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Based on the construction of generalized Halperin wave functions, we predict the possible existence of a
large class of broken spin symmetry states in bilayer quantum Hall structures, generalizing the recently
suggested canted antiferromgnetic phase to many fractional fillings. We develop the appropriate Chern-Simons
theory, and establish explicitly that the low-lying neutral excitation is a Goldstone mode and that the charged
excitations are bimerons with continuously tunable !through the canted antiferromagnetic order parameter"
electric charge on the individual merons.

Recently, a canted antiferromagnetic !CAF" state has been
predicted to exist in bilayer quantum Hall !QH" systems at
the special filling factor #!2,1 or more generally at #
!2/m where m is an odd integer.2 The original theoretical
prediction1 based on a microscopic Hartree-Fock calculation
has been followed up by a number of subsequent theoretical
works using a quantum nonlinear $ model,2 a bosonic spin
approach,3,4 and more detailed Hartree-Fock calculations.5–7
Fairly persuasive experimental support for the CAF phase in
#!2 bilayer QH systems also exists.8 The basic idea under-
lying the CAF phase is that the competition between inter-
layer tunneling, Zeeman splitting, intralayer Coulomb inter-
actions, and interlayer Coulomb interactions can cause
spontaneous symmetry breaking in bilayer systems, leading
to the CAF phase. This CAF phase lies in between the usual
spin polarized ferromagnetic phase and the symmetric para-
magnetic !or singlet" phase.
In spite of the extensive theoretical work on the problem

using Hartree-Fock or related spin operator approaches,1–7 a
fundamental understanding of the precise nature of the CAF
phase, either from the perspective of actual QH wave func-
tions or from a long wavelength field theoretic viewpoint, is
still lacking. In this paper we construct a microscopic wave
function for the ground state of the CAF state, and develop a
Chern-Simons theory to study the excitations above the CAF
ground state. We find a neutral Goldstone mode associated
with the breaking of the spin symmetry in the CAF phase
and bimeronic charged excitations, which we discuss below.
Furthermore, we establish that the type of symmetry break-
ing characterizing the CAF state is quite generally allowed in
bilayer QH systems and may in principle exist for a large
class of QH states far beyond the originally predicted #
!2/m filling factors.
As pointed out first by Wen and Zee,9 the Halperin

(m ,m ,m) wave functions10 !neglecting electron spin" in bi-
layer QH systems have the property of fixing the total filling
factor # in the system, but not the individual filling factors of
each layer. This allows one to construct wave functions that
are a superposition of states with different numbers of par-

ticles in each layer !but fixed total number of particles",
which leads to spontaneous interlayer coherence in the ab-
sence of interlayer tunneling.9,11 We show that the analogous
Halperin-type construction for spinful electrons in bilayer
QH systems leads to a CAF phase that breaks the spin sym-
metry spontaneously.
The electron Hamiltonian for a bilayer QH system can be

written as

H!! d2x%!1/2m " "!"i&!"eAex"'a$"2

#!uI
c#uO

c "!'̄a$'a$"2#(Z'̄a)$)*
z 'a*

#!uI
c"uO

c "!'̄a$+ab
z 'b$"2#(SAS'̄a$+ab

x 'b$,. !1"

Here a, b and ) , * are layer !‘‘isospin’’" and spin indices,
respectively; uI

c is the intralayer and uO
c is the interlayer Cou-

lomb interaction; (SAS is the splitting between symmetric
and antisymmetric states due to interlayer tunneling; (z is
the Zeeman splitting. In the discussion below we choose to
work with the symmetric/antisymmetric electron wave func-
tions of definite Sz. Using such single electron wave func-
tions, however, does not rely on assuming large interlayer
tunneling and Zeeman splitting. As discussed in Ref. 1, Cou-
lomb interaction itself generates effective tunneling and Zee-
man field that are much larger than bare (SAS and (z . The
appearance of such strong effective field is related to the
tendency of electrons in the lowest Landau level to obey
Hund’s rule,12 so that the fully polarized ferromagnetic or
spin singlet phases discussed in Refs. 1–8 correspond to the
system obeying Hund’s rule in spin or isospin, and the CAF
phase is a nontrivial phase that achieves a compromise be-
tween the two.
Of the four possible single particle states, the symmetric

