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Abstract

Important electromeric states in manganese-oxo porphyrins MnO(P)+ and MnO(PF4)
+

(porphyrinato or meso-tetrafluoroporphyrinato) have been investigated with correlated

ab initio methods (CASPT2, RASPT2), focusing on their possible role in multi-state

reactivity patterns in oxygen transfer (OAT) reactions. Due to the lack of oxyl charac-

ter, the MnV singlet ground state is kinetically inert. OAT reactions should therefore

rather proceed through thermally accessible triplet and quintet states that have a more

pronounced oxyl character. Two states have been identified as possible candidates: a

MnV triplet state and a MnIVO(L•a2u)
+ quintet state. The latter state is high-lying in

MnO(P)+ but is stabilized by the substitutions of H by F at the meso carbons (where

the a2u orbital has a significant amplitude). Oxyl character and Mn–O bond weaken-

ing in these two states stems from the fact that the Mn–O π∗ orbitals become singly

(triplet) or doubly occupied (quintet). Moreover, an important role for the reactivity of

the triplet state is also likely to be played by the π bond that has an empty π∗ orbital,

because of the manifest diradical character of this π bond, revealed by the CASSCF

wave function. Interestingly, the diradical character of this bond increases when the

Mn–O bond is stretched, while the singly occupied π∗ orbital looses its oxygen radical

contribution. The RASPT2 results were also used as a benchmark for the description

of excited state energetics and Mn–O oxyl character with a wide range of pure and

hybrid density functionals. With the latter functionals both the MnV → MnIV pro-

motion energy and the diradical character of the π bond (with empty π∗) are found to

be extremely dependent on the contribution of exact exchange. For this reason, pure

functionals are to be preferred.
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Introduction

Both iron- and manganese-oxo species play an important catalytic role in biological pro-

cesses involving oxygen activation and transfer. The cytochrome P450s are a multifunctional

family of proteins that are highly specialized in effective oxygen transfer to organic sub-

strates.1–4 The oxygen atom transfer (OAT) reaction involves the so-called Compound I, a

high-valent iron-oxo porphyrin with a strong oxidant character. Manganese-oxo species have

a key role in oxygen transfer reactions in biological systems as well, e.g. in the oxidation of

water to molecular oxygen in photosystem II.5 Inspired by the successful catalytic role of

these bioinorganic species in living organisms, iron porphyrins and their manganese coun-

terparts have been extensively studied as suitable catalysts for in vitro oxidation reactions,

and synthetic analogues have been developed that are able to reproduce most OAT reactions

observed in natural enzymes.6–10

The high-valent Mn complex responsible for OAT has been characterized experimentally

as a diamagnetic manganese(V)-oxo porphyrin species (MnVOP).11–13 In alkaline conditions

this complex shows a remarkable stability, which was attributed to its low-spin (S=0) d2

ground state character.12,14–16 Such a ground state electronic structure was confirmed by

calculations based on Density Functional Theory (DFT) employing pure generalized gradi-

ent functionals (GGA).,17–19 from which it was also concluded that the reason behind the

inertness towards OAT of this singlet (MnVOP) species is the absence of significant oxyl

character in the Mn–O axial oxygen.17,18

A qualitative molecular orbital (MO) diagram of MnVOP is provided in Figure 1. In the

ground state the Mn(3d2) center has its two 3d electrons paired in one non-bonding 3d-like

MO (3dδ). The Mn–O σ bond is formed from bonding/antibonding combinations of Mn dz2

and O pz (σz, σ
∗

z ) whereas a double π bond is formed from bonding/antibonding MO pairs

between Mn (dxz, dyz) and O (px,py). Of these six MOs, the three bonding combinations

σz, (πxz, πyz) (not shown in Figure 1) are doubly occupied, whereas the corresponding anti-

bonding orbitals σ∗

z ,(π
∗

xz, π
∗

yz) remain empty. This gives rise to a very strong (triple) Mn–O
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bond, which is short and kinetically stable, and lacks oxygen radical character. As proposed

by Jin and Groves12 release of oxygen from MnVOP+ should therefore rather proceed via

thermally accessible reactive high-spin (HS, triplet or quintet) state(s), by transfer of one

or two electrons from either 3dδ or a porphyrin π orbital (or both, see Figure 1) into the

(π∗

xz, π
∗

yz) orbitals, thus weakening the Mn–O bond and enhancing its oxyl character. The

fact that multiple low-lying states may be involved in and affect the reactivity of OAT rac-

tions is of course not unprecedented, and has been extensively illustrated by Shaik et al. for

cytochrome P450 enzymes.2

Figure 1: Electronic structure of low-lying states of Mn-oxo porphyrins considered in this
work. MnV d2 states have both porphyrin π a2u and π a1u orbitals doubly occupied. One
set of three MnIV d3 states has π a2u singly occupied and the second set of MnIV states has
π a1u singly occupied, making a total of eight states.

If OAT by MnVOP is triggered by transition to low-lying HS states, then reactivity is

dependent on the relative energy of such states with respect to the singlet ground state. This

opens the way to control the oxygen transfer by external stimuli. The catalytic activity of

such complexes could be not only defined upon synthesis, by creating their molecular struc-

ture, but also fine tuned in the reacting environment. A nice illustration of this was provided

in a study of Eisenstein et al., based on DFT/BP86 calculations.17,18 Here, a rationalization

was provided for the role played by the environmental pH on the OAT reactivity of MnVOP,
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highlighting the effect of ligand coordination trans to the Mn-O bond on the energy gap

between the singlet and the lowest HS states. In alkaline conditions, the trans ligand is

OH−, whereas a decrease in pH will favour coordination of H2O instead. With DFT/BP86,

substitution of OH− by H2O gives rise to a stabilization of the lowest quintet state from 22.4

to 12.1 kcal mol−1 and of the triplet state from 9.2 to 4.7 kcal mol−1, thus making at least

the latter state thermally accessible. As such, lowering the pH should, by protonating the

OH− ligand, turn an inert singlet MnVOP into a catalytically active species, conform with

the experimentally observed increase of the OAT rate constant with increasing acidity.15,19

Although the above example clearly illustrates the power of DFT for the description and

rationalization of these important bio-inorganic catalytic processes, DFT failures associated

with the description of relative energies of different metal oxidation and spin states, and their

functional dependence in particular, have also been amply illustrated in the literature.20–23

In the specific case of manganese-oxo porphyrins, two previous DFT studies indicated that

the popular B3LYP functional fails to reproduce the diamagnetic ground state of e.g. the

MnO(P)+ complex with a H2O axial ligand, which is rather predicted to be a (strongly

spin contaminated) MnVOP+ triplet state24 or a MnIVOP•+ quintet state25 (see Figure 1)

The S=0 state, i.e. the experimentally observed and theoretically predicted ground state

with BP86, is found with B3LYP at 9.7–13.2 kcal mol−1 above the ground state. The

inferior behaviour of B3LYP for this particular case is striking in the sense that the same

functional has been extensively used with considerable success for the description of the

full catalytic cycle of cytochrome P450.2 In a previous benchmarking study on iron-oxo

porphyrins FeOP+ and FeOPCl we found that B3LYP can provide a reasonable description

of the relative spin state energetics of different low-lying FeIVOP•+ states, but is much less

accurate in describing electron transfer between the metal and the porphyrin.26 Another

painful area in the behavior of DFT for these high valent manganese-oxo systems concerns

the functional dependence in the prediction of oxyl radical character, which is a crucial factor

for oxidative activity. Hybrid and non-hybrid functionals were found to provide completely
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different descriptions of the spin density distribution in the manganese oxo bond, thus also

giving very different qualitative descriptions of the oxidation reactivity.24 On the whole, it is

clear that benchmarking of available DFT functionals against high-level correlated methods

is necessary to establish the optimal functional and estimate the error bars, before any

quantitative results may be obtained from DFT regarding the description of the actual

reactions with different substrates.

In the present study we aim to provide a quantitative description of the relative energies

of low-lying electromeric states in two model systems, Mn-oxo porphyrinato (MnO(P)+) and

meso-tetrafluoroporphyrinato (MnO(PF4)
+), by means of the multiconfigurational ab initio

methods CASPT2 (complete active space second-order perturbation theory)27 and its gen-

eralization to RASPT2 (restricted active space second-order perturbation theory),28 which

have already been extensively used on other heme and heme-related complexes.23,26,29–31 The

oxyl character of the Mn–O bond in each of the calculated states will be assessed by an anal-

ysis of the multiconfigurational wave function and the associated spin density distribution.

The results are used to benchmark the excited state energetics and spin density obtained

from an extensive series of available DFT functionals. This benchmark will be useful for

future investigations of the reactivity of larger systems based on Mn-oxo porphyrins, which

might be too demanding for the CASPT2/RASPT2 methods. Our study includes all possible

low-lying electromeric states in both molecules, that is the MnV d2 singlet and triplet states,

and the quintet, triplet, and singlet MnIV states with either one of the HOMO π orbitals of

the porphyrin, a1u or a2u (where we use the familiar D4h notation) singly occupied.

Computational Details

Structure optimizations

For each electronic state, a full structure optimization was performed in vacuum, making

use of DFT calculations with the PBE0 functional,32,33 and employing def2-TZVP basis
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sets.34 The choice of the PBE0 functional was based on our previous experience with similar

complexes (i.e. manganese-oxo corroles and corrolazines).31 The calculations were performed

making use of the unrestricted DFT approach. For the MnV singlet ground state this resulted

in a pure (S=0) restricted solution, whereas the MnV triplet state was found to be excessively

spin contaminated. The spin contamination is related to the strong diradical character of

the Mn–O bond in this triplet state (further discussed below) giving rise to an exceptionally

large Mn–O bond distance in the UPBE0 structure (see Table S1 and Figure S1a). In order

to circumvent this problem, the structure of the MnV (S=1) state was instead obtained with

ROPBE0. Geometry optimizations for the MnIV quintet and triplet states of MnO(P)+ were

also performed with ROPBE0. However, since the ROPBE0 and UPBE0 structures for these

states were found to be close, the UPBE0 structures were used in further calculations of the

spin state energetics, as described below. The UPBE0 calculations are performed with the

TURBOMOLE v6.4 package,35 whereas for the ROPBE0 structure calculations we used the

MOLPRO v2012 package.36

The geometry optimizations are performed under the C2v symmetry point group. The

character of the stationary points on the potential energy surface was verified by frequency

calculations. The maximum symmetry that could be displayed by both MnO(P)+ and

MnO(PF4)
+ is C4v. However, most of the calculated structures showed a distortion to

C2v, either with a ruffled (with the σv planes between the N–Mn–N bond) or saddled (with

the σv planes containing the Mn–N bonds) porphyrin core. Both ruffled and saddled C2v

structures were optimized for all states. The lowest energy structures are reported in the

Supplementary Information (Table S1). For the triplet and open-shell singlet states, con-

taining one electron in the Mn–O π∗ shell, the parent state in C4v symmetry is 3,1E, and the

distortion to C2v is (first-order) Jahn-Teller driven. Two equivalent distortions are possible,

giving rise to a 3B1 and 3B2 state in C2v. As both energy minima are equi-energetic, only

the 3B1 state is reported. The structures of the quintet states, 5A1(MnIVO(L•a1u)
+) and

5A2(MnIVO(L•a2u)
+) (with L = P or PF4) do reveal C4v symmetry. However, the closed-
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shell MnV 1A1 state is found to be quite strongly distorted. For the two MnV states, 1A1 and

3B1, we obtained ruffled structures, while the MnIV 3,1B1 structures are saddled. It should

be noted though that for MnO(P)+ the reported C2v structures of the MnIVO(P•a2u)
+ states

are not structural minima. They have one imaginary frequency that lowers their symme-

try to C2. Following the path connected to the imaginary frequency leads to the lower-lying

MnIVO(P•a1u)
+ states. As such, at the DFT level the MnIVO(P•a2u)

+ states are in fact tran-

sition states connecting two MnIVO(P•a1u)
+ minima. An overview of the different states and

their (dominant) configuration is provided in Table 1.

Table 1: Dominant electronic configuration of relevant states investigated for MnO(L)+, with
L=P,PF4.

Mn(3dδ)
a P(πa1u) P(πa2u) π∗

xz π∗

yz

1MnVO(L) 1A1 ↑↓ ↑↓ ↑↓
3MnVO(L) 3B1 ↑ ↑↓ ↑↓ ↑

5MnIVO(L•a2u)
5A2 ↑ ↑↓ ↑ ↑ ↑

3MnIVO(L•a2u)
3B1 ↑↓ ↑↓ ↑ ↑

1MnIVO(L•a2u)
1B1

b ↑↓ ↑↓ ↓ ↑

5MnIVO(L•a1u)
5A2 ↑ ↑ ↑↓ ↑ ↑

3MnIVO(L•a1u)
3B1 ↑↓ ↑ ↑↓ ↑

1MnIVO(L•a1u)
1B1

b ↑↓ ↓ ↑↓ ↑
a 3dδ denotes the non-bonding MO localized on Mn, whose main character
is Mn(3dx2-y2) or Mn(3dxy) depending on the molecular symmetry.
b This is the single determinant calculated by UDFT, which is in fact an
equal mixture of 1B1 and 3B1. In the CASSCF and RASSCF calculations
the pure 1B1 wave function is calculated instead.

For the lowest lying states, i.e. the MnV 1A1 and MnV 3B1 states of both complexes, as

well as the MnIV 5A2(a2u) state of MnO(PF4)
+, the Mn–O distance was also optimized at the

CASPT2 level. To this end, partially constrained structure optimizations were performed

with PBE0 (UDFT for 1A1 and
5A2, RODFT for 3B1), for Mn–O distances ranging between

1.4 and 2.0 Å. For each of the structures, single-point CASPT2 calculations were performed

to obtain the CASPT2 Mn–O dissociation curves. The CASPT2 calculations were carried

out according to the description given below, and including solvent effects.
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Calculations of spin state energetics

The resulting DFT/PBE0 structures are used in two subsequent stages of this study

(i) estimation of the spin state energetics of the complexes through CASPT2 and RASPT2

electronic structure calculations and (ii) benchmarking a set of DFT functionals against the

spin state energetics obtained at the RASPT2 level.

CASPT2 and RASPT2 calculations

Single point CASSCF/CASPT227 and RASSCF/RASPT228 calculations using the DFT/

PBE0 molecular structures were performed with the MOLCAS 7.9 package.37 We use a basis

set of the ANO-RCC38 type contracted to [7s6p5d2f2g1h] for Mn; [4s3p2d1f] for C, N, O

and F; and [3s1p] for H.39 Scalar-relativistic effects are treated by means of the second-order

Douglas-Kroll-Hess Hamiltonian.40 The two-electron integrals are decomposed by means of

the Cholesky technique with a threshold of 10−6 hartree.41 Solvation effects are introduced

in the model through a polarizable continuum model (PCM)42 with a dielectric constant of

53.54 that corresponds to a mixture of water and acetonitrile.43 All CASPT2 and RASPT2

calculations use the standard IPEA shift value of 0.25 hartree for the zero-order second-order

Hamiltonian44 and an imaginary level shift45 of 0.1 hartree to prevent weak intruder states.

