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Spectroscopic modes provide the most sensitive probe of the very weak interactions responsible for the

properties of the long-wavelength cycloid in the multiferroic phase of BiFeO3 below TN ≈ 640 K. Three of

the four modes measured by terahertz (THz) and Raman spectroscopies were recently identified using a simple

microscopic model. While a Dzyaloshinskii-Moriya (DM) interaction D along [−1,2, −1] induces a cycloid with

wave vector (2π/a)(0.5 + δ,0.5,0.5 − δ) (δ ≈ 0.0045), easy-axis anisotropy K along the [1,1,1] direction of the

electric polarization P induces higher harmonics of the cycloid, which split the �1 modes at 2.49 and 2.67 meV

and activate the �2 mode at 3.38 meV. However, that model could not explain the observed low-frequency mode

at about 2.17 meV. We now demonstrate that an additional DM interaction D′ along [1,1,1] not only produces

the observed weak ferromagnetic moment of the high-field phase above 18 T but also activates the spectroscopic

matrix elements of the nearly degenerate, low-frequency �0 and �1 modes, although their scattering intensities

remain extremely weak. Even in the absence of easy-axis anisotropy, D′ produces cycloidal harmonics that split

�1 and activate �2. However, the observed mode frequencies and selection rules require that both D′ and K are

nonzero. This work also resolves an earlier disagreement between spectroscopic and inelastic neutron-scattering

measurements.
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I. INTRODUCTION

As the only known room-temperature multiferroic, BiFeO3

continues to attract a great deal of attention. Multiferroic
materials offer the tantalizing prospect of controlling mag-
netic properties with electric fields or electric polarizations
with magnetic fields.1 Although the ferroelectric transition
temperature2 Tc ≈ 1100 K of BiFeO3 is far higher than its
Néel temperature3–5 TN ≈ 640 K, the electric polarization P is
enhanced by its coupling to the long-wavelength cycloid below
TN (Ref. 6). As a result, the magnetic domain distribution
below TN can be manipulated by an electric field.4,5,7

Before BiFeO3 can be used in technological applications,
however, it is essential to understand the microscopic mecha-
nisms and interactions responsible for its magnetic behavior.
At frequencies above a few meV up to about 70 meV,
the spin-wave (SW) spectrum of BiFeO3 has been used8,9

to determine the nearest-neighbor and next-nearest-neighbor
exchange interactions J1 ≈ −4.5 meV and J2 ≈ −0.2 meV
between the S = 5/2 Fe3+ spins10 on a pseudocubic lattice
with lattice constant a ≈ 3.96 Å. As shown in Fig. 1(a),
J1 is the antiferromagnetic (AF) interaction between spins
on neighboring (1,1,1) planes separated by c = a/

√
3 while

J2 is the AF interaction between neighboring spins on each
hexagonal layer.

Below TN , a long-wavelength cycloid with wave
vector3,11–13 Q = (2π/a)[0.5 + δ,0.5,0.5 − δ] (δ ≈ 0.0045)
is produced by the Dzyaloshinskii-Moriya (DM) interaction
D = Dy′ along y′ = [−1,2, − 1] (all unit vectors are assumed
normalized to 1). As shown in Fig. 1(b), the spins of the cycloid
lie predominantly in the (−1,2,−1) plane normal to y′.

Whereas the high-frequency portion of the SW spec-
trum determines the Heisenberg exchange interactions, the

low-frequency modes measured by terahertz14,15 (THz) and
Raman16–18 spectroscopies can be used to determine the small
microscopic interactions that control the cycloid. Four modes
have been detected at frequencies10 of 2.17, 2.49, 2.67, and
3.35 meV. By comparison, a model with the single DM
interaction D produces only19 a single spectroscopically active
mode labeled �1 at about 2.37 meV.

A more realistic model19,20 also contains the easy-axis

anisotropy K along z′ = [1,1,1], parallel to the electric

polarization P. When K > 0, �1 splits into two and �2 at

3.38 meV is activated.19 Although this model successfully

described the upper three spectroscopic modes, with predicted

frequencies very close to the measured frequencies, it failed

to explain the low-frequency 2.17 meV mode. In addition, it

provides conflicting estimates for K based on spectroscopic

and inelastic neutron-scattering measurements.

Several authors21–24 have examined the effects of another

DM interaction D′ = D′z′ between neighboring hexagonal

layers. For a G-type AF, D′ produces a weak ferromagnetic

moment along y′ due to the canting of the uniform moments

on each hexagonal plane. The moment M0 = 2μBS0y′ ≈
0.03μBy′ was subsequently observed in the metamagnetic

phase6,25 above 18 T. Below 18 T, D′ was predicted23 to

induce an oscillatory component of the cycloid along y′,
which has recently been confirmed by neutron-scattering

measurements.26

Based on a model that includes both D and D′ in addition
to the easy-axis anisotropy K , we evaluate the spin state
and spectroscopic modes of BiFeO3. Even when K = 0, D′

induces higher harmonics of the cycloid that split �1 and
activate �2. More remarkably, D′ activates �0 and �1 at the
cycloidal wave vector.
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FIG. 1. (Color online) (a) The pseudocubic cell with exchange

interactions J1 and J2 as well as the polarization direction z′ cutting

through two hexagonal planes. (b) For domain 1, a schematic of the

spins along the x ′ axis showing their rotation about y′. Due to the DM

interaction D′ = D′z′, spins rotate by τ about z′ in the x ′y ′ plane.

We believe that these nearly degenerate modes are respon-
sible for the low-frequency 2.17 meV peak observed in spec-
troscopy measurements. Although a model with K = 0 can
produce four spectroscopic modes, the �1 selection rules are
reversed and their mode frequencies are too small. Therefore,
both D′ and K are required to explain the experimental mea-
surements. With D′ ≈ 0.054 meV, corresponding to the ob-
served value6,25 S0 = 0.015, we estimate that D ≈ 0.11 meV
and K ≈ 0.0035 meV, which also provide a good description
of inelastic neutron-scattering measurements9 below 5 meV.

This paper is divided into seven sections. Section II
constructs the spin state of BiFeO3. Section III evaluates the
spin dynamics of that state, Sec. IV evaluates the spectroscopic
modes of that state, and Sect. V discusses the selection rules
for those modes. Section VI discusses the inelastic neutron-
scattering spectrum for the low-frequency modes. Section VII
contains a brief conclusion. Results for the SW intensities are
provided in Appendix A. The polarization and magnetic matrix
elements are provided in Appendix B.

