross interaction

and coupling is controllable. The two additional degrees of freedom allow for deeper

exploration of different types of many-body entanglement. One example is Einstein-

Podolsky-Rosen type continuous variable entanglement [125, 126] which, for massive

particles, has been detected in vapor cell experiments [127]. However the violation of the

continuous variable Einstein-Podolsky-Rosen criterion in this experiment was not strong

enough to violate the generalized Einstein-Podolsky-Rosen paradox, which tests for local

realism for all ’elements of reality’ [126]. Experiments in the four mode Bose-Einstein

condensate might overcome this limitation and allow for the realization of a Einstein-

Podolsky-Rosen paradox in a macroscopic system consisting of a few hundred atoms.
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A Precision absorption imaging of ultracold atoms

A.1 Hardware and alignment of the imaging system

A high resolution absorption imaging system compatible with a typical experiment on

Bose-Einstein condensation was developed in our group [128, 129]. We briefly describe

the crucial points of the setup and alignment of the imaging system here. For details on

the custom made optics we refer the reader to references [128] and [129] and for basics on

absorption imaging to [66].

Hardware

The most important part of the imaging system is an infinite conjugate objective featuring

a numerical aperture of 0.45. Three custom made lenses, anti reflection coated for 780 nm

are contained in this objective. Layout and design of the optics was done by Carl Zeiss

Laser Systems, the housing was built by the mechanical workshop of the Kirchhoff In-

stitute for Physics and the mounting was done in our group. At the time of imaging the

distance of the objective to the glass cell is approximately 1 mm, blocking all optical ac-

cess to the experimental chamber from this side. Therefore the objective is mounted on a

step motor allowing for 110 mm travel with a repeatable position precision of 1 µm1, such

that it can be moved away from the glass cell during the MOT phase of the experimental

sequence.

The image of the atoms is focused onto a CCD chip using a standard infinite conjugate

achromat with a focal length of 1 m. We have chosen a magnification of 30.96, such that

the resolution of the system is not limited by the pixel size (13 µm) of our CCD camera.

We use a back illuminated deep depletion CCD camera2 with a quantum efficiency of

ca. 93% at a wavelength of λ = 780 nm. The vacuum window of the camera is parallel

(non-wedged) and double sided anti reflection coated. Two narrow bandpass filters3 with

the transmission centered around λ = 780 nm are placed before the CCD camera since

the objective has to be shielded from laser light originating from the optical lattice beams

(λ = 843 nm) and one of the dipole trap beams (λ = 1064 nm). We measure 72% quantum

efficiency of the whole system including all optics and the uncoated experimental chamber.

The numbers given in this paragraph represent the current setup of the imaging system

(figure A.1) which was used for the squeezing experiments based on internal degrees of

1MICOS Linear Stage LS-110
2Princeton Instruments, PIXIS: 1024BR
3Semrock BrightLine HC 780/12
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Figure A.1: Setup of the imaging system. A large numerical aperture movable objective allows

for high resolution absorption imaging of the ultracold atoms while it preserves maximal optical

access at the laser cooling phase of the experimental cycle. The shielding tube is necessary to

minimize air motion in the imaging path and to decouple the CCD camera from the mechanical

shutter. Both, objective and CCD camera are mounted mechanical stable such that shot noise

limited imaging is achieved. The total length of the setup is approximately 1.5 m set by the required

magnification and the dimensions of the step motor that carries the objective.

freedom. In the first (external squeezing) experiment we used a different CCD camera4

which has a much lower quantum efficiency5 and smaller pixel size of 6.45 µm. Here

the achromat focussing the image onto the CCD chip was chosen such that the resulting

magnification was 11.2.

As an estimate for the resolution of our imaging system we measure its point spread func-

tion by in situ imaging of a small Bose-Einstein condensate and we find a width (gaussian

standard deviation) of ca. 700 nm consistent with the diffraction limit.

Alignment

Correct alignment of the objective with respect to the glass cell of the experimental cham-

ber is crucial to minimize optical aberration. Experimentally most challenging is to obtain

parallelism between the glass cell and the principal planes of the objective lenses. Careful

mounting and high precision manufacturing of the objective ensures correct relative align-

ment of all three lenses and their parallelism to the front surface of the objective mount.

In order to align the objective to the glass cell a glass plate is glued to this front surface.