All valence electrons as well as the metal (3s,3p) semi-core electrons are correlated at the

CASPT2 and RASPT2 levels.

The active space is chosen based on established procedures for transition metal com-

pounds.46–48 We define a complete active space of 14 electrons in 16 to 18 orbitals, de-

noted as CAS(14,N) with N = 16, 17 or 18. In all cases, the CAS takes into account

the static correlation of the Mn 3d shell, the covalency of the Mn–O bond and the σ-

donation from the porphyrin by including the following four pairs of bonding/antibonding

MOs, Mn(3dz2)–O(2pz) (σz,σ
∗

z), Mn(3dxz)–O(2px) (πxz,π
∗

xz), Mn(3dyz)–O(2py) (πyz,π
∗

yz) and

Mn(3dxy)–P(σxy) (σxy,σ
∗

xy); as well as the remaining non-bonding Mn(3dδ) orbital. Addi-

tionally, the active space also includes a set of four π MOs localized on the porphyrin to
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allow the electron transition between Mn and the porphyrinato ligand. This is the so-called

Gouterman set and comprises the two high-lying occupied π orbitals P(π a1u) and P(π a2u),

and the correlating P(π∗ eg) orbitals. Finally, we incorporate the double-shell effect of both

Mn and O by adding the O(3px) and O(3py) orbitals plus a maximum of three Mn(4d)

MOs, namely 4dδ, 4dxz and 4dyz. The variable size of the CAS depends on the magnitude

of the double shell effect on the metal centre, which is proportional to the occupation of

the Mn(3d)-like MOs and hence, is affected by the spin and oxidation state of Mn. The

1MnVO(L) singlet state is described with the smaller CAS(14,16) and has virtual 4dxz and

4dyz MOs as both π∗

xz and π∗

yz are unoccupied. The states
3MnVO(L) and 1,3MnIVO(L•) that

have a larger number of open shells require a larger CAS(14,17) and the quintets 5MnIVO(L•)

use the largest CAS(14,18) with both 4dxz and 4dyz MOs active. The active orbitals are

displayed in Figure 2.

Previous studies on the low-lying states of iron-oxo porphyrins26 and manganese-oxo cor-

roles and corrolazines31 show that more porphyrin π/π∗ active orbitals are needed to obtain

an accurate description of the spin-states with a radical porphyrin. Thus, we built a re-

stricted active space (RAS) with 28 electrons in 28 to 30 orbitals (Figure 2) that expands

the CAS(14,N) with a selection of additional P(π) and P(π∗) orbitals. The resulting RAS

contains all P(π)/P(π∗) orbitals except four pairs localized on the eight pyrrole β carbons.

The RAS is divided in three sub-spaces (RAS1, RAS2 and RAS3) and capacitates us to

work with such large amount of active orbitals by limiting the number of excitations allowed

between the sub-spaces. The molecular orbitals are optimized with a RAS2 sub-space in-

cluding three pairs of bonding/antibonding Mn(3d)–O(2p) orbitals (i.e. σz, σ
∗

z , πxz, π
∗

xz, πyz

and π∗

yz) and all remaining singly occupied orbitals. As we discussed in a previous study,49

the accuracy of RASPT2 on transition metal complexes is increased by including the bond-

ing/antibonding metal–ligand combinations in the same RAS sub-space, as otherwise the

coupling element between these two orbitals in the Fock matrix would be neglected in the

RASPT2 treatment. The active orbitals nearly doubly occupied are kept in RAS1 and the
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nearly unoccupied are in RAS3, allowing up to double excitations out of RAS1 and into

RAS3 sub-spaces. In a second calculation, the RAS2 sub-space was further extended with

the bonding/antibonding σxy and σ∗

xy orbitals. However, this gives rise to a very large number

of configurations, rendering any further optimization of the orbitals prohibitive. Therefore,

only the optimization of the CI coefficients was done in this second step, again allowing up

to double excitations out of RAS1 and into RAS3.

DFT calculations

For MnO(P)+ a benchmark study was performed of the relative energies of the differ-

ent electromeric states obtained from different DFT functionals. To this end, single point

calculations were performed making use of the structures obtained from PBE0 (see above).

We tested a broad range of functionals covering members of the hybrid and non-hybrid fam-

ilies. Those include pure GGAs (PBE,32,50 BLYP,50,51 BP86,50,52–54 B97-D,55 OLYP,51,56

M06-L57), hybrid GGAs (PBE0,32,33 B3LYP,50,52,53,58 B3LYP*,59 M0660 and M06-2X60), a

meta-GGA (TPSS32,50,61), a hybrid meta-GGA (TPSSh32,50,61,62) and a double-hybrid (B2-

PLYP63). We employed the def2-QZVPP basis set for Mn and def2-TZVPP for all other

atoms, as well as dispersion corrections according to the DFT-D3 approach.64 These calcu-

lations were performed using TURBOMOLE v6.435 and GAUSSIAN 09,65 depending on the

availability of functionals.

Results and Discussion

Spin State Energetics

Results from multiconfigurational perturbation theory

The relative (adiabatic) energies obtained from CASPT2 and RASPT2 for the differ-

ent electromeric states of MnO(P)+ and MnO(PF4)
+ are shown in Table 2. Both methods

predict a closed-shell MnV 1A1 ground state for both compounds, in accordance with the
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P(πa2u) P(πa1u) σxy σ∗
xy 3dδ 4dδ

σz σ∗
z πxz πyz π∗

xz π∗
yz

P(π∗eg) O(3px) O(3py) 4dxz 4dyz

P(πeg) P(π∗eg) P(πeg)

P(πa2u) P(π∗a2u) P(πb2u) P(π∗b2u) P(πb1u) P(π∗b1u)

Figure 2: Plot of active orbitals at ±0.04 e a.u.−3 contour values.

experimentally observed diamagnetic character of manganese oxo porphyrins with different

substituents.11–13 The short Mn–O bond of this state, lacking oxyl character, prevents cat-

alytic activity in OAT reactions. Therefore, reactivity has to rely instead on the presence
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of low-lying states with higher spin multiplicity, containing one or more electrons in the

antibonding Mn–O π∗

xz,π
∗

yz orbitals.
12,17 One possibility is the MnV 3B1 state, which is calcu-

lated at 3.9–5.6 kcal mol−1 above the ground state. Another possibility might be a low-lying

MnIV state containing a hole in one of the HOMO, porphyrin π orbitals of either a1u or a2u

type. As Table 2 shows, the lowest MnIV state is always a quintet state, 5A1 or
5A2, contain-

ing two single Mn–O π∗ electrons, originating from a porphyrin π and the Mn 3dδ orbital.

These observations are in accordance with the results from previous DFT studies,17–19,24,25

although the relative energies of the different electromeric states reported from these studies

are strongly dependent on the applied functional (see also the next section).

Table 2: Relative energies in kcal mol−1 of the electronic states of MnO(L)+ with L = P and
PF4, with respect to the MnV 1A1 state.

MnVO(L)+ MnIVO(L• a2u)
+ MnIVO(L• a1u)

+

L medium 3B1
5A2

3B1
1B1

5A1
3B1

1B1

P

CASPT2
vacuum 3.9 13.0 15.8 14.0 20.8 22.8 21.3

solvent 3.0 6.7 13.1 11.3 14.8 20.4 19.0

RASPT2
vacuum 5.6 18.3 21.9 21.9 19.5 22.0 22.1

solvent 4.5 11.7 18.9 18.9 13.3 19.5 19.6

PF4
CASPT2 solvent 4.0 −0.9 3.8 2.1 21.1 24.9 23.4

RASPT2 solvent 5.4 3.7 9.4 9.5 19.9 25.1 25.3

Let us then compare the results obtained from CASPT2 and RASPT2. An essential

difference between both methods is that in CASPT2 only the four frontier P(π) orbitals on

the porphyrin (the Gouterman set) are included in the active space, while in RASPT2 the

active space is further extended to 16 porphyrin π orbitals. The relative energies of states

belonging to the same group in Table 2 such as MnV 3B1–
1A1, MnIVO(L•a1u)

3B1–
5A1 or

MnIVO(L•a2u)
3B1–

5A2, differ by 2 kcal mol−1 or less between both methods. The reason is

that these states only differ in the electronic distribution in the metal 3d shell. Conversely,

comparing states belonging to different groups reveals much more pronounced differences.
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In particular, we find that the relative energies obtained from RASPT2 for MnIV states

containing an a2u hole are considerably higher than the corresponding CASPT2 energies,

while on the other hand the energies of the a1u type radical states are quite similar. For

MnO(P)+, RASPT2 predicts both types of porphyrin radical states to be nearly degenerate,

which is to be expected, as they involve an excitation out of the two HOMOs a1u or a2u that

are very close-lying in the metal-free porphyrin ligand. As we will see in the next section

(Table 3), the near-degeneracy is also corroborated by DFT (with different functionals).

Previous DFT studies on substituted metalloporphyrins have also indicated that a1u or a2u

porphyrin radical states should remain very close in energy as long as they bear similar

meso and beta substituents.66–68 With CASPT2 the description of the relative energy of

electromeric states with a different distribution of electrons in the porphyrin P(π) shells is

unbalanced, because the number of P(π) orbitals in the active space (only four) is too limited

to fully capture the relaxation effects in the porphyrin π system. This was already shown

previously in CASPT2/RASPT2 studies of the spin state energetics in other metal heme

systems,26,31,49 and is discussed in detail in ref. 49 (see Fig. 3 of that paper). With 16 P(π)

orbitals, RASPT2 gives a more balanced treatment, and it was also shown previously that

further extending the active space to the full set of 24 P(π) orbitals does not significantly

alter the results with respect to the 16 P(π) orbitals used in this work.26,31,49

Another observation in the comparison between CASPT2 and RASPT2 concerns the

relative energy between the MnIV 3B1 and 1B1 states, describing either ferro- or antifer-

romagnetic interaction between the two unpaired electrons on the MnO group and on the

porphyrin. Spin coupling occurs between two electrons residing in spatially separated and

orthogonal orbitals (in C2v, the MnO π∗ orbitals transform as b1, b2, whereas the porphyrin

π orbitals are in a1, a2) and is therefore expected to be weakly ferromagnetic. Ferromagnetic

coupling is indeed found in the RASPT2 results, and also in the DFT results which will

be presented in the next section (Table 3). However, the CASPT2 calculations erroneously

predict antiferromagnetic coupling.
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In summary, the observed differences between the CASPT2 and RASPT2 results show

that it is important to include more than only the four Gouterman π orbitals in the CAS

reference to obtain accurate PT2 results for the relative energies of electromeric states with

a different porphyrin π electron distribution.

Solvent effects (water/acetonitrile mixture) were studied for MnO(P)+. The inclusion of

the solvent does not alter the ordering of the spin states, either for CASPT2 or RASPT2.

The main effect of the solvent is a general stabilization all excited states, reducing the energy

range spanned by the different states in Table 2. The effect is small, 1 kcal mol−1, for the

MnV 3B1 state, and larger but still limited to 2–3 kcal mol−1 for the MnIV 3,1B1 states.

However, the quintet states show a prominent stabilization by the solvent environment, of

6–7 kcal mol−1 by the solvent environment.

Comparing the results for MnO(P)+ and MnO(PF4)
+ one can see that both CASPT2

and RASPT2 predict a strong stabilization of the MnIVO(L•a2u) states by substitution of the

meso hydrogens by fluorines, whereas the MnIVO(L•a1u) states are destabilized. This may be

rationalized by a mesomeric effect, i.e. delocalization of electrons in the P(π a2u) orbital over

F(2pz) leading to the stabilization of a2u based radical states. Such delocalization is possible

for the a2u orbital, as it has a significant amplitude at the meso carbons, while the a1u orbital

is nodal at these C (see Figure 2). Importantly, the stabilization of the MnIVO(L•a2u) states

is so strong that it brings the MnIV 5A2 state within thermal reach of the of the MnV 1A1

ground state.

Importance of low-lying high-spin states for catalytic activity

In order to refine the results for those states that might be important for multistate

reactivity, we decided to perform a CASPT2 scan of the potential energy surface with re-

spect to the stretching of the Mn–O bond for the MnV 1A1 ground state and the thermally

accessible excited states, i.e. the MnV 3B1 state in both compounds and the MnIV(P•a2u)

5A2 for MnO(PF4)
+. Figure 3 shows the potential energy curves for both molecules. All
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Figure 3: Mn–O potential curves for MnO(P)+ (a) and MnO(PF4)
+ (b) obtained from

CASPT2.

curves were obtained with CASPT2, including solvent effects. However, since the 1A1–
5A2

relative energy is not correctly described at this level, the CASPT2 curve of the 5A2 state

was shifted upwards by 4.6 kcal mol−1 (the difference between the RASPT2 and CASPT2

energies in Table 2). We believe that the shape of the 5A2 curve should not be significantly

different between CASPT2 and RASPT2, and the RASPT2 computations are considerably

more time consuming. The CASPT2 energies were obtained using DFT structures optimized

with constrained Mn–O distances. The corresponding DFT curves are presented in Figure

S1. For the 1A1 and 3B1 state R(O)PBE0 structures were used, because the structures ob-

tained from UPBE0 suffer from spin contamination. As can be seen from Figure S1a, the

UPBE0 curve of the 3B1 state is strongly different from the ROPBE0 curve, with an optimal

Mn–O distance that is unrealistically long (1.68 Å) and a minimum energy which is lower

than the ground state energy by 1.7 kcal mol−1. For the 1A1 state, both curves are the same

around the Mn–O equilibrium distance, but at larger Mn–O distances (as of 1.65 Å) the

UPBE0 curve deviates from RPBE0.

It should be noted that the DFT geometry optimizations were performed in vacuum,

whereas the CASPT2 results in Figure 3 include solvent effects. Therefore, both sets of
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potential energy curves are not strictly comparable, although according to our experience

the inclusion of solvent usually has a minimal impact on molecular geometries.69 Both with

PBE0 and CASPT2, the Mn–O optimal distances in MnO(P)+ and MnO(PF4)
+ are close,

probing a weak effect of the fluorine meso substituents on the bonding between the metal

and the oxo ligand. The distances obtained from CASPT2 are: 1.54 Å for 1A1 and 1.62 Å

for the 3B1 state in MnO(P)+, 1.55 Å for 1A1, 1.63 Å for 3B1, and 1.66 Å for the 5A2 state

in MnO(PF4)
+, reflecting progressive metal-oxo bond weakening by the presence of either

zero, one, or two electrons in the Mn–O π∗ MOs. The CASPT2 distances are systematically

longer by 0.05–0.07 Å than the corresponding PBE0 distances (1.50 Å for 1A1, 1.55 Å for

3B1 (ROPBE0), 1.61 Å for 5A2). However, note that the CASPT2 distance for the 3B1 state

remains well below the UPBE0 value (1.68 Å). The CASPT2 distance of the 1A1 ground

state is in close agreement with the recently reported experimental Mn–O distance of 1.546

Å in monocrystals of Mn-oxo corrolazine, showing a similar electronic structure with a MnV

1A1 ground state.31,70

In energetic terms, the re-optimization of the Mn–O bond distance at the CASPT2 level

does not significantly affect the adiabatic relative energies between the 1A1 ground state and

the triplet and quintet states: the energy differences between the minima in Figure 3 differ

by less than 1 kcal mol−1 with the data in Table 2. Importantly, the curves in Figure 3

confirm that the reactive 3B1 state is thermally accessible in both molecules, and that in

MnO(PF4)
+ the MnIV 5A2 state is more easily reached than the 3B1 state. The extent of

Mn–O bond stretching needed to reach these high-spin states is limited: <0.1 Å, and the

energy barriers to cross from one curve to the next are also low: < 4 kcal mol−1. These data

confirm the possibility of multi-state reactivity involving low-lying triplet and quintet states

for OAT reactions with high-valent Mn-oxo complexes, as already suggested in previous

DFT studies.17–19,24 Nonetheless, a second requirement to achieve reactivity through high-

spin states is that the oxyl character of the Mn–O bond should be significantly enhanced

in these states as compared to the kinetically stable MnV 1A1 ground state. This will be
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further discussed below.