II. SPIN STATE

With P = P z′, the three magnetic domains have cycloidal
wave vectors Q = (2π/a)[0.5 + δ,0.5,0.5 − δ] (domain 1),
(2π/a)[0.5,0.5 + δ,0.5 − δ] (domain 2), or (2π/a)[0.5 +
δ,0.5 − δ,0.5] (domain 3). By contrast, the G-type AF sta-
bilized by a magnetic field,6,25 doping,27 or in thin films28

has wave vector (2π/a)[0.5,0.5,0.5]. In our discussion of
the selection rules governing the spectroscopic modes in
Sec. V, we will assume that all three domains are equally
populated. Since the spin state and dynamics are the same
for all three domains, we now concentrate on domain 1 with
x′ = [1,0, − 1] and y′ = [−1,2, − 1], as shown in Fig. 1(b).

The spin state and SW excitations of BiFeO3 are evaluated
from the Hamiltonian

H = −J1

∑

〈i,j〉

Si · Sj − J2

∑

〈i,j〉′
Si · Sj − K

∑

i

S2
iz′

−D
∑

Rj =Ri+a(x−z)

y′ · (Si × Sj ) (1)

−D′
∑

Rj =Ri+ax,ay,az

(−1)Riz′ /c z′ · (Si × Sj ).

The first and second exchange terms contain sums 〈i,j 〉
and 〈i,j 〉′ over nearest and next-nearest neighbors on the
pseudocubic lattice. The third term arises from the easy-
axis anisotropy along z′ and the fourth term from the DM
interaction with D = Dy′.

Compared to the model for BiFeO3 introduced in Ref. 20
and studied in our earlier work,19 H adds the DM interaction
D′ = D′z′. This term alternates in sign with increasing z′:
(−1)Riz′ /c changes sign from layer n to layer n + 1 so the
DM interaction (−1)Riz′ /cD′ between layers n and n + 1 has
opposite sign to the DM interaction between layers n + 1 and
n + 2. Hence, the DM interaction D′ has the same wave vector
(2π/a)[0.5,0.5,0.5] as a G-type AF.

Because δ ≈ 1/222, a unit cell containing M = 222 sites
within each of two neighboring (1,1,1) planes is used to
characterize the distorted cycloid. In zero magnetic field,
the cycloid can be expanded in odd harmonics29,30 of the
fundamental wave vector Q (even harmonics are also required
in nonzero fields). If Sy ′ (R) is proportional to Sx ′ (R), then

Sx ′ (R) = (−1)Rz′ /c cos τ
√

S2 − Sz′ (R)2

× sgn[sin(2πδRx ′/a)], (2)

Sy ′ (R) = sin τ
√

S2 − Sz′ (R)2 sgn[sin(2πδRx ′/a)], (3)

Sz′ (R) = (−1)Rz′ /cS

∞
∑

m=0

C2m+1 cos[(2m + 1)2πδRx ′/a]. (4)

Odd-order coefficients C2m+1 in Sz′ (R) satisfy
∑∞

m=0 C2m+1 =
1. Although Sy ′ (R) [unlike Sx ′ (R) and Sz′ (R)] does not
change sign from one layer to the next, the average value of
Sy ′ (R) vanishes and there is no net moment in any direction.
The ratio Sy ′ (R)/Sx ′ (R) has magnitude tan τ α |D′/J1| ≪ 1.
Although the cycloid remains coplanar for each hexagonal
layer, the cycloidal planes rotate by 2τ from one layer to the
next.

The parameters of the spin state are evaluated by minimiz-
ing the energy E = 〈H 〉 in a unit cell x ′y ′z′ of dimensions
15 000a × a × 2c containing two (1,1,1) layers. Open bound-
ary conditions are employed along the x ′ direction. With the
exchange interactions J1 = −4.5 meV and J2 = −0.2 meV
fixed at the values required to describe the SW spectrum8,9 at
high frequencies, the four variational parameters are δ, τ , C3,
and C5. A solution with δ = 1/222 is obtained by varying the
DM interaction D for fixed K . After minimizing the energy,
we verify that the corresponding spin state provides at least a
metastable minimum by checking that the classical forces on
each spin vanish.

With a magnetic field oriented along z′, the metamagnetic
state observed6,25 above 18 T can be written

S1 = S(cos θ cos φ, cos θ sin φ, sin θ ), (5)

S2 = S(− cos θ cos φ, cos θ sin φ, sin θ ) (6)

for Rz′ = 2mc and (2m + 1)c, respectively. Extrapolating to
zero field with θ = 0, we obtain tan 2φ = D′/J1. Hence, the
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FIG. 2. (Color online) (a) The DM interaction D and (b) the ratio

of harmonics C3/C1 versus S0 for several values of K .

weak ferromagnetic moment of the metamagnetic phase is

M0 = 2μBS0 = 2μBS sin φ ≈
μBSD′

J1

, (7)

independent of D, K , and J2. Using J1 = −4.5 meV and the
experimental result6,25 S0 = 0.015, we estimate that |D′| =
0.054 meV, which is is slightly larger than the estimate |D′| =
0.046 meV provided in Ref. 24.

For the distorted cycloid given by Eqs. (2)–(4), it is
straightforward to show that if δ ≪ 1, then τ ≈ D′/2J1.
Therefore, the maximum cycloidal spin |Sy ′ (R)| equals the
weak ferromagnetic spin S0 of the metamagnetic phase. For
the tilting angle, we estimate τ ≈ 0.34◦, a bit smaller than the
recent neutron-scattering26 estimate of ∼1◦.

In Fig. 2(a), we plot the DM interaction D versus S0 for
several values of the anisotropy K ranging from 0 to 0.0035
meV. For K = 0 and 0.0005 meV, D increases slightly with S0.
But for K � 0.001 meV, D decreases with S0. Nevertheless,
the variation of D with S0 is rather modest.