A reference laser beam is set up such that it hits the position of the atomic cloud and such

that it is perpendicular to the glass cell. The remaining challenge is to align the reflected

spots from the glass cell and from the glass plate glued to the objective.

The imaging beam is tilted by an angle of approximately 5◦ to the normal of the glass cell

in order to avoid etaloning between the various parallel glass surfaces.

4QImaging, Retiga Exi
5The total quantum efficiency of the old setup was approximately 20%.
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A.2 The imaging sequence

A.2 The imaging sequence

In the external squeezing experiment only the |F = 2, mF = 2〉 state of the 87Rubidium

atoms has to be detected and the imaging sequence is straightforward. Absorption imaging

requires at least two pictures, one containing the absorption signal from the atoms and a

second one – the reference picture – measuring the light intensity at the position of the

atoms. We take these two images temporally spaced by approximately 800 ms. A small

offset magnetic field is kept on during the detection and the imaging beam is polarized in

order to drive the |F = 2, mF = 2〉 ↔ |F ′ = 3, mF ′ = 3〉 cycling transition.

The squeezing experiment based on the |F = 1, mF = 1〉 and |F = 2, mF = −1〉 hyper-

fine states requires a more complicated imaging sequence since the two states have to

be distinguishable on the pictures. The experiments are done at a high magnetic field of

B ≈ 9 G, but for imaging we ramp the field down to a value close to zero within 3 ms

before the first image is taken. This image contains the absorption information of the

|F = 2, mF = −1〉 atoms. We use the fast frame transfer mode of our CCD camera to

move the first image to the masked area of the chip6 such that we can take the second

picture 780 µs later. During the shifting we shine a resonant laser beam which does not

enter the imaging objective to remove the already imaged |F = 2〉 atoms. A few tens of

microseconds before the second picture a re-pumping laser is switched on to transfer the

population in the |F = 1, mF = 1〉 to the |F = 2〉 hyperfine manifold and the imaging

laser’s absorption driving the |F = 2〉 ↔ |F ′ = 3〉 is measured. The |F = 2〉 atoms are

again removed from the field of view of the camera and a reference picture is taken another

780 µs later.

In all experiments the optical dipole trap is kept on until 500 µs before the first image.

From the time of switch off the atomic cloud expands which is necessary in order to avoid

non-linear effects spoiling the imaging accuracy (see section A.3.2). The imaging pulse

duration is chosen between 5 µs and 25 µs where transversal blurring limits its duration

depending on the number of atoms in the trap.

A.3 Calibration of the imaging system

Our experiments are based on atom number fluctuation measurements which requires a

accurate calibration of the total atom number and even more the linearity of the imaging

system.

A.3.1 Atom number calculation

In high intensity absorption imaging [130] the full Beer-Lambert absorption formula is

necessary to calculate the atomic column density ni,j from the counts per pixel Nγ,pic,i,j

on the picture containing the absorption information and on the reference picture Nγ,ref,i,j

64/5th of the CCD chip are masked by a razor blade (see figure A.1).
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A Precision absorption imaging of ultracold atoms

(i, j indexes the CCD camera pixels but it is mostly omitted below to ensure better read-

ability). Not only the optical density Od = ln(Nγ,ref/Nγ,pic) but also the difference in the

counts ∆ = (Nγ,ref − Nγ,pic) contributes to the signal:

n =
d2

σ0

(
1

ccg

Od +
cccd cgpe

τ
∆) (A.1)

Here d is the linear extension of the CCD pixel taking the magnification into account,

σ0 = 3λ2/2π the resonant cross section, ccg the Clebsch-Gordan coefficient, cgpe a cor-

rection factor obtained from a comparison to simulations as explained below and τ is the

imaging pulse duration. The factor cccd = ~ω/(d2ηQIsat) contributes to the linear part of

the formula where Q is the total quantum efficiency and η the gain factor of the camera.

ω is the light angular frequency and Isat = 1.67 mW/cm2
the saturation energy of the

transition.

The total quantum efficiency Q can be measured using a well calibrated power meter and

the factor η is determined by measuring the noise features of the CCD camera.