In the introduction we already mentioned a comparative study of the reactivity of MnOP(H2O)+

and MnOP(OH) for C–H bond activation, where the higher reactivity of the former complex

was rationalized by a reduced energy gap between the MnV ground state and low-lying triplet

and quintet states. Here, we find that introducing conjugated substituents at the porphyrin

meso positions may create a similar effect. Indeed, the RASPT2 results indicate that, while

the MnV 3B1 state has a low enough energy to play a possible role in multi-state reactivity

for both compounds, conjugated substituents at the meso-carbons can stabilize the MnIV

5A2 state to such an extent that it becomes thermally accessible as well. A similar effect

was also observed in a study on manganese porphyrins MnIIIP+, where it was found that

substituting meso-H by alkyne groups considerably lowers the energy of Pπ →Mn electron

transfer.71 While this might suggest to apply conjugated substituents to improve the perfor-

mance of manganese oxo-porphyrins in OAT reactions, it should be mentioned that this is

not a straightforward procedure as some conjugated substituents, such as alkynes, might not

be compatible with the oxidizing conditions of the reactive medium. They can be subject to

an electrophilic attack by the oxo group of another catalyst, leading to their destruction.

As another example of how the equatorial ligand environment may affect multi-state reac-

tivity of high-valent manganese oxo complexes through variation of the spin state energetics,

we also want to mention here Mn-oxo corroles, i.e. similar complexes but with a different

tetrapyrrolic macrocycle ligand. MnV-oxo corroles are in general stable in ambient condi-

tions allowing easy characterization of the d2 singlet ground state,72,73 whereas MnV-oxo

porphyrins are very reactive11,74 and only stable with specific substituents12 or in alkaline

medium.15,19 Thus, for example, the rate constant of cis-stilbene and cis-cyclooctene epoxi-

dation by high valent manganese oxo systems is five orders of magnitude higher with meso-

tetrakis(pentafluorophenyl)porphyrin than with meso-tris(pentafluorophenyl)corrole.74 In a

previous DFT study on the reactivity of Mn-oxo corroles it was concluded that a spin-

transition from an kinetically stable ground state is needed to activate the OAT reaction,
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Table 3: Energies in kcal mol−1 of MnO(P)+ relative to MnV 1A1 state calculated on top of
structures optimized by PBE0/def2-TZVP.

MnVO(P)+ MnIVO(P• a2u)
+ MnIVO(P• a1u)

+

3B1
5A2

3B1
1B1

5A1
3B1

1B1 Typea

RASPT2 5.6 18.3 21.9 21.9 19.5 22.0 22.1

PBE 11.1 22.7 20.7 21.1 22.0 b 18.1 GGA

TPSS 10.6 19.9 17.8 18.0 19.0 b 16.4 Meta GGA

BP86 11.2 22.3 20.3 20.6 21.4 b 17.9 GGA

OLYP 8.9 17.8 19.9 20.2 16.8 b 17.0 GGA

BLYP 10.8 20.3 17.7 18.0 19.1 b 15.9 GGA

M06-L 2.3 6.3 14.5 14.6 4.8 b 12.7 GGA

B97-D 8.0 14.2 17.4 17.6 12.9 b 15.6 GGA

TPSSh 7.6 12.0 12.8 12.9 10.1 10.2 10.5 Meta Hyb. 10%

B3LYP* 8.3 10.5 10.5 10.6 8.1 7.5 7.8 Hyb. 15%

B3LYP 5.6 3.5 6.4 6.5 0.8 3.0 3.2 Hyb. 20%

PBE0 1.8 0.2 5.6 5.7 −2.6 2.2 2.4 Hyb. 25%

RO-PBE0 8.6 7.6 9.5 4.6 5.8 Hyb. 25%

M06 1.3 −0.1 9.7 9.8 −4.2 5.0 5.3 Hyb. 27%

M06-2X −10.1 −21.9 −10.5 −10.6 −26.6 −15.9 −15.6 Hyb. 54%

B2-PLYPd −25.8 −39.8 −27.4 −27.8 −46.8 −35.5 c Hyb. 53%

B2-PLYPe 50.6 55.2 60.0 60.3 53.4 57.6 c Hyb. 53%

a Percentage indicate amount of Hartree-Fock exchange energy admixed. b Calculation converged
to MnV 3B1.

c Calculation converged to [MnIVO•(P)]+ instead of [MnIVO(P•)]+. d SCF energy
only. e SCF energy plus 27% of correlation energy calculated by MP2.

similar to Mn-oxo porphyrins.75 From a comparison of the results obtained here for MnO(P)+

with a previous C(R)ASPT2 study on the excited state energetics of Mn oxo corrole31 we find

that both the lowest excited triplet and quintet state are lower in energy, by 3–5 kcal mol−1,

in the case of porphyrin than for the corrole system. This strongly suggest that reactiv-

ity differences between these two systems with a very similar electronic structure may be

explained by differences in their spin state energetics.
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Performance of DFT functionals for excited state energetics

RASPT2 calculations of the size presented in this work are only feasible for small symmet-

ric models, and the results may not directly be comparable to the larger metalloporphyrins

investigated experimentally. For this reason, it is useful to use these RASPT2 results for

benchmarking DFT functionals in order to find the optimal functional to be used in reac-

tivity studies on more realistic systems. Energies relative to the MnV 1A1 ground state of

MnO(P)+ in vacuum calculated by a series of DFT functionals are shown in Table 3. The

DFT results were obtained from single-point calculations on PBE0 structures, i.e. the same

structures as used for the C(R)ASPT2 calculations presented in Table 2. The RASPT2

results of MnO(P)+ are presented again in Table 3 as a reference.

We first consider the relative spin state energetics for states belonging to the same metal

oxidation state and with the same porphyrin P(π) occupation, that is MnV 3B1 versus 1A1,

MnIV(P•a2u)
3B1 versus

5A2, and MnIV(P•a1u)
3B1 versus

5A1. As can be seen from Figure 1

all three relative energies in fact correspond to the same 3dδ→π∗ transition. The transition

energies obtained from RASPT2 are 5.6 kcal mol−1 for MnV (3B1–
1A1), 3.6 kcal mol−1 for

MnIV(P•a2u) (3B1–
5A2), and 2.5 kcal mol−1 for MnIV(P•a1u) (3B1–

5A1). The DFT results

show the expected functional dependence, observed in many previous studies on the spin

state energetics in transition metal complexes:23,76–80 GGAs almost invariably overstabilize

low-spin with respect to high-spin states. This is remedied in the hybrid functionals by

introducing Hartree-Fock (HF) exact exchange, but the amount of HF exchange then be-

comes a determinant factor for the spin state energetics: the higher the contribution of

HF exchange, the more the high spin states become stabilized with respect to states with

a lower spin. The result obtained from the double hybrid functional B2-PLYP needs spe-

cial attention. Without MP2 correction, the results with this functional follow the trend

in the hybrid functionals: with 53% HF exchange, high-spin states are strongly overstabi-

lized. This is reversed after including 27% MP2 correlation energy, but not with complete

success. The resulting MnIV(P•a2u) (
3B1–

5A2) and MnIV(P•a1u) (
3B1–

5A1) splittings are 4.8
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and 4.2 kcal/mol respectively, close to the corresponding RASPT2 values. However, the final

MnV (3B1–
1A1) energy difference obtained from B2-PLYP, 50.6 kcal/mol, differs by as much

as 44 kcal/mol from RASPT2, and is also considerably higher than the result obtained with

any other functional.

Out of all functionals studied, the RASPT2 relative energies between thoses states with

a common charge distribution over the metal and the porphyrin are most closely reproduced

by B3LYP, with transition energies deviating by less than 1 kcal mol−1 between both meth-

ods for all three transitions. Among the GGAs, the best results are obtained with B97-D,

closely reproducing RASPT2 for the two MnIV relative energies, while deviating by only

2.4 kcal mol−1 for the MnV (3B1–
1A1) relative energy. OLYP and TPSSh also behave sig-

nificantly better than the other GGAs. Also noteworthy is M06-L, which overstabilizes the

high-spin states, as opposed to all other GGAs.

Second, we focus on the relative energies of MnIV and MnV states, by considering the

data in Table 3 for the MnIV 1B1 – MnV 1A1 relative energies. With exception of (MP2

corrected) B2-PLYP, all functionals place the 1B1 states at lower energy than RASPT2.

Here, the GGA functionals obviously perform better than the hybrid functionals. The latter

functionals show huge discrepancies with RASPT2, between 9 kcal mol−1 (TPSSh) and up

to 50 kcal mol−1 (B2-PLYP, SCF result). The latter functional completely fails in describing

the P→Mn charge-transfer energy, also with MP2 correction, which hugely overshoots and

moves the MnIV states to unrealistically high energies. The fluctuations between the energies

obtained with different GGAs are quite limited, 3.5 kcal mol−1 at most, with exception of

M06-L predicting significantly lower energies than all other GGAs. As a note we mention that

a similar behavior of different functionals was already observed previously when comparing

the relative energies of FeIV and FeV states in FeOPCl, a model for Compound I.26

Two additional important points should be noted with respect to the DFT data in Table 3,

(i) all DFT calculations were performed with UDFT, but in all cases the 1A1 ground state was

found to be pure (S=0) closed shell. For all open-shell states, the respective RODFT solutions
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would be higher in energy than the UDFT values presented herein. This is illustrated by

the ROPBE0 results included in Table 3, which are higher by 3.6–7.4 kcal mol−1 than the

corresponding UPBE0 results. The difference between UDFT and RODFT is expected to be

more important for the hybrid functional than for the GGAs, because spin contamination is

more severe for the hybrid functionals (Table S2). (ii) With respect to the results obtained

for the MnV (3B1–
1A1) relative energy, it is important to note that the 3B1 energy was

obtained in all cases using the ROPBE0 structure. Using instead the optimized UPBE0

structure would have given a negative value of –1.7 kcal mol−1 for PBE0 (Figure S1a).

Similar effects may be expected for the other hybrid functionals, showing strong diradical

character and corresponding spin contamination in the UDFT solution of the 3B1 state,

leading to a weakening of the Mn-O bond. Again, these effects are much smaller for the

GGA functionals.

Oxyl radical character in the ground state and low-lying excited

states

The oxidative power of high-valent manganese oxo systems (both synthetic and biological,

e.g. photosystem II) has been extensively investigated already in previous DFT studies.

From all these investigations (involving water oxidation, C-H hydroxylation, etc) a crucial

factor for oxidative power is the oxygen radical character in the Mn-O bond.17,18,24,81–83

The same is true for synthetic RuV-oxo complexes, which are capable of oxidizing water.

Experiments with electron paramagnetic resonance (EPR) on an 17O-labeled form of a highly

oxidized, short-lived RuVO intermediate have indicated a high unpaired electron density on

oxygen, held responsible for its high reactivity.84 However, it has also been shown that the

strongly varying picture of the spin density distribution in the Mn-O bond given by different

DFT functionals, either hybrid or GGA, is responsible for a completely different qualitative

mechanistic picture of the oxidation reaction.24

In this section we will present an analysis of our CASSCF results with respect to oxyl
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character for the low-lying states of MnO(P)+ and MnO(PF4)
+ that might play an important

role in oxidation processes, and compare the results to the analysis of the spin density

obtained from the different DFT functionals included in the benchmarking of relative spin

state energetics. Oxygen radical (or oxyl) character is associated with unpaired electron(s)

on the Mn-O oxygen atom. As can be seen from Figure 2 all six σ, π bonding and antibonding

orbitals constituting the Mn-O bond are to some extent delocalized over the metal and oxide.

Given that the bonding orbitals are fully occupied in all states, unpaired electrons on the

oxide may arise from two distinctly different electronic structure features:

(a) If one (or both) of the Mn-O π∗ orbitals carries an unpaired electron, this may give rise

to a certain amount of oxyl character, depending on the composition of this π∗ orbital.

In an ionic ligand field scheme the bonding π orbital would be entirely oxygen and the

antibonding π∗ orbital entirely metal based, giving one unpaired electron in the metal

3d shell. In reality, however, covalent 3d–2p mixing delocalizes the unpaired electron

density over the Mn-O bond, giving rise to a positive oxygen spin density between zero

and one units.

(b) In case of an empty Mn-O π∗ (or σ∗) orbital, the π2π∗0 configuration may at first

glance be expected to give zero spin density. However, when using a variational method

allowing for spin polarization, such as UDFT or C(R)ASSCF (but not RDFT), the two

electrons in this π bond can be redistributed by accumulating α spin density on the

metal and β spin density on the oxygen. Note that in UDFT such spin redistribution is

only possible at the expense of spin contamination, whereas in CASSCF the total spin

is (correctly) conserved. Spin polarization introduces (partial) diradical character in

the Mn-O bond, and gives a negative oxygen spin density between zero and one units.

Of the three states that might possibly be involved in (multi-state) reactivity in oxidative

processes, the 1A1 ground state does not contain any electrons in the antibonding Mn–O

orbitals. UDFT calculations on this state invariably converged to a pure (S=0) state (at
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the equilibrium geometry; diradical character does appear at longer Mn–O distances, see

Figure S1a), as, of course, does the CASSCF wave function. With zero spin density at all

points in space, oxyl character is absent in the ground state, explaining its high inertness for

OAT and the need of transition to low-lying states with higher spin multiplicity, in order to

explain the catalytic reactivity of the species under study. Figure 4 shows a plot of the spin

density obtained from CASSCF for the MnV 3B1 and MnIV 5A2 states of MnO(PF4)
+. With

two α electrons in the π∗ shell, the 5A2 state shows a positive spin density in the Mn-O π

region, while the σ bond shows a small negative region around O, indicating some diradical

character in the σ bond. The (Mulliken) spin populations on oxygen are 0.30 for both the

O px and O py orbitals, whereas O pz has a small negative spin population: −0.10. On

the other hand, in the 3B1 state the π∗

yz is singly occupied, while π∗

xz and σ∗

z remain empty.

Consequently, the spin density plot shows a positive π lobe along the Mn–O bond with a

perpendicular negative lobe on O. The corresponding oxygen spin populations are −0.16 for

O px, 0.26 for O py and −0.08 for O pz. These numbers indicate that the oxygen gets a

small but distinct oxyl character in both states. With two unpaired electrons, the 5A2 state

might be expected to be more reactive. However, the occurrence of radical character with

opposite signs in O px, py in the 3B1 state is intriguing, because it might lead to (possibly

competing) reactivity along two different reaction channels.