spin up (S↑) state always has the lowest energy and antisym-
metric spin down (A↓) has the highest energy. Since the
symmetric spin down (S↓) and the antisymmetric spin up
(A↑) states may be close in energy, it is important to con-
sider mixing between them.13 We now construct a Halperin-
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like wave function10 for our spinful bilayer system. Our
wave function does not fix the number of electrons in the S↓
and A↑ states individually, but fixes their sum. If we label
S↑ states by z, S↓ states by u, and A↑ states by w, we can
easily write the Halperin wave function that fixes the number
of electrons in the S↓ and A↑ states together, but not in each
of them separately:

'!%z,%u,%w,"

!- !zi"z j"n- !zi"wj"
l- !zi"u j" l

$- !wi"wj"
m- !wi"u j"m- !ui"u j"m

$exp#"
1
4 $ . "zi"2#. "u j"2#. "wk"2 % & . !2"

Here n and m are odd integers, and l can be any integer. A
simple calculation then gives the total filling of this wave
function: #!(n#m"2l)/(nm"l2). What is remarkable
about such a wave function is that, since the individual filling
factors in the S↓ and A↑ states are not fixed, we can consider
wave functions that are a superposition of states with various
Nu"Nw . They mix states with different values of Sz !the z

component of spin lies along the direction of the magnetic
field" and therefore describe states with spontaneously bro-
ken spin symmetry—the CAF state of Refs. 1–8. It is easy to
see that taking l!0 and n!m in Eq. !2" gives #!2/m , i.e.,
the CAF state discussed in Refs. 1 and 2. In the CAF phase,
the electrons in the two layers have the same z component of
spin but opposite x"y components. The direction of the
Néel order parameter !defined as the difference in the spin
expectation values in the two layers" comes from the spon-
taneous breaking of the Sz spin symmetry. It should be men-
tioned that Halperin wave functions for spontaneously bro-
ken spin symmetry states may also be constructed for single
layer QH systems, leading to the possibility !at least in prin-
ciple" of exotic spin states in a single layer QH system.14
Properties of the state !2" are conveniently discussed us-

ing a bosonic Chern-Simons theory.15,16 For simplicity, we
again assume that the A↓ states are empty and consider only
three kinds of electrons: '1 for S↑ , '2 for S↓ , and '3 for
A↑ . Equation !2" tells us that the electron '1 is seen as a
vortex of strength n by other '1 electrons and a vortex of
strength l by electrons '2,3 ; electrons '2,3 are seen as vor-
tices of strength m and l by electrons '2,3 and '1, respec-
tively. We are therefore led to consider the following
!bosonic" Chern-Simons Lagrangian:

L!'̄1!&0"ia0"'1# .
a!2,3

'̄a!&0"i ã0"'a#
1
2m "/"i&!"na"l ã"Aex0'1"2

#
1
2m .

a!2,3
"/"i&!"la"m ã"Aex0'a"2"!(Z#(SAS"'̄1'1"!(SAS"(Z"'̄2'2#!(SAS"(Z"'̄3'3

#uLL!
c !x"y "!1L!x "" 1̄ "!1L!!y "" 1̄ "#LCS!a "#LCS! ã ", !3"

where LCS(a)! (i/42) 34#5a4&#a5 , and L is a layer index !‘‘top’’ or ‘‘bottom’’" in the Coulomb interaction term. We
decompose the ' i’s into an amplitude, a trivial phase, and a vortex part:16,17 '1!!11ei617v1 and 'a!!12ei627v2za"1 for
a!2, 3, with the constraints 7̄v17v1!7̄v27v2! z̄aza!1. Then Eq. !3" can be written as