Noise features of the CCD camera

We measure the noise curve of the camera over the full dynamic range using an incoherent

light source (e.g. a LED), taking typically more than 10000 measurements per mean cam-

era count. Photons hitting the active region of the CCD are assumed to be uncorrelated

featuring shot noise limited noise characteristics. The factor η = 1.025 follows from the

slope of the CCD’s noise curve via a linear fit in the working region where the camera

noise is not read out noise dominated. For the PIXIS camera the slope of a linear fit is con-

sistent with the value of the linear parameter of a second order polynomial fit. Figure A.2

shows the measured noise curve of the PIXIS camera including a second order fit

∆N2
γ = p1〈Nγ〉2 + p2〈Nγ〉 + p3 (A.2)

which is used in the photon shot noise subtraction detailed in section A.3.3. The parame-

ters are p1 = −1.63 × 10−6, p2 = 1.025 and p3 = 130.3.

Comparision with Gross-Pitaevskii simulations

The calibration of the cccd factor is based on the quantum efficiency measurement which

itself relies on the power meter calibration. Furthermore the numerical aperture of 0.45
means a coverage of approximately 5% of the solid angle such that a non negligible frac-

tion of the scattered photons enters the objective which is not taken into account in equation

(A.1). Both effects can easily result in a slightly wrong atom number determination.

In order to cross check the inferred number of atoms, we repeatedly image a condensate
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Figure A.2: PIXIS camera noise curve. The estimation of the photon shot noise can be done by

a calibration of the CCD camera noise features. The main figure shows the measured variance of

counts versus the mean over the full dynamic range of the camera and averaged over all pixels.

The inset details the region typically used in the experiments where the number of counts is limited

by the imaging pulse length and its intensity. The slope of the curve extracted by the second order

polynomial fit shown in black reveals the photon to count gain factor η necessary for the calculation

of the atom number.

in a very well known trap configuration using high imaging intensity (typically 50 Isat). In

this regime only the linear part of the Beer-Lambert formula contributes (the ratio between

the linear and the non-linear part is 2% for the settings used in the experiment.), but the

signal to noise ratio is poor. Imaging is done with a very short pulse (2 µs) to avoid any

diffusive broadening of the profile due to photon scattering. Since the calculation of the

atom number is linear, in situ imaging is possible without worries about the very small size

of the condensate (for details see section A.3.2). We calculate the average profile along

the long axis of the condensate (much bigger than our optical resolution) for different cor-

rection factors cgpe and compare it to theoretical profiles obtained from three dimensional

Gross-Pitaevskii equation simulations varying the total numbers of atoms (figure A.3a).

We choose the correction factor such that the quadratic deviation between a simulated

profile and the measured profile is minimal and find cgpe = 0.9, reasonable close to unity.

The Clebsch-Gordan coefficient

Calibration of the imaging is completed by the measurement of the Clebsch-Gordan co-

efficient ccg. This is done by imaging a cloud of ultracold atoms with changing imaging

intensities I/Isat. A correct Clebsch-Gordan factor means intensity independent atom
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Figure A.3: Imaging parameter calibration. In a an average longitudinal profile of the atomic

cloud is shown. The error bars are one standard deviation statistical errors from the averaging over

several profiles. The black line is the best fitting prediction obtained from the three dimensional

Gross-Pitaevskii equation, where the fitting is done by variation of the total number of atoms in the

simulation and the correction factor cgpe when evaluating the data. b, Calibration of the Clebsch-

Gordan coefficient. Black squares (gray circles) show the deduced atom number for atoms the

F = 2 (F = 1) atoms versus the imaging beam intensity. For the correct Clebsch-Gordan factor

no dependence on the imaging intensity is expected.

number measurements. We determine the coefficient ccg by analyzing the obtained pic-

tures assuming different values of ccg. Figure A.3b shows the results of the calibration

measurements with a best Clebsch-Gordan coefficient of ccg = 0.19 (ccg = 0.28) for the

F = 2 (F = 1) atoms.

Knowing all parameters, equation (A.1) is used to calculate the number of atoms per pixel,

after the mean light intensity on the reference picture is normalized to the mean light

intensity on the picture containing the atomic signal.7 The total atom number follows from

summation over the region where the atoms are detected. The size of this region is typically

chosen to three standard deviations as obtained from a gaussian fit to the atomic cloud. We

checked that neither the detected atom number nor its fluctuations depend critically on the

size of the integration area.