In Figure 5 we show a comparative overview of the spin populations obtained for MnO(P)+

with different functionals, making use of an (x,y)-plot where the x-axis gives the spin pop-

(a) (b)

Figure 4: Spin density distributions in the MnV 3B1 state (a) and the MnIV 5A2 state (b) of
MnO(PF4)

+, obtained from CASSCF.
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Figure 5: Mulliken spin populations of MnV 3B1 (a) and MnIV 5A2 (b) divided in cartesian
atomic orbitals of MnO(P)+. The bonding directions X, Y and Z are identified by colors,
functionals by the shape of symbols with hybrid GGA filled and pure GGA open symbols.

ulations on O px, py, and pz and the y-axis gives the spin populations in the Mn dxz, dyz

and dz2 orbitals. The numbers obtained from CASSCF are also included and will serve as

a reference. The numbers obtained from CASSCF for MnO(P)+ (O px: −0.16, O py: 0.25,

O pz: −0.08 for 3B1, O px,y:0.29, O pz: −0.10 for 5A2) are not distinctly different from the

corresponding values for MnO(PF4)
+, given above. This indicates that substitution effects

on the reactivity of the Mn-oxo are of purely energetic nature: they affect the energy needed

to reach the lowest MnIV states, but do not significantly influence the electronic distribution

in the Mn–O bond. The O and Mn spin populations should add up to (approximately) one

for the πxz and πyz bonds in the 5A2 state, as well as for the πyz bond in the 3B1 state.

The other bonds should give numbers that add up to (approximately) zero. Dashed lines

corresponding to x+ y = 1 and x+ y = 0 are shown in the plots as a guide to the eyes.

For π bonds carrying an unpaired electron the spin populations in Figure 5 reflect the

composition of the π∗ orbital. As is the case with CASSCF and conform with the ligand

field picture, all DFT functionals predict the π∗ orbitals to be predominantly metal based:

the maximum spin population on O remains < 0.3, and > 0.7 for Mn. A larger O spin

population reflects a more covalent Mn–O π bond. As one can see, all GGAs predict a higher
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covalency than CASSCF, and the results with different GGAs are very close. Amongst the

hybrid functionals, the covalency of the bond decreases as the contribution of HF exchange

increases. In fact, very limited oxyl radical character in these π bonds is predicted by

functionals containing more than 50% exact exchange: B2-PLYP and M06-2X. These results

are consistent with the fact that the Hartree-Fock method gives too ionic metal-ligand bonds,

while pure DFT functionals predict more covalent metal-ligand bonds.

Looking next at the σ bond, small negative O spin populations point to a small contribu-

tion of diradical character. This is what would be expected for a (strong) σ bond, and what

is found with CASSCF and with most functionals. All GGAs predict less than 10% diradical

character for the σ bond, (slightly) less than with CASSCF. Hybrid functionals are known

to give a higher diradical character (and corresponding spin contamination) than pure func-

tionals, and the more so as the HF contribution increases.85 This behaviour is corroborated

by the spin populations in Figure 5. With ‘traditional’ functionals B3LYP, PBE0, TPSSh

the diradical character of the σ bond still remains below 20%. However, excessively high

oxygen spin populations are predicted by M06-2X and B2-PLYP. With the latter functional,

the Mn–O σ bond in the MnIV 5A2 state is predicted to contain a higher than 50% diradical

contribution!

A similar, but more pronounced effect is found for the πxz bond in the MnV 3B1 state, with

π∗

xz empty. Here we find oxygen spin populations ranging between −0.07 and −0.78 over the

range of considered DFT functionals, which therefore predict a diradical contribution to this

π bond ranging between only 7% and as much as 78%. With exception of M06-L, all GGAs

predict oxygen spin populations that are smaller (in absolute value) than with CASSCF, and

the difference between the functionals is rather small, ranging between −0.07 with BLYP

to −0.14 with B97-D (as compared to −0.16 with CASSCF). The hybrid functionals with

lowest HF exchange (B3LYP*, 15% and TPSSh, 10%) give −0.16 and −0.21 respectively,

but this increases progressively to −0.78 with B2-PLYP, containing 53% HF exchange.

It is important to note that the plots in Figure 5 were generated using DFT data obtained
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Figure 6: Oxygen Mulliken spin population in px and py orbitals as a function of Mn–O
distance.

at structures optimized with PBE0. For the 3B1 state, ROPBE0 structures were used (Mn–

O distance = 1.55 Å) to avoid the unrealistically long Mn–O distance (1.68 Å) predicted

by UPBE0 (cf. Figure S1a). But enhancing the diradical character (at the expense of

increasing spin contamination) is precisely the driving force leading to a (much) longer Mn–

O equilibrium distances in UDFT versus RDFT calculations, when making use of hybrid

functionals. As such, the O px spin populations in Figure 5 should become even more

negative if they would instead be obtained at Mn–O distances that are optimized at the

UDFT level (with the respective hybrid functionals). This is illustrated in Figure 6, showing

the O px and py spin populations of the 3B1 state as a function of the Mn–O distance,

calculated with ROPBE0, UPBE0, UBP86 and CASSCF. Each calculation used to construct

these plots was performed at its own optimized geometry (at fixed Mn–O distances). The

corresponding DFT energy profiles are shown in Figure S1, the CASSCF data were obtained

with ROPBE0 structures (cf. Figure 3).

At RMn-O = 1.55 Å, corresponding to the ROPBE0 minimum, the O px spin populations
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are close to the values shown in Figure 5: −0.50 for UPBE0, −0.08 for UBP86, −0.16 for

CASSCF while the diradical character of the πxz bond is (by definition) zero with ROPBE0.

The UPBE0 O px spin population falls down steeply with the Mn–O distance. At the

UPBE0 minimum (RMn-O = 1.68 Å), it reaches a value of −0.78. As such, UPBE0 predicts

a very pronounced oxyl character for the 3B1 state, corresponding to a negative oxygen spin

population. On the other hand, as illustrated by the BP86 results, pure GGAs are much

more resistant to spin contamination.85 The Mn–O distance obtained from UBP86, 1.59 Å,

remains much closer to the ROPBE0 minimum, and the O px spin population is much more

reluctant to fall down, starting its descent only at distances > 1.7 Å. The O px populations

obtained from CASSCF rather predict a steady increase of negative O px spin density and

concomitant diradical character with the Mn–O distance.

It is also worthwhile to look at the O py populations in Figure 6. The absolute values

obtained with different methods are different - reflecting the covalency of the πyz bond (see

above). However, they all show the same decreasing behavior with the Mn–O distance,

indicating that as the Mn–O bond dissociates the unpaired electron in this π bond will

localize on Mn 3dyz, leaving O py fully occupied. A similar plot obtained for the 5A2 state

(Figure S2) shows the same trend, with both unpaired electrons moving towards the Mn 3d

shell as the Mn–O bond dissociates.

Armed with these observations it becomes quite straightforward to rationalize the differ-

ent reactivity patterns observed for the MnV 3B1 state in Mn-oxo porphyrins from previous

DFT studies, either with pure or hybrid functionals.17–19,24 With pure GGAs, limited dirad-

ical (negative O px spin density) is predicted for the πxz bond in the 3B1 state, whereas the

bonds carrying an unpaired electron (πyz in the 3B1 state and both π orbitals in low-lying

quintet MnIV states) contain significant oxyl character (positive O py,(x) spin density). The

resulting positive spin population on oxygen (see also Figure S3) is invoked to rationalize

reactivity for C–H abstraction in the 3B1 excited states. On the other hand, with hybrid

functionals, the singly occupied π∗

yz orbital is much more localized on the metal, giving a
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much smaller (positive) O py spin population, whereas the diradical character of the πxz

bond is much more pronounced. Thus, with hybrid functionals Mn–O oxyl character and

corresponding reactivity is instead connected to the negative O spin population. Both ‘types’

of triplet states are denoted as resp. 3Πxz and 3Πo in ref. 24, and are shown in that study

to lead to very different reactivity patterns and barriers heights for OAT reactions. As the

CASSCF results indicate, both types of radical character are in fact united in one state.

Further studies are needed to establish their relative importance for reactivity.

Conclusions

In this work, porphyrin complexes with an manganese-oxo group, MnO(P)+ and MnO(PF4)
+,

were studied by means of second-order perturbation theory based on either Complete Active

Space (CASPT2) and Restricted Active Space (RASPT2) wave functions. These complexes

serve as a model to investigate two important electronic structure aspects of manganese-oxo

heme systems that play a determinant role for their catalytic reactivity in OAT reactions,

that is (a) spin state energetics, and (b) oxyl radical character of the manganese-oxo bond.

All possible low-lying MnV states and MnIV states with a porphyrin radical of either a1u

or a2u type were considered. Conform with experiment, the ground state of both molecules

is a MnV singlet (1A1). A triplet state (3B1) corresponding to the excitation of an electron

from the non-bonding 3dδ orbital to one of the Mn–O π∗ orbitals is found to be thermally

accessible in both complexes. The MnIV states are high-lying in MnO(P)+, but substitution

of hydrogen by fluorine at the meso positions of the macrocyle causes a stabilization of MnIV

states with a P(πa2u) radical, placing the MnIV 5A2 state below the MnV 3B1 state. Similar

to our previous findings26,31 the RASPT2 calculations (with an active space containing 16

porphyrin π∗ orbitals) are superior to CASPT2, because the active space in the latter method

is too small to accurately describe (a) the splitting between a2u and a1u type radicals on the

porphyrin and (b) spin interaction between MnIV and the porphyrin radical. Including
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solvent effects in the calculations is essential to obtain an accurate picture of the excited

state energetics, as it significantly stabilizes MnIV with respect to MnV states.

Oxyl radical character in the 3B1 and 5A2 states are investigated by analyzing the

CASSCF spin density distribution along the Mn–O bond in terms of the three contribu-

tions: σ (Mn dz2–O pz), πxz (Mn dxz–O px), πyz (Mn dyz–O py). Two sources of oxyl radical

character emerge from this analysis: (a) a positive oxygen spin density resulting from the

occupation of π∗ orbitals, and (b) a negative oxygen spin density resulting from diradical

contributions to the CASSCF wave function for those bonds where the antibonding compo-

nent is empty. The σ bond shows a very limited diradical contribution. However, for the 3B1

state we find a remarkably large diradical character in the πxz bond, which grows steadily

as the Mn–O bond is stretched. Further studies are necessary to establish which of the two

radical types plays a dominant role in OAT reactivity.

Both aspects, spin state energetics and oxyl radical character, were also studies with an

extensive range of DFT functionals. As usual, hybrid functionals (B3LYP in particular)

were found to outperform GGAs in predicting the spin promotion energy between states

differing only in the distribution of electrons in the Mn 3d shell. The latter functionals are,

however, clearly superior in describing the relative position of MnIV with respect to MnV

states. On the whole, the functional that comes closest to RASPT2 in describing the relative

energetics is B97-D. The description of diradical character of the πxz bond in the 3B1 state

was found to be problematic for hybrid functionals containing more than 15% HF exchange.

GGAs in general seem to underestimate diradical bond contributions, but also here B97-D

comes closest to the multiconfigurational wave function description. Functionals that show

disappointing behavior are the Minnesota functionals, M06, M06-L and M06-2X, as well as

the B2-PLYP functional. The inclusion of MP2 correlation in B2-PLYP can obviously not

correct for the flaws that are introduced by giving this functional such a high amount of HF

exchange.
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Supporting Information Available

Relevant geometrical features, energy profile along Mn–O distance by DFT/PBE0, BP86

for MnO(P)+ and MnO(PF4)
+, plots of oxygen Mulliken spin population in px, py and pz

orbitals obtained by CASSCF, values of 〈S2〉 of UDFT calculations of Table 3, total spin

population of manganese as a function of total spin population of oxygen for MnV 3B1 and

MnIV 5A2 states of MnO(P)+and fully optimized geometries. This material is available free

of charge via the Internet at http://pubs.acs.org/.
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Pierloot, K.; Merchán, M. Advances in Chemical Physics: New Methods in Computa-

tional Quantum Mechanics, Volume 93 2007, 219–331.

(48) Pierloot, K. Mol. Phys. 2003, 101, 2083–2094.

(49) Vancoillie, S.; Zhao, H.; Tran, V. T.; Hendrickx, M. F.; Pierloot, K. J. Chem. Theory

Comput. 2011, 7, 3961–3977.

(50) (a) Dirac, P. A. M. Proc. R. Soc. A 1929, 714–733; (b) Slater, J. C. Phys. Rev. 1951,

81, 385.

(51) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

(52) Vosko, S.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200–1211.

(53) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

(54) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.

(55) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.

(56) Handy, N. C.; Cohen, A. J. Mol. Phys. 2001, 99, 403–412.

(57) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.

(58) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(59) Reiher, M.; Salomon, O.; Hess, B. A. Theor. Chem. Acc. 2001, 107, 48–55.

(60) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.

(61) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91,

146401.

(62) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. J. Chem. Phys. 2003, 119,

12129–12137.

35



(63) Grimme, S. J. Chem. Phys. 2006, 124, 034108.

(64) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.

(65) Frisch, M. et al. Gaussian 09, Revision D. 01; Gaussian: Wallingford, CT, USA, 2009.

(66) Vangberg, T.; Lie, R.; Ghosh, A. J. Am. Chem. Soc. 2002, 124, 8122–8130.

(67) Hirao, H.; Shaik, S.; Kozlowski, P. M. J. Phys. Chem. A 2006, 110, 6091–6099.

(68) Prendergast, K.; Spiro, T. G. J. Phys. Chem. 1991, 95, 9728–9736.

(69) Formiga, A. L. B.; Vancoillie, S.; Pierloot, K. Inorg. Chem. 2013, 52, 10653–10663.

(70) Baglia, R. A.; Prokop-Prigge, K. A.; Neu, H. M.; Siegler, M. A.; Goldberg, D. P. J.

Am. Chem. Soc. 2015, 137, 10874–10877.

(71) Kepenekian, M.; Vetere, V.; Le Guennic, B.; Maldivi, P.; Robert, V. Chem. – Eur. J.

2011, 17, 12045–12050.

(72) Gross, Z.; Golubkov, G.; Simkhovich, L. Angew. Chem. Int. Ed. 2000, 39, 4045–4047.

(73) Liu, H.-Y.; Mahmood, M. H.; Qiu, S.-X. S.; Chang, C. K. Coordin. Chem. Rev. 2013,

257, 1306–1333.

(74) Zhang, R.; Newcomb, M. Acc. Chem. Res. 2008, 41, 468–477.

(75) Zhu, C.; Liang, J.; Wang, B.; Zhu, J.; Cao, Z. Phys. Chem. Chem. Phys. 2012, 14,

12800–12806.

(76) Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2006, 125, 124303–124303.

(77) Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2008, 128, 034104.
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Different electromeric states in manganese-oxo porphyrins were investigated with DFT

and multiconfigurational perturbation theory, focusing on their role in oxygen transfer re-

activity. The ground state is MnV singlet. Possible reactive states are a MnV triplet and

a MnIVO(L•a2u)
+ quintet. The latter state is strongly stabilized by substituting H by F at

the meso carbons. Oxyl character is rationalized in terms of unpaired electrons in Mn–O π∗

orbitals and Mn–O bond diradical character.
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Supplementary tables

• ri-j is the distance between atoms i and j.