L!i11$ &061
i #7̄v1

&0
i 7v1"a0%#i12$ &062

i #7̄v2
&0
i 7v2# z̄a

&0
i za" ã0%#iJ$ &!61

i #7̄v1
&!

i 7v1"na"l ã"Aex%
#i J̃$ &!62

i #7̄v2
&!

i 7v2# z̄a
&!

i za"la"m ã"Aex% #
K1
2 "J"2#

K2
2 "J̃"2#

1
2K2

! "&!z"2#! z̄&!z "2""!(Z#(SAS"11

"!(SAS"(Z"12"z1"2#!(SAS"(Z"12"z2"2".
ab

8ab"za"2"zb"2#!11#12" 1̄ "!x "u!x"y "!11#12" 1̄ "!y "

#LCS!a "#LCS! ã ". !4"

Here Ki!m/1 i , terms with 8ab come from the exchange part of the Coulomb interaction, and in the direct part of the
Coulomb interaction we keep only the layer symmetric part of uLL!

c which does not vanish in the limit of d!0. By integrating
out 61 and 62 we find that J4!(11 ,J) and J̃4!(12 , J̃) are conserved. Therefore, we introduce dual gauge fields, b5 and b̃5 ,
such that J4!(1/22)34#5&#b5 and J̃4!(1/22)34#5&#b̃5 . Then, we integrate out the statistical gauge fields, a4 and ã4 , and
the time component of the dual gauge fields, b0 and b̃0. This gives !up to irrelevant constants"
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L!ib)J)
v #i b̃)! J̃)

v # J̃)
S "#

1
822K1

!&0b)"2#
1

822K2
!&0b̃)"2

#
1
2K2

! "&!z"2#! z̄&!z "2"#i3)*b)&0b*#i3)*b̃)&0b̃*#
K1
2 r!x "ln"x"y "r!y "#

K2
2 r̃!x "ln"x"y " r̃!y "#!r1"z1"2#r2"z2"2

"811"z1"4"822"z2"4"2812"z1"2"z2"2"#
1
422 !3)*&)b*#3)*&)b̃*" 1̄ "!x "u!x"y "!3)*&)b*#3)*&)b̃*" 1̄ "!y ", !5"

where we have defined vortex and skyrmion currents as in:17

J4
v !(J0

v ,J)
v )!(1/22)34#5&#(7̄v1(&5 /i)7v1), J̃4

v !( J̃0
v , J̃)

v )
!(1/22)34#5&#(7̄v2 (&5/i) 7v2), and J̃4

S !( J̃0
S , J̃)

S )
!(1/22)34#5&#( z̄ z(&5 /i)za). The parameters r1 and r2 de-
scribe effective tunneling and Zeeman energy renormalized
by the Coulomb interaction, and

r!x "!22J0
V"n3)*&)b*"l3)*&)b̃*"3)*&)A*

ex ,

r̃!x "!22 J̃0
V#22 J̃0

S"l3)*&)b*"m3)*&)b̃*"3)*&)A*
ex .

In the ground state there are no vortices or skyrmions, so
the cancellation of the long range logarithmic interaction
gives two conditions,

1
22! d2x/3)*&)A*

ex#n3)*&)b*#l3)*&)b̃*0!0,

1
22! d2x/3)*&)A*

ex#l3)*&)b*#m3)*&)b̃*0!0. !6"

Recalling that 1/223)*&)b* gives the density of '1 elec-
trons and 1/223)*&)b̃* gives the density of '2 and '3
electrons, we realize that Eq. !6" gives us the same filling
fractions as the Halperin wave function !2".
From the last line of Eq. !5" it is obvious that as we

change the strength of the Zeeman interaction and/or inter-
layer tunneling, we will stabilize various values of "z1" and
"z2". Parameters 8ab have been effectively computed in
Hartree-Fock approximations for n!m!1 and l!0, i.e., #
!2, in Refs. 1, 2, 7, and shown to obey 812%811#822 ,
which implies that in this case there is no direct transition
from "z1"!1 to "z2"!1, but there is an intermediate phase
where both "z1"!cos60 and "z2"!sin60 are finite.13 We will
assume that the same holds for fractional fillings as well,
although at this time we can offer no proof of this fact. The
phase where both z’s are finite will correspond to the CAF
phase. In this phase interactions fix the absolute values of z’s
but not their relative phase. Therefore, when z̄1z2 develops
an expectation value, we have a spontaneous breaking of the
U(1) symmetry and the appearance of a Goldstone mode.
In the CAF phase, dynamics of the spin is determined by