By contrast, the higher harmonics of the cycloid exhibit
a much stronger variation with S0. Figure 2(b) reveals that
the ratio C3/C1 increases with S0 for all K . Since C1 =
1 −

∑

n=1 C2n+1 and |C5| ≪ |C3|, C1 ≈ 1 − C3 and C3/C1 ≈
C3(1 + C3). For K = 0 and S0 > 0, C3 > 0 and

〈Siz′
2〉 =

1

2

∑

n=0

(C2n+1)2 ≈
1

2
(1 − 2C3) <

1

2
. (8)

Because the D′ interaction energy is optimized when the spins
lie in the x ′y ′ plane, higher harmonics favor the z′ nodal regions
of the cycloid. When S0 is sufficiently small and K > 0,
C3 < 0 and 〈S2

iz′〉 > 1/2 so that higher harmonics favor the
z′ antinodal regions of the cycloid. Experimentally, the ratio
of the neutron-scattering intensity from the third to the first
harmonics is given by (C3/C1)2.

Notice that the third (and higher) harmonics can vanish for
nonzero S0 and K . When S0 = 0.015, C3 < 0 when K is less
than about 0.001 meV and C3 > 0 when K is greater than
about 0.001 meV. For K ≈ 0.001 meV, the higher harmonics
of the cycloid vanish and 〈Siz′

2〉 = 1/2.

III. SW EXCITATIONS

The SW frequencies are calculated using the equations-of-
motion technique for noncollinear spins outlined in Ref. 31. A
unit cell containing M = 222 sites on each of two hexagonal
layers is constructed to evaluate the 2M SW frequencies ωn(q).
SW intensities are obtained from the spin-spin correlation
function defined by Eq. (A9) in Appendix A. In the absence
of damping, the inelastic scattering cross section S(q,ω) can
be expanded as sum over δfunctions at each frequency:

S(q,ω) =
∑

n,α

[1 − (qα/q)2]δ(ω − ωn(q))S(n)
αα (q). (9)

The amplitudes S(n)
αα (q) are evaluated using Eq. (A11).

For fixed S0 = 0.015, the SW frequencies are plotted in
Fig. 3 for K = 0, 0.001, and 0.002 meV. Although there are
2M modes for every wave vector (2π/a)(0.5 + η,0.5,0.5 −
η), plotted by the dashed lines, only a few of those modes
have any significant intensity. Modes with intensity above an
arbitrary cutoff are plotted in the dark lines.

When K ≈ 0.001 meV in Fig. 3(b), the higher harmonics of
the cycloid vanish and the SW frequencies are similar to those
for S0 = 0 and K = 0 discussed in Ref. 19. In the absence of
harmonics, de Sousa and Moore32 labeled the SW frequencies
ωn(mQ) (n = 1 or 2) of a one-dimensional cycloid at multiples
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FIG. 3. (Color online) The SW modes of BiFeO3 versus η/δ for

wave vector (2π/a)(0.5 + η,0.5,0.5 − η). The dashed lines show all

possible excitations and the solid lines show only those modes with

significant intensity above a threshold value. All three plots take

S0 = 0.015 and D′ = 0.054 meV. �0 (black dots) has a very large y ′

MR matrix element. The low-frequency mode (brown dots) has both

�0 and �
(1)
1 contributions with nonzero x ′ and y ′ MR matrix elements,

respectively. Whereas �
(1)
2 (red) has nonzero y ′ MR matrix element,

�
(1)
1 (blue) and �

(2)
1 (green) have nonzero x ′ and z′ matrix elements,

respectively. The electromagnon (EM) mode with component y ′

coincides with �
(1)
1 .
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m of the cycloidal wave vector Q = 2πδ/a as �m and �m.
Using an extended zone scheme and assuming that |m|δ ≪
1, ωn(mQ) can be approximated by �m = �1|m| and �m =
�1

√
1 + m2. These relations imply that �1 = �0, as seen in

Fig. 3(b), and that the �±m and �±m modes cross without
repulsion at the zone center q = Q and zone boundary q = 0.

Whether produced by the tilt τ or by the anisotropy K ,
higher odd harmonics of the cycloid introduce higher even
harmonics in the Hamiltonian H . A 2mQ potential will split
the �±m and �±m modes. As shown in Figs. 3(a) and 3(c), the

new m = 1 eigenmodes are labeled �
(1,2)
1 and �

(1,2)
1 . Notice

that �0 and �
(1)
1 are nearly degenerate for all K . Although too

small to see in Fig. 3, even �±2 are split by anharmonicity.

IV. SPECTROSCOPIC MODES

Because the wavelength of far-infrared light greatly exceeds
atomic length scales, the SW modes measured by THz and
Raman spectroscopies lie at the zone center q = Q or η =
δ. A magnetic resonance (MR) mode has nonzero matrix
element 〈δ|Mα|0〉, where |0〉 is the ground state and |δ〉 is
an excited state with a single magnon of wave vector Q.
An electromagnon (EM) mode has nonzero matrix element
〈δ|P ind

α |0〉 so that the induced polarization directly couples the
ground state to the excited state.

In order to evaluate the MR and EM matrix elements,
we must first express the magnetic moment M and induced
polarization Pind operators in terms of the spin operators Si .
The magnetic moment M = 2μB

∑

Ri
Si contains a sum over

the 2M unique sublattices. In BiFeO3, the coupling between
the cycloid and electric polarization is produced by the inverse
DM mechanism33–35 with induced polarization

Pind = λ
∑

Ri ,Rj =Ri+eij

{eij × (Si × Sj )}, (10)

where the sum is restricted to the 2M sublattices using periodic

boundary conditions. Within each (1,1,1) plane, eij =
√

2ax′

connects spins at sites Ri and Rj . So if 〈0|Si × Sj |0〉 points
along y′, then 〈0|Pind|0〉 points along z′.