• ∆ is the distance between Mn atom and the average plane formed by the four nitrogens.

• τ is defined as the difference between two N–Mn–N of opposing pyrroles, divided by

60.1 It equals 0 for square pyramid and 1 for trigonal bipyramidal, so it is a measure of

how the coordination sphere of pentacoordinated metals arranges between these two

extremes.

• tilt is the dihedral angle formed between four β carbons of opposing pyrroles.
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Table S1: Relevant geometrical features of MnO(P)+ and MnO(PF4)
+optimized by

PBE0/def2-TZVP.

State RMn-O (Å) RMn-N3 (Å) RMn-N4 (Å) ∆ (Å) τ tilt (°)

P

MnVO(L2−)+

1A1 1.494 1.978 1.978 0.454 0.000 23.10
3B1 1.680 1.992 1.992 0.309 0.000 15.10
3B1(ROPBE0) 1.548 2.013 1.964 0.376 0.240 0.00

MnIVO(L•−)+ π a1u
5A1 1.618 2.010 2.010 0.272 0.000 0.00
5A1(ROPBE0) 1.610 2.010 2.010 0.272 0.000 0.00
1B1 1.547 2.028 1.989 0.368 0.155 0.00
3B1 1.548 2.027 1.989 0.367 0.152 0.00
3B1(ROPBE0) 1.545 2.027 1.989 0.368 0.153 0.00

MnIVO(L•−)+ π a2u
5A2 1.614 2.023 2.023 0.257 0.000 0.00
5A2(ROPBE0) 1.606 2.022 2.022 0.261 0.000 0.00
1B1 1.543 1.999 2.043 0.351 0.138 0.00
3B1 1.543 1.999 2.043 0.352 0.142 0.00
3B1(ROPBE0) 1.542 1.998 2.042 0.354 0.143 0.00

PF4

MnVO(L2−)+

1A1 1.50 1.98 1.98 0.46 0.00 21.10
3B1 1.55 2.02 1.97 0.39 0.22 0.00

MnIVO(L•−)+ π a1u
5A1 1.62 2.01 2.01 0.28 0.00 0.00
1B1 1.55 2.03 1.99 0.37 0.16 0.00
3B1 1.55 2.03 1.99 0.37 0.16 0.00

MnIVO(L•−)+ π a2u
5A2 1.61 2.02 2.02 0.26 0.00 0.00
1B1 1.54 2.00 2.04 0.35 0.14 0.00
3B1 1.54 2.00 2.04 0.35 0.14 0.00

S2



 

R
e

la
ti

v
e

 e
n

e
rg

y
 (

k
ca

l 
m

o
l-1

)

−10

0

10

20

30

40

50

60

70

80

Mn-O distance (Å)

1.4 1.5 1.6 1.7 1.8 1.9 2.0

MnO(P)+

PBE0

Restricted
Unrestricted

Restricted open shell
Unrestricted

1A1

3B1

(a)

 

R
e

la
ti

v
e

 e
n

e
rg

y
 (

k
ca

l 
m

o
l-1

)

−10

0

10

20

30

40

50

60

70

80

Mn-O distance (Å)

1.4 1.5 1.6 1.7 1.8 1.9 2.0

MnO(PF4)+

PBE0

Restricted

Restricted open shell

Unrestricted

1A1

3B1

5A2

(b)

 

R
e

la
ti

v
e

 e
n

e
rg

y
 (

k
ca

l 
m

o
l-1

)

0

20

40

60

80

Mn-O distance (Å)

1.4 1.5 1.6 1.7 1.8 1.9 2.0

MnO(P)+

BP86
Restricted
Unrestricted

Unrestricted

1A1

3B1

 

40

45

50

55

 

1.90 1.95 2.00

(c)

Figure S1: Mn–O potential curves for calculated by DFT/PBE0 for MnO(P)+ (a) and
MnO(PF4)

+ (b) and by BP86 for MnO(P)+ (c).
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Table S2: Values of 〈S2〉 of DFT single point calculations on top of structures optimized by
PBE0/def2-TZVP using def2-QZVPP(Mn) and def2-TZVPP(others) basis set.

MnVOP MnIVOP• a2u MnIVOP• a1u

Functional 1A1
3B1

5A2
1B1

3B1
5A1

1B1
3B1

PBE 0.000 2.037 6.039 1.016 2.014 6.038 1.006 a

TPSS 0.000 2.045 6.045 1.025 2.023 6.041 1.013 a

BP86 0.000 2.037 6.041 1.018 2.016 6.040 1.007 a

OLYP 0.000 2.071 6.054 1.019 2.016 6.055 1.007 a

BLYP 0.000 2.027 6.034 1.015 2.013 6.034 1.006 a

M06-L 0.000 2.155 6.078 1.032 2.029 6.075 1.023 a

B97-D 0.000 2.088 6.068 1.025 2.021 6.069 1.011 a

TPSSh 0.000 2.101 6.072 1.045 2.042 6.064 1.033 2.038

B3LYP* 0.000 2.069 6.055 1.031 2.029 6.052 1.024 2.026

B3LYP 0.000 2.169 6.083 1.050 2.047 6.078 1.039 2.045

PBE0 0.000 2.315 6.120 1.079 2.073 6.111 1.059 2.072

M06 0.000 2.363 6.144 1.067 2.062 6.148 1.054 2.064

M062X 0.000 2.724 6.277 1.193 2.173 6.267 1.140 2.175

B2-PLYP 0.000 2.907 6.576 1.753 2.726 6.550 1.709b 2.730

a Calculation converged to MnV 3B1.

b Calculation converged to [MnIVO•(P)]+ instead of [MnIVO(P•)]+.

References

(1) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc.,

Dalton Trans. 1984, 1349–1356.
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Figure S2: Oxygen Mulliken spin population given by CASSCF as function of distance for
(a) MnO(P)+ and (b) MnO(PF4)

+ split in atomic orbitals: O(pz) in solid line, O(px) dashed
and O(py) dotted. MnV 3B1 and MnIV 5A2 are shown in red and blue respectively.
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Table S3: UPBE0/def2-TZVP structure of MnVO(P)+ 1A1.

38

Mn 0.0000000 0.0000000 0.3359758
O 0.0000000 0.0000000 1.8297508
N 1.3666362 -1.3559275 -0.1180308
N 1.3666362 1.3559275 -0.1180308
N -1.3666362 -1.3559275 -0.1180308
N -1.3666362 1.3559275 -0.1180308
C -2.7259738 1.2000595 0.0537932
C -1.201673 2.7071893 -0.3334657
C -2.4542153 3.3812622 -0.3149287
C -3.3978224 2.4498207 -0.0438664
C -3.3712602 0.0000000 0.1966098
C -2.7259738 -1.2000595 0.0537932
C -3.3978224 -2.4498207 -0.0438664
C -2.4542153 -3.3812622 -0.3149287
C -1.201673 -2.7071893 -0.3334657
C 0.0000000 -3.3476252 -0.4787069
C 1.201673 -2.7071893 -0.3334657
C 2.4542153 -3.3812622 -0.3149287
C 3.3978224 -2.4498207 -0.0438664
C 2.7259738 -1.2000595 0.0537932
C 3.3712602 0.0000000 0.1966098
C 2.7259738 1.2000595 0.0537932
C 3.3978224 2.4498207 -0.0438664
C 2.4542153 3.3812622 -0.3149287
C 1.201673 2.7071893 -0.3334657
C 0.0000000 3.3476252 -0.4787069
H 0.0000000 4.4157677 -0.6506434
H -2.577075 4.4417697 -0.4757792
H -4.4649322 2.5777804 0.0588908
H -4.4447354 0.0000000 0.3310094
H -4.4649322 -2.5777804 0.0588908
H -2.577075 -4.4417697 -0.4757792
H 0.0000000 -4.4157677 -0.6506434
H 2.577075 -4.4417697 -0.4757792
H 4.4649322 -2.5777804 0.0588908
H 4.4447354 0.0000000 0.3310094
H 4.4649322 2.5777804 0.0588908
H 2.577075 4.4417697 -0.4757792
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Table S4: UPBE0/def2-TZVP structure of MnVO(P)+ 3B1.

38

Mn 0.0000000 0.0000000 0.2409885
O 0.0000000 0.0000000 1.9213835
N -1.3912482 1.3912933 -0.0681899
N -1.3912482 -1.3912933 -0.0681899
N 1.3912482 1.3912933 -0.0681899
N 1.3912482 -1.3912933 -0.0681899
C 2.7481694 -1.2145063 0.0735922
C 1.2138026 -2.7502026 -0.1838926
C 2.4714180 -3.4192178 -0.1528122
C 3.4202682 -2.4696054 0.0253513
C 3.3846814 0.0000000 0.1710942
C 2.7481694 1.2145063 0.0735922
C 3.4202682 2.4696054 0.0253513
C 2.4714180 3.4192178 -0.1528122
C 1.2138026 2.7502026 -0.1838926
C 0.0000000 3.3893630 -0.2674647
C -1.2138026 2.7502026 -0.1838926
C -2.4714180 3.4192178 -0.1528122
C -3.4202682 2.4696054 0.0253513
C -2.7481694 1.2145063 0.0735922
C -3.3846814 0.0000000 0.1710942
C -2.7481694 -1.2145063 0.0735922
C -3.4202682 -2.4696054 0.0253513
C -2.4714180 -3.4192178 -0.1528122
C -1.2138026 -2.7502026 -0.1838926
C 0.0000000 -3.3893630 -0.2674647
H 0.0000000 -4.4679910 -0.3568392
H 2.5969971 -4.4873420 -0.2476566
H 4.4901844 -2.5928162 0.1011390
H 4.4618576 0.0000000 0.2769612
H 4.4901844 2.5928162 0.1011390
H 2.5969971 4.4873420 -0.2476566
H 0.0000000 4.4679910 -0.3568392
H -2.5969971 4.4873420 -0.2476566
H -4.4901844 2.5928162 0.1011390
H -4.4618576 0.0000000 0.2769612
H -4.4901844 -2.5928162 0.1011390
H -2.5969971 -4.4873420 -0.2476566
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Table S5: UPBE0/def2-TZVP structure of MnVO(P)+ 3B2.

38

Mn 0.0000000 0.0000000 0.2398943
O 0.0000000 0.0000000 1.9209673
N -1.3928475 1.3918055 -0.0689909
N -1.3928475 -1.3918055 -0.0689909
N 1.3928475 1.3918055 -0.0689909
N 1.3928475 -1.3918055 -0.0689909
C 2.7532527 -1.2138333 -0.1659549
C 1.2145989 -2.7503081 0.0550994
C 2.4698972 -3.4223331 0.0129490
C 3.4219339 -2.4716390 -0.1398901
C 3.3936287 0.0000000 -0.2364932
C 2.7532527 1.2138333 -0.1659549
C 3.4219339 2.4716390 -0.1398901
C 2.4698972 3.4223331 0.0129490
C 1.2145989 2.7503081 0.0550994
C 0.0000000 3.3880851 0.1397674
C -1.2145989 2.7503081 0.0550994
C -2.4698972 3.4223331 0.0129490
C -3.4219339 2.4716390 -0.1398901
C -2.7532527 1.2138333 -0.1659549
C -3.3936287 0.0000000 -0.2364932
C -2.7532527 -1.2138333 -0.1659549
C -3.4219339 -2.4716390 -0.1398901
C -2.4698972 -3.4223331 0.0129490
C -1.2145989 -2.7503081 0.0550994
C 0.0000000 -3.3880851 0.1397674
H 0.0000000 -4.4665147 0.2319659
H 2.5916001 -4.4931924 0.0769463
H 4.4912327 -2.5960130 -0.2222164
H 4.4733494 0.0000000 -0.3115560
H 4.4912327 2.5960130 -0.2222164
H 2.5916001 4.4931924 0.0769463
H 0.0000000 4.4665147 0.2319659
H -2.5916001 4.4931924 0.0769463
H -4.4912327 2.5960130 -0.2222164
H -4.4733494 0.0000000 -0.3115560
H -4.4912327 -2.5960130 -0.2222164
H -2.5916001 -4.4931924 0.0769463
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Table S6: ROPBE0/def2-TZVP structure of MnVO(P)+ 3B1.

38

Mn 0.0000000000 0.0000000000 0.3374397498
O 0.0000000000 0.0000000000 1.8849707426
N 0.0000000000 1.9960350581 0.0793774172
N 0.0000000000 -1.9960350581 0.0793774172
N -1.9010291885 0.0000000000 -0.1566704947
N 1.9010291885 0.0000000000 -0.1566704947
C 1.0866920216 -2.8291172611 0.1000984325
C -1.0866920216 2.8291172611 0.1000984325
C 1.0866920216 2.8291172611 0.1000984325
C -1.0866920216 -2.8291172611 0.1000984325
C -0.6764186776 -4.1932222390 0.1774583304
C 0.6764186776 4.1932222390 0.1774583304
C -0.6764186776 4.1932222390 0.1774583304
C 0.6764186776 -4.1932222390 0.1774583304
C 2.3851878504 -2.4110257236 -0.0398524824
C -2.3851878504 2.4110257236 -0.0398524824
C 2.3851878504 2.4110257236 -0.0398524824
C -2.3851878504 -2.4110257236 -0.0398524824
C 2.7474921514 -1.0965705653 -0.1859114989
C -2.7474921514 1.0965705653 -0.1859114989
C 2.7474921514 1.0965705653 -0.1859114989
C -2.7474921514 -1.0965705653 -0.1859114989
C 4.0976291567 -0.6766316737 -0.3237797871
C -4.0976291567 0.6766316737 -0.3237797871
C 4.0976291567 0.6766316737 -0.3237797871
C -4.0976291567 -0.6766316737 -0.3237797871
H -3.1697276998 -3.1560310375 -0.0497077339
H 3.1697276998 3.1560310375 -0.0497077339
H -3.1697276998 3.1560310375 -0.0497077339
H 3.1697276998 -3.1560310375 -0.0497077339
H -1.3521818769 -5.0349002631 0.1986445473
H 1.3521818769 5.0349002631 0.1986445473
H -1.3521818769 5.0349002631 0.1986445473
H 1.3521818769 -5.0349002631 0.1986445473
H 4.9371181842 -1.3519734733 -0.3927046922
H -4.9371181842 1.3519734733 -0.3927046922
H 4.9371181842 1.3519734733 -0.3927046922
H -4.9371181842 -1.3519734733 -0.3927046922
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Table S7: UPBE0/def2-TZVP structure of MnIVO(P•)+ a2u
5A2.

