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It is known that the exact density functional must give ground-state energies that are piecewise
linear as a function of electron number. In this work we prove that this is also true for the
lowest-energy excited states of different spin or spatial symmetry. This has three important
consequences for chemical applications: the ground state of a molecule must correspond to the state
with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-
molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium
atoms, as well as the CH2 and C3H3 molecules are considered as illustrative examples. Our result
also directly and rigorously connects the ionization potential and electron affinity to the stability of
spin states. © 2010 American Institute of Physics. �doi:10.1063/1.3497190�

I. INTRODUCTION

In the vast majority of organic molecules, the electronic
ground state is a singlet, such that atoms obey the “octet”
occupation rule. However, electron-deficient molecules are
occasionally encountered and there is no general rule to pre-
dict their most-stable electronic configuration. A simple ex-
ample is the case of carbenes in which a carbon atom par-
ticipates in two chemical bonds and has two additional
electrons not involved in bonding. Carbenes can exist in ei-
ther a singlet or triplet state, which are generally quite close
in energy.1,2 More commonly, transition-metal compounds
often have several low-energy electronic states. This has
wide-reaching consequences and determines reactivity in in-
organic chemistry.3 Knowledge of the most-stable spin state
is important in mechanistic studies of inorganic catalysts and
particularly of enzymatic catalysts where the active sites con-
tain transition metals.

The prediction of the correct ground state of inorganic
molecules is an extremely challenging theoretical problem
often requiring highly correlated, and even multireference,
wave function theory techniques.4 The more efficient
Hartree–Fock or density-functional theory �DFT� methods
are unreliable and tend to give systematic errors. Hartree–
Fock theory, which accounts for electron exchange exactly,
but neglects correlation between opposite-spin electrons, al-
ways favors high-spin configurations. Conversely, pure den-
sity functionals, which give approximate treatments of both
exchange and correlation effects, generally favor low-spin
states. Examples are iron carbonyl and iron porphyrins.3,5

Given the computational difficulty of obtaining accurate
spin-state energy splittings, simple rules for predicting
ground-state configurations can provide valuable insight.
One such is Walsh’s rule, which is that the ground state of a
molecule best stabilizes its highest occupied molecular or-

bital �HOMO�.6 However, this conclusion was drawn from
studies of molecular geometries and not different electronic
states. Walsh’s rule has been put on a firmer theoretical foot-
ing by Coulson and Deb7 and by March.8

Another useful rule is the principle of maximum hard-
ness, which is that the state with the largest chemical hard-
ness value is most stable.9,10 The chemical hardness ��� is
equal to the difference in ionization potential �I� and electron
affinity �A�

� = 1
2 �I − A� . �1�

There is considerable evidence for the maximum-hardness
principle,9 such as studies of small molecules11 and of metal
clusters.12 The maximum-hardness principle has been proven
within a density-functional framework for the ground elec-
tronic state.13,14 However, its validity for distinguishing be-
tween different electronic states has not been proven and this
appears unlikely on first inspection since DFT is a ground-
state theory. Such a proof is needed to rigorously apply the
maximum-hardness principle to different spin states.

Calculation of hardness can be made through the chemi-
cal potential,15,16 which is defined as the derivative of the
total energy with respect to particle number when the exter-
nal potential is fixed,

��N� = � �Ev�N�
�N

�
v
. �2�

The derivative discontinuity of Ev�N� with respect to elec-
tron number at an integer N0 gives the energy gap or the
hardness. As a consequence of the linearity condition,17 � is
a constant between the integers and has a derivative discon-
tinuity at the integersa�Electronic mail: weitao.yang@duke.edu.
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��N�

= � − I�N0� = E�N0� − E�N0 − 1� if N0 − 1 � N � N0

− A�N0� = E�N0 + 1� − E�N0� if N0 � N � N0 + 1,
	

�3�

where I�N0� is the ionization potential of the N0-electron sys-
tem and A�N0� is its electron affinity. This is a generalization
of the usual integer expression and can be evaluated for
finite-size systems, but not for bulk systems. That � is dis-
continuous at the integers is understandable because only
one electron can occupy a given spin orbital; additional elec-
trons must be placed in higher-energy orbitals.

In all calculations with fractional number of electrons,
we follow Janak18 and extend the noninteracting Kohn–
Sham first-order reduced density matrix to fractional charge
� by the definition

�s�r�,r� = 

i

ni�i�r���i
��r� , �4�

where ni=1 for i� f, ni=� for i=f, and ni=0, for i� f, and f
is the index for the frontier orbital. This density matrix is an
ensemble of single Slater determinants. This agrees with
Kohn–Sham �KS� for integer charges and provides a simple
linear interpolation for fractional charges. The energy func-
tional evaluated for this ensemble density matrix is then the
energy of the corresponding fractional system.