Lz!i 1̄2z̄& tz" !1/2K2" „"&!z"2#! z̄&!z "2…#r1"z1"2#r2"z2"2

"811"z1"4"822"z2"4"2812"z1"2"z2"2. !7"

In the CAF phase only 9 z̄1z2: develops a nonzero expecta-
tion value, but not 9z1: or 9z2:. Therefore, we can write z1
!"z1"ei(7#;) and z2!"z2"ei("7#;). 7 , the relative phase be-
tween z1 and z2, acquires an expectation value and gives rise

to the Goldstone mode associated with the symmetry break-
ing. We also introduce q!"z1"2""z2"2. Using that fluctua-
tions of q are massive and their gradients may be neglected,
we find from Eq. !7"

Lz!i 1̄2<q & t7" !1/2K2" !&!7"2/1"qmin
2 0

#)!<q "2#i 1̄2 qmin& t7 , !8"

with )!(811#822"2812)/4. Integrating out <q we get

L7!! 1̄2
2/4)2" !& t7"2" !1/2K2" !&!7"2/1"qmin

2 0

#i 1̄2 qmin& t7 . !9"

We see that the spin wave velocity is vs!(811#822
"2812)2sin2(260)/(8m1̄2). By introducing an infinitesimal
external Zeeman field and integrating out fluctuations in 7 ,
one can also calculate the Sz correlation function which ex-
plicitly shows a Goldstone resonance

;zz!q ,="!
! 1̄2
2/2)" =2

=2"vs
2k2

"
1̄2
2

2)
. !10"

When the ground state of a system breaks a U(1) sym-
metry spontaneously, vortices of the U(1) phase will be the
elementary excitations in the system and will carry a frac-
tional electric charge, analogously to the merons discussed in
Refs. 9 and 11. It is clear from the discussion above that such
a meron corresponds to a vortex of the z field. Far away from
the vortex core, "z1"!cos 60 and "z2"!sin 60, and the relative
phase between the two z!s has nontrivial winding character-
ized by integer vorticity, nv . In order to avoid a singularity
of this phase, in the vortex core we must have either "z2"
!0 (S vortex" or "z1"!0 (T vortex". According to the defi-
nition of J̃0

S , this implies a nontrivial skyrmion winding
number,

Q!
1
22! d2xJ̃o

S!
1
22! d2x3)*&)$ z̄&*

i z %
!' nv $ sin260 S vortex

"nv $ cos260 T vortex,
!11"

where nv is an integer characterizing the winding of the rela-
tive phase between z1 and z2. From Eq. !5" the extra skyr-
mion charge has to be compensated by electric charge. To
cancel the long-range forces, >/"n3)*&)b*"l3)*&)b̃*0
!0 and >/"l3)*&)b*"m3)*&)b̃*0!"22Qs, which im-
mediately gives us the total charge of the meron,
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Qmeron!
1
22! /3)*&)b*#3)*&)b̃*0 ,

!/!n"l "/nm"l20 $Qs. !12"