a

38

Mn 0.0000000 0.0000000 0.2001341
O 0.0000000 0.0000000 1.8138014
N 1.4187053 -1.4187031 -0.0572752
N 1.4187053 1.4187031 -0.0572752
N -1.4187053 -1.4187031 -0.0572752
N -1.4187053 1.4187031 -0.0572752
C -2.7673676 1.2349850 -0.0529454
C -1.2349854 2.7673655 -0.0530368
C -2.4902050 3.4496909 -0.0600652
C -3.4496921 2.4902049 -0.0600007
C -3.3993750 0.0000000 -0.0466164
C -2.7673676 -1.2349850 -0.0529454
C -3.4496921 -2.4902049 -0.0600007
C -2.4902050 -3.4496909 -0.0600652
C -1.2349854 -2.7673655 -0.0530368
C 0.0000000 -3.3993729 -0.0467795
C 1.2349854 -2.7673655 -0.0530368
C 2.4902050 -3.4496909 -0.0600652
C 3.4496921 -2.4902049 -0.0600007
C 2.7673676 -1.2349850 -0.0529454
C 3.3993750 0.0000000 -0.0466164
C 2.7673676 1.2349850 -0.0529454
C 3.4496921 2.4902049 -0.0600007
C 2.4902050 3.4496909 -0.0600652
C 1.2349854 2.7673655 -0.0530368
C 0.0000000 3.3993729 -0.0467795
H 0.0000000 4.4830134 -0.0405404
H -2.6124143 4.5223225 -0.0665896
H -4.5223240 2.6124150 -0.0664623
H -4.4830149 0.0000000 -0.0402810
H -4.5223240 -2.6124150 -0.0664623
H -2.6124143 -4.5223225 -0.0665896
H 0.0000000 -4.4830134 -0.0405404
H 2.6124143 -4.5223225 -0.0665896
H 4.5223240 -2.6124150 -0.0664623
H 4.4830149 0.0000000 -0.0402810
H 4.5223240 2.6124150 -0.0664623
H 2.6124143 4.5223225 -0.0665896
aImaginary mode at 1390.47i cm−1
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Table S8: UPBE0/def2-TZVP structure of MnIVO(P•)+ a2u
3B1.

a

38

Mn 0.0000000 0.0000000 0.3318127
O 0.0000000 0.0000000 1.8750978
N 0.0000000 1.9541734 -0.0902162
N 0.0000000 -1.9541734 -0.0902162
N -2.0237498 0.0000000 0.0496567
N 2.0237498 0.0000000 0.0496567
C 1.0835388 -2.7863962 -0.1217593
C -1.0835388 2.7863962 -0.1217593
C 1.0835388 2.7863962 -0.1217593
C -1.0835388 -2.7863962 -0.1217593
C -0.6794283 -4.1491088 -0.2120400
C 0.6794283 4.1491088 -0.2120400
C -0.6794283 4.1491088 -0.2120400
C 0.6794283 -4.1491088 -0.2120400
C 2.4103427 -2.3885400 -0.0387959
C -2.4103427 2.3885400 -0.0387959
C 2.4103427 2.3885400 -0.0387959
C -2.4103427 -2.3885400 -0.0387959
C 2.8502433 -1.0782602 0.0430148
C -2.8502433 1.0782602 0.0430148
C 2.8502433 1.0782602 0.0430148
C -2.8502433 -1.0782602 0.0430148
C 4.2238338 -0.6779127 0.0593208
C -4.2238338 0.6779127 0.0593208
C 4.2238338 0.6779127 0.0593208
C -4.2238338 -0.6779127 0.0593208
H -3.1610642 -3.1699274 -0.0543470
H 3.1610642 3.1699274 -0.0543470
H -3.1610642 3.1699274 -0.0543470
H 3.1610642 -3.1699274 -0.0543470
H -1.3519251 -4.9922793 -0.2614281
H 1.3519251 4.9922793 -0.2614281
H -1.3519251 4.9922793 -0.2614281
H 1.3519251 -4.9922793 -0.2614281
H 5.0682285 -1.3506860 0.0545869
H -5.0682285 1.3506860 0.0545869
H 5.0682285 1.3506860 0.0545869
H -5.0682285 -1.3506860 0.0545869
aImaginary mode at 1626.77i cm−1
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Table S9: UPBE0/def2-TZVP structure of MnIVO(P•)+ a2u
3B2.

a

38

Mn 0.0000000 0.0000000 0.3313576
O 0.0000000 0.0000000 1.8746689
N 0.0000000 2.0237162 0.0492823
N 0.0000000 -2.0237162 0.0492823
N -1.9542104 0.0000000 -0.0905254
N 1.9542104 0.0000000 -0.0905254
C 1.0782627 -2.8502218 0.0427598
C -1.0782627 2.8502218 0.0427598
C 1.0782627 2.8502218 0.0427598
C -1.0782627 -2.8502218 0.0427598
C -0.6779078 -4.2238098 0.0592535
C 0.6779078 4.2238098 0.0592535
C -0.6779078 4.2238098 0.0592535
C 0.6779078 -4.2238098 0.0592535
C 2.3885356 -2.4103202 -0.0388975
C -2.3885356 2.4103202 -0.0388975
C 2.3885356 2.4103202 -0.0388975
C -2.3885356 -2.4103202 -0.0388975
C 2.7864504 -1.0835403 -0.1218705
C -2.7864504 1.0835403 -0.1218705
C 2.7864504 1.0835403 -0.1218705
C -2.7864504 -1.0835403 -0.1218705
C 4.1491923 -0.6794228 -0.2117933
C -4.1491923 0.6794228 -0.2117933
C 4.1491923 0.6794228 -0.2117933
C -4.1491923 -0.6794228 -0.2117933
H -3.1699043 -3.1610754 -0.0542220
H 3.1699043 3.1610754 -0.0542220
H -3.1699043 3.1610754 -0.0542220
H 3.1699043 -3.1610754 -0.0542220
H -1.3506809 -5.0682065 0.0547201
H 1.3506809 5.0682065 0.0547201
H -1.3506809 5.0682065 0.0547201
H 1.3506809 -5.0682065 0.0547201
H 4.9923881 -1.3519121 -0.2608353
H -4.9923881 1.3519121 -0.2608353
H 4.9923881 1.3519121 -0.2608353
H -4.9923881 -1.3519121 -0.2608353
aImaginary mode at 1627.20i cm−1
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Table S10: UPBE0/def2-TZVP structure of MnIVO(P•)+ a2u
1B1.

a

38

Mn 0.0000000 0.0000000 0.3321255
O 0.0000000 0.0000000 1.8755416
N 0.0000000 1.9549768 -0.0873974
N 0.0000000 -1.9549768 -0.0873974
N -2.0234730 0.0000000 0.0503508
N 2.0234730 0.0000000 0.0503508
C 1.0836049 -2.7870023 -0.1198649
C -1.0836049 2.7870023 -0.1198649
C 1.0836049 2.7870023 -0.1198649
C -1.0836049 -2.7870023 -0.1198649
C -0.6794404 -4.1496655 -0.2108612
C 0.6794404 4.1496655 -0.2108612
C -0.6794404 4.1496655 -0.2108612
C 0.6794404 -4.1496655 -0.2108612
C 2.4103833 -2.3888202 -0.0380697
C -2.4103833 2.3888202 -0.0380697
C 2.4103833 2.3888202 -0.0380697
C -2.4103833 -2.3888202 -0.0380697
C 2.8499559 -1.0782742 0.0426427
C -2.8499559 1.0782742 0.0426427
C 2.8499559 1.0782742 0.0426427
C -2.8499559 -1.0782742 0.0426427
C 4.2235188 -0.6779399 0.0570153
C -4.2235188 0.6779399 0.0570153
C 4.2235188 0.6779399 0.0570153
C -4.2235188 -0.6779399 0.0570153
H -3.1613517 -3.1699437 -0.0541996
H 3.1613517 3.1699437 -0.0541996
H -3.1613517 3.1699437 -0.0541996
H 3.1613517 -3.1699437 -0.0541996
H -1.3519136 -4.9928006 -0.2611556
H 1.3519136 4.9928006 -0.2611556
H -1.3519136 4.9928006 -0.2611556
H 1.3519136 -4.9928006 -0.2611556
H 5.0678991 -1.3507221 0.0510995
H -5.0678991 1.3507221 0.0510995
H 5.0678991 1.3507221 0.0510995
H -5.0678991 -1.3507221 0.0510995
aImaginary mode at 1600.22i cm−1
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Table S11: UPBE0/def2-TZVP structure of MnIVO(P•)+ a2u
1B2.

a

38

Mn 0.0000000 0.0000000 0.3321101
O 0.0000000 0.0000000 1.8755284
N 0.0000000 2.0234567 0.0503552
N 0.0000000 -2.0234567 0.0503552
N -1.9549978 0.0000000 -0.0873752
N 1.9549978 0.0000000 -0.0873752
C 1.0782726 -2.8499415 0.0426599
C -1.0782726 2.8499415 0.0426599
C 1.0782726 2.8499415 0.0426599
C -1.0782726 -2.8499415 0.0426599
C -0.6779360 -4.2235047 0.0570518
C 0.6779360 4.2235047 0.0570518
C -0.6779360 4.2235047 0.0570518
C 0.6779360 -4.2235047 0.0570518
C 2.3888185 -2.4103699 -0.0380606
C -2.3888185 2.4103699 -0.0380606
C 2.3888185 2.4103699 -0.0380606
C -2.3888185 -2.4103699 -0.0380606
C 2.7870206 -1.0836016 -0.1198669
C -2.7870206 1.0836016 -0.1198669
C 2.7870206 1.0836016 -0.1198669
C -2.7870206 -1.0836016 -0.1198669
C 4.1496831 -0.6794360 -0.2109084
C -4.1496831 0.6794360 -0.2109084
C 4.1496831 0.6794360 -0.2109084
C -4.1496831 -0.6794360 -0.2109084
H -3.1699340 -3.1613506 -0.0541897
H 3.1699340 3.1613506 -0.0541897
H -3.1699340 3.1613506 -0.0541897
H 3.1699340 -3.1613506 -0.0541897
H -1.3507253 -5.0678800 0.0511586
H 1.3507253 5.0678800 0.0511586
H -1.3507253 5.0678800 0.0511586
H 1.3507253 -5.0678800 0.0511586
H 4.9928087 -1.3519181 -0.2612444
H -4.9928087 1.3519181 -0.2612444
H 4.9928087 1.3519181 -0.2612444
H -4.9928087 -1.3519181 -0.2612444
aImaginary mode at 1600.29i cm−1
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Table S12: UPBE0/def2-TZVP structure of MnIVO(P•)+ a1u
5A1.

38

Mn 0.0000000 0.0000000 0.2108153
O 0.0000000 0.0000000 1.8284676
N 1.4084443 -1.4084442 -0.0609199
N 1.4084443 1.4084442 -0.0609199
N -1.4084443 -1.4084442 -0.0609199
N -1.4084443 1.4084442 -0.0609199
C -2.7578110 1.2205520 -0.0536899
C -1.2205520 2.7578109 -0.0536956
C -2.4962481 3.4451858 -0.0613820
C -3.4451859 2.4962481 -0.0613781
C -3.4012328 0.0000000 -0.0456947
C -2.7578110 -1.2205520 -0.0536899
C -3.4451859 -2.4962481 -0.0613781
C -2.4962481 -3.4451858 -0.0613820
C -1.2205520 -2.7578109 -0.0536956
C 0.0000000 -3.4012327 -0.0457045
C 1.2205520 -2.7578109 -0.0536956
C 2.4962481 -3.4451858 -0.0613820
C 3.4451859 -2.4962481 -0.0613781
C 2.7578110 -1.2205520 -0.0536899
C 3.4012328 0.0000000 -0.0456947
C 2.7578110 1.2205520 -0.0536899
C 3.4451859 2.4962481 -0.0613781
C 2.4962481 3.4451858 -0.0613820
C 1.2205520 2.7578109 -0.0536956
C 0.0000000 3.4012327 -0.0457045
H 0.0000000 4.4833556 -0.0380976
H -2.6132095 4.5185088 -0.0674865
H -4.5185088 2.6132095 -0.0674787
H -4.4833557 0.0000000 -0.0380833
H -4.5185088 -2.6132095 -0.0674787
H -2.6132095 -4.5185088 -0.0674865
H 0.0000000 -4.4833556 -0.0380976
H 2.6132095 -4.5185088 -0.0674865
H 4.5185088 -2.6132095 -0.0674787
H 4.4833557 0.0000000 -0.0380833
H 4.5185088 2.6132095 -0.0674787
H 2.6132095 4.5185088 -0.0674865
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Table S13: UPBE0/def2-TZVP structure of MnIVO(P•)+ a1u
3B1.

38

Mn 0.0000000 0.0000000 0.3450546
O 0.0000000 0.0000000 1.8933455
N 0.0000000 2.0057686 0.0531198
N 0.0000000 -2.0057686 0.0531198
N -1.9396194 0.0000000 -0.0973366
N 1.9396194 0.0000000 -0.0973366
C 1.0807996 -2.8299451 0.0390374
C -1.0807996 2.8299451 0.0390374
C 1.0807996 2.8299451 0.0390374
C -1.0807996 -2.8299451 0.0390374
C -0.6708745 -4.2212546 0.0535520
C 0.6708745 4.2212546 0.0535520
C -0.6708745 4.2212546 0.0535520
C 0.6708745 -4.2212546 0.0535520
C 2.3914621 -2.4093279 -0.0378063
C -2.3914621 2.4093279 -0.0378063
C 2.3914621 2.4093279 -0.0378063
C -2.3914621 -2.4093279 -0.0378063
C 2.7715723 -1.0871155 -0.1194238
C -2.7715723 1.0871155 -0.1194238
C 2.7715723 1.0871155 -0.1194238
C -2.7715723 -1.0871155 -0.1194238
C 4.1532111 -0.6710342 -0.2102435
C -4.1532111 0.6710342 -0.2102435
C 4.1532111 0.6710342 -0.2102435
C -4.1532111 -0.6710342 -0.2102435
H -3.1703954 -3.1604655 -0.0525516
H 3.1703954 3.1604655 -0.0525516
H -3.1703954 3.1604655 -0.0525516
H 3.1703954 -3.1604655 -0.0525516
H -1.3480559 -5.0622373 0.0475409
H 1.3480559 5.0622373 0.0475409
H -1.3480559 5.0622373 0.0475409
H 1.3480559 -5.0622373 0.0475409
H 4.9930411 -1.3480160 -0.2575968
H -4.9930411 1.3480160 -0.2575968
H 4.9930411 1.3480160 -0.2575968
H -4.9930411 -1.3480160 -0.2575968
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Table S14: UPBE0/def2-TZVP structure of MnIVO(P•)+ a1u
3B2.