There are two ways to carry out a DFT calculation: with
the one-electron orbitals ���i
� as the eigenstates of a one-
electron local potential vs�r�

�− 1
2�2 + vs�r����i
 = 	i��i
 , �5�

or a nonlocal potential vs
NL�r ,r��

�− 1
2�2 + vs

NL�r,r�����i
 = 	i
GKS��i
 . �6�

The former is the original Kohn–Sham method with corre-
sponding eigenvalues �	i� �or equivalently �	i

KS��. The latter
has been called the Hartree–Fock–Kohn–Sham19 or the gen-
eralized Kohn–Sham �GKS� method,20 with corresponding
eigenvalues �	i

GKS�. Cohen et al.21 recently developed the
formula for evaluating the chemical potential in DFT calcu-
lations by evaluating the derivative ��Ev /�N�v directly from
the quantities of the noninteracting reference KS or GKS
system. These are based on the potential functional theory
formulation of DFT.22 Their results lead to the following
simple equations:

��N� = 	 f = �	HOMO�N0� if N0 − 1 � N � N0

	LUMO�N0� if N0 � N � N0 + 1,
	 �7�

where 	 f is the eigenvalue of the frontier orbital,
	HOMO�N0�=	N0

�N0� and 	LUMO�N0�=	N0+1�N0�. This defini-
tion is introduced to connect the chemical potential to orbital
eigenvalues, as well as the usual expression in terms of ion-
ization potential and electron affinity. The definition of the
chemical potential in Eq. �7� is identical to Eq. �3� for the
exact functional, which gives energies that are piecewise lin-
ear as a function of fractional electron number. This is not
the case for approximate functionals, such as the local den-
sity approximation �LDA� and generalized gradient approxi-

mations �GGAs�. However, the two definitions should be ap-
proximately equal at Slater’s transition state, where one half
of an electron has been added or removed �N=N0


1
2

�.
The eigenvalues in Eq. �7� should be interpreted as the

KS eigenvalues when the exchange-correlation energy func-
tional used is an explicit and continuous functional of elec-
tron density, such as the local density approximation or gen-
eralized gradient approximations. They should be interpreted
as the GKS eigenvalues when the exchange-correlation en-
ergy functional is an explicit and continuous functional of
electron density matrix �sometime called orbital functionals�,
such as Hartree–Fock or hybrid approximations.23,24 Note
that for such functionals, the chemical potential is not equal
to the eigenvalue of the frontier orbital in the optimized ef-
fective potential calculations.25

Provided the DFT calculations are performed as de-
scribed above, the chemical hardness is the second derivative
of the energy with respect to the number of electrons N at
constant external �nuclear� potential, v �Refs. 10 and 14�

� = � �2E

�N2�
v

= 1
2 ��E�N − 1� − E�N�� − �E�N� − E�N + 1���

= 1
2 �I − A� . �8�

Consideration of this form provides a clear route to proving
the maximum-hardness principle for different electronic
states. The behavior of density functionals for fractional
electron numbers has been the subject of much recent study,
providing new understanding of the errors inherent in most
commonly used functionals.21,26–29

The exact density functional should give energies that
are piecewise linear between integer electron numbers. This
was originally proven by Perdew et al.17 and later reformu-
lated by Yang et al.30 In this work, we extend the derivation
to the lowest-energy states of each spin and spatial symme-
try. We will show that the most-stable electronic configura-
tion of a molecule must have the lowest HOMO energy,
highest lowest-unoccupied-molecular-orbital �LUMO� en-
ergy, maximum HOMO-LUMO gap, and maximum chemi-
cal hardness. These constraints, which are natural conse-
quences of the piecewise linearity of exact density-functional
energies, connect the ionization potential and electron affin-
ity to the stability of spin states. We consider five practical
examples of density-functional calculations: the beryllium
cation, the carbon and vanadium atoms, and the CH2 and
C3H3 molecules, all of which have low-lying excited states.

II. THEORY

In this section, we outline an intuitive proof of straight-
line behavior for molecular energies as a function of electron
number. This will be formalized in Sec. III. The key is to
recognize the equivalence between an isolated atom or mol-
ecule with fractional electron number N
� and a collection
of equivalent atoms or molecules, which are separated from
each other by an infinite distance and, hence, are noninter-
acting. In this combined system, some fraction � of the at-
oms or molecules possesses N
1 electrons and the remain-
ing fraction 1−� has N electrons.
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For a large system with k molecules all in the N-electron
ground state, consider how the energy changes as electrons
are added or removed. A single electron added �or removed�
will give a system with a single molecule in the N+1 �or
N−1� electron ground-state and all other molecules remain-
ing in the N-electron ground state. After ionization, it is pos-
sible to write k different wave functions with one molecule
ionized and the rest neutral. Each of these is a valid wave
function and so is the normalized linear combination over all
possible ion positions. This ensemble wave function will
necessarily have the same energy �k−1�E�N�+E�N
1�, but
a different �ensemble average� density.

Going to DFT, the densities from each of the k possible
wave functions will also give degenerate energies of �k
−1�E�N�+E�N
1�. With the exact functional, this same en-
ergy must be obtained using the ensemble average density as
well. This density can be constructed as a sum over each of
the k molecules using fractional occupancies

i=1

k �1−1 /k��i�N�+ �1 /k��i�N
1�. Since the molecules are
indistinguishable, the energy from each of these densities is
�1 /k�Etotal= �1−1 /k�E�N�+ �1 /k�E�N
1�, which is a linear
combination of the integer values.