For l!0, which includes the #!2/m states discussed in Ref.
2, we find Qmeron!1/m$Qs. Note that if we were to create
simple quasiparticles by squezing a vortex into the ground
state, J0

v!<2(x"x0) or J̃0
v!<2(x"x0), we could use the

same arguments to find their charges: q!(m"l)/(nm"l2)
and q̃!(n"l)(nm"l2). So, as in the simple case of a
meron in the (m ,m ,m) state, two merons add up to a charge
of 0 or the charge of a single quasiparticle, q̃ .18
In the simplest case of #!2, one can give a simple pic-

ture of the meron excitation in the CAF phase using a gen-
eralization of the Berry’s phase argument in Ref. 11. As
suggested in Ref. 3, the CAF phase can be described by
combining pairs of electrons into hard core bosons and writ-
ing the wave function as "':!cos 6"S:#ei7sin 6"T:. Here "S:
and "T: denote singlet and triplet bosons, respectively; the
relative phase between the two bosons, 7 , determines the
direction of the Néel vector in the x"y plane. When a vortex
is present, this phase winds nontrivially around the vortex
core and is characterized by an integer vorticity, nv . At the
center of the core, one has to demand that there is only one
kind of boson present !so as to avoid a singularity of the
relative phase"; therefore, one expects the appearance of two
kinds of vortices: vortices with a singlet core !S" or a triplet
core (T). We can now imagine taking a pair of electrons and
adiabatically moving them around the vortex. In the course
of such adiabatic transport, the wave function for a pair of
electrons will acquire a phase i?!(9@"d@:!i nvsin26 for
an S vortex or i?!"i nvcos26 for a T vortex. The Berry’s
phase in adiabatic transport is indistinguishable from extra
flux going through the system (A!A0/2$?/(22), where
the factor of 1/2 comes from the fact that we transported a
pair of electrons. This extra flux can be related to the charge
carried by the meron as (q!$xy(A!nv$sin26 and (q
!"nv$cos26 for S and T vortices, respectively. So, the two
kinds of merons in this case carry fractional charge; the
charge depends on where the system is in the phase diagram,
i.e., on the CAF phase order parameter 6 (6 goes to 0 at the

boundary of the CAF phase with the spin singlet phase, and
2/2 at the boundary with the fully polarized ferromagnetic
state; see Ref. 3 for details". However, two merons with op-
posite vorticities again add up to a charge of 0 or 1, as in the
#!1 bilayer (1,1,1) state.11
It is also instructive to consider an explicit wave func-

tion for a meron in the CAF phase at #!2. As dis-
cussed above, the wave function of the CAF phase may
be conveniently written as !in the limit when d is small"
"'0:!-m(cos 6 Sm

† #ei7 sin 6 Tm
† )"0:, where Sm

† !1/
!2(cSm↑

† cSm↓
† "cSm↓

† cSm↑
† ) and Tm

† !cSm↑
† cAm↑

† create singlet
and triplet combinations of electrons with orbital mo-
mentum m, and "0: is the Fock vacuum. Using the definition
of the Néel order parameter, Na(z)!9'"ST

a"SB
a "':

!.mn'm*(z)'n(z)$9'"cSm)
† $)*

a cAn*"cAm)
† $)*

a cSn*"':,
where 'm(z) is the wave function of an electron in the
first Landau level with angular momentum m, one can
easily prove that state "'0: has a uniform N! in the XY
plane N#(z)!1/2 cos 6 sin 6ei7. To have a meron we
need a wave function where the direction of the Neel
vector winds around as one goes around the center of the
meron. This is achieved by considering the following wave
function: "'M:!-m(cos 6 Sm

†#ei7 sin 6 T̃m
† )"0:, where T̃m

†

!cSm#1↑
† cAm↑

† . For "'M: one finds that N#(z)
!1/2.m'm*(z)'m#1(z)cos 6 sin 6ei70. Since 'mBzmexp
(""z"2) we find that arctan(Ny /Nx)!arg(z)#7; the direction
of N! winds in the XY plane following the argument of the
complex coordinate z. It is also obvious from "'M: that it
describes a state with a missing electron in the S↑ state of
m!0, so we have an S vortex with charge "sin26.
In summary, we have developed an analytic theory for the

bilayer QH CAF phase. Our theory is consistent with the
original Hartree-Fock theory for #!2, but is general enough
to predict a different class of fractional QH CAF phases as
well as the correct excitation spectra.
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