Expressions for the matrix elements 〈δ|Mα|0〉 and
〈δ|P ind

α |0〉 are provided in Appendix B. Although there is
no simple relation between the MR matrix elements and the
SW intensities, the MR and EM modes appear only at mode

frequencies n with S
(n)
α′α′(δ) > 0. Generally, �n modes with

〈δ|My ′ |0〉 �= 0 also have nonzero SW intensities S
(n)
x ′x ′ (δ) and

S
(n)
z′z′ (δ). Hence, those modes excite spins within the x ′z′ plane

of the cycloid (neglecting its small tilt). On the other hand,
�n modes with 〈δ|Mx ′ |0〉 �= 0 or 〈δ|Mz′ |0〉 �= 0 also have

S
(n)
y ′y ′ (δ) > 0. Hence, those modes excite spins out of the x ′z′

plane.
Zone-center modes with nonzero MR matrix elements are

indicated by the filled circles in Fig. 3. In addition to having
an enormous SW intensity, the “zero”-frequency36 �0 mode
has a very large MR matrix element (for K = 0.0035 meV
and S0 = 0.015, |〈δ|My ′ |0〉| ≈ 8400μB ). The 2Q potential

splits the degenerate �±1 modes into �
(1)
1 (〈δ|Mx ′ |0〉 �= 0)

and �
(2)
1 (〈δ|Mz′ |0〉 �= 0). The EM (〈δ|P ind

y ′ |0〉 �= 0) always

coincides with �
(1)
1 . Similarly, the smaller 4Q potential splits

Ψ0

Φ1
(1)

Ψ1
(1)

Φ2
(1)

Ψ1
(2)

K (meV)

ω
 (

m
e

V
) 

S0 = 0.015

Φ1
(2)

FIG. 4. (Color online) The evolution of the predicted modes with

anisotropy K taking S0 = 0.015 and D′ = 0.054 meV. The horizontal

dashed lines are the observed spectroscopic mode frequencies

(Ref. 10).

the �±2 modes. Due to its hybridization with �0, �
(1)
2 becomes

spectroscopically active with 〈δ|My ′ |0〉 �= 0.
The predicted mode frequencies are plotted versus

anisotropy for S0 = 0.015 in Fig. 4. Both �
(1,2)
1 and �

(1,2)
1

cross near K = 0.001 meV. At η = δ, �
(2)
1 has no SW intensity

and is not spectroscopically active. But at η = 0, this mode is
responsible for important features in the inelastic-scattering
spectrum discussed in Sec. VI.

For K = 0.0035 meV, the mode frequencies are plotted
versus S0 in Fig. 5(a), where D and D′ are evaluated in terms
of S0 for fixed δ = 1/222. While the predicted spectroscopic

mode frequencies decrease slightly with S0, �
(2)
1 slightly

increases.
When S0 = 0, the �0 and �

(1)
1 modes at the zone center

η = δ have no SW intensity and their MR matrix elements
vanish. But when S0 > 0, the DM interaction D′ with wave
vector (2π/a)[0.5,0.5,0.5] hybridizes �0 with �

(1,2)
1 and �

(1)
1

with �0. Consequently, their MR matrix elements become
significant.

In Fig. 5(b), the mode frequencies and MR matrix elements

of �0 and �
(1)
1 are plotted versus S0 together with the very

small SW intensities of those modes for K = 0.0035 meV.
As expected from perturbation theory, the matrix elements
〈δ|Mα|0〉 grow linearly with S0 ∼ |D′/J1|. Moreover, they
scale as the square root of the SW intensities Sα′α′(δ). There-
fore, these modes are both spectroscopically and dynamically
activated by the tilt of the cycloid. It is remarkable that the MR

matrix elements of �0 and �
(1)
1 become so large while their

SW intensities remain extremely weak.
The dashed horizontal lines in Fig. 4 correspond to the four

measured spectroscopic frequencies of BiFeO3. We believe

that the nearly degenerate �0 and �
(1)
1 modes are responsible

for the observed low-frequency peak at 2.17 meV. Recall that
those two modes only appear when the cycloid is tilted away
from the x ′z′ plane by the DM interaction D′ along z′. The best
overall fit to the observed mode spectrum is obtained with K ≈
0.0035 meV. Measured10 and predicted mode frequencies are
summarized in Table I.
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K = 0.0035 meV

|<
δ
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>
|/

μ
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α
´α
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|<δ|Mα|0>|/μB(2M 3 Sα´α´(δ))1/2

Ψ0, x´

Φ1
(1), y´

S0

Φ2
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Ψ0

Φ1
(1)

Φ2
(1)

Ψ1
(2)

Ψ1
(1)

(a)

(b)

Φ1
(2)

FIG. 5. (Color online) (a) The frequencies of the predicted modes

versus S0 for K = 0.0035 meV. Horizontal dashed lines are the

measured spectroscopic frequencies (Ref. 10). (b) The MR matrix

elements |〈δ|Mα|0〉|/μB for �0 (solid) and �
(1)
1 (dashed) versus S0

for K = 0.0035 meV. Also plotted are the intensities M3Sα′α′ (δ) of

those modes (α′ = y ′ for α = x ′ and α′ = x ′ or z′ for α = y ′) with

M = 222. The normalized matrix element |〈δ|Mα|0〉|/μBSα′α′ (δ)1/2

is independent of S0. The dash-dotted curve plots the MR matrix

element for �
(1)
2 with α = y ′.

With S0 = 0.015 and K = 0.0035 meV, the harmonics of
the cycloid have the ratio C3/C1 = −0.050 or (C1/C3)2 =
400. Elastic neutron-scattering11 and NMR measurements37

indicate that (C1/C3)2 is 500 and 25, respectively. However,
the NMR measurement may overestimate the third harmonic

TABLE I. Spectroscopic frequencies, matrix elements, and

intensities.

�0/�
(1)
1 �

(2)
1 �

(1)
1 �

(1)
2

Measured ω (meV) 2.17 2.49 2.67 3.38

Predicted ω (meV) 2.03/2.05 2.53 2.75 3.40

MR index α x ′/y ′ z′ x ′ y ′

|〈δ|Mα|0〉|/μB 2.50/1.86 3.96 4.59 1.01

|〈δ|Py′ |0〉|/λ 0 0 12.2 0

Intensity index α′ y ′/x ′,z′ y ′ y ′ x ′,z′

Sα′α′ (δ) 4.94 × 10−8/3.05 × 10−8 19.7 18.1 5.43,2.35

I (h1)/μ2
B 4.75 0 10.54 0.51

I (h2)/μ2
B 1.58 10.47 3.51 0.17

due to the high 57Fe isotope content of the sample.38 Our
estimate for (C3/C1)2 is in very good agreement with the
elastic neutron-scattering result.

V. SELECTION RULES

We now consider the selection rules for the THz
modes14,15 for a sample with the single polarization do-
main P = P z′, where z′ = [1,1,1]. As mentioned in Sec. II,
the three possible magnetic domains have wave vec-
tors (2π/a)(0.5 + δ,0.5,0.5 − δ), (2π/a)(0.5,0.5 + δ,0.5 −
δ), and (2π/a)(0.5 + δ,0.5 − δ,0.5). Since these domains have
the same energy, we expect them to be equally populated.
The mode spectrum was measured for crossed fields h1 =
[1, − 1,0] and h2 = [1,1,0].