A.3.2 Non-linear effects

Quantitative measurements of the atom number using absorption imaging is limited to

atomic clouds with a size larger than the optical resolution of the imaging system. For too

small clouds the non-linear part of equation (A.1) causes an systematic error in the detected

7For the calculation of the mean light intensity the area containing the atomic signal is not taken into

account.
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A.3 Calibration of the imaging system

atom number. This can be easily understood in the limit where the optical resolution is

much larger than the pixel size which is limiting in this case. The detected column density

per pixel n is calculated from photon counts integrated over the size of the pixel

n ∝ ln

(∫

pix
Nγ,ref

∫

pix
Nγ,pic

)

(A.3)

where we omitted the linear term. Correct atom number calculation ntrue however requires

to calculate

ntrue ∝
∫

pix

ln

(

Nγ,ref

Nγ,pic

)

(A.4)

In general n 6= ntrue holds such that the calculated atom number is wrong. In our case

the pixel size is smaller than the point spread function f of the imaging system. Here the

same argument holds, but the main averaging effect is due to the convolution with the point

spread function, e.g. the replacement Nγ → (Nγ ∗ f) has to be made, where (g ∗ f) means

the convolution of the functions f and g. Figure A.4 shows the measured underestimation

of the atom number and the undesired nonlinearity in the atom number calculation for

high optical densities and small atomic clouds. We make sure to expand the atomic clouds

before imaging to avoid this effect (see section A.2).

A.3.3 Photon shot noise estimation

Our experiments aim to measure atomic fluctuations between two modes, e.g. two neigh-

boring wells of an optical lattice or two internal hyperfine states of the atoms. The atoms

are detected via their resonant interaction with the probe light whose noise characteristics

add to the atomic noise of interest. In order to minimize this extra noise we take special

care to assure photon shot noise limited detection, in particular the absorption pictures

have to be free of interference fringes. These fringes originate from motion of the imaging

systems optics or air motion in the light path and lead to an increased background noise

level in the images. Our stable imaging system allows for interference fringe free – detec-

tion light shot noise limited – pictures and the light shot noise contribution can be inferred

pixel by pixel using the camera calibration curve shown in figure A.2. We calculate the

photonic noise ∆N2
γ expected from the measured counts per pixel for both, the picture and

the reference picture, using the fit result from equation (A.2). Standard error propagation

of equation A.1 allows for a conversion of the photonic variance ∆N2
γ,pic(ref) into atomic

variance:

δn2
psn,i,j =

d4

σ2
0

{

1

c2
cg

(

∆N2
γ,pic

N2
γ,pic

+
∆N2

γ,ref

N2
γ,ref

)

+
(cccd cgpe

τ

)2
(

∆N2
γ,pic + ∆N2

γ,ref

)

+
2 cccd cgpe

ccg τ

(

∆N2
γ,pic

Nγ,pic

+
∆N2

γ,ref

Nγ,ref

)

}

(A.5)
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Figure A.4: Nonlinearity of the absorption imaging system for small atomic clouds. We com-

pare the atom number deduced for different imaging intensities (different shapes of the symbols)

and for two different cloud sizes. The cloud size is set by the expansion time prior to the imaging

process. For small clouds (gray symbols) and up to intermediate imaging intensities (data taken

with 25 Isat) the atom number is systematically underestimated with rising optical density. Lin-

earizing the result around 750 atoms we discover a factor of two smaller slope of the deduced atom

number while the absolute number is underestimated by only 15%. This results in a strong bias of

the detected atom number fluctuations in this regime. For our squeezing measurements we choose

a proper expansion time longer than 400 µs and an intensity of 10 − 15 Isat such that the atom

number deduction is linear. The reference atom number in this figure was measured for 400 µs

expansion time and with high imaging intensity I/Isat (black circles).

Here we calculate the photon shot noise contribution δn2
psn,i,j by a expansion up to second

order, assuming a gaussian distribution for the photon statistics p(Nγ). This approximation

is justified since we make sure to have more than 200 counts per pixel on all pictures.

Photon shot noise on different pixels (i,j) is uncorrelated such that the total photon shot

noise contribution in a given area of the CCD chip δn2
psn can be obtained by summation

over the variance per pixel.

The total detected atom fluctuations ∆n2
det between the modes a or b are the sum of the

atomic variance of the quantum state ∆n2, the photon shot noise ∆n2
psn and extra technical

noise due to experimental instabilities ∆n2
exp, e.g. position or magnetic field fluctuations.