38

Mn 0.0000000 0.0000000 0.3450434
O 0.0000000 0.0000000 1.8933429
N 0.0000000 1.9396234 -0.0973262
N 0.0000000 -1.9396234 -0.0973262
N -2.0057664 0.0000000 0.0531029
N 2.0057664 0.0000000 0.0531029
C 1.0871154 -2.7715769 -0.1194085
C -1.0871154 2.7715769 -0.1194085
C 1.0871154 2.7715769 -0.1194085
C -1.0871154 -2.7715769 -0.1194085
C -0.6710342 -4.1532163 -0.2102163
C 0.6710342 4.1532163 -0.2102163
C -0.6710342 4.1532163 -0.2102163
C 0.6710342 -4.1532163 -0.2102163
C 2.4093276 -2.3914635 -0.0378057
C -2.4093276 2.3914635 -0.0378057
C 2.4093276 2.3914635 -0.0378057
C -2.4093276 -2.3914635 -0.0378057
C 2.8299440 -1.0807998 0.0390213
C -2.8299440 1.0807998 0.0390213
C 2.8299440 1.0807998 0.0390213
C -2.8299440 -1.0807998 0.0390213
C 4.2212525 -0.6708747 0.0535243
C -4.2212525 0.6708747 0.0535243
C 4.2212525 0.6708747 0.0535243
C -4.2212525 -0.6708747 0.0535243
H -3.1604652 -3.1703969 -0.0525479
H 3.1604652 3.1703969 -0.0525479
H -3.1604652 3.1703969 -0.0525479
H 3.1604652 -3.1703969 -0.0525479
H -1.3480159 -4.9930467 -0.2575646
H 1.3480159 4.9930467 -0.2575646
H -1.3480159 4.9930467 -0.2575646
H 1.3480159 -4.9930467 -0.2575646
H 5.0622358 -1.3480553 0.0475125
H -5.0622358 1.3480553 0.0475125
H 5.0622358 1.3480553 0.0475125
H -5.0622358 -1.3480553 0.0475125
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Table S15: UPBE0/def2-TZVP structure of MnIVO(P•)+ a1u
1B1.

38

Mn 0.0000000 0.0000000 0.3436668
O 0.0000000 0.0000000 1.8908313
N 0.0000000 2.0068599 0.0520259
N 0.0000000 -2.0068599 0.0520259
N -1.9385697 0.0000000 -0.1011614
N 1.9385697 0.0000000 -0.1011614
C 1.0808072 -2.8306732 0.0423322
C -1.0808072 2.8306732 0.0423322
C 1.0808072 2.8306732 0.0423322
C -1.0808072 -2.8306732 0.0423322
C -0.6709227 -4.2219429 0.0650257
C 0.6709227 4.2219429 0.0650257
C -0.6709227 4.2219429 0.0650257
C 0.6709227 -4.2219429 0.0650257
C 2.3911233 -2.4094835 -0.0389703
C -2.3911233 2.4094835 -0.0389703
C 2.3911233 2.4094835 -0.0389703
C -2.3911233 -2.4094835 -0.0389703
C 2.7703805 -1.0872374 -0.1248144
C -2.7703805 1.0872374 -0.1248144
C 2.7703805 1.0872374 -0.1248144
C -2.7703805 -1.0872374 -0.1248144
C 4.1516533 -0.6710752 -0.2197266
C -4.1516533 0.6710752 -0.2197266
C 4.1516533 0.6710752 -0.2197266
C -4.1516533 -0.6710752 -0.2197266
H -3.1705604 -3.1601145 -0.0528118
H 3.1705604 3.1601145 -0.0528118
H -3.1705604 3.1601145 -0.0528118
H 3.1705604 -3.1601145 -0.0528118
H -1.3480210 -5.0630147 0.0639867
H 1.3480210 5.0630147 0.0639867
H -1.3480210 5.0630147 0.0639867
H 1.3480210 -5.0630147 0.0639867
H 4.9914198 -1.3479948 -0.2690782
H -4.9914198 1.3479948 -0.2690782
H 4.9914198 1.3479948 -0.2690782
H -4.9914198 -1.3479948 -0.2690782
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Table S16: UPBE0/def2-TZVP structure of MnIVO(P•)+ a1u
1B2.

38

Mn 0.0000000 0.0000000 0.3437186
O 0.0000000 0.0000000 1.8908864
N 0.0000000 1.9385980 -0.1010464
N 0.0000000 -1.9385980 -0.1010464
N -2.0068658 0.0000000 0.0519582
N 2.0068658 0.0000000 0.0519582
C 1.0872353 -2.7704127 -0.1245937
C -1.0872353 2.7704127 -0.1245937
C 1.0872353 2.7704127 -0.1245937
C -1.0872353 -2.7704127 -0.1245937
C -0.6710749 -4.1517024 -0.2192579
C 0.6710749 4.1517024 -0.2192579
C -0.6710749 4.1517024 -0.2192579
C 0.6710749 -4.1517024 -0.2192579
C 2.4094876 -2.3911352 -0.0389605
C -2.4094876 2.3911352 -0.0389605
C 2.4094876 2.3911352 -0.0389605
C -2.4094876 -2.3911352 -0.0389605
C 2.8306802 -1.0808073 0.0421236
C -2.8306802 1.0808073 0.0421236
C 2.8306802 1.0808073 0.0421236
C -2.8306802 -1.0808073 0.0421236
C 4.2219529 -0.6709227 0.0645162
C -4.2219529 0.6709227 0.0645162
C 4.2219529 0.6709227 0.0645162
C -4.2219529 -0.6709227 0.0645162
H -3.1601230 -3.1705676 -0.0527994
H 3.1601230 3.1705676 -0.0527994
H -3.1601230 3.1705676 -0.0527994
H 3.1601230 -3.1705676 -0.0527994
H -1.3479960 -4.9914770 -0.2684535
H 1.3479960 4.9914770 -0.2684535
H -1.3479960 4.9914770 -0.2684535
H 1.3479960 -4.9914770 -0.2684535
H 5.0630236 -1.3480219 0.0633182
H -5.0630236 1.3480219 0.0633182
H 5.0630236 1.3480219 0.0633182
H -5.0630236 -1.3480219 0.0633182
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Table S17: UPBE0/def2-TZVP structure of MnVO(PF4)
+ 1A1.

38

Mn 0.0000000 0.0000000 0.4351748
O 0.0000000 0.0000000 1.9347961
N 1.3666965 -1.3560822 -0.0273431
N 1.3666965 1.3560822 -0.0273431
N -1.3666965 -1.3560822 -0.0273431
N -1.3666965 1.3560822 -0.0273431
C -2.7283309 1.2122894 0.1346321
C -1.2136918 2.7114463 -0.2239304
C -2.4567344 3.3914012 -0.2035813
C -3.4053110 2.4535362 0.0450542
C -3.3563338 0.0000000 0.2672615
C -2.7283309 -1.2122894 0.1346321
C -3.4053110 -2.4535362 0.0450542
C -2.4567344 -3.3914012 -0.2035813
C -1.2136918 -2.7114463 -0.2239304
C 0.0000000 -3.3351505 -0.3588674
C 1.2136918 -2.7114463 -0.2239304
C 2.4567344 -3.3914012 -0.2035813
C 3.4053110 -2.4535362 0.0450542
C 2.7283309 -1.2122894 0.1346321
C 3.3563338 0.0000000 0.2672615
C 2.7283309 1.2122894 0.1346321
C 3.4053110 2.4535362 0.0450542
C 2.4567344 3.3914012 -0.2035813
C 1.2136918 2.7114463 -0.2239304
C 0.0000000 3.3351505 -0.3588674
F 0.0000000 4.6411053 -0.5626527
H -2.5792288 4.4531224 -0.3491960
H -4.4722447 2.5810741 0.1394592
F -4.6664132 0.0000000 0.4390838
H -4.4722447 -2.5810741 0.1394592
H -2.5792288 -4.4531224 -0.3491960
F 0.0000000 -4.6411053 -0.5626527
H 2.5792288 -4.4531224 -0.3491960
H 4.4722447 -2.5810741 0.1394592
F 4.6664132 0.0000000 0.4390838
H 4.4722447 2.5810741 0.1394592
H 2.5792288 4.4531224 -0.3491960
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Table S18: ROPBE0/def2-TZVP structure of MnVO(PF4)
+ 3B1.

38

Mn 0.0000000000 0.0000000000 0.3408109308
O 0.0000000000 0.0000000000 1.8933685413
N 0.0000000000 1.9960046560 0.0616847209
N 0.0000000000 -1.9960046560 0.0616847209
N -1.9074420787 0.0000000000 -0.1568206297
N 1.9074420787 0.0000000000 -0.1568206297
C 1.0788376271 -2.8393732946 0.0581885647
C -1.0788376271 2.8393732946 0.0581885647
C 1.0788376271 2.8393732946 0.0581885647
C -1.0788376271 -2.8393732946 0.0581885647
C -0.6782702006 -4.2019923373 0.0789568290
C 0.6782702006 4.2019923373 0.0789568290
C -0.6782702006 4.2019923373 0.0789568290
C 0.6782702006 -4.2019923373 0.0789568290
C 2.3761102989 -2.3999292793 -0.0449511192
C -2.3761102989 2.3999292793 -0.0449511192
C 2.3761102989 2.3999292793 -0.0449511192
C -2.3761102989 -2.3999292793 -0.0449511192
C 2.7647716260 -1.0870820793 -0.1526629662
C -2.7647716260 1.0870820793 -0.1526629662
C 2.7647716260 1.0870820793 -0.1526629662
C -2.7647716260 -1.0870820793 -0.1526629662
C 4.1185794611 -0.6781925047 -0.2207210141
C -4.1185794611 0.6781925047 -0.2207210141
C 4.1185794611 0.6781925047 -0.2207210141
C -4.1185794611 -0.6781925047 -0.2207210141
F -3.3304222637 -3.3148617675 -0.0506056299
F 3.3304222637 3.3148617675 -0.0506056299
F -3.3304222637 3.3148617675 -0.0506056299
F 3.3304222637 -3.3148617675 -0.0506056299
H -1.3527208502 -5.0437047382 0.0678559828
H 1.3527208502 5.0437047382 0.0678559828
H -1.3527208502 5.0437047382 0.0678559828
H 1.3527208502 -5.0437047382 0.0678559828
H 4.9603708505 -1.3520083495 -0.2470373107
H -4.9603708505 1.3520083495 -0.2470373107
H 4.9603708505 1.3520083495 -0.2470373107
H -4.9603708505 -1.3520083495 -0.2470373107
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Table S19: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a2u

5A2.

38

Mn 0.0000000000 0.0000000000 0.1979729000
O 0.0000000000 0.0000000000 1.8107750000
N 1.4196765000 -1.4196735000 -0.0612682000
N 1.4196765000 1.4196735000 -0.0612682000
N -1.4196765000 -1.4196735000 -0.0612682000
N -1.4196765000 1.4196735000 -0.0612682000
C -2.7690236000 1.2468156000 -0.0546566000
C -1.2468161000 2.7690211000 -0.0547877000
C -2.4930191000 3.4547405000 -0.0591351000
C -3.4547418000 2.4930190000 -0.0590456000
C -3.3844407000 0.0000000000 -0.0469642000
C -2.7690236000 -1.2468156000 -0.0546566000
C -3.4547418000 -2.4930190000 -0.0590456000
C -2.4930191000 -3.4547405000 -0.0591351000
C -1.2468161000 -2.7690211000 -0.0547877000
C 0.0000000000 -3.3844383000 -0.0471933000
C 1.2468161000 -2.7690211000 -0.0547877000
C 2.4930191000 -3.4547405000 -0.0591351000
C 3.4547418000 -2.4930190000 -0.0590456000
C 2.7690236000 -1.2468156000 -0.0546566000
C 3.3844407000 0.0000000000 -0.0469642000
C 2.7690236000 1.2468156000 -0.0546566000
C 3.4547418000 2.4930190000 -0.0590456000
C 2.4930191000 3.4547405000 -0.0591351000
C 1.2468161000 2.7690211000 -0.0547877000
C 0.0000000000 3.3844383000 -0.0471933000
F 0.0000000000 4.6988426000 -0.0380334000
H -2.6171137000 4.5261165000 -0.0642702000
H -4.5261182000 2.6171147000 -0.0640966000
F -4.6988437000 0.0000000000 -0.0376630000
H -4.5261182000 -2.6171147000 -0.0640966000
H -2.6171137000 -4.5261165000 -0.0642702000
F 0.0000000000 -4.6988426000 -0.0380334000
H 2.6171137000 -4.5261165000 -0.0642702000
H 4.5261182000 -2.6171147000 -0.0640966000
F 4.6988437000 0.0000000000 -0.0376630000
H 4.5261182000 2.6171147000 -0.0640966000
H 2.6171137000 4.5261165000 -0.0642702000
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Table S20: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a2u

3B1.

38

Mn 0.0000000000 0.0000000000 0.3281117000
O 0.0000000000 0.0000000000 1.8710439000
N 0.0000000000 1.9557100000 -0.0917696000
N 0.0000000000 -1.9557100000 -0.0917696000
N -2.0245146000 0.0000000000 0.0437351000
N 2.0245146000 0.0000000000 0.0437351000
C 1.0764851000 -2.7963631000 -0.1220188000
C -1.0764851000 2.7963631000 -0.1220188000
C 1.0764851000 2.7963631000 -0.1220188000
C -1.0764851000 -2.7963631000 -0.1220188000
C -0.6808789000 -4.1556188000 -0.2064090000
C 0.6808789000 4.1556188000 -0.2064090000
C -0.6808789000 4.1556188000 -0.2064090000
C 0.6808789000 -4.1556188000 -0.2064090000
C 2.3996694000 -2.3771439000 -0.0382332000
C -2.3996694000 2.3771439000 -0.0382332000
C 2.3996694000 2.3771439000 -0.0382332000
C -2.3996694000 -2.3771439000 -0.0382332000
C 2.8596628000 -1.0709515000 0.0403266000
C -2.8596628000 1.0709515000 0.0403266000
C 2.8596628000 1.0709515000 0.0403266000
C -2.8596628000 -1.0709515000 0.0403266000
C 4.2290113000 -0.6795746000 0.0552050000
C -4.2290113000 0.6795746000 0.0552050000
C 4.2290113000 0.6795746000 0.0552050000
C -4.2290113000 -0.6795746000 0.0552050000
F -3.3126580000 -3.3232460000 -0.0518962000
F 3.3126580000 3.3232460000 -0.0518962000
F -3.3126580000 3.3232460000 -0.0518962000
F 3.3126580000 -3.3232460000 -0.0518962000
H -1.3504516000 -4.9998446000 -0.2529408000
H 1.3504516000 4.9998446000 -0.2529408000
H -1.3504516000 4.9998446000 -0.2529408000
H 1.3504516000 -4.9998446000 -0.2529408000
H 5.0736379000 -1.3503790000 0.0501948000
H -5.0736379000 1.3503790000 0.0501948000
H 5.0736379000 1.3503790000 0.0501948000
H -5.0736379000 -1.3503790000 0.0501948000
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Table S21: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a2u

3B2.