To predict the selection rules for BiFeO3, h1 and h2 are
expressed in terms of the cycloidal unit vectors x′, y′, and z′ as

h1 = (x′ −
√

3y′)/2,

h2 = x′/2 +
√

3y′/6 +
√

2/3z′ (11)

in domain 1 with x′ = [1,0, − 1] and y′ = [−1,2, − 1];

h1 = −(x′ +
√

3y′)/2,

h2 = x′/2 −
√

3y′/6 +
√

2/3z′ (12)

in domain 2 with x′ = [0,1, − 1] and y′ = [−2,1,1]; and

h1 = x′,

h2 = (y′ +
√

2z′)/
√

3 (13)

in domain 3 with x′ = [1, − 1,0] and y′ = [1,1, − 2]. Al-
though the following discussion assumes that all three domains
are equally populated, our qualitative conclusions remain
unchanged even if one or two domain populations dominate
the sample.

The spectroscopic intensity for any mode is given by39

I (h) =
∑

α

h2
α |〈δ|Mα|0〉|2. (14)

Averaging over the three domains, we find

I (h1) = 1
2
{|〈δ|Mx ′ |0〉|2 + |〈δ|My ′ |0〉|2}, (15)

I (h2) = 1
6
{|〈δ|Mx ′ |0〉|2 + |〈δ|My ′ |0〉|2} + 2

3
|〈δ|Mz′ |0〉|2.

(16)

For 〈δ|Mα|0〉 �= 0, I (h1)/I (h2) = 3 for any mode (such

as �
(1)
2 , �

(1)
1 , �(0), and �

(1)
1 ) with α = x ′ or y ′ while

I (h1)/I (h2) = 0 for any mode (such as �
(2)
1 ) with α = z′.

While �
(1)
1 (〈δ|Mx ′ |0〉 �= 0) and �

(1)
2 (〈δ|My ′ |0〉 �= 0)

should appear in both fields h1 and h2, �
(2)
1 (〈δ|Mz′ |0〉 �= 0)

should appear only in field h2, which contains a z′ component.
This agrees with the selection rule observed by Talbayev

et al.14 But Nagel et al.15 recently found that �
(2)
1 survives

in field h1, albeit with I (h1)/I (h2) = 0.11. Notice that the

position of �
(1)
1 above �

(2)
1 requires that K > 0.001 meV.

Therefore, both nonzero K and S0 are required to explain the
spectroscopic frequencies and selection rules.
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Whereas Talbayev et al.14 found that the low-frequency
mode appears only in field h1, our model indicates that the

nearly degenerate �0 (〈δ|Mx ′ |0〉 �= 0) and �
(1)
1 (〈δ|My ′ |0〉 �=

0) modes should appear in both fields h1 and h2. However,
more precise THz measurements15 have recently detected the
low-frequency mode in both fields h1 and h2. At 4 K, Nagel
et al.15 even observed distinct low-frequency peaks at 2.03 and
2.26 meV. The observed threefold splitting of the 2.03 meV

peak in a magnetic field may help to distinguish �0 and �
(1)
1 .

The spectroscopic intensities for K = 0.0035 meV and
S0 = 0.015 are summarized in Table I. These numerical results
indicate that �

(1)
1 and �

(2)
1 should be the strongest of the four

modes, in agreement with the THz results.14,15 Surprisingly,

Table I indicates that the intensity I (h2) of �
(1)
2 is roughly

5% that of �
(1)
1 . By contrast, recent THz measurements15

indicate that �
(1)
2 is only about 18% less intense than �

(1)
1 in

field h2. Whereas our model predicts that �
(2)
1 is three times

more intense than �
(1)
1 in h2, recent measurements find only

a factor of 1.4 between the two intensities. Most of these
discrepancies can be explained by the dominance of one
magnetic domain over the other two.

VI. INELASTIC NEUTRON-SCATTERING

MEASUREMENTS

In earlier work19 with D′ = 0, we obtained conflicting
estimates for the easy-axis anisotropy K based on the
spectroscopic and neutron-scattering spectra. Because the
instrumental resolution is broader than 4πδ/a,9 inelastic
neutron-scattering measurements at the AF Bragg point
(2π/a)[0.5,0.5,0.5] average over a range of q that includes
both cycloidal satellites at (2π/a)[0.5 ± δ,0.5,0.5 ∓ δ]. For
D′ = 0, the spectroscopic mode frequencies indicated that
K ≈ 0.002 but the inelastic-scattering spectra indicated that
K ≈ 0.004.

We now reexamine the spectrum χ ′′(ω) for D′ �= 0. The up-
per left-hand corner of Fig. 6 plots the measured spectrum.9,19

FIG. 6. (Color online) (a) The measured inelastic-scattering

spectrum (Refs. 9,19) around η = 0 and the predicted spectrum for

(b) K = (b) 0.0025, (c) 0.003, and (d) 0.0035 meV with S0 ranging

from 0 to 0.015.

The resolution-averaged intensity spectrum is plotted versus
ω in Figs. 6(b)–6(d) for three values of K and six values of
S0 from 0 to 0.015. The very low-frequency rise of χ ′′(ω) due
to �0 at η = δ has been removed from both the measured and
predicted spectra.

Below 5 meV, the measured χ ′′(ω) contains four peaks at
1.2, 2.4, 3.4, and 4.4 meV. The peaks at 1.2 and 2.4 meV are

primarily caused by �
(1,2)
1 and �0. As shown in Fig. 4 for S0 =

0.015, the separation between �
(2)
1 and �

(1)
1 /�0 increases as K

exceeds 0.001 meV. Correspondingly, the gap in the predicted
spectrum centered at 2 meV widens with increasing K beyond
0.001 meV.

As shown in Fig. 5(b), �
(2)
1 is slightly enhanced by S0.

But the resolution-averaged spectrum χ ′′(ω) also involves
nearby modes and shifts to lower frequencies with increasing
S0. For S0 = 0.015 and K = 0.0035 meV, the low-frequency
peak lies at 1.2 meV. So based on this single peak, K ≈
0.0035 meV provides good agreement with both the spec-
troscopic and inelastic measurements. Although its intensity
increases with S0 and it is more pronounced than in our
previous work,19 the predicted low-frequency peak at 1.2 meV
is still considerably weaker than the measured peak.