∆n2
det = ∆n2 + ∆n2

psn + ∆n2
exp (A.6)

All these contributions are independent from each other, such that they can be subtracted

in order to get the best estimate of ∆n2 if their value is accurately known. The uncer-

tainty in the estimated amount of photon shot noise is given by the accuracy of the camera

calibration curve shown in figure A.2, where the fit gives an error of 4%.
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Figure A.5: Optimum signal to noise ratio. A calculation of the detection signal to noise ratio

for a simulated atomic density distribution with 500 and 1000 atoms reveals the optimal imaging

intensity I/Isat ≈ 10. The vertical axis is scaled to the shot noise limit for the atom number

difference N/4 ∆n2
psn revealing that – at atomic shot noise level – at least 30 % of the total detected

noise originates from the imaging process assuming 500 atoms in total.

A.3.4 Signal to noise optimization

In the strong saturation regime the imaging light intensity I controls the transparency of

the atomic cloud [130]. The imaging signal to noise ratio can be optimized by choosing

the proper light intensity depending on the size of the atomic cloud and the total number

of atoms. A numerical calculation for the PIXIS camera and for typical experimental pa-

rameters is shown in figure A.5 and reveals the optimum imaging intensity for a saturation

parameter of I ≈ 10 Isat. One has to be careful when working at very high optical densities

– I ≈ 10 Isat means an optical density of approximately two – since here the nonlinearity

problem detailed in section A.3.2 is strongest. Therefore we choose imaging intensities

between 10 Isat and 15 Isat, where the signal to noise ratio is still close to the optimum, but

the sensitivity to the cloud size is smaller.8

A.4 Independent tests of the imaging calibration

The external squeezing experiment

From the discussion above it is clear that correct calibration of the imaging system is not

trivial and the results presented in this thesis depend critically on the linearity of the atom

8We expand the cloud prior to imaging, but detection with higher imaging intensity secures even more, that

our data is taken in the regime where the imaging calibration is reliable.
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Figure A.6: Calibration test for the external squeezing experiments. In order to test the imaging

calibration we monitor the evolution of number squeezing with particle loss. Loss changes the

total number of atoms in the trap and we expect only slight dynamics in the number squeezing

for the measured loss rates. The poissonian variance is plotted as the dashed line for reference

and the measurements are consistent with the gray uncertainty band of 20%. Data plotted as gray

diamonds is measured by condensation into individual lattice sites after different hold times. The

black data point correspond to a high statistics measurement (≈ 1000 measurements) in order

to test the calibration with smaller statistical uncertainty. Here we start from a slightly squeezed

situation and measure the relative number fluctuations after two-thirds of the atoms are lost. In

section 3.4.4 we explain that we expect this data point to lie slightly below the dashed line as found

in the measurement.

number detection. In the first – external squeezing – experiment we used atom number

loss in order to check the imaging calibration. We prepared independent Bose-Einstein

condensates in the different lattice sites by direct evaporation into a very high lattice sit-

uation. The relative atom number fluctuation between different sites is expected to be at

the shot noise level in this case. In order to tune the total number of atoms we allow for

some loss of atoms and monitor the fluctuations. As shown in figure A.6 we find a linear

dependence of the measured fluctuations versus the mean total atom number where the

slope is compatible with unity within the statistical uncertainties. The dashed line shows

the behavior expected for poissonian fluctuations and a correct calibration of the imaging

system. Most data points fall within the shown ±20% uncertainty region which we take

therefore as the upper bound for possible systematic errors in the imaging calibration for

these experiments. The scattering of the data is due to limited statistics (100 measurements

per data point). For a more quantitative test we start with a slightly number squeezed state

−3 dB < ξ2
N < 0 dB obtained after a controlled but fast (20 ms) lattice ramp up to a

situation with negligible tunneling. We hold the system in the trap for 10 s after which

two-thirds of the atoms are lost. Knowing the loss rates we predict the the expected num-
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Figure A.7: Calibration test for the interferometry and internal squeezing experiments. The

variance of a coherent spin state on the equator of the Bloch sphere is measured versus the total atom

number to test the imaging calibration. In the main figure the total atom number range is extended

by the binning technique detailed in section 4.5.1. However this procedure uses information from

different sites of the optical lattice rather than changing the population of each individual coherent

spin state. Therefore we show the non-binned result in the inset, where only the information from

individual wells is used. The measured data confirms the independently obtained calibration of the

imaging system.

ber squeezing to −1.2 dB < ξ2
N < −1 dB at the time of imaging (see appendix B). We

measure ξ2
N = −0.7+0.7

−0.7 dB where the errors are two standard deviations and the fluctu-

ations where extracted from approximately 1000 experimental realizations. This result

confirms our atom number calibration for this experiment.