The addition �or removal� of electrons can be carried out
sequentially, until all the molecules are in the N+1 �or N
−1� ground state. Thus, the energy should vary linearly be-
tween that of the N-electron ground state and that of the N
+1 �or N−1� electron state. Addition �or removal� of subse-
quent electrons will cause appearance of a new N+2 �or N
−2� state, and the energy will now vary linearly between the
values for the N+1 and N+2 �or N−1 and N−2� electron
states. Our earlier argument holds for each successive ioniza-
tion from the ensemble of k molecules. Therefore, recogniz-
ing the connection between the ensemble average density
and a molecule with fractional occupancy, the molecular
electronic energy must be piecewise linear as a function of
electron number.

In the above argument, we assumed that the molecules
were initially in the N-electron ground state and moreover
that the addition or removal of electrons resulted in the
N+1 �or N−1� electron ground states. However, the assump-
tion of ground-state electron configurations is not strictly
necessary. Electrons can be consistently added �or removed�
from each molecule to give a collection of molecules all in a
higher-energy N+1 �or N−1� electron excited state, assum-
ing that it is stable and does not autoionize. If all the mol-
ecules in the system vary by one-electron processes between
the same N-electron and N+1 �or N−1� electron states, be
they ground or excited states, the energy of the system must
still vary linearly throughout. Therefore, an exact density
functional must give energies that are piecewise linear as a
function of electron number for any molecule. This is appli-
cable not only to the ground state, but also the lowest-energy
excited states with a different net spin or different spatial
symmetry. The condition of differing spin or spatial symme-
try from the ground-state is necessary to impose an addi-
tional constraint on the electron density. A more rigorous,
formal proof of this result is shown in Sec. III.

An interesting implication of the constraint of piecewise-

linear energies is, for the exact functional, the total electronic
energy is a sum of the HOMO eigenvalues of the molecule
with 1 ,2 ,3 . . . ,N electrons. Note that this is not the same as
the sum of the eigenvalues for the N-electron species, how-
ever, since the lower-energy eigenvalues will no longer be
constant upon addition of further electrons.

An important chemical consequence is that the exact
LUMO or HOMO energies of an N-electron molecule must
remain constant as an electron is added or removed, respec-
tively. Also, the vertical ionization potential is identically
equal to the negative HOMO eigenvalue of the neutral mol-
ecule and the electron affinity is equal to the LUMO
eigenvalue.27 Note that this requires Hartree–Fock or gener-
alized Kohn–Sham eigenvalues and will not apply to eigen-
values calculated from an optimized effective potential.27

Therefore, assuming a constant geometry, the chemical hard-
ness is directly related to the HOMO-LUMO energy gap

� = 1
2 �	LUMO − 	HOMO� . �9�

Consider a molecule with two possible low-lying
N-electron states, both of which can be reached by addition
or removal of a single electron from the same cation and
anion states. This situation is illustrated by the E�N� curves
sketched in Fig. 1. A similar plot is shown by Ayers in Ref.
14. Assume that there is molecular symmetry and we are
discussing the lowest state of two different irreducible repre-
sentations. Let us label these two states of the N-electron
system as A and B with energies E�N ,A� and E�N ,B�, such
that E�N ,B� is the lower of the two. We can also label the
highest occupied orbital energy of each symmetry in the neu-
tral molecules by eHOMO�N ,A� and eHOMO�N ,B�. Then we
can write the energies of both states of the N-electron system
in terms of the cation energies and orbital eigenvaules

E�N,A� = E�N − 1� + eHOMO�N,A� , �10�

E�N,B� = E�N − 1� + eHOMO�N,B� . �11�

We can also write the energies of both states of the
N-electron system in terms of the anion energies and orbital
eigenvaules

FIG. 1. Sketch of the electronic energies of a two-state system as a function
of the number of electrons.
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E�N,A� = E�N + 1� − eLUMO�N,A� , �12�

E�N,B� = E�N + 1� − eLUMO�N,B� . �13�

Let us start from the shared cation state at the left side of
the plot in Fig. 1. Equations �10� and �11� mean that, for each
of the two possible neutral states, the energy will equal the
cation energy plus the slope of the E�N� curve leading from
the cation to the neutral. This slope is equal to the HOMO
eigenvalue of the neutral atom or molecule, which gives
E�N�=E�N−1�+	HOMO�N�. The energy difference between
the two neutral states is thus equal to the difference between
their HOMO eigenvalues. Therefore, we conclude that the
state with the most-stable HOMO must have the lowest en-
ergy. This is equivalent to Walsh’s rule that the ground state
best stabilizes the HOMO,6 but at fixed geometry.

Now start from the shared anion state at the right side of
the plot in Fig. 1. From Eqs. �12� and �13�, the energy of
each neutral state will equal the anion energy minus the slope
of the E�N� curve leading from the anion to the neutral. This
slope is equal to the LUMO eigenvalue of the neutral atom
or molecule �eLUMO�N ,A� for state A and eLUMO�N ,B� for
state B�, which gives E�N�=E�N+1�−	LUMO�N�. The energy
difference between the two neutral states is now equal to the
difference between their LUMO eigenvalues. Therefore, the
state with the higher-lying LUMO must have the lowest en-
ergy.