38

Mn 0.0000000 0.0000000 0.3279683
O 0.0000000 0.0000000 1.8709049
N 0.0000000 2.0244887 0.0436279
N 0.0000000 -2.0244887 0.0436279
N -1.9557361 0.0000000 -0.0918525
N 1.9557361 0.0000000 -0.0918525
C 1.0709536 -2.8596427 0.0402232
C -1.0709536 2.8596427 0.0402232
C 1.0709536 2.8596427 0.0402232
C -1.0709536 -2.8596427 0.0402232
C -0.6795736 -4.2289888 0.0550932
C 0.6795736 4.2289888 0.0550932
C -0.6795736 4.2289888 0.0550932
C 0.6795736 -4.2289888 0.0550932
C 2.3771581 -2.3996646 -0.0382546
C -2.3771581 2.3996646 -0.0382546
C 2.3771581 2.3996646 -0.0382546
C -2.3771581 -2.3996646 -0.0382546
C 2.7963982 -1.0764878 -0.1219984
C -2.7963982 1.0764878 -0.1219984
C 2.7963982 1.0764878 -0.1219984
C -2.7963982 -1.0764878 -0.1219984
C 4.1556630 -0.6808784 -0.2062317
C -4.1556630 0.6808784 -0.2062317
C 4.1556630 0.6808784 -0.2062317
C -4.1556630 -0.6808784 -0.2062317
F -3.3232540 -3.3126774 -0.0518419
F 3.3232540 3.3126774 -0.0518419
F -3.3232540 3.3126774 -0.0518419
F 3.3232540 -3.3126774 -0.0518419
H -1.3503752 -5.0736180 0.0500862
H 1.3503752 5.0736180 0.0500862
H -1.3503752 5.0736180 0.0500862
H 1.3503752 -5.0736180 0.0500862
H 4.9998943 -1.3504505 -0.2526820
H -4.9998943 1.3504505 -0.2526820
H 4.9998943 1.3504505 -0.2526820
H -4.9998943 -1.3504505 -0.2526820
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Table S22: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a2u

1B1.

38

Mn 0.0000000 0.0000000 0.3282310
O 0.0000000 0.0000000 1.8709299
N 0.0000000 1.9565000 -0.0885582
N 0.0000000 -1.9565000 -0.0885582
N -2.0243364 0.0000000 0.0443131
N 2.0243364 0.0000000 0.0443131
C 1.0765880 -2.7968925 -0.1202283
C -1.0765880 2.7968925 -0.1202283
C 1.0765880 2.7968925 -0.1202283
C -1.0765880 -2.7968925 -0.1202283
C -0.6809063 -4.1560254 -0.2060736
C 0.6809063 4.1560254 -0.2060736
C -0.6809063 4.1560254 -0.2060736
C 0.6809063 -4.1560254 -0.2060736
C 2.3997641 -2.3774313 -0.0374110
C -2.3997641 2.3774313 -0.0374110
C 2.3997641 2.3774313 -0.0374110
C -2.3997641 -2.3774313 -0.0374110
C 2.8594626 -1.0710199 0.0401989
C -2.8594626 1.0710199 0.0401989
C 2.8594626 1.0710199 0.0401989
C -2.8594626 -1.0710199 0.0401989
C 4.2287606 -0.6795997 0.0537497
C -4.2287606 0.6795997 0.0537497
C 4.2287606 0.6795997 0.0537497
C -4.2287606 -0.6795997 0.0537497
F -3.3130317 -3.3233752 -0.0518425
F 3.3130317 3.3233752 -0.0518425
F -3.3130317 3.3233752 -0.0518425
F 3.3130317 -3.3233752 -0.0518425
H -1.3504644 -5.0001859 -0.2540265
H 1.3504644 5.0001859 -0.2540265
H -1.3504644 5.0001859 -0.2540265
H 1.3504644 -5.0001859 -0.2540265
H 5.0733921 -1.3503927 0.0479656
H -5.0733921 1.3503927 0.0479656
H 5.0733921 1.3503927 0.0479656
H -5.0733921 -1.3503927 0.0479656
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Table S23: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a2u

1B2.

38

Mn 0.0000000 0.0000000 0.3281452
O 0.0000000 0.0000000 1.8708482
N 0.0000000 2.0242949 0.0442475
N 0.0000000 -2.0242949 0.0442475
N -1.9565410 0.0000000 -0.0885618
N 1.9565410 0.0000000 -0.0885618
C 1.0710212 -2.8594265 0.0401665
C -1.0710212 2.8594265 0.0401665
C 1.0710212 2.8594265 0.0401665
C -1.0710212 -2.8594265 0.0401665
C -0.6795990 -4.2287214 0.0537580
C 0.6795990 4.2287214 0.0537580
C -0.6795990 4.2287214 0.0537580
C 0.6795990 -4.2287214 0.0537580
C 2.3774439 -2.3997531 -0.0374096
C -2.3774439 2.3997531 -0.0374096
C 2.3774439 2.3997531 -0.0374096
C -2.3774439 -2.3997531 -0.0374096
C 2.7969237 -1.0765860 -0.1202296
C -2.7969237 1.0765860 -0.1202296
C 2.7969237 1.0765860 -0.1202296
C -2.7969237 -1.0765860 -0.1202296
C 4.1560628 -0.6809042 -0.2060640
C -4.1560628 0.6809042 -0.2060640
C 4.1560628 0.6809042 -0.2060640
C -4.1560628 -0.6809042 -0.2060640
F -3.3233717 -3.3130370 -0.0518052
F 3.3233717 3.3130370 -0.0518052
F -3.3233717 3.3130370 -0.0518052
F 3.3233717 -3.3130370 -0.0518052
H -1.3503978 -5.0733482 0.0480005
H 1.3503978 5.0733482 0.0480005
H -1.3503978 5.0733482 0.0480005
H 1.3503978 -5.0733482 0.0480005
H 5.0002190 -1.3504682 -0.2540078
H -5.0002190 1.3504682 -0.2540078
H 5.0002190 1.3504682 -0.2540078
H -5.0002190 -1.3504682 -0.2540078
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Table S24: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a1u

5A1.

38

Mn 0.0000000 0.0000000 0.2083834
O 0.0000000 0.0000000 1.8262532
N 1.4077043 -1.4077039 -0.0670955
N 1.4077043 1.4077039 -0.0670955
N -1.4077043 -1.4077039 -0.0670955
N -1.4077043 1.4077039 -0.0670955
C -2.7589289 1.2316385 -0.0563091
C -1.2316385 2.7589284 -0.0563158
C -2.4985037 3.4499965 -0.0601081
C -3.4499967 2.4985038 -0.0601055
C -3.3847244 0.0000000 -0.0465501
C -2.7589289 -1.2316385 -0.0563091
C -3.4499967 -2.4985038 -0.0601055
C -2.4985037 -3.4499965 -0.0601081
C -1.2316385 -2.7589284 -0.0563158
C 0.0000000 -3.3847238 -0.0465501
C 1.2316385 -2.7589284 -0.0563158
C 2.4985037 -3.4499965 -0.0601081
C 3.4499967 -2.4985038 -0.0601055
C 2.7589289 -1.2316385 -0.0563091
C 3.3847244 0.0000000 -0.0465501
C 2.7589289 1.2316385 -0.0563091
C 3.4499967 2.4985038 -0.0601055
C 2.4985037 3.4499965 -0.0601081
C 1.2316385 2.7589284 -0.0563158
C 0.0000000 3.3847238 -0.0465501
F 0.0000000 4.7117233 -0.0345118
H -2.6159069 4.5222795 -0.0638219
H -4.5222796 2.6159073 -0.0638175
F -4.7117244 0.0000000 -0.0345595
H -4.5222796 -2.6159073 -0.0638175
H -2.6159069 -4.5222795 -0.0638219
F 0.0000000 -4.7117233 -0.0345118
H 2.6159069 -4.5222795 -0.0638219
H 4.5222796 -2.6159073 -0.0638175
F 4.7117244 0.0000000 -0.0345595
H 4.5222796 2.6159073 -0.0638175
H 2.6159069 4.5222795 -0.0638219
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Table S25: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a1u

3B1.

38

Mn 0.0000000 0.0000000 0.3436389
O 0.0000000 0.0000000 1.8927495
N 0.0000000 2.0048289 0.0502647
N 0.0000000 -2.0048289 0.0502647
N -1.9365217 0.0000000 -0.1048828
N 1.9365217 0.0000000 -0.1048828
C 1.0737001 -2.8391012 0.0410011
C -1.0737001 2.8391012 0.0410011
C 1.0737001 2.8391012 0.0410011
C -1.0737001 -2.8391012 0.0410011
C -0.6726918 -4.2265230 0.0590792
C 0.6726918 4.2265230 0.0590792
C -0.6726918 4.2265230 0.0590792
C 0.6726918 -4.2265230 0.0590792
C 2.3784592 -2.3973915 -0.0380955
C -2.3784592 2.3973915 -0.0380955
C 2.3784592 2.3973915 -0.0380955
C -2.3784592 -2.3973915 -0.0380955
C 2.7786661 -1.0799969 -0.1259323
C -2.7786661 1.0799969 -0.1259323
C 2.7786661 1.0799969 -0.1259323
C -2.7786661 -1.0799969 -0.1259323
C 4.1570254 -0.6728303 -0.2140669
C -4.1570254 0.6728303 -0.2140669
C 4.1570254 0.6728303 -0.2140669
C -4.1570254 -0.6728303 -0.2140669
F -3.3321981 -3.3203658 -0.0496814
F 3.3321981 3.3203658 -0.0496814
F -3.3321981 3.3203658 -0.0496814
F 3.3321981 -3.3203658 -0.0496814
H -1.3490391 -5.0668355 0.0555353
H 1.3490391 5.0668355 0.0555353
H -1.3490391 5.0668355 0.0555353
H 1.3490391 -5.0668355 0.0555353
H 4.9969847 -1.3480780 -0.2596274
H -4.9969847 1.3480780 -0.2596274
H 4.9969847 1.3480780 -0.2596274
H -4.9969847 -1.3480780 -0.2596274
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Table S26: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a1u

3B2.

38

Mn 0.0000000 0.0000000 0.3450592
O 0.0000000 0.0000000 1.8941347
N 0.0000000 1.9373904 -0.1006094
N 0.0000000 -1.9373904 -0.1006094
N -2.0048765 0.0000000 0.0481764
N 2.0048765 0.0000000 0.0481764
C 1.0799645 -2.7795689 -0.1190768
C -1.0799645 2.7795689 -0.1190768
C 1.0799645 2.7795689 -0.1190768
C -1.0799645 -2.7795689 -0.1190768
C -0.6728281 -4.1583339 -0.2006073
C 0.6728281 4.1583339 -0.2006073
C -0.6728281 4.1583339 -0.2006073
C 0.6728281 -4.1583339 -0.2006073
C 2.3975464 -2.3788043 -0.0374383
C -2.3975464 2.3788043 -0.0374383
C 2.3975464 2.3788043 -0.0374383
C -2.3975464 -2.3788043 -0.0374383
C 2.8392791 -1.0736877 0.0351839
C -2.8392791 1.0736877 0.0351839
C 2.8392791 1.0736877 0.0351839
C -2.8392791 -1.0736877 0.0351839
C 4.2267442 -0.6726591 0.0445732
C -4.2267442 0.6726591 0.0445732
C 4.2267442 0.6726591 0.0445732
C -4.2267442 -0.6726591 0.0445732
F -3.3207150 -3.3324043 -0.0494208
F 3.3207150 3.3324043 -0.0494208
F -3.3207150 3.3324043 -0.0494208
F 3.3207150 -3.3324043 -0.0494208
H -1.3481257 -4.9984093 -0.2427342
H 1.3481257 4.9984093 -0.2427342
H -1.3481257 4.9984093 -0.2427342
H 1.3481257 -4.9984093 -0.2427342
H 5.0671147 -1.3489687 0.0359383
H -5.0671147 1.3489687 0.0359383
H 5.0671147 1.3489687 0.0359383
H -5.0671147 -1.3489687 0.0359383
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Table S27: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a1u

1B1.

38

Mn 0.0000000 0.0000000 0.3441129
O 0.0000000 0.0000000 1.8918506
N 0.0000000 2.0061018 0.0482786
N 0.0000000 -2.0061018 0.0482786
N -1.9358843 0.0000000 -0.1047154
N 1.9358843 0.0000000 -0.1047154
C 1.0737019 -2.8401326 0.0406106
C -1.0737019 2.8401326 0.0406106
C 1.0737019 2.8401326 0.0406106
C -1.0737019 -2.8401326 0.0406106
C -0.6727095 -4.2275738 0.0604430
C 0.6727095 4.2275738 0.0604430
C -0.6727095 4.2275738 0.0604430
C 0.6727095 -4.2275738 0.0604430
C 2.3782976 -2.3977614 -0.0387825
C -2.3782976 2.3977614 -0.0387825
C 2.3782976 2.3977614 -0.0387825
C -2.3782976 -2.3977614 -0.0387825
C 2.7779027 -1.0801370 -0.1261861
C -2.7779027 1.0801370 -0.1261861
C 2.7779027 1.0801370 -0.1261861
C -2.7779027 -1.0801370 -0.1261861
C 4.1560909 -0.6728874 -0.2143403
C -4.1560909 0.6728874 -0.2143403
C 4.1560909 0.6728874 -0.2143403
C -4.1560909 -0.6728874 -0.2143403
F -3.3325256 -3.3203260 -0.0505294
F 3.3325256 3.3203260 -0.0505294
F -3.3325256 3.3203260 -0.0505294
F 3.3325256 -3.3203260 -0.0505294
H -1.3489676 -5.0680425 0.0582415
H 1.3489676 5.0680425 0.0582415
H -1.3489676 5.0680425 0.0582415
H 1.3489676 -5.0680425 0.0582415
H 4.9960042 -1.3481403 -0.2602294
H -4.9960042 1.3481403 -0.2602294
H 4.9960042 1.3481403 -0.2602294
H -4.9960042 -1.3481403 -0.2602294
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Table S28: UPBE0/def2-TZVP structure of MnIVO(PF•

4)
+ a1u

1B2.

38

Mn 0.0000000 0.0000000 0.3441257
O 0.0000000 0.0000000 1.8918548
N 0.0000000 2.0061088 0.0482755
N 0.0000000 -2.0061088 0.0482755
N -1.9358770 0.0000000 -0.1047262
N 1.9358770 0.0000000 -0.1047262
C 1.0737076 -2.8401605 0.0405795
C -1.0737076 2.8401605 0.0405795
C 1.0737076 2.8401605 0.0405795
C -1.0737076 -2.8401605 0.0405795
C -0.6727074 -4.2275911 0.0604652
C 0.6727074 4.2275911 0.0604652
C -0.6727074 4.2275911 0.0604652
C 0.6727074 -4.2275911 0.0604652
C 2.3782796 -2.3977642 -0.0387975
C -2.3782796 2.3977642 -0.0387975
C 2.3782796 2.3977642 -0.0387975
C -2.3782796 -2.3977642 -0.0387975
C 2.7778574 -1.0801228 -0.1261993
C -2.7778574 1.0801228 -0.1261993
C 2.7778574 1.0801228 -0.1261993
C -2.7778574 -1.0801228 -0.1261993
C 4.1560668 -0.6728865 -0.2143463
C -4.1560668 0.6728865 -0.2143463
C 4.1560668 0.6728865 -0.2143463
C -4.1560668 -0.6728865 -0.2143463
F -3.3325400 -3.3203294 -0.0505748
F 3.3325400 3.3203294 -0.0505748
F -3.3325400 3.3203294 -0.0505748
F 3.3325400 -3.3203294 -0.0505748
H -1.3489606 -5.0680777 0.0583131
H 1.3489606 5.0680777 0.0583131
H -1.3489606 5.0680777 0.0583131
H 1.3489606 -5.0680777 0.0583131
H 4.9959819 -1.3481421 -0.2602096
H -4.9959819 1.3481421 -0.2602096
H 4.9959819 1.3481421 -0.2602096
H -4.9959819 -1.3481421 -0.2602096
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