The interferometry and internal squeezing experiment

The squeezing and interferometry experiment based on two internal states of 87Rubidium

requires a different calibration, since three pictures, one for each hyperfine state and a ref-

erence picture, are necessary to extract the relative atom number fluctuations. The initial

quantum state – a maximal Dicke state with all atoms in mode |a〉 – is much better known

here as compared to the external case where temperature affects the fluctuations. A co-

herent spin state centered on the equator of the Bloch sphere with known – shot noise –

fluctuations in ∆Ĵ2
z = ∆n2 is prepared by a fast π/2 pulse. The mean total atom num-

ber can be experimentally varied by the evaporation ramp without affecting the effective
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A Precision absorption imaging of ultracold atoms

parameters of the system such as tunneling rate or temperature. Therefore it is straight-

forward to obtain an independent experimental test of the imaging calibration by measur-

ing the relative occupation number fluctuations of the coherent spin state versus the total

atom number. Data shown in figure A.7 confirm the linear dependence expected where

a quadratic fit reveals a slope of 1.01 ± 0.03 (two standard deviation errors) and a small

quadratic contribution of 2 ·10−5. All different combinations of lattice sites were evaluated

equivalent to the procedure described in section 4.5.1 in order to expand the range of total

atom numbers. The inset shows the same data but without the binning technique such that

here only the occupation numbers of the two hyperfine state in a single well contribute. A

linear fit reveals a slope of 0.98 ± 0.06 (two standard deviation errors) consistent with the

result from the binned data and with a slope of unity as expected for a correct calibration.
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B Particle loss and number squeezing

For the tests of the imaging calibration in the external squeezing experiments we mon-

itor number squeezing versus particle loss. Therefore it is essential to understand the

connection of loss and number fluctuations. The most important processes in this experi-

ment leading to a loss of atoms from the trap are single particle losses with a rate K1 due

to photon scattering or collisions with background gas atoms and three body collisions

parametrized by K3. Spin relaxation loss – a two body process – is negligible for the

|F, mF 〉 = |2,±2〉 hyperfine states of 87Rubidium [93, 94], however it is the main loss

mechanism for the |F, mF 〉 = |2,−1〉 state used in the internal squeezing experiments.1

Here we focus on loss processes relevant for the external squeezing experiment, since in

the internal squeezing case the loss happens during the state preparation which requires a

more advanced calculation that has been performed in references [101, 110].

One and three body loss and their effect on number fluctuations

The single particle loss rate is independent of the number of atoms and the loss process

results in a random reduction of the atom number in the trap. Therefore it tends to restore

binomial fluctuations. However three body loss is a non-linear process requiring the col-

lision of three atoms. The loss rate L3 ∝ K3N
2 is proportional to the loss coefficient K3

and the atom number squared resulting in a suppression of atom number fluctuations.

A Master equation approach for the joint probability distribution P (nl, nr; t) for the num-

ber of atoms nl,r in the left and right well can be used to calculate the effect of the particle

loss on number squeezing.

∂P (nl, nr; t)

∂t
= K1[(nl + 1)P (nl + 1, nr; t) − nlP (nl, nr; t)] (B.1)

+ K1[(nr + 1)P (nl, nr + 1; t) − nrP (nl, nr; t)]

+
K3

3
[(nl + 3)(nl + 2)(nl + 1)P (nl + 3, nr; t)

−nl(nl − 1)(nl − 2)P (nl, nr; t)]

+
K3

3
[(nr + 3)(nr + 2)(nr + 1)P (nl, nr + 3; t)

−nr(nr − 1)(nr − 2)P (nl, nr; t)]

1Close to the Feshbach resonance both two and three body loss become stronger [107] but away from the

resonance the lifetime limit is set by the two body process.
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B Particle loss and number squeezing

here equal loss coefficients for atoms in the left and right well are assumed. Within this

description the different moments and correlation functions of nl,r are given by

〈nα
l nβ

r 〉t =
∑

nl

∑

nr

nα
l nβ

r P (nl, nr; t) (B.2)