Combining these last two results, the most-stable state
has the lowest HOMO and highest LUMO, which implies
the largest HOMO-LUMO gap. To show this more rigor-
ously, recall that E�N ,B��E�N ,A� and substitute the results
from Eqs. �10� and �13� to give

E�N + 1� − eLUMO�N,B� � E�N − 1� + eHOMO�N,A� . �14�

This can be rewritten as

E�N + 1� − E�N − 1� � eLUMO�N,B� + eHOMO�N,A� . �15�

Similarly, substituting the results from Eqs. �11� and �12�
gives

E�N + 1� − E�N − 1� � eHOMO�N,B� + eLUMO�N,A� . �16�

Combining these gives

eLUMO�N,B� − eHOMO�N,B� � eLUMO�N,A� − eHOMO�N,A� ,

�17�

which for E�N ,B��E�N ,A� is the desired result for maxi-
mum hardness. Therefore, the most-stable state has the maxi-
mum chemical hardness.

Finally, note that the Mulliken electronegativity,31,32

�= 1
2 �I+A�, for the ground and excited state will be equal

because these states form the same ions. This is the reason
for the symmetric appearance of the eigenvalue plots shown
throughout Sec. IV.

While we have considered only the exact density func-
tional so far, the lowest HOMO, highest LUMO, and
maximum-hardness stability principles will still be shown to
hold for approximate functionals. We will consider both the
popular B3LYP functional23,24 and its modified, range-
separated variant rCAM-B3LYP,21,33 which was designed to

give improved straight-line behavior for fractional electron
numbers. The beryllium cation, the carbon and vanadium
atoms, as well as the CH2 �Ref. 34� and C3H3 �Ref. 35�
molecules, are considered as illustrative examples. These
particular species were chosen since they all have a low-
energy excited state and DFT methods predict the correct
ground-state configuration.

III. DETAILS OF THE THEORY

The piecewise-linearity condition for the exact func-
tional was originally developed for ground states of frac-
tional charges,17 fractional spins,30,36 and combined frac-
tional charge and spins.37 In this section, we extend this
exact condition to a system in the lowest-energy state of a
given spin or spatial symmetry. While the fundamental theo-
rems of DFT have been established for ground electronic
states, there exists a straightforward extension to a certain
class of excited states, the lowest-energy states of a given
spin symmetry of the electron density.15,38–41 Such an exten-
sion can also be made to the lowest-energy state of a given
spatial symmetry.

We follow the methodology of Yang et al.30 and Mori-
Sánchez and co-workers,36,37 by examining systems at their
dissociation limit. Consider an external potential v�r� that
has two sets of degenerate states: an N-electron degenerate
lowest-energy state of given symmetry S with the energy
Ev

S�N�, wave functions ��N,i
S , i=1,2 , . . . ,gN� and densities

��N,i
S , i=1,2 , . . . ,gN�, and a �N+1�-electron degenerate

lowest-energy state of given symmetry S� with the energy

Ev
S��N+1�, wave functions ��N+1,j

S� , j=1,2 , . . . ,gN+1� and

densities ��N+1,j
S� , j=1,2 , . . . ,gN+1�. There is an important

condition: the two states with symmetry S and S� have to be
connected by the addition/removal of one single electron.
For example, if we consider the lowest-energy singlet state
of the N-electron state, then the N+1 state cannot be a quar-
tet state, because these two states cannot be connected by the
addition or the removal of a single electron. For the density

�=
i=1
gN ci�N,i

S +
 j=1
gN+1dj�N+1,j

S� where �ci� and �dj� are positive
and finite integers, and satisfy the normalization condition,
the exact energy functional satisfies the following equation:

Ev�1

q


i=1

gN

ci�N,i
S +

1

q


j=1

gN+1

dj�N+1,j
S� �

=
q − p

q
Ev

S�N� +
p

q
Ev

S��N + 1� , �18�

where q=
i=1
gN ci+
 j=1

gN+1dj, p=
 j=1
gN+1dj, and q− p=
i=1

gN ci.
Equation �18� is our general result on the fractional-charge
and fractional-spin condition for systems in the lowest-
energy states of given spin and spatial symmetries of the
electron density. Equation �18� is also valid in first-order
reduced density-matrix functional theory.

We now prove it. Consider a supramolecular system, the
following external potential vtotal�r�=
l=1

q v�r−Rl�; namely,
it has q copies of the potential v�r�, each located at a site Rl

and infinitely far from each other. There is a total number of
electrons of qN+ p �N, p, and q are all positive and finite
integers and q� p�. Since the sites are separated by infinite
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distances, the total system is simply composed of q sub-
systems in identical external potentials v�r� with no interac-
tion between the subsystems. Its lowest-energy state has
�q− p� N-electron subsystems with energy Ev

S�N�, which is
the N-electron lowest-energy state of the given symmetry S,

and p �N+1�-electron subsystems with energy Ev
S��N+1�,

which is the �N+1�-electron lowest-energy state of the given
symmetry S�.