For K = 0.0035 meV, the second peak lies at 2.5 meV
when S0 = 0 but shifts down to 2.3 meV when S0 = 0.015.
More problematically, the predicted spectrum contains three
peaks between 2 and 4 meV (although the third peak is
suppressed with S0) whereas the measured spectrum contains
only two. For K = 0.0035 meV and S0 = 0.015, there are
no predicted SW excitations between 4 and 5 meV at η = 0
or δ. Consequently, the observed peak at 4.4 meV is missing
from our spectrum, which falls off much more rapidly than the
measured χ ′′(ω) above 4 meV. Keep in mind, however, that the
predicted shape of χ ′′(ω) sensitively depends on the resolution
function used to perform the averaging.

VII. CONCLUSION

A primary motivation of this work was to see how well
a microscopic model can describe the properties of one of
the simplest and most technologically important multiferroic
materials. We have demonstrated that all four modes observed
by THz and Raman spectroscopies in BiFeO3 are predicted
by a model that includes two DM interactions, one along y′

responsible for the cycloid periodicity and the other along z′

responsible for its tilt of the cycloid out of the x ′z′ plane.
Using reasonable values for the easy-axis anisotropy and
the DM interactions, we obtain excellent agreement with the
measured mode frequencies. The parameters D = 0.11 meV,
D′ = 0.054 meV, and K = 0.0035 meV provide very
good descriptions of both the spectroscopic and inelastic
neutron-scattering measurements, thereby resolving an earlier
disagreement.19

The spectroscopic modes evolve with the complexity
of the cycloid. With a single DM interaction D = Dy′,
the cycloid is coplanar and purely harmonic. For nonzero
frequencies, the only spectroscopically active mode is �1

(〈δ|Mx ′ |0〉 �= 0, 〈δ|Mz′ |0〉 �= 0), which coincides with the EM
(〈δ|P ind

y ′ |0〉 �= 0). Easy-axis anisotropy K along z′ distorts
the coplanar cycloid and introduces higher even harmonics
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in the Hamiltonian H . The 2Q potential splits �±1 into

�
(1)
1 (〈δ|Mx ′ |0〉 �= 0, 〈δ|P ind

y ′ |0〉 �= 0) and �
(2)
1 (〈δ|Mz′ |0〉 �= 0);

the 4Q potential splits �±2 into �
(1)
2 and �

(2)
2 . Hybridized

with �0 by the 2Q potential, �
(1)
2 (〈δ|My ′ |0〉 �= 0) becomes

spectroscopically active. Finally, the DM interaction D′ =
D′z′ tilts the noncoplanar cycloid out of the x ′z′ plane. Then �0

(〈δ|Mx ′ |0〉 �= 0) and �
(1)
1 (〈δ|My ′ |0〉 �= 0) are dynamically and

spectroscopically activated by their hybridization with �
(1,2)
1

and �0, respectively. Thus, additional interactions modify the

mode spectrum as more modes hybridize with �0 and �
(1,2)
1 .

Several experiments indicate that the low-temperature,
low-field cycloid of BiFeO3 undergoes a transition at about
140 K or 10 T. In THz measurements,14 the low-frequency

�0/�
(1)
1 mode disappears above 120 K and the high-frequency

�
(1)
2 mode disappears above 150 K. Nevertheless, the selection

rules governing the �
(1,2)
1 modes do not change.14 In Raman

measurements, all modes persist for all temperatures but their
frequencies16 and intensities17 display kinks at about 140 K.
Optical40 and electron-spin-resonance41 measurements show
anomalies at about 10 T with indications that the cycloidal
phase above 10 T is the same as the one above 140 K. Recently,
Nagel et al.15 found that the THz modes exhibit kinks at about
5.5 T. But the nature of these transitions and the difference
between the two cycloidal phases remain unknown.

Since D′ is responsible for the low-frequency �0/�
(1)
1

mode, a sudden change in D′ at 140 K or 10 T would produce
anomalies in its spectroscopic features. A jump in D′ at 140 K
would also produce a jump in the weak ferromagnetic moment
M0(T ). However, we do not understand the competing energies
that would produce such a jump in D′. We hope that future
experimental and theoretical work will resolve this and other
mysteries surrounding BiFeO3.
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APPENDIX A: SW INTENSITIES

This section describes how to evaluate the SW intensities
and eigenvectors X, which are required in the next section
to evaluate the spectroscopic matrix elements. The local
reference frame for each spin Si on site i is defined in terms

of the unitary matrix U i by S̄i = U i Si . For spin

S = S(sin θ cos φ, sin θ sin φ, cos θ ), (A1)

the matrices U and U−1 are given by

U =

⎛

⎝

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ

⎞

⎠ , (A2)

U−1 =

⎛

⎝

cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞

⎠ , (A3)

so that SU−1 · z = S.
A Holstein-Primakoff transformation is used to express

the local spin operators S̄i in terms of the bosons ai and

a
†
i with S̄iz = S − a

†
i ai , S̄i+ =

√
2Sai , and S̄i− =

√
2Sa

†
i .

The Hamiltonian is then expanded in powers of 1/
√

S as
H = E0 + H1 + H2 + · · ·. While E0 is the classical energy
and H1 must vanish,

H2 =
∑

q

v†q · L(q) · vq, (A4)

where vq = (a
(1)
q , . . . ,a

(2M)
q ,a

(1)†
−q , . . . ,a

(2M)†
−q ) is a 4M-

dimensional vector and L(q) is a 4M-dimensional matrix.

Boson operators a
(r)
q with 1 � r � M = 222 reside on layer 1

of the unit cell while those with M + 1 � r � 2M reside on
layer 2. The sublattice index r refers to sites on either layer

with R · x′ = [r]a/
√

2 where [r] ≡ mod(r,M).