We are interested in the time evolution of the number squeezing parameter ξ2
N = 〈(nl−nr)2〉

〈nl+nr〉
,

where we assume without loss of generality 〈nl − nr〉 = 0:

∂tξ
2
N =

(∂t〈n2
a〉 + ∂t〈n2

b〉 − 2∂t〈nanb〉)(〈na〉 + 〈nb〉)
(〈na〉 + 〈nb〉)2

(B.3)

− (〈n2
a〉 + 〈n2

b〉 − 2〈nanb〉)(∂t〈na〉 + ∂t〈nb〉)
(〈na〉 + 〈nb〉)2

In order to calculate the time derivatives in this equations (B.1) and (B.2) are used. In

the case of pure one body loss (K3 = 0) the equations can be solved without further

approximation and number squeezing evolves like

ξ2
N(t) = 1 − (1 − ξ2

N,0)e
−K1t (B.4)

where ξ2
N,0 is the number squeezing at t = 0. Note that e−K1t = N(t)

N0
is the fraction of total

atoms remaining in the trap at time t, meaning number squeezing tends asymptotically to

ξ2
N = 0 dB in the limit where all atoms are lost.

Taking three body loss additionally into account higher moments of the distribution enter

the calculation, such that the differential equation can not be written in a closed form any

more. A gaussian ansatz has numerically shown to be a good approximation [131] as long

as some atoms remain in the trap (N(t) ≫ 1):

P (nl, nr) =
1

πσnσN

(

exp

(

−
[

nl + nr − N√
2σN

]2

−
[

nl − nr√
2σn

]2
))

(B.5)

with the total atom number N = 〈nl〉 + 〈nr〉, its variance σ2
N = ∆N2 and the variance of

the atom number difference σ2
n = 〈(nl − nr)

2〉. Using this ansatz in the master equation

we express all higher moments of the gaussian distribution by its first two moments (here

N , σ2
N and σ2

n) and obtain

∂tN ≈ −K3N
3 − K1N (B.6)

∂tσ
2
N ≈ K3(3N

3 − 6N2σ2
N) + K1(N − 2σ2

N)

∂tσ
2
n ≈ K3(3N

3 − 6N2σ2
n) + K1(N − 2σ2

n)

We kept only the leading order terms which is a good approximation as long as the fluc-

tuations are in the order of shot noise or smaller (σ2
N = O(N), σ2

n = O(N)). Numer-

ical solution of the equations above is straightforward and we obtain the evolution of
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ξ2
N(t) = σn(t)2

N(t)
.

As shown in figure B.1 three body loss can lead to number squeezing on intermediate

timescales due to its non-linear dependence on the atom number. The optimum number

squeezing achievable is ξ2
N ≈ −2.2 dB but for our experimental parameters one body loss

dominates in the long time limit and restores poissonian fluctuations.
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Figure B.1: Evolution of number squeezing due to one and three body loss. The main graph

shows a calculation of the evolution of number squeezing versus the hold time for typical loss

parameters of our experiment with atoms in the |F,mF 〉 = |2, 2〉 hyperfine state. The initial atom

number is 10000, fluctuations are at shot noise level, the one body loss coefficient is K1 = 0.1 s−1

and the effective three body coefficient is K3 = 1× 10−8 s−1. On intermediate timescales number

squeezing develops, but in the long time limit one body loss restores poissonian fluctuations. The

dashed line is the limit for pure three body loss. The inset shows the number of atoms remaining in

the trap versus time.
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C Active stabilization of magnetic fields below the

milligauss level

The performance of the non-linear beamsplitter implemented for the |1, 1〉 and |2,−1〉
hyperfine states of 87Rubidium depends critically on the knowledge of the longitudinal

position ϕ of the quantum state at the time of the final rotation pulse (see section 4.5).