Note that our results are applicable if and only if the
convexity condition,

Ev
S�N� 
 �Ev

S��N + 1� + Ev
S��N − 1��/2, �19�

is assumed to hold. This is known for atoms and molecules
in their ground states from experimental data17,19 and is ex-
pected to be valid for low-lying excited states. However, this
condition is not true for all excited states. For example, the
lowest-energy excited state of the lithium cation �1s2s�
should autoionize to give the ground states of neutral lithium
�1s22s� and its dication �1s�. Given the convexity condition,
then the lowest-energy state of the total system is degenerate
and its energy is

�q − p�Ev
S�N� + pEv

S��N + 1� . �20�

The total wave function is an antisymmetric product of q
separated wave functions. One possible state is the follow-
ing. For the first p locations, R1¯Rp, each has �N+1� elec-
trons; within these p locations, the first d1 sites have the
degenerate wave function �N+1,1, the second d2 sites have

the degenerate wave function �N+1,2
S� , . . ., and the last dgN+1

sites have the degenerate wave function �N+1,gN+1

S� . In this
way, p=
 j=1

gN+1dj. For the remaining q− p locations,
Rp+1¯Rq, each has N electrons; within these q− p locations,
the first c1 sites have the degenerate wave function �N,1

S , the
second c2 sites have the degenerate wave function �N,2

S , . . .
and the last cgN

sites have the degenerate wave function
�N,gN

S . In this way, q− p=
i=1
gN ci. Then this state has the wave

function

�1 = Â��N+1,1
S� �R1� ¯ �N+1,1

S� �Rd1
��N+1,2

S� �Rd1+1� ¯ �N+1,2
S�

��Rd1+d2
� ¯ �N,1

S �Rp+1� ¯ �N,1
S �Rp+c1

��N,2
S

��Rp+c1+1� ¯ �N+1,2
S� �Rp+c1+c2

�¯� . �21�

The permutation of any two locations with different states

��N,i
S or �N+1,j

S� � generates a different �qN+ p�-electron wave
function. There are a total of m=q ! /�i

gNci!� j
gN+1dj! such de-

generate wave functions.
For any wave function �k, a particular site Rl can either

have the wave function �N,i
S or �N+1,j

S� . In all such wave func-
tions ��k ,k=1, . . ,m�, the number of times any location

Rs has the wave function �N+1,n
S� is equal to mN+1,n

= �q−1� ! / �cn−1� !�i�n
gN ci!� j

gN+1dj!=mcn /q and the corre-
sponding number for �N,n

S is equal to mN,n= �q−1� ! /
�dn−1� !�i

gNci!� j�n
gN+1dj!=mdn /q. In analogy to Eq. �21�, the

following equally weighted wave function is also a degener-
ate wave function:

�̄ =
1

�m


k=1

m

�k, �22�

the density of which is

�̄ = 

l=1

q �1

q


i=1

gN

ci�N,i
S �Rl� +

1

q


j=1

gN+1

dj�N+1,j
S� �Rl�� . �23�

In this particular state with the degenerate energy of Eq. �20�,
all the q subsystems have the same electron density except
by translation. For the exact functional, it must be
size-extensive Ev��̄�=qEv��1 /q�
i=1

gN ci�N,i
S �Rl�

+ �1 /q�
 j=1
gN+1dj�N+1,j

S� �Rl��. However, Ev��̄�= �q− p�Ev
S�N�

+ pEv
S��N+1� according to Eq. �20�. Therefore, we have

Ev�1

q


i=1

gN

ci�N,i
S �Rl� +

1

q


j=1

gN+1

dj�N+1,j
S� �Rl��

=
q − p

q
Ev

S�N� +
p

q
Ev

S��N + 1� , �24�

which is just Eq. �18�, for the site Rl. It is the size-extensivity
requirement that leads to the definition of energy for densi-
ties with fractional charges and spins in Eq. �24�.

Note that since in Eq. �18�, the energy functional is for
the lowest-energy state of some given symmetry, there is no
spin contamination problem42,43 for the functional so defined.
In other words, such functionals are symmetry specific.

IV. RESULTS AND DISCUSSION

A. Be atom

As a simple example, we first consider the beryllium
atom, which has a ground-state electronic configuration of
1s22s2. There is also a low-lying triplet excited state with
configuration 1s22s12p1. Ionization from this excited state
can give two low-energy cations: the ground-state �1s22s1� or
the first excited state �1s22p1�. Further ionization gives a
common dication with configuration 1s2. This situation is
illustrated by the E�N� curve in Fig. 2.

This curve was generated from calculations with the
rCAM-B3LYP21,33 functional and the cc-pVQZsdp basis set
�cc-pVQZ with only s, p, and d functions� using the CADPAC

program.44 Energies were calculated as a function of �frac-
tional� electron number for each ionization process. Figure 2
also shows the eigenvalues of the relevant orbitals involved
in each ionization. These �generalized Kohn–Sham� eigen-
values correspond to the slopes of the E�N� curves.

This plot can be used to compare the properties of the
two cation states. The 1s22s1 cation is the ground state and
has the most-stable HOMO. Only the excited-state 1s22s12p1

neutral can be reached from both cations via one-electron
processes. This state is generated by an electron addition to
an s orbital of the 1s22p1 cation or to a p orbital of the 1s22s1

cation. Comparing these unoccupied orbital eigenvalues, that
of the ground-state is higher in energy. Combining these re-
sults, the ground-state cation has the largest energy gap and
chemical hardness.
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B. C atom

The next example is the carbon atom, which has an elec-
tronic configuration of 1s22s22p2. The ground state is a trip-
let �3P� with the two p electrons unpaired. There is also a
low-lying singlet excited state �1D�. This example is compli-
cated by the fact that this state is an open-shell singlet, the
energy of which cannot be obtained using a single Slater
determinant reference state with currently available function-
als. Ionization of either the singlet or triplet neutral gives the
ground-state doublet �2P� cation. The electron addition to
both neutral states can give a common doublet anion. How-
ever, this state is again not representable as a single determi-
nant and will be higher in energy than the ground-state quar-
tet �4S� anion.