Since a
(r)
q and a

(r)†
q obey the commutation relations

[a
(r)
q ,a

(s)†
q′ ] = δr,sδq,q′ and [a

(r)
q ,a

(s)
q′ ] = 0, vq and v

†
q satisfy the

commutation relation [vq,v
†
q′ ] = Nδq,q′ where

N =
(

I 0

0 −I

)

(A5)

and I is the 2M-dimensional unit matrix.
A diagonal form for H2 is given by

H2 =
∑

q

w†
q · L′(q) · wq, (A6)

where wq = (α
(1)
q , . . . ,α

(2M)
q ,α

(1)†
−q , . . . ,α

(2M)†
−q ) and the boson

operators α
(n)
q and α

(n)†
q also obey canonical commutation

relations. The 4M-dimensional matrix L′(q) is diagonal with
real eigenvalues ǫn(q) = ωn(q)/2 > 0 (n = 1, . . . ,2M) and
ǫn(q) = −ωn(q)/2 < 0 (n = 2M + 1, . . . ,4M). So for each
q, there are 2M positive and 2M negative eigenvalues. The
commutation relations yield

H2 =
∑

n, k

ωn(q)

{

α(n)†
q α(n)

q +
1

2

}

, (A7)

which identifies ωn(q) as the SW frequency for mode n with
wave vector q.

The vectors wq and vq are related by wq = X(q) · vq or

vq = X−1(q) · wq, where the 4M-dimensional matrix X is

normalized by X · N · X† = N . For fixed q,
∑

j

[Lij (q) − δijǫn(q)]X∗
nj (q) = 0, (A8)
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where L(q) = L(q) · N . The inverse X−1 = N · X† · N is
required to evaluate 〈δ|Pind|0〉 and 〈δ|M|0〉.

The wave vector Q and harmonic coefficients of the cycloid
are obtained by minimizing E0 using the “trial” spin state
provided by Eqs. (2)–(4). If the spin angles on site r of layer
1 are θr and φr , then the angles on layers 1 and 2 are related
by θr+M = θr + π and φr+M = −φr . We assume that φr = τ

and φr+M = −τ are independent of site position r on layers 1
and 2.

The spin-spin correlation function is defined by

Sαβ(q,ω) =
1

2πN

∫

dt e−iωt
∑

i,j

e−iq·(Ri−Rj )〈Siα(0)Sjβ(t)〉

=
∑

n

δ(ω − ωn(q))S
(n)
αβ (q), (A9)

where the final expression assumes that the SWs are un-
damped. The inelastic neutron-scattering cross section is42

S(q,ω) =
∑

α,β

(δαβ − qαqβ/q2)Sαβ(q,ω)

=
∑

n,α

[1 − (qα/q)2]δ(ω − ωn(q))S(n)
αα (q), (A10)

which involves only the diagonal matrix elements of Sαβ(q,ω)
(if there is a net moment, some off-diagonal matrix elements
α �= β are nonzero and antisymmetric). The diagonal SW
intensities S(n)

αα (q) are given by

S(n)
αα (q) =

S

8M

∣

∣

∣

∣

∣

2M
∑

r=1

W (n)
r,α (q)

∣

∣

∣

∣

∣

2

, (A11)

where

W (n)
r,α (q) =

(

U−1 r
αx − iU−1 r

αy

)

X−1
r,n+2M (q)

+
(

U−1 r
αx + iU−1 r

αy

)

X−1
r+2M,n+2M (q). (A12)

Even in the absence of damping, the instrumental resolution
will broaden the δ functions in S(q,ω) in Eq. (A10). The
magnetic form factor for Fe3+ should also be included in
S(q,ω).

APPENDIX B: SPECTROSCOPIC MATRIX ELEMENTS

This section evaluates the matrix elements for the induced
electric polarization Pind and the magnetic moment M between
the ground state |0〉 and an excited state |δ〉 with a single
magnon at the cycloidal wave vector Q.

Since P ind
x ′ = 0, only the y ′ and z′ components are consid-

ered. Expanded about equilibrium, P ind
y ′ becomes

P ind
y ′ = λS

{

M
∑

r=1

sin θr cos φr [−S[r+2],y ′ + S[r−2],y ′

+ S[r+2]+M,y ′ − S[r−2]+M,y ′ ]

+
M

∑

r=1

sin θr sin φr [S[r+2],x ′ − S[r−2],x ′

+ S[r+2]+M,x ′ − S[r−2]+M,x ′ ]

}

. (B1)

After some work, we obtain the EM matrix element y ′ for SW
mode n:

〈δ|P ind
y ′ |0〉 = λS

√

S

2

M
∑

r=1

sin θr eiq0ar
{

[cos θ[r+2] sin(φr − φ[r+2]) + i cos(φr − φ[r+2])]
(

X−1
[r+2],n+2M − X−1

[r+2]+M,n+2M

)

e2iq0a

+ [cos θ[r+2] sin(φr − φ[r+2]) − i cos(φr − φ[r+2])]
(

X−1
[r+2]+2M,n+2M − X−1

[r+2]+3M,n+2M

)

e2iq0a

− [cos θ[r−2] sin(φr − φ[r−2]) + i cos(φr − φ[r−2])]
(

X−1
[r−2],n+2M − X−1

[r−2]+M,n+2M

)

e−2iq0a

− [cos θ[r−2] sin(φr − φ[r−2]) − i cos(φr − φ[r−2])]
(

X−1
[r−2]+2M,n+2M − X−1

[r−2]+3M,n+2M

)

e−2iq0a
}

, (B2)

where q0 = 2πδ/a.
Similarly, P ind

z′ can be expanded as

P ind
z′ = λS

{

M
∑

r=1

cos θr [S[r+2],x ′ − S[r−2],x ′ − S[r+2]+M,x ′ + S[r−2]+M,x ′ ]

−
M

∑

r=1

sin θr cos φr [S[r+2],z′ − S[r−2],z′ − S[r+2]+M,z′ + S[r−2]+M,z′ ]

}

. (B3)

The EM matrix element z′ for SW mode n is

〈δ|P ind
z′ |0〉 = λS

√

S

2

M
∑

r=1

eiq0ar
{

[gr,[r+2] + i cos θr sin φ[r+2]]
(

X−1
[r+2],n+2M − X−1

[r+2]+M,n+2M

)

e2iq0a

+ [gr,[r+2] − i cos θr sin φ[r+2]]
(

X−1
[r+2]+2M,n+2M − X−1

[r+2]+3M,n+2M

)

e2iq0a

− [gr,[r−2] + i cos θr sin φ[r+2]]
(

X−1
[r−2],n+2M − X−1

[r−2]+M,n+2M

)

e−2iq0a

− [gr,[r+2] − i cos θr sin φ[r−2]]
(

X−1
[r−2]+2M,n+2M − X−1

[r−2]+3M,n+2M

)

e−2iq0a
}

, (B4)
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where

gr,s = cos θr cos θs cos φs + sin θr sin θs cos φr . (B5)

For K = 0.0035 meV and S0 = 0.015, �0 has the small
matrix element 〈δ|P ind

z′ |0〉 ≈ 0.19, about 60 times smaller than

〈δ|P ind
y ′ |0〉 ≈ 12.2 for �

(1)
1 .