Fluctuations ∆ϕ of this angle translate into noise in the population imbalance measured at

the output of the non-linear interferometer thus it degrades the overall performance. The

most critical external parameter that influences ϕ is the magnetic field B since it controls

the differential energy splitting between the two hyperfine states via the second order Zee-

man effect. Around B = 9.1 G the detuning caused by magnetic field fluctuations ∆B
is

∆ω0 = ∆B · 2π · 10 Hz/mG (C.1)

Despite the usage of a spin echo pulse the system is still sensitive to low frequency phase

noise with spectral frequencies between approximately 10 Hz and 300 Hz as shown in fig-

ure 4.14. In this frequency range we estimate a maximal tolerable magnetic field noise

in the order of a few hundred microgauss such that the fluctuations do not dominate the

experimental signal.

Low fequency field fluctuations

The spin echo pulse cancels the effect of low frequency magnetic field fluctuations (DC

fluctuations) on the acquired relative phase during free evolution within the non-linear

beam splitter. However DC fluctuations cause ’shot to shot’ errors of the coupling pulses.

The sensitivity of the coupling pulses to uncontrolled magnetic field offsets depends on

the longitudinal angle |ϕcpl| between rotation axis of the pulse and the quantum state.

There are two limiting cases: For |ϕcpl| = π/2 a detuning ∆ω0 results in an effective Rabi

frequency

Ωeff =
√

Ω2 + ∆ω2
0 ≈ Ω(1 +

∆ω2
0

2Ω2
) (C.2)

showing only a quadratic dependence in ∆ω0

Ω
. When the rotation axis points through the

center of the quantum state (|ϕcpl| = 0) the situation is more critical. Detuning causes a

change of the rotation axis in polar direction

∆θ = arctan

(

∆ω0

Ω

)

≈ ∆ω0

Ω
(C.3)
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Figure C.1: Measured magnetic noise spectrum in closed loop configuration. The figure shows

the magnetic field noise spectrum obtained from the error signal of the fluxgate sensor feedback

loop. The background noise level is low, in the order of 50 µG. The main features are the spikes

most pronounced at odd multiples of the 50 Hz power line frequency. None of the peaks exceeds

the 400 µG level showing the suppression due to the feedback loop, since in unlocked condition the

power line noise signal is approximately 4 mG. It is important to note that the measurement is not

meaningful in the DC limit since the loop reacts to tilts of the sensor itself or offset voltage drifts,

resulting in a change of the magnetic field at the position of the atomic cloud.

which is linearly dependent on the detuning. These fluctuations contribute most to noise

in the occupation number difference if the total pulse angle is α = π. Therefore we choose

the axis of the spin echo pulse to |ϕcpl| ≈ π/2 for best noise suppression.

Magnetic field stabilization

The major problem is caused by magnetic field noise at a spectral frequency of 50 Hz due

to the electrical power line. We measure this noise component to be in the order of 4 mG,

approximately a factor of ten larger than acceptable. Measurements of the phase stability

of the power line signal reveal a coherence time in the order of a few hundred milliseconds.

We minimize the degrading effect of this 50 Hz noise by synchronization of the timing of

the whole experiment to the power line signal 50 ms before the interferometric sequence.

However, we found that further magnetic field stabilization is necessary in our experiment

in order to overcome the technical noise problems. We implemented an active feedback

loop where we measure the magnetic field as close as possible to the atomic cloud using
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a fluxgate magnetometer.1 Since the distance to the atomic cloud is still in the order of

10 cm, the magnetic offset field needs to be homogeneous in a large volume including the

magnetic field sensor and the atoms. We installed a pair of quadratic offset coils spaced

by 1 m with a side length of 96 cm. Each of these coils has 11 windings and a current of

approximately 150 A is necessary to generate a magnetic field of 9 G in the center of the

pair. The current is provided by a Delta SM 15-200-D-P104-P145 power supply. We use

the internal feedback loop of the power supply in constant voltage mode for coarse control

of the magnetic field. The control voltage is generated by a home build fixed voltage source

with a relative stability better than 10−5 per day. For the Fluxgate based feedback loop we

use an extra coil pair winded on top of the first coils. A home build current source allows

to change the magnetic field by ca. 200 mG, enough to tune the magnetic field around

the Feshbach resonance. We choose the cut off frequency of the feedback loop to a few

100 Hz such that low frequency fluctuations can be compensated to an amplitude in the

100 µG range. Figure C.1 shows the measured noise spectrum with closed feedback loop.

In order to avoid local magnetic fields seen by the atoms but not by the Fluxgate sensor we

disconnect all other coils close to the experimental chamber by relays.

1Bartington Instruments, Mag-03MS1000
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