In this work, rCAM-B3LYP/cc-pVQZsdp calculations
were performed for the lowest-energy single determinants.
These are px��� for the dication, px���py��� for the triplet
neutral, px���pz��� for the singlet neutral, px���py���pz���
for the quartet anion, and px���py���pz��� for the doublet
anion. The energy difference between the lowest single-

determinant singlet and triplet states of neutral carbon was
calculated to be 3649 cm−1. However, this actually corre-
sponds to half of the 1D-3P splitting. Employing the correc-
tion of Ziegler et al.42 gives improved agreement with the
experimental value of 10 160 cm−1.45

Figure 3 shows E�N� curves calculated for ionization
from, or electron addition to, both the singlet and triplet
states of the neutral carbon atom. The figure also shows the
relevant orbital eigenvalues as a function of an electron num-
ber, 	�N�, which corresponds to the slopes of the E�N�
curves.

The calculated eigenvalues clearly show that the ground-
state, triplet neutral has the most-stable HOMO. The ground-
state anion is the quartet, which cannot be reached from the
singlet neutral by a one-electron process. To directly com-
pare the two neutral states, the shared, doublet anion must be
considered. This state can be reached by addition of an
�-spin electron to the singlet neutral or a �-spin electron to
the triplet neutral. Comparing these unoccupied orbital ei-
genvalues, that of the triplet is higher in energy, again indi-

FIG. 2. Electronic energies and orbital eigenvalues of the beryllium atom as a function of the number of electrons. An ordinate value of 2.0 corresponds to
the dication, 3.0 the cation, and 4.0 the neutral atom. The ground-state cation has the 1s22s1 configuration. The eigenvalues are the slopes of the E�N� curves
and represent the HOMO and LUMO /LUMO+1 of the cation states.

FIG. 3. Electronic energies and orbital eigenvalues of the carbon atom as a function of the number of electrons. An ordinate value of 5.0 corresponds to the
cation, 6.0 the neutral atom, and 7.0 the anion. Calculations were performed for the lowest-energy single determinants. The ground-state neutral is the triplet
�px���py����. The eigenvalues are the slopes of the E�N� curves and represent the HOMO and LUMO /LUMO+1 of the neutral states.
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cating that it is the neutral ground state. Taken together, the
triplet also has the largest energy gap and chemical hardness.

C. V atom

In this section, we consider the more complex example
of the vanadium atom, which has several low-lying elec-
tronic states. The ground state has a 4F electronic configura-
tion of s2d3. It is only 0.11 eV or 2.5 kcal/mol lower in
energy46 than the lowest excited state, which has a 6D elec-
tronic configuration of s1d4. Electron addition to these two
neutral states gives the ground-state 5D anion �s2d4�. Ioniza-
tion from the HOMO of the 6D neutral gives the ground-state
5D cation �s0d4�. However, this cation cannot be reached
from the ground-state 4F neutral by a one-electron process.
Ionization from this neutral gives instead the lowest excited
state cation, which has an 5F electronic configuration of s1d4.
This 5F cation can also be reached from the 6D neutral by
ionization from the s-orbital. Further ionization from either
cation gives the same 4F dication �s0d3�.

This collection of states is illustrated in the two E�N�
curves in Fig. 4. The calculations were performed in the
same manner as for beryllium and carbon using the
rCAM-B3LYP21,33 functional and the cc-pVQZsdp basis

set.44 The choice of d orbital occupations was made accord-
ing to Ref. 47. Figure 4 also plots 	�N� for each ionization or
electron addition process.

Let us begin with the more straightforward case of the
5D and 5F cation states, which are connected by one-electron
processes with the dication and 6D neutral. The eigenvalues
show that the ground-state 5D cation has the lower HOMO,
higher LUMO, greater energy gap, and thus maximum
chemical hardness. Comparison of the two neutral states is
more difficult. They are connected by one-electron processes
with the 5F cation and the anion. However, Fig. 4 shows that
the E�N� curves for formation of the 5F cation from either
neutral are essentially superimposed and, consequently, that
HOMO eigenvalues are nearly degenerate. Moreover, no de-
finitive conclusions can be drawn from a comparison of the
LUMO eigenvalues due to the substantial curvature of the
calculated E�N� curve for electron addition to the 4F neutral
�caused by delocalization error, indicating that a different
range-separation may be needed in rCAM-B3LYP for d or-
bitals�. That the HOMO and LUMO eigenvalues of these two
neutral states are nearly degenerate or cross, with approxi-
mate functionals, is of no surprise due to the very small
calculated energy difference of 1.0 kcal/mol between them.

FIG. 4. Electronic energies and orbital eigenvalues of the vanadium atom as a function of the number of electrons. An ordinate value of 21.0 corresponds to
the dication, 22.0 the cation, 23.0 the neutral atom, and 24.0 the anion. The ground-state cation is 5D and the ground-state neutral is 4F.
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D. CH2

The next example is the CH2 molecule, which has been
the subject of highly advanced correlated wave function
studies.34 In this molecule, there are two electrons on the

carbon atom not directly involved in chemical bonding.
These electrons can share occupancy of an a1 orbital, result-
ing in a singlet �1-A1� state. Alternatively, the molecule can
adopt a triplet �3-B1� state with same-spin electrons occupy-

FIG. 5. Total electronic energies and orbital eigenvalues of CH2 as a function of angle. The orbital eigenvalues correspond to the HOMO-1 �a1����
singlet-state HOMO �a1���� and triplet-state HOMO �b1����.