The MR matrix element for SW mode n is much more
simply given by

〈δ|Mα|0〉 =
√

2SμB

2M
∑

r=1

eiq0a[r]sgn(M − r + 1/2) W (n)
r,α (Q),

(B6)

which uses

eiQ·R = eiq0a[r] sgn(M − r + 1/2). (B7)

Notice that W (n)
r,α (q) also enters the SW intensity

S(n)
αα (q) of Eq. (A11). While the SW intensity S(n)

αα (Q)
is proportional to the amplitude squared of the sum
of W (n)

r,α (Q) over r , the matrix element 〈δ|Mα|0〉
is proportional to the Fourier transform of W (n)

r,α (Q)
over r .
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27P. Chen, Ö. Günaydın-Sen, W. J. Ren, Z. Qin, T. V. Brinzari, S.

McGill, S.-W. Cheong, and J. L. Musfeldt, Phys. Rev. B 86, 014407

(2012).
28F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A.

K. Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86,

032511 (2005).
29M. E. Zhitomirsky and I. A. Zaliznyak, Phys. Rev. B 53, 3428

(1996).
30R. S. Fishman and S. Okamoto, Phys. Rev. B 81, 020402(R)

(2010).
31J. T. Haraldsen and R. S. Fishman, J. Phys.: Condens. Matter 21,

216001 (2009).
32R. de Sousa and J. E. Moore, Phys. Rev. B 77, 012406 (2008).
33H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,

057205 (2005).
34M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
35I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434

(2006).
36�0 is not strictly a Goldstone mode because rotational invariance

about z′ is broken by D. However, the energy gap is so small that

we are unable to reliably estimate its size.
37A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, JETP

Lett. 71, 465 (2000); A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin,

A. A. Gippius, E. N. Morozova, D. F. Khozeev, A. S. Bush, and

V. S. Pokatilov, JETP 95, 101 (2002).

134416-9

http://dx.doi.org/10.1038/nature05023
http://dx.doi.org/10.1038/nature05023
http://dx.doi.org/10.1016/0038-1098(70)90262-0
http://dx.doi.org/10.1016/0038-1098(70)90262-0
http://dx.doi.org/10.1088/0022-3719/15/23/020
http://dx.doi.org/10.1088/0022-3719/15/23/020
http://dx.doi.org/10.1103/PhysRevLett.100.227602
http://dx.doi.org/10.1063/1.2930678
http://dx.doi.org/10.1063/1.2930678
http://dx.doi.org/10.1143/JPSJ.80.114714
http://dx.doi.org/10.1103/PhysRevB.78.100101
http://dx.doi.org/10.1103/PhysRevLett.108.077202
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevB.83.174434
http://dx.doi.org/10.1088/0953-8984/22/25/256001
http://dx.doi.org/10.1088/0953-8984/22/25/256001
http://dx.doi.org/10.1103/PhysRevB.84.144404
http://dx.doi.org/10.1103/PhysRevB.83.094403
http://arXiv.org/abs/1302.2491
http://dx.doi.org/10.1103/PhysRevLett.101.037601
http://dx.doi.org/10.1088/0953-8984/20/25/252203
http://dx.doi.org/10.1088/0953-8984/20/25/252203
http://dx.doi.org/10.1088/0953-8984/20/32/322203
http://dx.doi.org/10.1088/0953-8984/20/32/322203
http://dx.doi.org/10.1103/PhysRevB.79.180411
http://dx.doi.org/10.1103/PhysRevB.86.220402
http://dx.doi.org/10.1016/0304-8853(94)01120-6
http://dx.doi.org/10.1016/0304-8853(94)01120-6
http://dx.doi.org/10.1134/1.1787107
http://dx.doi.org/10.1103/PhysRevB.71.060401
http://dx.doi.org/10.1140/epjb/e2009-00281-5
http://dx.doi.org/10.1140/epjb/e2009-00281-5
http://dx.doi.org/10.1143/JPSJ.80.125001
http://dx.doi.org/10.1143/JPSJ.80.125001
http://dx.doi.org/10.1143/JPSJ.79.064713
http://dx.doi.org/10.1143/JPSJ.79.064713
http://dx.doi.org/10.1103/PhysRevLett.107.207206
http://dx.doi.org/10.1103/PhysRevB.86.014407
http://dx.doi.org/10.1103/PhysRevB.86.014407
http://dx.doi.org/10.1063/1.1851612
http://dx.doi.org/10.1063/1.1851612
http://dx.doi.org/10.1103/PhysRevB.53.3428
http://dx.doi.org/10.1103/PhysRevB.53.3428
http://dx.doi.org/10.1103/PhysRevB.81.020402
http://dx.doi.org/10.1103/PhysRevB.81.020402
http://dx.doi.org/10.1088/0953-8984/21/21/216001
http://dx.doi.org/10.1088/0953-8984/21/21/216001
http://dx.doi.org/10.1103/PhysRevB.77.012406
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1134/1.1307994
http://dx.doi.org/10.1134/1.1307994
http://dx.doi.org/10.1134/1.1499907


FISHMAN, HARALDSEN, FURUKAWA, AND MIYAHARA PHYSICAL REVIEW B 87, 134416 (2013)

38S. Pokatilov and A. S. Sigov, JETP 110, 440 (2010).
39S. Miyahara and N. Furukawa, J. Phys. Soc. Jpn. 81, 023712

(2012).
40X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar,

S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S.-W. Cheong, and

J. L. Musfeldt, Phys. Rev. B 79, 134425 (2009).

41B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I.

Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114

(2004).
42G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering

with a Triple-Axis Spectrometer (Cambridge University Press,

Cambridge, UK, 2004).

134416-10

http://dx.doi.org/10.1134/S1063776110030076
http://dx.doi.org/10.1143/JPSJ.81.023712
http://dx.doi.org/10.1143/JPSJ.81.023712
http://dx.doi.org/10.1103/PhysRevB.79.134425
http://dx.doi.org/10.1103/PhysRevB.69.064114
http://dx.doi.org/10.1103/PhysRevB.69.064114