FIG. 6. rCAM-B3LYP relative electronic energies and orbital eigenvalues of CH2 as a function of the number of electrons. An ordinate value of 7.0
corresponds to the cation, 8.0 the neutral molecule, and 9.0 the anion. Results are shown for two molecular geometries with angles of 95° �left� and 135°
�right�.
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ing the a1 and b1 orbitals. The energy ordering of the singlet
and triplet states changes as a function of the H–C–H
angle.34

In our calculations, the two C–H bonds were fixed at
R�C–H�=1.1 Å. The H–C–H angle was varied between 90°
and 140° in 5° increments. At each of these geometries,
single point energy calculations were performed with the
rCAM-B3LYP21,33 and B3LYP23,24 functionals using the cc-
pVQZsdp basis set.44

The resulting potential-energy curves as a function of
H–C–H angle are shown in Fig. 5. The figure also shows a
Walsh-type diagram, plotting the orbital eigenvalues as a
function of angle. The two functionals provide very similar
results. The 1-A1 state is more stable at small angles, while
the minimum-energy geometry is obtained with the 3-B1
state at larger angles. The singlet and triplet are degenerate at
approximately 102°. Of the three orbital eigenvalues plotted,
the occupied HOMO-1 a1��� is consistently lowest in en-
ergy. The HOMO can be either an a1��� orbital in the singlet
or a b1��� orbital in the triplet. The a1��� eigenvalue is
lower at small angles, where the singlet state is more stable,
and the b1��� eigenvalue is lower at large angles, where the
triplet state is more stable. The orbital eigenvalues show that

the most-stable configuration has the lowest HOMO energy
and highest LUMO energy. The a1��� and b1��� eigenvalues
become degenerate at approximately 107°, which is some-
what larger than the crossing point in the potential-energy
curves. At this crossing point, the HOMO and LUMO eigen-
values for both states are equal and the band-gap is zero.

We now select two CH2 geometries with angles of 95°
and 135°. E�N� curves were calculated for ionization from
the HOMO or electron addition to the LUMO of both the
singlet and triplet states. The results for both geometries are
shown in Fig. 6 for rCAM-B3LYP and Fig. 7 for B3LYP. The
energies are expressed relative to the cation so that the re-
sults from both functionals are directly comparable. Note
that ionization from either the neutral singlet or triplet pro-
duces the same 2-A1 cation state. Similarly, reduction of
either the singlet or triplet gives the same 2-B1 anion state.
For the 1-A1 neutral, ionization is from the a1��� orbital and
electron addition is to the b1��� orbital. Conversely, for the
3-B1 neutral, ionization is from the b1��� orbital and elec-
tron addition is to the a1��� orbital. Figures 6 and 7 also
show plots of 	�N� for these particular orbital eigenvalues.

The E�N� curves obtained with B3LYP �Fig. 7� are con-
cave, showing the tendency of this functional to overstabilize

FIG. 7. B3LYP relative electronic energies and orbital eigenvalues of CH2 as a function of the number of electrons. An ordinate value of 7.0 corresponds to
the cation, 8.0 the neutral molecule, and 9.0 the anion. Results are shown for two molecular geometries with angles of 95° �left� and 135° �right�.
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systems with fractional charges; this is characteristic of de-
localization error. Although slightly convex, the rCAM-
B3LYP curves �Fig. 6� are more nearly linear since this func-
tional was designed to have reduced delocalization error. The
B3LYP eigenvalues increase considerably between the inte-
gers to match the concave shape of the E�N� plots. The
rCAM-B3LYP eigenvalues are much closer to the constant
result expected from the exact functional, but are found to
decrease slightly between the integers reflecting the convex-
ity of the E�N� curves.

First consider the CH2 geometry with an internal angle
of 95°. Starting from the ground-state cation, the most-stable
neutral will be formed by electron addition to the lowest-
energy unoccupied orbital, which is the a1��� orbital. Thus,
the most-stable configuration of the neutral CH2 molecule at
this geometry is 1-A1, which has the lowest-energy HOMO.
Conversely, starting from the ground-state anion, the most-
stable neutral will be formed by removing an electron from
the highest-energy occupied orbital, which is the b1��� or-
bital. This again predicts the 1-A1 neutral, which has the
highest-energy LUMO, to be most stable. Taken together,
these results mean that the most-stable neutral must also
have the largest band-gap and consequently the greater
chemical hardness.

Now consider the CH2 geometry with an internal angle
of 135°. Starting from the cation, an electron will add to the
lowest-energy unoccupied orbital, which is now b1���. Con-
versely, starting from the anion, an electron will ionize from
the highest-energy occupied orbital, which is now a1���.
Both of these processes give the 3-B1 neutral. The state with
the lowest-energy HOMO, highest-energy LUMO, and great-
est chemical hardness, is predicted to be most stable.

Note that while CH2, at equilibrium geometry, has the
greatest hardness as a triplet, the analogous molecule CCl2
has the greatest hardness in its singlet ground state. This
demonstrates the transferability of the maximum-hardness
principle.

E. C3H3

The last test case considered is the C3H3 molecule,
which has also been the subject of earlier computational
studies.35 While the ground-state 1-A1 cation has D3h sym-
metry, the neutral molecule is a doublet that undergoes a
Jahn–Teller type distortion to give a Cs ground state with
two longer C–C bonds and the nonequivalent H atom out of
the plane of the molecule. However, there are two previously
studied35 geometries within the C2v point group that we will

FIG. 8. rCAM-B3LYP relative electronic energies and orbital eigenvalues of C3H3 as a function of the number of electrons. An ordinate value of 20.0
corresponds to the cation, 21.0 the neutral molecule, and 22.0 the anion. Results are shown for two molecular geometries.
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consider: the “A setting” �two short C–C bonds� and the “B
setting” �two long C–C bonds�. The ground electronic state
differs between these two geometries: 2-A2 for the A setting
and 2-B1 for the B setting. Therefore, the ground and lowest-
energy excited states have the same spin but the electron
densities have different spatial symmetries.

The C2v geometries of the C3H3 molecule were opti-
mized for the A and B settings in their ground-state configu-
rations with B3LYP/cc-pVQZspd using GAUSSIAN 03.48

These two states are predicted to be nearly degenerate with
the B setting slightly more stable by 0.7 kcal/mol. For each
geometry, E�N� and 	�N� curves were generated for both the
ground and lowest excited states The results are shown in
Fig. 8 for rCAM-B3LYP and Fig. 9 for B3LYP.

Ionization results in a 1-A1 state for the cation in all
cases with the electron removed from either the singly occu-
pied a2��� or b1��� orbitals. Electron addition is more com-
plex. An �-spin electron can be added to either neutral state
to give a 3-B2 anion. Alternatively, two possible 1-A1 anions
can be generated from an addition of a �-spin electron. The
electron can be added to the 2-A2 neutral to give a HOMO
occupation of a2���� or to the 2-B1 neutral to give a HOMO
occupation of b1����. In DFT calculations, the two 1-A1

anions are represented as pure states, while they would mix
and give lower energy in a multireference CI treatment. The
3-B2 anion is predicted to be most stable, although the elec-
tron affinity is negative when constrained to either neutral
geometry. Previous work demonstrated that the optimized
anion geometry is highly nonplanar.49

Consider the E�N� curves for the two neutral geometries
in Fig. 8 obtained with rCAM-B3LYP. In the A setting, the
2-A2 state is lower in energy than the 2-B1 state by 29.4
kcal/mol. Conversely, in the B setting, the 2-B1 state is lower
in energy than the 2-A2 state by 25.1 kcal/mol. The E�N�
curves are somewhat convex and the eigenvalues �slopes�
decrease with increasing electron number N. B3LYP gives
the same general pattern of results �see Fig. 9�, except that
this functional gives highly concave E�N� curves and the
eigenvalues increase with increasing N.

Starting from the 1-A1 cation, an electron will add to the
lowest-energy orbital. In the A setting, this is the a2��� or-
bital to give the 2-A2 neutral. In the B setting, this is the
b1��� orbital to give the 2-B1 neutral. In both cases, the
most-stable state must have the lowest HOMO energy. Now
consider removing an electron from the highest-energy or-
bital of the 3-B2 anion. In the A setting, this is the b1���

FIG. 9. B3LYP relative electronic energies and orbital eigenvalues of C3H3 as a function of the number of electrons. An ordinate value of 20.0 corresponds
to the cation, 21.0 the neutral molecule, and 22.0 the anion. Results are shown for two molecular geometries.
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orbital and gives the 2-A2 neutral. In the B setting, this is the
a2��� orbital and gives the 2-B1 neutral. Again, the most-
stable neutral state must have the highest LUMO energy.
�Note that this analysis would not apply to the singlet anion
states, since addition of a �-spin electron to the two neutral
configurations does not give the same anion.� Finally, in both
settings, the most-stable neutral configuration has the largest
HOMO-LUMO gap, and therefore, the largest chemical
hardness.

V. SUMMARY AND OUTLOOK

For the exact density functional, we have proven a “flat-
plane” condition for the lowest-lying excited states of differ-
ent spin or spatial symmetry from the ground state. This
condition means that the electronic energies must be piece-
wise linear as a function of fractional charge or fractional
spin. As a consequence of this, we have also proven that the
most-stable electronic state of an atom or molecule will have
the lowest HOMO energy, highest LUMO energy, and maxi-
mum chemical hardness. This rigorous maximum-hardness
principle directly connects the experimental observables of
ionization potential and electron affinity to spin-state energy
splittings.

The maximum-hardness principle was demonstrated for
the Be, C, and V atoms. Additionally, the examples of the
CH2 and C3H3 molecules show that this principle still hold
for approximate functionals even with significant delocaliza-
tion error. The current findings could prove useful in appli-
cation to compounds such as dyes and electronic materials,
which have low-lying excited states. Our maximum-hardness
principle for different electronic states can also be combined
with the existing result for different geometries. Increases in
chemical hardness originating from changes in spin, orbital
symmetry, and geometric distortions should all lead to
greater stability.
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